1
|
Pillay Y, Nagiah S, Chuturgoon A. Patulin Alters Insulin Signaling and Metabolic Flexibility in HepG2 and HEK293 Cells. Toxins (Basel) 2023; 15:toxins15040244. [PMID: 37104182 PMCID: PMC10145496 DOI: 10.3390/toxins15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Non-communicable diseases (NCDs) have risen rapidly worldwide, sparking interest in causative agents and pathways. Patulin (PAT), a xenobiotic found in fruit products contaminated by molds, is postulated to be diabetogenic in animals, but little is known about these effects in humans. This study examined the effects of PAT on the insulin signaling pathway and the pyruvate dehydrogenase complex (PDH). HEK293 and HepG2 cells were exposed to normal (5 mM) or high (25 mM) glucose levels, insulin (1.7 nM) and PAT (0.2 μM; 2.0 μM) for 24 h. The qPCR determined gene expression of key enzymes involved in carbohydrate metabolism while Western blotting assessed the effects of PAT on the insulin signaling pathway and Pyruvate Dehydrogenase (PDH) axis. Under hyperglycemic conditions, PAT stimulated glucose production pathways, caused defects in the insulin signaling pathway and impaired PDH activity. These trends under hyperglycemic conditions remained consistent in the presence of insulin. These findings are of importance, given that PAT is ingested with fruit and fruit products. Results suggest PAT exposure may be an initiating event in insulin resistance, alluding to an etiological role in the pathogenesis of type 2 diabetes and disorders of metabolism. This highlights the importance of both diet and food quality in addressing the causes of NCDs.
Collapse
|
2
|
Landa-Galvan HV, Rios-Castro E, Romero-Garcia T, Rueda A, Olivares-Reyes JA. Metabolic syndrome diminishes insulin-induced Akt activation and causes a redistribution of Akt-interacting proteins in cardiomyocytes. PLoS One 2020; 15:e0228115. [PMID: 31995605 PMCID: PMC6988918 DOI: 10.1371/journal.pone.0228115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
Metabolic syndrome (MetS) is a cluster of cardiometabolic risk factors, with insulin resistance as a critical component for its development. Insulin signaling in the heart leads to Akt (also known as PKB) activation, a serine/threonine protein kinase, which regulates cardiac glucose metabolism and growth. Cardiac metabolic inflexibility, characterized by impaired insulin-induced glucose uptake and oxidation, has been reported as an early and consistent change in the heart of different models of MetS and diabetes; however, the evaluation of Akt activation has yielded variable results. Here we report in cardiomyocytes of MetS rats, diminished insulin-induced glucose uptake and Akt activation, evaluated by its impaired mobilization towards the plasma membrane and phosphorylation, and reflected in a re-distribution of its interacting proteins, assessed by label-free mass spectrometry (data are available via ProteomeXchange with identifier PXD013260). We report 45 proteins with diminished abundance in Akt complex of MetS cardiomyocytes, mainly represented by energy metabolism-related proteins, and also, 31 Akt-interacting proteins with increased abundance, which were mainly related to contraction, endoplasmic reticulum stress, and Akt negative regulation. These results emphasize the relevance of Akt in the regulation of energy metabolism in the heart and highlight Akt-interacting proteins that could be involved in the detrimental effects of MetS in the heart.
Collapse
Affiliation(s)
| | - Emmanuel Rios-Castro
- Unidad de Genomica, Proteomica y Metabolomica (UGPM), LaNSE-Cinvestav-IPN, Mexico City, Mexico
| | | | - Angelica Rueda
- Departamento de Bioquimica, Cinvestav-IPN, Mexico City, Mexico
| | | |
Collapse
|
3
|
Dietary soya protein improves intra-myocardial lipid deposition and altered glucose metabolism in a hypertensive, dyslipidaemic, insulin-resistant rat model. Br J Nutr 2017; 119:131-142. [PMID: 29268800 DOI: 10.1017/s000711451700321x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This study investigates the effects of replacing dietary casein by soya protein on the underlying mechanisms involved in the impaired metabolic fate of glucose and lipid metabolisms in the heart of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). To test this hypothesis, Wistar rats were fed an SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed an SRD in which casein was substituted by soya. The control group received a diet with maize starch as the carbohydrate source. Compared with the SRD-fed group, the following results were obtained. First, soya protein significantly (P<0·001) reduced the plasma NEFA levels and normalised dyslipidaemia and glucose homoeostasis, improving insulin resistance. The protein levels of fatty acid translocase at basal state and under insulin stimulation and the protein levels and activity of muscle-type carnitine palmitoyltransferase 1 were normalised. Second, a significant (P<0·001) reduction of TAG, long-chain acyl CoA and diacylglycerol levels was observed in the heart muscle. Third, soya protein significantly increased (P<0·01) GLUT4 protein level under insulin stimulation and normalised glucose phosphorylation and oxidation. A reduction of phosphorylated AMP protein kinase protein level was recorded without changes in uncoupling protein 2 and PPARα. Fourth, hydroxyproline concentration decreased in the left ventricle and hypertension was normalised. The new information provided shows the beneficial effects of soya protein upon the altered pathways of glucose and lipid metabolism in the heart muscle of this rat model.
Collapse
|
4
|
Creus A, Benmelej A, Villafañe N, Lombardo YB. Dietary Salba (Salvia hispanica L) improves the altered metabolic fate of glucose and reduces increased collagen deposition in the heart of insulin-resistant rats. Prostaglandins Leukot Essent Fatty Acids 2017; 121:30-39. [PMID: 28651695 DOI: 10.1016/j.plefa.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 01/09/2023]
Abstract
This study reports the effects of dietary Salba (chia) seeds on the mechanisms underlying impaired glucose metabolism in the heart of dyslipemic insulin-resistant rats fed a sucrose-rich diet (SRD). Wistar rats were fed a SRD for 3 months. Afterwards, half the animals continued with the SRD; in the other half's diet chia seeds replaced corn oil (CO) for three months (SRD+chia). In the control group, corn starch replaced sucrose. The replacement of CO by chia seeds in the SRD restored the activities of key enzymes involved in heart glucose metabolism decreasing fatty acid oxidation. Chia seeds normalized insulin stimulated GLUT-4 transporter, the abundance of IRS-1 and pAMPK, changed the profile of fatty acid phospholipids, reduced left-ventricle collagen deposition and normalized hypertension and dyslipidemia. New evidence is provided concerning the effects of dietary chia seeds in improving the altered metabolic fate of glucose in the heart of dyslipemic insulin-resistant rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Adriana Benmelej
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Noelia Villafañe
- Department of Morphology, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria El Pozo cc 242, 3000 Santa Fe, Argentina.
| |
Collapse
|
5
|
Creus A, Ferreira MR, Oliva ME, Lombardo YB. Mechanisms Involved in the Improvement of Lipotoxicity and Impaired Lipid Metabolism by Dietary α-Linolenic Acid Rich Salvia hispanica L (Salba) Seed in the Heart of Dyslipemic Insulin-Resistant Rats. J Clin Med 2016; 5:jcm5020018. [PMID: 26828527 PMCID: PMC4773774 DOI: 10.3390/jcm5020018] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/01/2015] [Accepted: 01/15/2016] [Indexed: 01/12/2023] Open
Abstract
This study explores the mechanisms underlying the altered lipid metabolism in the heart of dyslipemic insulin-resistant (IR) rats fed a sucrose-rich diet (SRD) and investigates if chia seeds (rich in α-linolenic acid 18:3, n-3 ALA) improve/reverse cardiac lipotoxicity. Wistar rats received an SRD-diet for three months. Half of the animals continued with the SRD up to month 6. The other half was fed an SRD in which the fat source, corn oil (CO), was replaced by chia seeds from month 3 to 6 (SRD+chia). A reference group consumed a control diet (CD) all the time. Triglyceride, long-chain acyl CoA (LC ACoA) and diacylglycerol (DAG) contents, pyruvate dehydrogenase complex (PDHc) and muscle-type carnitine palmitoyltransferase 1 (M-CPT1) activities and protein mass levels of M-CPT1, membrane fatty acid transporter (FAT/CD36), peroxisome proliferator activated receptor α (PPARα) and uncoupling protein 2 (UCP2) were analyzed. Results show that: (a) the hearts of SRD-fed rats display lipotoxicity suggesting impaired myocardial lipid utilization; (b) Compared with the SRD group, dietary chia normalizes blood pressure; reverses/improves heart lipotoxicity, glucose oxidation, the increased protein mass level of FAT/CD36, and the impaired insulin stimulated FAT/CD36 translocation to the plasma membrane. The enhanced M-CPT1 activity is markedly reduced without similar changes in protein mass. PPARα slightly decreases, while the UCP2 protein level remains unchanged in all groups. Normalization of dyslipidemia and IR by chia reduces plasma fatty acids (FAs) availability, suggesting that a different milieu prevents the robust translocation of FAT/CD36. This could reduce the influx of FAs, decreasing the elevated M-CPT1 activity and lipid storage and improving glucose oxidation in cardiac muscles of SRD-fed rats.
Collapse
Affiliation(s)
- Agustina Creus
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - María R Ferreira
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - María E Oliva
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| | - Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, Paraje El Pozo, CC 242, (3000) Santa Fe, Argentina.
| |
Collapse
|
6
|
Abstract
Insulin resistance is a major risk factor for type 2 diabetes. AMP-activated protein kinase (AMPK) is a drug target in the improvement of insulin sensitivity. Several insulin-sensitizing medicines are able to activate AMPK through inhibition of mitochondrial functions. These drugs, such as metformin and STZ, inhibit ATP synthesis in mitochondria to raise AMP/ATP ratio in the process of AMPK activation. However, chemicals that activate AMPK directly or by activating its upstream kinases have not been approved for treatment of type 2 diabetes in humans. In an early study, we reported that berberine inhibited oxygen consumption in mitochondria, and increased AMP/ATP ratio in cells. The observation suggests an indirect mechanism for AMPK activation by berberine. Berberine stimulates glycolysis for ATP production that offsets the cell toxicity after mitochondria inhibition. The study suggests that mitochondrial inhibition is an approach for AMPK activation. In this review article, literature is critically reviewed to interpret the role of mitochondria function in the mechanism of insulin resistance, which supports that mitochondria inhibitors represent a new class of AMPK activator. The inhibitors are promising candidates for insulin sensitizers. This review provides a guideline in search for small molecule AMPK activators in the drug discovery for type 2 diabetes.
Collapse
|
7
|
D'Alessandro ME, Chicco A, Lombardo YB. Dietary fish oil reverses lipotoxicity, altered glucose metabolism, and nPKCepsilon translocation in the heart of dyslipemic insulin-resistant rats. Metabolism 2008; 57:911-9. [PMID: 18555831 DOI: 10.1016/j.metabol.2008.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 02/21/2008] [Indexed: 10/21/2022]
Abstract
The present study analyzes several markers of energy metabolism in the heart muscle of dyslipemic insulin-resistant rats fed a sucrose-rich diet (SRD, 62.5% wt/wt) for 8 months. It also explores the possible beneficial effects of dietary fish oil supplementation on cardiac lipids and glucose metabolism. With this purpose, male Wistar rats were fed an SRD for 6 months. Whereas half of the animals continued with the same diet for up to 8 months, the other half was fed an SRD in which fish oil (7% + 1% corn oil wt/wt) replaced corn oil (8% wt/wt) from months 6 to 8. The results were compared with rats fed a control diet (starch 62.5% wt/wt). The cardiac muscle of SRD-fed rats showed (1) a significant reduction (P < .05) in key enzymes activities and metabolites involved in glucose metabolism, accompanied by a significant (P < .05) increase of lipid storage (triglyceride, long-chain acyl coenzyme A, and diacylglycerol), and (2) a significant increase (P < .05) of nPKCepsilon protein mass expression in the membrane fraction without changes in the cPKCbetaII. Dietary fish oil, which reduces the availability of plasma lipid flux and normalizes glucose homeostasis, was able to reverse heart muscle lipotoxicity. Fish oil benefits key enzymes activities in glucose metabolism and normalizes glycogen and glucose-6-phosphate concentration, and the altered nPKCepsilon protein mass expression translocation in the heart of SRD-fed rats. Our findings suggest that manipulation of dietary fats may play a key role in the management of lipid disorders, offering a protection against the development of cardiovascular diseases.
Collapse
Affiliation(s)
- María Eugenia D'Alessandro
- Department of Biochemistry, School of Biochemistry, University of Litoral, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|
8
|
Lombardo YB, Chicco AG. Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review. J Nutr Biochem 2005; 17:1-13. [PMID: 16214332 DOI: 10.1016/j.jnutbio.2005.08.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For many years, clinical and animal studies on polyunsaturated n-3 fatty acids (PUFAs), especially those from marine oil, eicosapentaenoic acid (20:5,n-3) and docosahexaenoic acid (22:6,n-3), have reported the impact of their beneficial effects on both health and diseases. Among other things, they regulate lipid levels, cardiovascular and immune functions as well as insulin action. Polyunsaturated fatty acids are vital components of the phospholipids of membrane cells and serve as important mediators of the nuclear events governing the specific gene expression involved in lipid and glucose metabolism and adipogenesis. Besides, dietary n-3 PUFAs seem to play an important protecting role against the adverse symptoms of the Plurimetabolic syndrome. This review highlights some recent advances in the understanding of metabolic and molecular mechanisms concerning the effect of dietary PUFAs (fish oil) and focuses on the prevention and/or improvement of dyslipidemia, insulin resistance, impaired glucose homeostasis, diabetes and obesity in experimental animal models, with some extension to humans.
Collapse
Affiliation(s)
- Yolanda B Lombardo
- Department of Biochemistry, School of Biochemistry, University of Litoral, Santa Fe 3000, Argentina.
| | | |
Collapse
|
9
|
Brenner RR, Rimoldi OJ, Lombardo YB, González MS, Bernasconi AM, Chicco A, Basabe JC. Desaturase activities in rat model of insulin resistance induced by a sucrose-rich diet. Lipids 2004; 38:733-42. [PMID: 14506836 DOI: 10.1007/s11745-003-1121-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A sucrose-rich diet, as compared with a similar starch diet, induces a time-dependent typical noninsulin-dependent diabetes syndrome characterized by insulin resistance in rats. Within the first 3 wk, there was glucose intolerance associated with hyperinsulinemia, hypertriglyceridemia, and high plasma FFA. In this study, we examined the effect of the sucrose-rich diet vs. the starch diet during short- (3 wk) and longterm treatment (6 mon) on hepatic delta9, delta6, and delta5 desaturases. These enzymes modulate monounsaturated FA and PUFA biosynthesis, respectively. Sucrose feeding (3 wk) caused an initial hyperinsulinemia that was normalized within 6 mon. In the early period (3 wk), stearoyl-CoA desaturase-1 (SCD-1) mRNA and activity were decreased, whereas delta6 desaturase mRNA abundance and delta6 and delta5 desaturase activities remained unchanged. After 6 mon of sucrose feeding, activities of the delta9, delta6, and delta5 desaturases were each increased. The SCD-1 and delta6 desaturase mRNA were also correspondingly higher. These increases were consistent with an increase in oleic acid, the 20:4/18:2 ratio, and 22:4n-6 and 22:5n-6 acids in liver and muscle lipids. On the other hand, the percentage of 22:6n-3 acid was decreased. In conclusion, a sucrose-rich diet after 6 mon induces an increase in rat liver SCD-1 and delta6 desaturase mRNA and enzymatic activities that are opposite to the changes reported in insulin-dependent diabetes mellitus. It appears that neither blood insulin levels nor insulin resistance is a factor affecting the delta9, delta6, and delta5 desaturase changes in mRNA and activity found with the sucrose-rich diet.
Collapse
Affiliation(s)
- Rodolfo R Brenner
- Instituto de Investigaciones Bioquímicas de La Plata, (CONICET-UNLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 1900-La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
10
|
Pighin D, Karabatas L, Rossi A, Chicco A, Basabe JC, Lombardo YB. Fish Oil Affects Pancreatic Fat Storage, Pyruvate Dehydrogenase Complex Activity and Insulin Secretion in Rats Fed a Sucrose-Rich Diet. J Nutr 2003; 133:4095-101. [PMID: 14652354 DOI: 10.1093/jn/133.12.4095] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rats fed a sucrose-rich diet (SRD) develop hypertriglyceridemia and a marked decline in beta cell function. The purpose of this study was to determine whether changes in triglyceride concentration and/or altered pyruvate dehydrogenase complex (PDHc) activity contribute to the beta cell dysfunction, and to analyze the effect of dietary fish oil on the altered patterns of insulin secretion and peripheral insulin resistance. Rats were fed an SRD for 210 d. One-half of the rats continued consuming the SRD until d 270. The other half received an SRD in which fish oil (FO) was partially substituted for corn oil until d 270. A group of rats was fed a control diet (CD) throughout the experiment. The islets of rats fed the SRD had a greater triglyceride concentration and lower PDHc activity than those fed the CD. Insulin secretion patterns under the stimulus of glucose, palmitate or L-arginine were impaired in SRD-fed compared with CD-fed rats. This was accompanied by peripheral insulin resistance, mild hyperglycemia, a sharp increase of plasma triglyceride and free fatty acid levels and greater epididymal and retroperitoneal fat weights. FO normalized and/or improved these variables. Our results indicate that the increased fat storage and decreased PDHc activity in the beta cells play a key role in the abnormal insulin secretion of rats chronically fed an SRD. This is consistent with the reversion of these alterations by dietary FO.
Collapse
Affiliation(s)
- Dario Pighin
- Department of Biochemistry, School of Biochemistry, University of Litoral, Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
11
|
Soria A, D'Alessandro ME, Lombardo YB. Duration of feeding on a sucrose-rich diet determines metabolic and morphological changes in rat adipocytes. J Appl Physiol (1985) 2001; 91:2109-16. [PMID: 11641351 DOI: 10.1152/jappl.2001.91.5.2109] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work, we studied the effect of a short-term (3 wk) and a long-term (15 wk) administration of a sucrose-rich diet (SRD) to Wistar rats on the morphological aspects and metabolic function of the epididymal adipose tissue that may contribute to the mechanism underlying the impaired glucose homeostasis and insulin resistance. The present work showed the following. 1) There was both a moderate increase of basal lipolysis and a decrease of the antilipolytic action of insulin in the adipocytes of rats fed a SRD for 3 wk. Neither size alterations nor increases in adipose tissue mass were recorded in this period. 2) There was a significant (P < 0.05) increase of epididymal weight after 15 wk on a SRD as well as a hypertrophy of adipocytes with a clear alteration in the cell size distribution. This was accompanied by a significant increase (P < 0.05) of basal and stimulated lipolysis and a marked decrease (P < 0.05) of the antilipolytic action of insulin. Moreover, these changes appear together with a worsening of both impaired glucose homeostasis and insulin resistance. Our results also indicate that the length of time on the SRD plays an important role in the evolution of the adiposity and metabolic changes observed in the fat pad. Furthermore, the latter precedes the detection of adiposity.
Collapse
Affiliation(s)
- A Soria
- Department of Biochemistry, University of Litoral, 3000 Santa Fe, Argentina
| | | | | |
Collapse
|