1
|
Zia-Ur-Rehman M, Anayatullah S, Irfan E, Hussain SM, Rizwan M, Sohail MI, Jafir M, Ahmad T, Usman M, Alharby HF. Nanoparticles assisted regulation of oxidative stress and antioxidant enzyme system in plants under salt stress: A review. CHEMOSPHERE 2023; 314:137649. [PMID: 36587917 DOI: 10.1016/j.chemosphere.2022.137649] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The global biomass production from agricultural farmlands is facing severe constraints from abiotic stresses like soil salinization. Salinity-mediated stress triggered the overproduction of reactive oxygen species (ROS) that may result in oxidative burst in cell organelles and cause cell death in plants. ROS production is regulated by the redox homeostasis that helps in the readjustment of the cellular redox and energy state in plants. All these cellular redox related functions may play a decisive role in adaptation and acclimation to salinity stress in plants. The use of nanotechnology like nanoparticles (NPs) in plant physiology has become the new area of interest as they have potential to trigger the various enzymatic and non-enzymatic antioxidant capabilities of plants under varying salinity levels. Moreover, NPs application under salinity is also being favored due to their unique characteristics compared to traditional phytohormones, amino acids, nutrients, and organic osmolytes. Therefore, this article emphasized the core response of plants to acclimate the challenges of salt stress through auxiliary functions of ROS, antioxidant defense system and redox homeostasis. Furthermore, the role of different types of NPs mediated changes in biochemical, proteomic, and genetic expressions of plants under salt stress have been discussed. This article also discussed the potential limitations of NPs adoption in crop production especially under environmental stresses.
Collapse
Affiliation(s)
- Muhammad Zia-Ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Sidra Anayatullah
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Effa Irfan
- Institute of Biochemistry & Biotechnology, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Syed Makhdoom Hussain
- Department of Zoology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Muhammad Irfan Sohail
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan; Department of Environmental Sciences, Faculty of Life Sciences, University of Okara, 56300, Pakistan
| | - Muhammad Jafir
- Department of Entomology, University of Agriculture Faisalabad Pakistan, 38040, Pakistan
| | - Tanveer Ahmad
- Department of Horticulture, MNS University of Agriculture Multan, 60000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Hesham F Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Plant Biology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
2
|
Bielas R, Wróbel-Marek J, Kurczyńska EU, Neugebauer D. Rhodamine-Tagged Polymethacrylate Dyes as Alternative Tools for Analysis of Plant Cells. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7720. [PMID: 36363313 PMCID: PMC9658429 DOI: 10.3390/ma15217720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
A rhodamine B (RhB)-based initiator for atom transfer radical polymerization (ATRP) was synthesized and applied for preparation of poly(2-trimethylammoniumethyl methacrylate) (PChMA), poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-trimethylsilyloxyethyl methacrylate) (PHEMATMS). Polymer fluorescence was confirmed by determination of quantum yield by comparative method with piroxicam as the standard exhibiting dependency of emission intensity on the polymer chain hydrophilicity and the kind of solvent. The RhB functionalized polymers were used for biological tests in plant materials except for RhB-PHEMATMS because of weak fluorescence. These two polymers slightly differed in cellular localization. RhB-PChMA was mostly observed in cell walls of root tissues and cotyledon epidermis. It was also observed in cytoplasm and cell organelles of root cap cells and rhizodermis, in contrast with cytoplasm of cotyledon epidermis. RhB-PHEMA was also present in apoplast. A strong signal in protoxylem cell walls and a weak signal in cell walls of rhizodermis and cortex were visible. Moreover, it was also present in cell walls of cotyledon epidermis. However, RhB-PHEMA was mostly observed in cytoplasm and cell organelles of all root tissues and epidermis of cotyledons. Both RhB-polymers did not cause cell death which means that they can be used in living plant material.
Collapse
Affiliation(s)
- Rafał Bielas
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Justyna Wróbel-Marek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Ewa U. Kurczyńska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| |
Collapse
|
3
|
Ngo KX, Nguyen PDN, Furusho H, Miyata M, Shimonaka T, Chau NNB, Vinh NP, Nghia NA, Mohammed TO, Ichikawa T, Kodera N, Konno H, Fukuma T, Quoc NB. Unraveling the Host-Selective Toxic Interaction of Cassiicolin with Lipid Membranes and Its Cytotoxicity. PHYTOPATHOLOGY 2022; 112:1524-1536. [PMID: 35238604 DOI: 10.1094/phyto-09-21-0397-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cassiicolin (Cas), a toxin produced by Corynespora cassiicola, is responsible for Corynespora leaf fall disease in susceptible rubber trees. Currently, the molecular mechanisms of the cytotoxicity of Cas and its host selectivity have not been fully elucidated. Here, we analyzed the binding of Cas1 and Cas2 to membranes consisting of different plant lipids and their membrane disruption activities. Using high-speed atomic force microscopy and confocal microscopy, we reveal that the binding and disruption activities of Cas1 and Cas2 on lipid membranes are strongly dependent on the specific plant lipids. The negative phospholipids, glycerolipids, and sterols are more sensitive to membrane damage caused by Cas1 and Cas2 than neutral phospholipids and betaine lipids. Mature Cas1 and Cas2 play an essential role in causing membrane disruption. Cytotoxicity tests on rubber leaves of Rubber Research Institute of Vietnam (RRIV) 1, RRIV 4, and Prang Besar (PB) 255 clones suggest that the toxins cause necrosis of rubber leaves, except for the strong resistance of PB 255 against Cas2. Cryogenic scanning electron microscopy analyses of necrotic leaf tissues treated with Cas1 confirm that cytoplasmic membranes are vulnerable to the toxin. Thus, the host selectivity of Cas toxin is attained by the lipid-dependent binding activity of Cas to the membrane, and the cytotoxicity of Cas arises from its ability to form biofilm-like structures and to disrupt specific membranes.
Collapse
Affiliation(s)
- Kien Xuan Ngo
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Phuong Doan N Nguyen
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Hirotoshi Furusho
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Tomomi Shimonaka
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan
| | - Nguyen Ngoc Bao Chau
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City, Vietnam
| | | | | | - Tareg Omer Mohammed
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Takehiko Ichikawa
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Takeshi Fukuma
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Nguyen Bao Quoc
- Research Institute for Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, Vietnam
- Faculty of Biological Sciences, Nong Lam University, Ho Chi Minh City, Vietnam
| |
Collapse
|
4
|
Miao G, Qin Y, Guo J, Zhang Q, Bao Y. Transcriptome characterization and expression profile of Coix lacryma-jobi L. in response to drought. PLoS One 2021; 16:e0256875. [PMID: 34478459 PMCID: PMC8415600 DOI: 10.1371/journal.pone.0256875] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Coix lacryma-jobi L. is a very important economic crop widely cultivated in Southeast Asia. Drought affects more than four million square kilometers every year, and is a significant factor limiting agricultural productivity. However, relatively little is known about how Coix lacryma-jobi L. responds to drought treatments. To obtain a detailed and comprehensive understanding of the mechanisms regulating the transcriptional responses of Coix lacryma-jobi L. to drought treatment, we employed high throughput short-read sequencing of cDNA prepared from polyadenylated RNA to explore global gene expression after a seven-day drought treatment. We generated a de novo assembled transcriptome comprising 65,480 unique sequences. Differential expression analysis based on RSEM-estimated transcript abundances identified 5,315 differentially expressed genes (DEGs) when comparing samples from plants following drought-treatment and from the appropriate controls. Among these, the transcripts for 3,460 genes were increased in abundance, whereas 1,855 were decreased. Real-time quantitative PCR for 5 transcripts confirmed the changes identified by RNA-Seq. The results provide a transcriptional overview of the changes in Coix lacryma-jobi L. in response to drought, and will be very useful for studying the function of associated genes and selection of molecular marker of Coix lacryma-jobi L in the future.
Collapse
Affiliation(s)
- Guidong Miao
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
- * E-mail:
| | - Yan Qin
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| | - Jihua Guo
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| | - Qingxia Zhang
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| | - Yingying Bao
- School of Biology and Chemistry, Xingyi Normal University for Nationalities, Xingyi, Guizhou Province, China
| |
Collapse
|
5
|
Zhou H, Zhao J, Yang Y, Chen C, Liu Y, Jin X, Chen L, Li X, Deng XW, Schumaker KS, Guo Y. Ubiquitin-specific protease16 modulates salt tolerance in Arabidopsis by regulating Na(+)/H(+) antiport activity and serine hydroxymethyltransferase stability. THE PLANT CELL 2012; 24:5106-22. [PMID: 23232097 PMCID: PMC3556978 DOI: 10.1105/tpc.112.106393] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/31/2012] [Accepted: 11/20/2012] [Indexed: 05/19/2023]
Abstract
Protein ubiquitination is a reversible process catalyzed by ubiquitin ligases and ubiquitin-specific proteases (UBPs). We report the identification and characterization of UBP16 in Arabidopsis thaliana. UBP16 is a functional ubiquitin-specific protease and its enzyme activity is required for salt tolerance. Plants lacking UBP16 were hypersensitive to salt stress and accumulated more sodium and less potassium. UBP16 positively regulated plasma membrane Na(+)/H(+) antiport activity. Through yeast two-hybrid screening, we identified a putative target of UBP16, SERINE HYDROXYMETHYLTRANSFERASE1 (SHM1), which has previously been reported to be involved in photorespiration and salt tolerance in Arabidopsis. We found that SHM1 is degraded in a 26S proteasome-dependent process, and UBP16 stabilizes SHM1 by removing the conjugated ubiquitin. Ser hydroxymethyltransferase activity is lower in the ubp16 mutant than in the wild type but higher than in the shm1 mutant. During salt stress, UBP16 and SHM1 function in preventing cell death and reducing reactive oxygen species accumulation, activities that are correlated with increasing Na(+)/H(+) antiport activity. Overexpression of SHM1 in the ubp16 mutant partially rescues its salt-sensitive phenotype. Taken together, our results suggest that UBP16 is involved in salt tolerance in Arabidopsis by modulating sodium transport activity and repressing cell death at least partially through modulating SMH1stability and activity.
Collapse
Affiliation(s)
- Huapeng Zhou
- College of Life Science, Beijing Normal University, Beijing 100875, China
- National Institute of Biological Sciences, Beijing 102206, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Changxi Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanfen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xuehua Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Limei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | | | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
6
|
Giráldez N, Aparicio PJ, Quiñones MA. Blue Light Requirement for HC03Uptake and Its Action Spectrum in Monoraphidium braunii. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1998.tb09702.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Barnabás B, Jäger K, Fehér A. The effect of drought and heat stress on reproductive processes in cereals. PLANT, CELL & ENVIRONMENT 2008; 31:11-38. [PMID: 17971069 DOI: 10.1111/j.1365-3040.2007.01727.x] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
As the result of intensive research and breeding efforts over the last 20 years, the yield potential and yield quality of cereals have been greatly improved. Nowadays, yield safety has gained more importance because of the forecasted climatic changes. Drought and high temperature are especially considered as key stress factors with high potential impact on crop yield. Yield safety can only be improved if future breeding attempts will be based on the valuable new knowledge acquired on the processes determining plant development and its responses to stress. Plant stress responses are very complex. Interactions between plant structure, function and the environment need to be investigated at various phases of plant development at the organismal, cellular as well as molecular levels in order to obtain a full picture. The results achieved so far in this field indicate that various plant organs, in a definite hierarchy and in interaction with each other, are involved in determining crop yield under stress. Here we attempt to summarize the currently available information on cereal reproduction under drought and heat stress and to give an outlook towards potential strategies to improve yield safety in cereals.
Collapse
Affiliation(s)
- Beáta Barnabás
- Agricultural Research Institute of the Hungarian Academy of Sciences, Brunszvik 2, H-2462 Martonvásár, Hungary.
| | | | | |
Collapse
|
8
|
Roberts SK. TOK homologue in Neurospora crassa: first cloning and functional characterization of an ion channel in a filamentous fungus. EUKARYOTIC CELL 2003; 2:181-90. [PMID: 12582135 PMCID: PMC141169 DOI: 10.1128/ec.2.1.181-190.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In contrast to animal and plant cells, very little is known of ion channel function in fungal physiology. The life cycle of most fungi depends on the "filamentous" polarized growth of hyphal cells; however, no ion channels have been cloned from filamentous fungi and comparatively few preliminary recordings of ion channel activity have been made. In an attempt to gain an insight into the role of ion channels in fungal hyphal physiology, a homolog of the yeast K(+) channel (ScTOK1) was cloned from the filamentous fungus, Neurospora crassa. The patch clamp technique was used to investigate the biophysical properties of the N. crassa K(+) channel (NcTOKA) after heterologous expression of NcTOKA in yeast. NcTOKA mediated mainly time-dependent outward whole-cell currents, and the reversal potential of these currents indicated that it conducted K(+) efflux. NcTOKA channel gating was sensitive to extracellular K(+) such that channel activation was dependent on the reversal potential for K(+). However, expression of NcTOKA was able to overcome the K(+) auxotrophy of a yeast mutant missing the K(+) uptake transporters TRK1 and TRK2, suggesting that NcTOKA also mediated K(+) influx. Consistent with this, close inspection of NcTOKA-mediated currents revealed small inward K(+) currents at potentials negative of E(K). NcTOKA single-channel activity was characterized by rapid flickering between the open and closed states with a unitary conductance of 16 pS. NcTOKA was effectively blocked by extracellular Ca(2+), verapamil, quinine, and TEA(+) but was insensitive to Cs(+), 4-aminopyridine, and glibenclamide. The physiological significance of NcTOKA is discussed in the context of its biophysical properties.
Collapse
Affiliation(s)
- Stephen K Roberts
- Biology Department, Institute of Environment and Natural Sciences, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| |
Collapse
|
9
|
Dietrich P, Sanders D, Hedrich R. The role of ion channels in light-dependent stomatal opening. JOURNAL OF EXPERIMENTAL BOTANY 2001; 52:1959-67. [PMID: 11559731 DOI: 10.1093/jexbot/52.363.1959] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Stomatal opening represents a major determinant of plant productivity and stress management. Because plants lose water essentially through open stomata, volume control of the pore-forming guard cells represents a key step in the regulation of plant water status. These sensory cells are able to integrate various signals such as light, auxin, abscisic acid, and CO(2). Following signal perception, changes in membrane potential and activity of ion transporters finally lead to the accumulation of potassium salts and turgor pressure formation. This review analyses recent progress in molecular aspects of ion channel regulation and suggests how these developments impact on our understanding of light- and auxin-dependent stomatal action.
Collapse
Affiliation(s)
- P Dietrich
- Julius-von-Sachs-Institut für Biowissenschaften, Lehrstuhl für Molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| | | | | |
Collapse
|
10
|
Zhang X, Dong FC, Gao JF, Song CP. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res 2001; 11:37-43. [PMID: 11305323 DOI: 10.1038/sj.cr.7290064] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epidermal bioassay demonstrated that benzylamine, a membrane-permeable weak base, can mimick hydrogen peroxide (H2O2) to induce stomatal closure, and butyric acid, a membrane-permeable weak acid, can partly abolish the H2O2-induced stomatal closure. Confocal pH mapping with the probe 5-(and-6)-carboxy seminaphthorhodafluor-1-acetoxymethylester (SNARF-1-AM) revealed that H2O2 leads to rapid changes in cytoplasmic and vacuolar pH in guard cells of Vicia faba L, i. e. alkalinization of cytoplasmic areas occur red in parallel with a decrease of the vacuolar pH, and that butyric acid pretreatment can abolish alkalinization of cytoplasmic areas and acidification of vacuolar areas of guard cells challenged with H2O2. These results imply that the alkalinization of cytoplasm via efflux of cytosol protons into the vacuole in guard cells challenged with H2O2 is important at an early stage in the signal cascade leading to stomatal closure.
Collapse
Affiliation(s)
- X Zhang
- Department of Biology, Henan University, Kaifeng, China.
| | | | | | | |
Collapse
|
11
|
Szyroki A, Ivashikina N, Dietrich P, Roelfsema MR, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R. KAT1 is not essential for stomatal opening. Proc Natl Acad Sci U S A 2001; 98:2917-21. [PMID: 11226341 PMCID: PMC30240 DOI: 10.1073/pnas.051616698] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is generally accepted that K(+) uptake into guard cells via inward-rectifying K(+) channels is required for stomatal opening. To test whether the guard cell K(+) channel KAT1 is essential for stomatal opening, a knockout mutant, KAT1En-1, was isolated from an En-1 mutagenized Arabidopsis thaliana population. Stomatal action and K(+) uptake, however, were not impaired in KAT1-deficient plants. Reverse transcription-PCR experiments with isolated guard cell protoplasts showed that in addition to KAT1, the K(+) channels AKT1, AKT2/3, AtKC1, and KAT2 were expressed in this cell type. In impalement measurements, intact guard cells exhibited inward-rectifying K(+) currents across the plasma membrane of both wild-type and KAT1En-1 plants. This study demonstrates that multiple K(+) channel transcripts exist in guard cells and that KAT1 is not essential for stomatal action.
Collapse
Affiliation(s)
- A Szyroki
- Max-Delbrück-Laboratorium, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Scott AC, Allen NS. Changes in cytosolic pH within Arabidopsis root columella cells play a key role in the early signaling pathway for root gravitropism. PLANT PHYSIOLOGY 1999; 121:1291-8. [PMID: 10594116 PMCID: PMC59496 DOI: 10.1104/pp.121.4.1291] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/1999] [Accepted: 08/19/1999] [Indexed: 05/20/2023]
Abstract
Ratiometric wide-field fluorescence microscopy with 1',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213-222), was 7.22 +/- 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.
Collapse
Affiliation(s)
- A C Scott
- Department of Botany, Box 7612, North Carolina State University, Raleigh, North Carolina 27695-7612, USA
| | | |
Collapse
|
13
|
Maathuis FJ, Sanders D. Plasma membrane transport in context - making sense out of complexity. CURRENT OPINION IN PLANT BIOLOGY 1999; 2:236-243. [PMID: 10375571 DOI: 10.1016/s1369-5266(99)80041-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Major advances in our understanding of the transport of inorganic nutrient ions across plant plasma membranes have emerged from recent studies on the control of the dominant H+-pumping ATPase and from identification of a range of new transporters for divalent cations, potassium, phosphate and nitrate. In many cases, multiple transporter isoforms have been described. An appreciation of the physiological roles of these transporters demands combined genetic and physiological approaches, which, in the case of an outward rectifying K+ channel, have already been used to yield an intriguing insight into root-mediated K+ release into the xylem. In this review we attempt to place some of those developments in a physiological context.
Collapse
Affiliation(s)
- F J Maathuis
- The Plant Laboratory, Department of Biology, University of York, York, YO1 5YW, UK.
| | | |
Collapse
|
14
|
Assmann S, Armstrong F. Hormonal regulation of ion transporters: the guard cell system. BIOCHEMISTRY AND MOLECULAR BIOLOGY OF PLANT HORMONES 1999. [DOI: 10.1016/s0167-7306(08)60495-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Bowles D. Signal transduction in the wound response of tomato plants. Philos Trans R Soc Lond B Biol Sci 1998; 353:1495-510. [PMID: 9800210 PMCID: PMC1692347 DOI: 10.1098/rstb.1998.0305] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The wound response of tomato plants has been extensively studied, and provides a useful model to understand signal transduction events leading from injury to marker gene expression. The principal markers that have been used in these studies are genes encoding proteinase inhibitor (pin) proteins. Activation of pin genes occurs in the wounded leaf and in distant unwounded leaves of the plant. This paper reviews current understanding of signalling pathways in the wounded leaf, and in the systemically responding unwounded leaves. First, the nature of known elicitors and their potential roles in planta are discussed, in particular, oligogalacturonides, jasmonates and the peptide signal, systemin. Inhibitors of wound-induced proteinase inhibitor (pin) expression are also reviewed, with particular reference to phenolics, sulphydryl reagents and fusicoccin. In each section, results obtained from the bioassay are considered within the wider context of data from mutants and from transgenic plants with altered levels of putative signalling components. Following this introduction, current models for pin gene regulation are described and discussed, together with a summary for the involvement of phosphorylation-dephosphorylation in wound signalling. Finally, a new model for wound-induced pin gene expression is presented, arising from recent data from the author's laboratory.
Collapse
Affiliation(s)
- D Bowles
- Department of Biology, University of York, UK
| |
Collapse
|
16
|
Abstract
This review summarizes current knowledge about genes whose products function in the transport of various cationic macronutrients (K, Ca) and micronutrients (Cu, Fe, Mn, and Zn) in plants. Such genes have been identified on the basis of function, via complementation of yeast mutants, or on the basis of sequence similarity, via database analysis, degenerate PCR, or low stringency hybridization. Not surprisingly, many of these genes belong to previously described transporter families, including those encoding Shaker-type K+ channels, P-type ATPases, and Nramp proteins. ZIP, a novel cation transporter family first identified in plants, also seems to be ubiquitous; members of this family are found in protozoa, yeast, nematodes, and humans. Emerging information on where in the plant each transporter functions and how each is controlled in response to nutrient availability may allow creation of food crops with enhanced mineral content as well as crops that bioaccumulate or exclude toxic metals.
Collapse
Affiliation(s)
- Tama Christine Fox
- Department of Biological Sciences, Dartmouth College, 6044 Gilman, Hanover, New Hampshire 03755; e-mail:
| | | |
Collapse
|
17
|
Scott DA, Docampo R. Two types of H+-ATPase are involved in the acidification of internal compartments in Trypanosoma cruzi. Biochem J 1998; 331 ( Pt 2):583-9. [PMID: 9531501 PMCID: PMC1219392 DOI: 10.1042/bj3310583] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
ATP-driven acidification of internal compartments of Trypanosoma cruzi epimastigotes was assayed spectrophotometrically with Acridine Orange and cells permeabilized with filipin. H+-ATPase activity was not inhibited fully by either 500 nM concanamycin A or 500 microM orthovanadate, but a combination of 5 nM concanamycin A and 25 microM vanadate completely inhibited activity, suggesting the operation of separate V-type (concanamycin-sensitive) and P-type (vanadate-sensitive) H+-ATPase activities in the permeabilized cells. This was supported by different kinetics of Acridine Orange uptake seen in the presence of the different inhibitors, and by different optimal protein (cell) concentrations for the two apparent activities. The use of different buffers further distinguished the ATPases. The V-H+-ATPase activity was stimulated by K+ and inhibited by a lack of anions or the replacement of Cl- with gluconate. The P-type H+-ATPase activity was not affected by a lack of Cl- or K+ but was substantially inhibited in a largely anion-free buffer. This inhibition could be annulled by the addition of the K+ ionophore valinomycin, which probably acted via the establishment of a countercurrent efflux of K+ from the compartment containing the P-type H+-ATPase and the relief of the potential difference generated by the electrogenic proton pump. Valinomycin showed some stimulation of P-type activity in all buffers tested, but its effects on V-H+-ATPase activity were at best transient except in a K+-free buffer, which suggested that the V-H+-ATPase was located in an organelle with relatively low [K+] that was different from that which accommodated the P-type activity. On the basis of acidity and K+ content, these organelles might correspond, in part at least, to the acidocalcisomes (V-H+-ATPase activity) and the reservosomes (P-type activity) previously identified in these cells. Both activities could also be found in the human-infective forms of the parasite, amastigotes and trypomastigotes, but the P-type activity was relatively weak in these cells types, which is correlated with a lack of reservosomes in these forms.
Collapse
Affiliation(s)
- D A Scott
- Laboratory of Molecular Parasitology, Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61802, USA.
| | | |
Collapse
|
18
|
|
19
|
Ehrhardt T, Zimmermann S, Müller-Röber B. Association of plant K+(in) channels is mediated by conserved C-termini and does not affect subunit assembly. FEBS Lett 1997; 409:166-70. [PMID: 9202139 DOI: 10.1016/s0014-5793(97)00502-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inward rectifying potassium (K+(in)) channels play an important role in turgor regulation and ion uptake in higher plants. Here, we report a previously unrecognized feature of these proteins: K+(in) channel C-terminal polypeptides mediate channel protein interactions. Using a C-terminal fragment of potato guard cell K+(in) channel KST1 in a yeast two-hybrid screen two novel putative K+(in) channel proteins (SKT2 and SKT3) were identified by interaction of their C-termini which contained a conserved domain (K(HA)). Interactions were confirmed by Western blot-related assays utilizing K+(in) channel C-termini fused to green fluorescence protein. Although deletion of the K(HA)-domain abolished these interactions, K+(in) currents were still detectable by patch-clamp measurements of insect cells expressing these KST1 mutants, indicating that formation of a functional channel does not depend on this C-terminal domain.
Collapse
Affiliation(s)
- T Ehrhardt
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MOPP), Potsdam, Germany
| | | | | |
Collapse
|
20
|
|