1
|
Scharbarg E, Walter A, Lecoin L, Gallopin T, Lemaître F, Guille-Collignon M, Rouach N, Rancillac A. Prostaglandin D 2 Controls Local Blood Flow and Sleep-Promoting Neurons in the VLPO via Astrocyte-Derived Adenosine. ACS Chem Neurosci 2023; 14:1063-1070. [PMID: 36847485 DOI: 10.1021/acschemneuro.2c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep-promoting molecules. However, the cellular and molecular mechanisms of the PGD2-induced activation of sleep-promoting neurons in the ventrolateral preoptic nucleus (VLPO), the major nonrapid eye movement (NREM)-sleep center, still remains unclear. We here show that PGD2 receptors (DP1) are not only expressed in the leptomeninges but also in astrocytes from the VLPO. We further demonstrate, by performing real-time measurements of extracellular adenosine using purine enzymatic biosensors in the VLPO, that PGD2 application causes a 40% increase in adenosine level, via an astroglial release. Measurements of vasodilatory responses and electrophysiological recordings finally reveal that, in response to PGD2 application, adenosine release induces an A2AR-mediated dilatation of blood vessels and activation of VLPO sleep-promoting neurons. Altogether, our results unravel the PGD2 signaling pathway in the VLPO, controlling local blood flow and sleep-promoting neurons, via astrocyte-derived adenosine.
Collapse
Affiliation(s)
- Emeric Scharbarg
- Brain Plasticity Unit, CNRS, ESPCI-ParisTech, Labex Memolife, Université PSL, 75005 Paris, France
| | - Augustin Walter
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| | - Laure Lecoin
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| | - Thierry Gallopin
- Brain Plasticity Unit, CNRS, ESPCI-ParisTech, Labex Memolife, Université PSL, 75005 Paris, France
| | - Frédéric Lemaître
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Manon Guille-Collignon
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University PSL, Sorbonne Université, CNRS, 75005 Paris, France
| | - Nathalie Rouach
- Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| | - Armelle Rancillac
- Brain Plasticity Unit, CNRS, ESPCI-ParisTech, Labex Memolife, Université PSL, 75005 Paris, France.,Neuroglial Interactions in Cerebral Physiology and Pathologies, Center for Interdisciplinary Research in Biology, Collège de France, CNRS, Inserm, Labex Memolife, Université PSL, 75005 Paris, France
| |
Collapse
|
2
|
Wang S, Liu Y, Zhu A, Tian Y. In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Anal Chem 2023; 95:388-406. [PMID: 36625112 DOI: 10.1021/acs.analchem.2c04541] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrochemical biosensors provide powerful tools for dissecting the dynamically changing neurochemical signals in the living brain, which contribute to the insight into the physiological and pathological processes of the brain, due to their high spatial and temporal resolutions. Recent advances in the integration of in vivo electrochemical sensors with cross-disciplinary advances have reinvigorated the development of in vivo sensors with even better performance. In this Review, we summarize the recent advances in molecular design, electrode materials, and electrochemical devices for in vivo electrochemical sensors from molecular to macroscopic dimensions, highlighting the methods to obtain high performance for fulfilling the requirements for determination in the complex brain through flexible and smart design of molecules, materials, and devices. Also, we look forward to the development of next-generation in vivo electrochemical biosensors.
Collapse
Affiliation(s)
- Shidi Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yuandong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Anwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
3
|
Wall MJ, Puddefoot K, Yin W, Bingham C, Seifi M, Swinny JD, Ngomba RT. Adenosine is released during thalamic oscillations to provide negative feedback control. Neuropharmacology 2022; 216:109172. [PMID: 35780977 DOI: 10.1016/j.neuropharm.2022.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
Abstract
Physiological oscillations in the cortico-thalamo-cortical loop occur during processes such as sleep, but these can become dysfunctional in pathological conditions such as absence epilepsy. The purine neuromodulator adenosine can act as an endogenous anticonvulsant: it is released into the extracellular space during convulsive seizures to activate A1 receptors suppressing on-going activity and delaying the occurrence of the next seizure. However, the role of adenosine in thalamic physiological and epileptiform oscillations is less clear. Here we have combined immunohistochemistry, electrophysiology, and fixed potential amperometry (FPA) biosensor measurements to characterise the release and actions of adenosine in thalamic oscillations measured in rodent slices. In the thalamus, A1 receptors are highly expressed particularly in the ventral basal (VB) thalamus and reticular thalamic nucleus (nRT) supporting a role for adenosine signalling in controlling oscillations. In agreement with previous studies, both adenosine and adenosine A1 receptor agonists inhibited thalamic oscillations in control (spindle-like) and in epileptic conditions. Here we have shown for the first time that both control and epileptiform oscillations are enhanced (i.e., increased number of oscillatory cycles) by blocking A1 receptors consistent with adenosine release occurring during oscillations. Although increases in extracellular adenosine could not be directly detected during control oscillations, clear increases in adenosine concentration could be detected with a biosensor during epileptiform oscillation activity. Thus, adenosine is released during thalamic oscillations and acts via A1 receptors to feedback and reduce thalamic oscillatory activity.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Katie Puddefoot
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | | | - Mohsen Seifi
- Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK
| | - Jerome D Swinny
- School of Pharmacy & Biomedical Sciences, University of Portsmouth, St Michael's Building, White Swan Road, Portsmouth, PO12DT, UK
| | | |
Collapse
|
4
|
Gourine AV, Spyer KM. Geoff Burnstock, purinergic signalling, and chemosensory control of breathing. Auton Neurosci 2021; 235:102839. [PMID: 34198056 DOI: 10.1016/j.autneu.2021.102839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
This article is the authors' contribution to the tribute issue in honour of Geoffrey Burnstock, the founder of this journal and the field of purinergic signalling. We give a brief account of the results of experimental studies which at the beginning received valuable input from Geoff, who both directly and indirectly influenced our research undertaken over the last two decades. Research into the mechanisms controlling breathing identified ATP as the common mediator of the central and peripheral chemosensory transduction. Studies of the sources and mechanisms of chemosensory ATP release in the CNS suggested that this signalling pathway is universally engaged in conditions of increased metabolic demand by brain glial cells - astrocytes. Astrocytes appear to function as versatile CNS metabolic sensors that detect changes in brain tissue pH, CO2, oxygen, and cerebral perfusion pressure. Experimental studies on various aspects of astrocyte biology generated data indicating that the function of these omnipresent glial cells and communication between astrocytes and neurons are governed by purinergic signalling, - first discovered by Geoff Burnstock in the 70's and researched through his entire scientific career.
Collapse
Affiliation(s)
- Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - K Michael Spyer
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
5
|
Sanders KM, Mutafova-Yambolieva VN. Neurotransmitters responsible for purinergic motor neurotransmission and regulation of GI motility. Auton Neurosci 2021; 234:102829. [PMID: 34146957 DOI: 10.1016/j.autneu.2021.102829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022]
Abstract
Classical concepts of peripheral neurotransmission were insufficient to explain enteric inhibitory neurotransmission. Geoffrey Burnstock and colleagues developed the idea that ATP or a related purine satisfies the criteria for a neurotransmitter and serves as an enteric inhibitory neurotransmitter in GI muscles. Cloning of purinergic receptors and development of specific drugs and transgenic mice have shown that enteric inhibitory responses depend upon P2Y1 receptors in post-junctional cells. The post-junctional cells that transduce purinergic neurotransmitters in the GI tract are PDGFRα+ cells and not smooth muscle cells (SMCs). PDGFRα+ cells express P2Y1 receptors, are activated by enteric inhibitory nerve stimulation and generate Ca2+ oscillations, express small-conductance Ca2+-activated K+ channels (SK3), and generate outward currents when exposed to P2Y1 agonists. These properties are consistent with post-junctional purinergic responses, and similar responses and effectors are not functional in SMCs. Refinements in methodologies to measure purines in tissue superfusates, such as high-performance liquid chromatography (HPLC) coupled with etheno-derivatization of purines and fluorescence detection, revealed that multiple purines are released during stimulation of intrinsic nerves. β-NAD+ and other purines, better satisfy criteria for the purinergic neurotransmitter than ATP. HPLC has also allowed better detection of purine metabolites, and coupled with isolation of specific types of post-junctional cells, has provided new concepts about deactivation of purine neurotransmitters. In spite of steady progress, many unknowns about purinergic neurotransmission remain and require additional investigation to understand this important regulatory mechanism in GI motility.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA.
| | - Violeta N Mutafova-Yambolieva
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| |
Collapse
|
6
|
Real-time measurement of adenosine and ATP release in the central nervous system. Purinergic Signal 2020; 17:109-115. [PMID: 33025425 PMCID: PMC7954901 DOI: 10.1007/s11302-020-09733-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/13/2020] [Indexed: 11/12/2022] Open
Abstract
This brief review recounts how, stimulated by the work of Geoff Burnstock, I developed biosensors that allowed direct real-time measurement of ATP and adenosine during neural function. The initial impetus to create an adenosine biosensor came from trying to understand how ATP and adenosine-modulated motor pattern generation in the frog embryo spinal cord. Early biosensor measurements demonstrated slow accumulation of adenosine during motor activity. Subsequent application of these biosensors characterized real-time release of adenosine in in vitro models of brain ischaemia, and this line of work has recently led to clinical measurements of whole blood purine levels in patients undergoing carotid artery surgery or stroke. In parallel, the wish to understand the role of ATP signalling in the chemosensory regulation of breathing stimulated the development of ATP biosensors. This revealed that release of ATP from the chemosensory areas of the medulla oblongata preceded adaptive changes in breathing, triggered adaptive changes in breathing via activation of P2 receptors, and ultimately led to the discovery of connexin26 as a channel that mediates CO2-gated release of ATP from cells.
Collapse
|
7
|
Purines: From Diagnostic Biomarkers to Therapeutic Agents in Brain Injury. Neurosci Bull 2020; 36:1315-1326. [PMID: 32542580 DOI: 10.1007/s12264-020-00529-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The purines constitute a family of inter-related compounds that serve a broad range of important intracellular and extracellular biological functions. In particular, adenosine triphosphate (ATP) and its metabolite and precursor, adenosine, regulate a wide variety of cellular and systems-level physiological processes extending from ATP acting as the cellular energy currency, to the adenosine arising from the depletion of cellular ATP and responding to reduce energy demand and hence to preserve ATP during times of metabolic stress. This inter-relationship provides opportunities for both the diagnosis of energy depletion during conditions such as stroke, and the replenishment of ATP after such events. In this review we address these opportunities and the broad potential of purines as diagnostics and restorative agents.
Collapse
|
8
|
Abstract
In vivo electrochemical sensing based on implantable microelectrodes is a strong driving force of analytical neurochemistry in brain. The complex and dynamic neurochemical network sets stringent standards of in vivo electrochemical sensors including high spatiotemporal resolution, selectivity, sensitivity, and minimized disturbance on brain function. Although advanced materials and novel technologies have promoted the development of in vivo electrochemical sensors drastically, gaps with the goals still exist. This Review mainly focuses on recent attempts on the key issues of in vivo electrochemical sensors including selectivity, tissue response and sensing reliability, and compatibility with electrophysiological techniques. In vivo electrochemical methods with bare carbon fiber electrodes, of which the selectivity is achieved either with electrochemical techniques such as fast-scan cyclic voltammetry and differential pulse voltammetry or based on the physiological nature will not be reviewed. Following the elaboration of each issue involved in in vivo electrochemical sensors, possible solutions supported by the latest methodological progress will be discussed, aiming to provide inspiring and practical instructions for future research.
Collapse
Affiliation(s)
- Cong Xu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, The Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Lin J, Weixler D, Daboss S, Seibold GM, Andronescu C, Schuhmann W, Kranz C. Time-resolved ATP measurements during vesicle respiration. Talanta 2019; 205:120083. [PMID: 31450430 DOI: 10.1016/j.talanta.2019.06.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 02/05/2023]
Abstract
In vitro synthesis of ATP catalyzed by the ATP-synthase requires membrane vesicles, in which the ATP-synthase is present within the bilayer membrane. Inverted vesicle prepared from Gram negative cells (e.g., Escherichia coli or Pseudomonas putida) can be readily obtained and used for in vitro ATP-synthesis. Up to now, quantification of ATP synthesized by membrane vesicles has been mostly analyzed via bioluminescence-based assays. Alternatively, vesicle respiration and the associated ATP level can be determined using biosensors, which not only provide high selectivity, but allow ATP measurements without the sample being illuminated. Here, we present a microbiosensor for ATP in combination with scanning electrochemical microscopy (SECM) using an innovative two-compartment electrochemical cell for the determination of ATP levels at E.coli or P. putida inverted vesicles. For a protein concentration of 22 mg/ml, a total amount of 0.29 ± 0.03 μM/μl ATP per vesicle was determined in case of E.coli; in turn, P. putida derived vesicles yielded 0.48 ± 0.02 μM/μl ATP per vesicle at a total protein concentration of 25.2 mg/ml. Inhibition experiments with Venturicidin A clearly revealed that the respiratory chain enzyme complex responsible for ATP generation is effectively involved.
Collapse
Affiliation(s)
- Jing Lin
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dominik Weixler
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Daboss
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Gerd M Seibold
- Institute of Microbiology and Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany; Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800, Kongens Lyngby, Denmark
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Carl-Benz-Str. 199, 47057, Duisburg, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 17 Universitätsstr. 150, 44780, Bochum, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
10
|
Point-of-care measurements reveal release of purines into venous blood of stroke patients. Purinergic Signal 2019; 15:237-246. [PMID: 30859371 PMCID: PMC6635545 DOI: 10.1007/s11302-019-09647-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/31/2019] [Indexed: 11/10/2022] Open
Abstract
Stroke is a leading cause of death and disability. Here, we examine whether point-of-care measurement of the purines, adenosine, inosine and hypoxanthine, which are downstream metabolites of ATP, has potential to assist the diagnosis of stroke. In a prospective observational study, patients who were suspected of having had a stroke, within 4.5 h of symptom onset and still displaying focal neurological symptoms at admission, were recruited. Clinical research staff in the Emergency Departments of two hospitals used a prototype biosensor array, SMARTCap, to measure the purines in the venous blood of stroke patients and healthy controls. In controls, the baseline purines were 7.1 ± (SD) 4.2 μM (n = 52), while in stroke patients, they were 11.6 ± 8.9 μM (n = 76). Using the National Institutes for Stoke Scale (NIHSS) to band the severity of stroke, we found that minor, moderate and severe strokes all gave significant elevation of blood purines above the controls. The purine levels fall over 24 h. This was most marked for patients with haemorrhagic strokes (5.1 ± 3.6 μM, n = 9 after 24 h). The purine levels measured on admission show a significant correlation with the volume of affected brain tissue determined by medical imaging in patients who had not received thrombolysis or mechanical thrombectomy. ClinicalTrials.gov Identifier: NCT02308605
Collapse
|
11
|
Hall J, Frenguelli BG. The combination of ribose and adenine promotes adenosine release and attenuates the intensity and frequency of epileptiform activity in hippocampal slices: Evidence for the rapid depletion of cellular ATP during electrographic seizures. J Neurochem 2018; 147:178-189. [PMID: 29964329 PMCID: PMC6220757 DOI: 10.1111/jnc.14543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/05/2018] [Accepted: 06/28/2018] [Indexed: 12/25/2022]
Abstract
In addition to being the universal cellular energy source, ATP is the primary reservoir for the neuromodulator adenosine. Consequently, adenosine is produced during ATP-depleting conditions, such as epileptic seizures, during which adenosine acts as an anticonvulsant to terminate seizure activity and raise the threshold for subsequent seizures. These actions protect neurones from excessive ionic fluxes and hence preserve the remaining cellular content of ATP. We have investigated the consequences of manipulation of intracellular ATP levels on adenosine release and epileptiform activity in hippocampal slices by pre-incubating slices (3 h) with creatine (1 mM) and the combination of ribose (1 mM) and adenine (50 μM; RibAde). Creatine buffers and protects the concentration of cellular ATP, whereas RibAde restores the reduced cellular ATP in brain slices to near physiological levels. Using electrophysiological recordings and microelectrode biosensors for adenosine, we find that, while having no effect on basal synaptic transmission or paired-pulse facilitation, pre-incubation with creatine reduced adenosine release during Mg2+- free/4-aminopyridine-induced electrographic seizure activity, whereas RibAde increased adenosine release. This increased release of adenosine was associated with an attenuation of both the intensity and frequency of seizure activity. Given the depletion of ATP after injury to the brain, the propensity for seizures after trauma and the risk of epileptogenesis, therapeutic strategies elevating the cellular reservoir of adenosine may have value in the traumatized brain. Ribose and adenine are both in use in man and thus their combination merits consideration as a potential therapeutic for the acutely injured central nervous system.
Collapse
Affiliation(s)
- Jessicka Hall
- School of Life SciencesThe University of WarwickCoventryUK
| | | |
Collapse
|
12
|
Hussain KK, Akhtar MH, Kim MH, Jung DK, Shim YB. Performance comparison between multienzymes loaded single and dual electrodes for the simultaneous electrochemical detection of adenosine and metabolites in cancerous cells. Biosens Bioelectron 2018; 109:263-271. [DOI: 10.1016/j.bios.2018.03.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/03/2018] [Accepted: 03/14/2018] [Indexed: 02/07/2023]
|
13
|
Chatard C, Meiller A, Marinesco S. Microelectrode Biosensors forin vivoAnalysis of Brain Interstitial Fluid. ELECTROANAL 2018. [DOI: 10.1002/elan.201700836] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Charles Chatard
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- Université Claude Bernard Lyon 1; Lyon France
| | - Anne Meiller
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
| | - Stéphane Marinesco
- INSERM U1028, CNRS UMR5292; Lyon Neuroscience Research Center, Team TIGER
- AniRA-Neurochem Technological Platform; Lyon France
- Université Claude Bernard Lyon 1; Lyon France
- Lyon Neuroscience Research Center, Team TIGER; Faculty of Medicine; 8 Avenue Rockefeller 69373 Lyon Cedex 08 France
| |
Collapse
|
14
|
Hughes V, Richardson MJE, Wall MJ. Acute ethanol exposure has bidirectional actions on the endogenous neuromodulator adenosine in rat hippocampus. Br J Pharmacol 2018; 175:1471-1485. [PMID: 29361192 PMCID: PMC5901169 DOI: 10.1111/bph.14152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/19/2017] [Accepted: 12/25/2017] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose Ethanol is a widely used recreational drug with complex effects on physiological and pathological brain function. In epileptic patients, the use of ethanol can modify seizure initiation and subsequent seizure activity with reports of ethanol being both pro‐ and anticonvulsant. One proposed target of ethanol's actions is the neuromodulator adenosine, which is released during epileptic seizures to feedback and inhibit the occurrence of subsequent seizures. Here, we investigated the actions of acute ethanol exposure on adenosine signalling in rat hippocampus. Experimental Approach We have combined electrophysiology with direct measurements of extracellular adenosine using microelectrode biosensors in rat hippocampal slices. Key Results We found that ethanol has bidirectional actions on adenosine signalling: depressant concentrations of ethanol (50 mM) increased the basal extracellular concentration of adenosine under baseline conditions, leading to the inhibition of synaptic transmission, but it inhibited adenosine release during evoked seizure activity in brain slices. The reduction in activity‐dependent adenosine release was in part produced by effects on NMDA receptors, although other mechanisms also appeared to be involved. Low concentrations of ethanol (10–15 mM) enhanced pathological network activity by selectively blocking activity‐dependent adenosine release. Conclusions and Implications The complex dose‐dependent actions of ethanol on adenosine signalling could in part explain the mixture of pro‐convulsant and anticonvulsant actions of ethanol that have previously been reported.
Collapse
Affiliation(s)
- Victoria Hughes
- School of Life Sciences, University of Warwick, Coventry, UK
| | | | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
15
|
Tian F, Bibi F, Dale N, Imray CHE. Blood purine measurements as a rapid real-time indicator of reversible brain ischaemia. Purinergic Signal 2017; 13:521-528. [PMID: 28803399 PMCID: PMC5714841 DOI: 10.1007/s11302-017-9578-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022] Open
Abstract
To preserve the disequilibrium between ATP and ADP necessary to drive cellular metabolism, enzymatic pathways rapidly convert ADP to adenosine and the downstream purines inosine and hypoxanthine. During ischaemia, these same pathways result in the production of purines. We performed a prospective observational study to test whether purine levels in arterial blood might correlate with brain ischaemia. We made real-time perioperative measurements, via microelectrode biosensors, of the purine levels in untreated arterial blood from 18 patients undergoing regional anaesthetic carotid endarterectomy. Pre-operatively, the median purine level was 2.4 μM (95% CI 1.3-4.0 μM); during the cross-clamp phase, the purines rose to 6.7 μM (95% CI 4.7-11.5 μM) and fell back to 1.9 μM (95% CI 1.4-2.7 μM) in recovery. Three patients became unconscious during carotid clamping, necessitating insertion of a temporary carotid shunt to restore cerebral blood flow. In these, the pre-operative median purine level was 5.4 μM (range 4.7-6.1 μM), on clamping, 9.6 μM (range 9.4-16.1 μM); during shunting, purines fell to below the pre-operative level (1.4 μM, range 0.4-2.9 μM) and in recovery 1.8 μM (range 1.8-2.6 μM). Our results suggest that blood purines may be a sensitive real-time and rapidly produced indicator of brain ischaemia, even when there is no accompanying neurological obtundation.
Collapse
Affiliation(s)
- Faming Tian
- Sarissa Biomedical Ltd., Vanguard Centre Sir William Lyons Road, Coventry, CV4 7EZ, UK
| | - Fakhra Bibi
- Sarissa Biomedical Ltd., Vanguard Centre Sir William Lyons Road, Coventry, CV4 7EZ, UK
| | - Nicholas Dale
- Sarissa Biomedical Ltd., Vanguard Centre Sir William Lyons Road, Coventry, CV4 7EZ, UK.
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Christopher H E Imray
- Department of Vascular Surgery, University Hospitals of Coventry and Warwickshire, Clifford Bridge Road, Coventry, UK
- Warwick Medical School, Coventry, CV4 7AL, UK
| |
Collapse
|
16
|
Diez R, Richardson MJE, Wall MJ. Reducing Extracellular Ca 2+ Induces Adenosine Release via Equilibrative Nucleoside Transporters to Provide Negative Feedback Control of Activity in the Hippocampus. Front Neural Circuits 2017; 11:75. [PMID: 29066955 PMCID: PMC5641293 DOI: 10.3389/fncir.2017.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/27/2017] [Indexed: 12/04/2022] Open
Abstract
Neural circuit activity increases the release of the purine neuromodulator adenosine into the extracellular space leading to A1 receptor activation and negative feedback via membrane hyperpolarization and inhibition of transmitter release. Adenosine can be released by a number of different mechanisms that include Ca2+ dependent processes such as the exocytosis of ATP. During sustained pathological network activity, ischemia and hypoxia the extracellular concentration of calcium ions (Ca2+) markedly falls, inhibiting exocytosis and potentially reducing adenosine release. However it has been observed that reducing extracellular Ca2+ can induce paradoxical neural activity and can also increase adenosine release. Here we have investigated adenosine signaling and release mechanisms that occur when extracellular Ca2+ is removed. Using electrophysiology and microelectrode biosensor measurements we have found that adenosine is directly released into the extracellular space by the removal of extracellular Ca2+ and controls the induced neural activity via A1 receptor-mediated membrane potential hyperpolarization. Following Ca2+ removal, adenosine is released via equilibrative nucleoside transporters (ENTs), which when blocked leads to hyper-excitation. We propose that sustained action potential firing following Ca2+ removal leads to hydrolysis of ATP and a build-up of intracellular adenosine which then effluxes into the extracellular space via ENTs.
Collapse
Affiliation(s)
- Rebecca Diez
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
17
|
Beamer E, Kovács G, Sperlágh B. ATP released from astrocytes modulates action potential threshold and spontaneous excitatory postsynaptic currents in the neonatal rat prefrontal cortex. Brain Res Bull 2017; 135:129-142. [PMID: 29030320 DOI: 10.1016/j.brainresbull.2017.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023]
Abstract
Maternal immune activation during pregnancy is a risk factor for neurodevelopmental disorders, such as schizophrenia; however, a full mechanistic understanding has yet to be established. The activity of a transient cell population, the subplate neurons, is critical for the development of cortical inhibition and functional thalamocortical connections. Sensitivity of these cells to factors released during inflammation, therefore, may offer a link between maternal immune activation and the aberrant cortical development underlying some neuropsychiatric disorders. An elevated extracellular ATP concentration is associated with inflammation and has been shown to have an effect on neuronal activity. Here, we investigated the effect of ATP on the electrophysiological properties of subplate neurons. Exogenous ATP increased the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) at micromolar concentrations. Further, ATP released by astrocytes activated by the PAR-1 agonist, TFLLR-NH2, also increased the amplitude and frequency of sEPSCs in subplate neurons. The electrophysiological properties of subplate neurons recorded from prefrontal cortical (PFC) slices from neonatal rats were also disrupted in a maternal immune activation rat model of schizophrenia, with a suramin-sensitive increase in frequency and amplitude of sEPSCs. An alternative neurodevelopmental rat model of schizophrenia, MAM-E17, which did not rely on maternal immune activation, however, showed no change in subplate neuron activity. Both models were validated with behavioral assays, showing schizophrenia-like endophenotypes in young adulthood. The purinergic modulation of subplate neuron activity offers a potential explanatory link between maternal immune activation and disruptions in cortical development that lead to the emergence of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Edward Beamer
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gergely Kovács
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Beata Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
18
|
Hadjihambi A, De Chiara F, Hosford PS, Habtetion A, Karagiannis A, Davies N, Gourine AV, Jalan R. Ammonia mediates cortical hemichannel dysfunction in rodent models of chronic liver disease. Hepatology 2017; 65:1306-1318. [PMID: 28066916 PMCID: PMC5396295 DOI: 10.1002/hep.29031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/22/2016] [Accepted: 12/23/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED The pathogenesis of hepatic encephalopathy (HE) in cirrhosis is multifactorial and ammonia is thought to play a key role. Astroglial dysfunction is known to be present in HE. Astrocytes are extensively connected by gap junctions formed of connexins, which also exist as functional hemichannels allowing exchange of molecules between the cytoplasm and the extracellular milieu. The astrocyte-neuron lactate shuttle hypothesis suggests that neuronal activity is fueled (at least in part) by lactate provided by neighboring astrocytes. We hypothesized that in HE, astroglial dysfunction could impair metabolic communication between astrocytes and neurons. In this study, we determined whether hyperammonemia leads to hemichannel dysfunction and impairs lactate transport in the cerebral cortex using rat models of HE (bile duct ligation [BDL] and induced hyperammonemia) and also evaluated the effect of ammonia-lowering treatment (ornithine phenylacetate [OP]). Plasma ammonia concentration in BDL rats was significantly reduced by OP treatment. Biosensor recordings demonstrated that HE is associated with a significant reduction in both tonic and hypoxia-induced lactate release in the cerebral cortex, which was normalized by OP treatment. Cortical dye loading experiments revealed hemichannel dysfunction in HE with improvement following OP treatment, while the expression of key connexins was unaffected. CONCLUSION The results of the present study demonstrate that HE is associated with central nervous system hemichannel dysfunction, with ammonia playing a key role. The data provide evidence of a potential neuronal energy deficit due to impaired hemichannel-mediated lactate transport between astrocytes and neurons as a possible mechanism underlying pathogenesis of HE. (Hepatology 2017;65:1306-1318).
Collapse
Affiliation(s)
- Anna Hadjihambi
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom,Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Francesco De Chiara
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | - Patrick S. Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Abeba Habtetion
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | | | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and PharmacologyUniversity College LondonLondonUnited Kingdom
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Division of Medicine, UCL Medical School, Royal Free HospitalRowland Hill StreetLondonUnited Kingdom
| |
Collapse
|
19
|
Huckstepp RTR, Llaudet E, Gourine AV. CO2-Induced ATP-Dependent Release of Acetylcholine on the Ventral Surface of the Medulla Oblongata. PLoS One 2016; 11:e0167861. [PMID: 27936179 PMCID: PMC5148032 DOI: 10.1371/journal.pone.0167861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/21/2016] [Indexed: 12/04/2022] Open
Abstract
Complex mechanisms that detect changes in brainstem parenchymal PCO2/[H+] and trigger adaptive changes in lung ventilation are responsible for central respiratory CO2 chemosensitivity. Previous studies of chemosensory signalling pathways suggest that at the level of the ventral surface of the medulla oblongata (VMS), CO2-induced changes in ventilation are (at least in part) mediated by the release and actions of ATP and/or acetylcholine (ACh). Here we performed simultaneous real-time biosensor recordings of CO2-induced ATP and ACh release from the VMS in vivo and in vitro, to test the hypothesis that central respiratory CO2 chemosensory transduction involves simultaneous recruitment of purinergic and cholinergic signalling pathways. In anaesthetised and artificially ventilated rats, an increase in inspired CO2 triggered ACh release on the VMS with a peak amplitude of ~5 μM. Release of ACh was only detected after the onset of CO2-induced activation of the respiratory activity and was markedly reduced (by ~70%) by ATP receptor blockade. In horizontal slices of the VMS, CO2-induced release of ATP was reliably detected, whereas CO2 or bath application of ATP (100 μM) failed to trigger release of ACh. These results suggest that during hypercapnia locally produced ATP induces or potentiates the release of ACh (likely from the medullary projections of distal groups of cholinergic neurones), which may also contribute to the development and/or maintenance of the ventilatory response to CO2.
Collapse
Affiliation(s)
- Robert T. R. Huckstepp
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Enrique Llaudet
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Alexander V. Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
20
|
Newton AJH, Wall MJ, Richardson MJE. Modeling microelectrode biosensors: free-flow calibration can substantially underestimate tissue concentrations. J Neurophysiol 2016; 117:937-949. [PMID: 27927788 PMCID: PMC5338626 DOI: 10.1152/jn.00788.2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions. Microelectrode amperometric biosensors are widely used to measure concentrations of analytes in solution and tissue including acetylcholine, adenosine, glucose, and glutamate. A great deal of experimental and modeling effort has been directed at quantifying the response of the biosensors themselves; however, the influence that the macroscopic tissue environment has on biosensor response has not been subjected to the same level of scrutiny. Here we identify an important issue in the way microelectrode biosensors are calibrated that is likely to have led to underestimations of analyte tissue concentrations. Concentration in tissue is typically determined by comparing the biosensor signal to that measured in free-flow calibration conditions. In a free-flow environment the concentration of the analyte at the outer surface of the biosensor can be considered constant. However, in tissue the analyte reaches the biosensor surface by diffusion through the extracellular space. Because the enzymes in the biosensor break down the analyte, a density gradient is set up resulting in a significantly lower concentration of analyte near the biosensor surface. This effect is compounded by the diminished volume fraction (porosity) and reduction in the diffusion coefficient due to obstructions (tortuosity) in tissue. We demonstrate this effect through modeling and experimentally verify our predictions in diffusive environments. NEW & NOTEWORTHY Microelectrode biosensors are typically calibrated in a free-flow environment where the concentrations at the biosensor surface are constant. However, when in tissue, the analyte reaches the biosensor via diffusion and so analyte breakdown by the biosensor results in a concentration gradient and consequently a lower concentration around the biosensor. This effect means that naive free-flow calibration will underestimate tissue concentration. We develop mathematical models to better quantify the discrepancy between the calibration and tissue environment and experimentally verify our key predictions.
Collapse
Affiliation(s)
- Adam J H Newton
- Warwick Mathematics Institute, University of Warwick, Coventry, United Kingdom; and
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | |
Collapse
|
21
|
Xiao T, Wu F, Hao J, Zhang M, Yu P, Mao L. In Vivo Analysis with Electrochemical Sensors and Biosensors. Anal Chem 2016; 89:300-313. [DOI: 10.1021/acs.analchem.6b04308] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Tongfang Xiao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Wu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meining Zhang
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, CAS Key Laboratory of
Analytical Chemistry for Living Biosystems and Photochemistry, Institute
of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Zappia KJ, Garrison SR, Palygin O, Weyer AD, Barabas ME, Lawlor MW, Staruschenko A, Stucky CL. Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes. PLoS One 2016; 11:e0151602. [PMID: 26978657 PMCID: PMC4792390 DOI: 10.1371/journal.pone.0151602] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Keratinocytes are the first cells that come into direct contact with external tactile stimuli; however, their role in touch transduction in vivo is not clear. The ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) is essential for some mechanically-gated currents in sensory neurons, amplifies mechanical responses after inflammation, and has been reported to be expressed in human and mouse skin. Other reports have not detected Trpa1 mRNA transcripts in human or mouse epidermis. Therefore, we set out to determine whether selective deletion of Trpa1 from keratinocytes would impact mechanosensation. We generated K14Cre-Trpa1fl/fl mice lacking TRPA1 in K14-expressing cells, including keratinocytes. Surprisingly, Trpa1 transcripts were very poorly detected in epidermis of these mice or in controls, and detection was minimal enough to preclude observation of Trpa1 mRNA knockdown in the K14Cre-Trpa1fl/fl mice. Unexpectedly, these K14Cre-Trpa1fl/fl mice nonetheless exhibited a pronounced deficit in mechanosensitivity at the behavioral and primary afferent levels, and decreased mechanically-evoked ATP release from skin. Overall, while these data suggest that the intended targeted deletion of Trpa1 from keratin 14-expressing cells of the epidermis induces functional deficits in mechanotransduction and ATP release, these deficits are in fact likely due to factors other than reduction of Trpa1 expression in adult mouse keratinocytes because they express very little, if any, Trpa1.
Collapse
Affiliation(s)
- Katherine J. Zappia
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sheldon R. Garrison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andy D. Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Marie E. Barabas
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Michael W. Lawlor
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
23
|
Scharbarg E, Daenens M, Lemaître F, Geoffroy H, Guille-Collignon M, Gallopin T, Rancillac A. Astrocyte-derived adenosine is central to the hypnogenic effect of glucose. Sci Rep 2016; 6:19107. [PMID: 26755200 PMCID: PMC4709579 DOI: 10.1038/srep19107] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
Sleep has been hypothesised to maintain a close relationship with metabolism. Here we focus on the brain structure that triggers slow-wave sleep, the ventrolateral preoptic nucleus (VLPO), to explore the cellular and molecular signalling pathways recruited by an increase in glucose concentration. We used infrared videomicroscopy on ex vivo brain slices to establish that glucose induces vasodilations specifically in the VLPO via the astrocytic release of adenosine. Real-time detection by in situ purine biosensors further revealed that the adenosine level doubles in response to glucose, and triples during the wakefulness period. Finally, patch-clamp recordings uncovered the depolarizing effect of adenosine and its A2A receptor agonist, CGS-21680, on sleep-promoting VLPO neurons. Altogether, our results provide new insights into the metabolically driven release of adenosine. We hypothesise that adenosine adjusts the local energy supply to local neuronal activity in response to glucose. This pathway could contribute to sleep-wake transition and sleep intensity.
Collapse
Affiliation(s)
- Emeric Scharbarg
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Marion Daenens
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Frédéric Lemaître
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, Paris, F-75005, France
- CNRS, UMR 8640 Pasteur, Paris, F-75005, France
| | - Hélène Geoffroy
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Manon Guille-Collignon
- Ecole Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, Paris, F-75005, France
- CNRS, UMR 8640 Pasteur, Paris, F-75005, France
| | - Thierry Gallopin
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| | - Armelle Rancillac
- Brain Plasticity Unit, ESPCI-ParisTech, PSL Research University, Paris, F-75005, France
- CNRS, UMR 8249, Paris, F-75005, France
| |
Collapse
|
24
|
Hinzman JM, Gibson JL, Tackla RD, Costello MS, Burmeister JJ, Quintero JE, Gerhardt GA, Hartings JA. Real-time monitoring of extracellular adenosine using enzyme-linked microelectrode arrays. Biosens Bioelectron 2015; 74:512-7. [PMID: 26183072 PMCID: PMC7032657 DOI: 10.1016/j.bios.2015.06.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 01/11/2023]
Abstract
Throughout the central nervous system extracellular adenosine serves important neuroprotective and neuromodulatory functions. However, current understanding of the in vivo regulation and effects of adenosine is limited by the spatial and temporal resolution of available measurement techniques. Here, we describe an enzyme-linked microelectrode array (MEA) with high spatial (7500 µm(2)) and temporal (4 Hz) resolution that can selectively measure extracellular adenosine through the use of self-referenced coating scheme that accounts for interfering substances and the enzymatic breakdown products of adenosine. In vitro, the MEAs selectively measured adenosine in a linear fashion (r(2)=0.98±0.01, concentration range=0-15 µM, limit of detection =0.96±0.5 µM). In vivo the limit of detection was 0.04±0.02 µM, which permitted real-time monitoring of the basal extracellular concentration in rat cerebral cortex (4.3±1.5 µM). Local cortical injection of adenosine through a micropipette produced dose-dependent transient increases in the measured extracellular concentration (200 nL: 6.8±1.8 µM; 400 nL: 19.4±5.3 µM) [P<0.001]. Lastly, local injection of dipyridamole, which inhibits transport of adenosine through equilibrative nucleoside transporter, raised the measured extracellular concentration of adenosine by 120% (5.6→12.3 µM) [P<0.001]. These studies demonstrate that MEAs can selectively measure adenosine on temporal and spatial scales relevant to adenosine signaling and regulation in normal and pathologic states.
Collapse
Affiliation(s)
- Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Neurotrauma Center at UC Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA.
| | - Justin L Gibson
- University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Ryan D Tackla
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Neurotrauma Center at UC Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA; Mayfield Clinic, Cincinnati, OH, USA
| | - Mark S Costello
- University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Jason J Burmeister
- Department of Anatomy and Neurobiology, University of Kentucky (UK), Center for Microelectrode Technology, Lexington, KY, USA
| | - Jorge E Quintero
- Department of Anatomy and Neurobiology, University of Kentucky (UK), Center for Microelectrode Technology, Lexington, KY, USA
| | - Greg A Gerhardt
- Department of Anatomy and Neurobiology, University of Kentucky (UK), Center for Microelectrode Technology, Lexington, KY, USA
| | - Jed A Hartings
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Neurotrauma Center at UC Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA; Mayfield Clinic, Cincinnati, OH, USA
| |
Collapse
|
25
|
Palygin O, Levchenko V, Evans LC, Blass G, Cowley AW, Staruschenko A. Use of Enzymatic Biosensors to Quantify Endogenous ATP or H2O2 in the Kidney. J Vis Exp 2015. [PMID: 26485400 DOI: 10.3791/53059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enzymatic microelectrode biosensors have been widely used to measure extracellular signaling in real-time. Most of their use has been limited to brain slices and neuronal cell cultures. Recently, this technology has been applied to the whole organs. Advances in sensor design have made possible the measuring of cell signaling in blood-perfused in vivo kidneys. The present protocols list the steps needed to measure ATP and H2O2 signaling in the rat kidney interstitium. Two separate sensor designs are used for the ex vivo and in vivo protocols. Both types of sensor are coated with a thin enzymatic biolayer on top of a permselectivity layer to give fast responding, sensitive and selective biosensors. The permselectivity layer protects the signal from the interferents in biological tissue, and the enzymatic layer utilizes the sequential catalytic reaction of glycerol kinase and glycerol-3-phosphate oxidase in the presence of ATP to produce H2O2. The set of sensors used for the ex vivo studies further detected analyte by oxidation of H2O2 on a platinum/iridium (Pt-Ir) wire electrode. The sensors for the in vivo studies are instead based on the reduction of H2O2 on a mediator coated gold electrode designed for blood-perfused tissue. Final concentration changes are detected by real-time amperometry followed by calibration to known concentrations of analyte. Additionally, the specificity of the amperometric signal can be confirmed by the addition of enzymes such as catalase and apyrase that break down H2O2 and ATP correspondingly. These sensors also rely heavily on accurate calibrations before and after each experiment. The following two protocols establish the study of real-time detection of ATP and H2O2 in kidney tissues, and can be further modified to extend the described method for use in other biological preparations or whole organs.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin
| | | | | | - Gregory Blass
- Department of Physiology, Medical College of Wisconsin
| | | | | |
Collapse
|
26
|
Frenguelli BG, Wall MJ. Combined electrophysiological and biosensor approaches to study purinergic regulation of epileptiform activity in cortical tissue. J Neurosci Methods 2015; 260:202-14. [PMID: 26381061 DOI: 10.1016/j.jneumeth.2015.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cortical brain slices offer a readily accessible experimental model of a region of the brain commonly affected by epilepsy. The diversity of recording techniques, seizure-promoting protocols and mutant mouse models provides a rich diversity of avenues of investigation, which is facilitated by the regular arrangement of distinct neuronal populations and afferent fibre pathways, particularly in the hippocampus. NEW METHOD AND RESULTS We have been interested in the regulation of seizure activity in hippocampal and neocortical slices by the purines, adenosine and ATP. Via the use of microelectrode biosensors we have been able to measure the release of these important neuroactive compounds simultaneously with on-going epileptiform activity, even of brief durations. In addition, detailed numerical analysis and computational modelling has produced new insights into the kinetics and spatial distribution of elevations in purine concentration that occur during seizure activity. COMPARISON AND CONCLUSIONS Such an approach allows the spatio-temporal characteristics of neurotransmitter/neuromodulator release to be directly correlated with electrophysiological measures of synaptic and seizure activity, and can provide greater insight into the role of purines in epilepsy.
Collapse
Affiliation(s)
| | - Mark J Wall
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
27
|
Label-free sensing of adenosine based on force variations induced by molecular recognition. BIOSENSORS-BASEL 2015; 5:85-97. [PMID: 25808841 PMCID: PMC4384084 DOI: 10.3390/bios5010085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/25/2015] [Accepted: 03/11/2015] [Indexed: 01/03/2023]
Abstract
We demonstrate a simple force-based label-free strategy for the highly sensitive sensing of adenosine. An adenosine ssDNA aptamer was bound onto an atomic force microscopy (AFM) probe by covalent modification, and the molecular-interface adsorption force between the aptamer and a flat graphite surface was measured by single-molecule force spectroscopy (SMFS). In the presence of adenosine, the molecular recognition between adenosine and the aptamer resulted in the formation of a folded, hairpin-like DNA structure and hence caused a variation of the adsorption force at the graphite/water interface. The sensitive force response to molecular recognition provided an adenosine detection limit in the range of 0.1 to 1 nM. The addition of guanosine, cytidine, and uridine had no significant interference with the sensing of adenosine, indicating a strong selectivity of this sensor architecture. In addition, operational parameters that may affect the sensor, such as loading rate and solution ionic strength, were investigated.
Collapse
|
28
|
Pannexin-1-mediated ATP release from area CA3 drives mGlu5-dependent neuronal oscillations. Neuropharmacology 2015; 93:219-28. [PMID: 25645390 DOI: 10.1016/j.neuropharm.2015.01.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 02/08/2023]
Abstract
The activation of Group I metabotropic glutamate receptors (GI mGluRs) in the hippocampus results in the appearance of persistent bursts of synchronised neuronal activity. In response to other stimuli, such activity is known to cause the release of the purines ATP and its neuroactive metabolite, adenosine. We have thus investigated the potential release and role of the purines during GI mGluR-induced oscillations in rat hippocampal areas CA3 and CA1 using pharmacological techniques and microelectrode biosensors for ATP and adenosine. The GI mGluR agonist DHPG induced both persistent oscillations in neuronal activity and the release of adenosine in areas CA1 and CA3. In contrast, the DHPG-induced release of ATP was only observed in area CA3. Whilst adenosine acting at adenosine A1 receptors suppressed DHPG-induced burst activity, the activation of mGlu5 and P2Y1 ATP receptors were necessary for the induction of DHPG-induced oscillations. Selective inhibition of pannexin-1 hemichannels with a low concentration of carbenoxolone (10 μM) or probenecid (1 mM) did not affect adenosine release in area CA3, but prevented both ATP release in area CA3 and DHPG-induced bursting. These data reveal key aspects of GI mGluR-dependent neuronal activity that are subject to bidirectional regulation by ATP and adenosine in the initiation and pacing of burst firing, respectively, and which have implications for the role of GI mGluRs in seizure activity and neurodevelopmental disorders.
Collapse
|
29
|
Britz D, Strutwolf J. Digital simulation of chronoamperometry at a disk electrode under a flat polymer film containing an enzyme. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2014.11.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Nguyen MD, Venton BJ. Fast-scan Cyclic Voltammetry for the Characterization of Rapid Adenosine Release. Comput Struct Biotechnol J 2014; 13:47-54. [PMID: 26900429 PMCID: PMC4720017 DOI: 10.1016/j.csbj.2014.12.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
Adenosine is a signaling molecule and downstream product of ATP that acts as a neuromodulator. Adenosine regulates physiological processes, such as neurotransmission and blood flow, on a time scale of minutes to hours. Recent developments in electrochemical techniques, including fast-scan cyclic voltammetry (FSCV), have allowed direct detection of adenosine with sub-second temporal resolution. FSCV studies have revealed a novel mode of rapid signaling that lasts only a few seconds. This rapid release of adenosine can be evoked by electrical or mechanical stimulations or it can be observed spontaneously without stimulation. Adenosine signaling on this time scale is activity dependent; however, the mode of release is not fully understood. Rapid adenosine release modulates oxygen levels and evoked dopamine release, indicating that adenosine may have a rapid modulatory role. In this review, we outline how FSCV can be used to detect adenosine release, compare FSCV with other techniques used to measure adenosine, and present an overview of adenosine signaling that has been characterized using FSCV. These studies point to a rapid mode of adenosine modulation, whose mechanism and function will continue to be characterized in the future.
Collapse
Affiliation(s)
- Michael D Nguyen
- Department of Chemistry, University of Virginia, McCormick Road, PO BOX 400319, Charlottesville, VA 22904, United States
| | - B Jill Venton
- Department of Chemistry, University of Virginia, McCormick Road, PO BOX 400319, Charlottesville, VA 22904, United States
| |
Collapse
|
31
|
Wall MJ, Richardson MJE. Localized adenosine signaling provides fine-tuned negative feedback over a wide dynamic range of neocortical network activities. J Neurophysiol 2014; 113:871-82. [PMID: 25392170 DOI: 10.1152/jn.00620.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although the patterns of activity produced by neocortical networks are now better understood, how these states are activated, sustained, and terminated still remains unclear. Negative feedback by the endogenous neuromodulator adenosine may potentially play an important role, as it can be released by activity and there is dense A1 receptor expression in the neocortex. Using electrophysiology, biosensors, and modeling, we have investigated the properties of adenosine signaling during physiological and pathological network activity in rat neocortical slices. Both low- and high-rate network activities were reduced by A1 receptor activation and enhanced by block of A1 receptors, consistent with activity-dependent adenosine release. Since the A1 receptors were neither saturated nor completely unoccupied during either low- or high-rate activity, adenosine signaling provides a negative-feedback mechanism with a wide dynamic range. Modeling and biosensor experiments show that during high-rate activity increases in extracellular adenosine concentration are highly localized and are uncorrelated over short distances that are certainly<500 μm. Modeling also predicts that the slow rise of the purine waveform cannot be from diffusion from distal release sites but more likely results from uptake and metabolism. The inability to directly measure adenosine release during low-rate activity, although it is present, is probably a consequence of small localized increases in adenosine concentration that are rapidly diminished by diffusion and active removal mechanisms. Saturation of such removal mechanisms when higher concentrations of adenosine are released results in the accumulation of inosine, explaining the strong purine signal during high-rate activity.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry, United Kingdom; and
| | | |
Collapse
|
32
|
Bartzoka F, Venetsanou K, Clonis Y. Adenosine reagent-free detection by co-immobilization of adenosine deaminase and phenol red on an optical biostrip. Biotechnol J 2014; 10:136-42. [PMID: 25293641 DOI: 10.1002/biot.201400333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/15/2014] [Accepted: 10/06/2014] [Indexed: 11/08/2022]
Abstract
Adenosine detection in human serum is important because this ribonucleoside has established clinical applications, modulating many physiological processes. Furthermore, a simple and cheap detection method is useful in adenosine production processes. Adenosine can be determined enzymatically using either S-adenosyl-homocysteine hydrolase and (3) [H]-adenosine, or adenosine kinase combined with GTP and luciferase, or an amperometric biosensor carrying adenosine deaminase (ADA), purine nucleoside phosphorylase, and xanthine oxidase. We developed a simple and cheap method relying on a transparent biostrip bearing ADA and the indicator phenol red (PR), co-immobilized to polyacrylamide, itself chemically adhered to a derivatized glass strip. The ADA-catalyzed conversion of adenosine to inosine and ammonia leads to a local pH alteration, changing the absorbance maximum of PR (from 425 to 567 nm), which is measured optically. The biostrip shows an analytical range 0.05-1.5 mM adenosine and is reusable when stored at 4 °C. When the biostrip was tested with serum, spiked with adenosine (70 and 100 μM), and filtered for protein and adenosine phosphates depletion, it showed good adenosine recovery. In summary, we show the proof-of-concept that adenosine can be determined reagent-free, at moderate sensitivity on an easy to construct, cheap, and reusable biostrip, based on commercially available molecular entities.
Collapse
Affiliation(s)
- Foteini Bartzoka
- Laboratory of Enzyme Technology, Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | | | | |
Collapse
|
33
|
Ross AE, Venton BJ. Sawhorse waveform voltammetry for selective detection of adenosine, ATP, and hydrogen peroxide. Anal Chem 2014; 86:7486-93. [PMID: 25005825 PMCID: PMC4368507 DOI: 10.1021/ac501229c] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
![]()
Fast-scan cyclic voltammetry (FSCV)
is an electrochemistry technique
which allows subsecond detection of neurotransmitters in vivo. Adenosine detection using FSCV has become increasingly popular
but can be difficult because of interfering agents which oxidize at
or near the same potential as adenosine. Triangle shaped waveforms
are traditionally used for FSCV, but modified waveforms have been
introduced to maximize analyte sensitivity and provide stability at
high scan rates. Here, a modified sawhorse waveform was used to maximize
the time for adenosine oxidation and to manipulate the shapes of cyclic
voltammograms (CVs) of analytes which oxidize at the switching potential.
The optimized waveform consists of scanning at 400 V/s from −0.4
to 1.35 V and holding briefly for 1.0 ms followed by a ramp back down
to −0.4 V. This waveform allows the use of a lower switching
potential for adenosine detection. Hydrogen peroxide and ATP also
oxidize at the switching potential and can interfere with adenosine
measurements in vivo; however, their CVs were altered
with the sawhorse waveform and they could be distinguished from adenosine.
Principal component analysis (PCA) was used to determine that the
sawhorse waveform was better than the triangle waveform at discriminating
between adenosine, hydrogen peroxide, and ATP. In slices, mechanically
evoked adenosine was identified with PCA and changes in the ratio
of ATP to adenosine were observed after manipulation of ATP metabolism
by POM-1. The sawhorse waveform is useful for adenosine, hydrogen
peroxide, and ATP discrimination and will facilitate more confident
measurements of these analytes in vivo.
Collapse
Affiliation(s)
- Ashley E Ross
- Department of Chemistry, University of Virginia , Charlottesville, Virginia 22904, United States
| | | |
Collapse
|
34
|
Ross AE, Nguyen MD, Privman E, Venton BJ. Mechanical stimulation evokes rapid increases in extracellular adenosine concentration in the prefrontal cortex. J Neurochem 2014; 130:50-60. [PMID: 24606335 PMCID: PMC4065624 DOI: 10.1111/jnc.12711] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/28/2014] [Accepted: 03/05/2014] [Indexed: 12/22/2022]
Abstract
Mechanical perturbations can release ATP, which is broken down to adenosine. In this work, we used carbon-fiber microelectrodes and fast-scan cyclic voltammetry to measure mechanically stimulated adenosine in the brain by lowering the electrode 50 μm. Mechanical stimulation evoked adenosine in vivo (average: 3.3 ± 0.6 μM) and in brain slices (average: 0.8 ± 0.1 μM) in the prefrontal cortex. The release was transient, lasting 18 ± 2 s. Lowering a 15-μm-diameter glass pipette near the carbon-fiber microelectrode produced similar results as lowering the actual microelectrode. However, applying a small puff of artificial cerebral spinal fluid was not sufficient to evoke adenosine. Multiple stimulations within a 50-μm region of a slice did not significantly change over time or damage cells. Chelating calcium with EDTA or blocking sodium channels with tetrodotoxin significantly decreased mechanically evoked adenosine, signifying that the release is activity dependent. An alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, did not affect mechanically stimulated adenosine; however, the nucleoside triphosphate diphosphohydrolase 1,2 and 3 (NTDPase) inhibitor POM-1 significantly reduced adenosine so a portion of adenosine is dependent on extracellular ATP metabolism. Thus, mechanical perturbations from inserting a probe in the brain cause rapid, transient adenosine signaling which might be neuroprotective. We have discovered immediate changes in adenosine concentration in the prefrontal cortex following mechanical stimulation. The adenosine increase lasts only about 20 s. Mechanically stimulated adenosine was activity dependent and mostly because of extracellular ATP metabolism. This rapid, transient increase in adenosine may help protect tissue and would occur during implantation of any electrode, such as during deep brain stimulation.
Collapse
Affiliation(s)
| | | | | | - B. Jill Venton
- corresponding author Dept. of Chemistry University of Virginia Charlottesville, VA 22904 (434) 243-2132
| |
Collapse
|
35
|
Sims RE, Dale N. Activity-dependent adenosine release may be linked to activation of Na(+)-K(+) ATPase: an in vitro rat study. PLoS One 2014; 9:e87481. [PMID: 24489921 PMCID: PMC3906196 DOI: 10.1371/journal.pone.0087481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
In the brain, extracellular adenosine increases as a result of neuronal activity. The mechanisms by which this occurs are only incompletely understood. Here we investigate the hypothesis that the Na+ influxes associated with neuronal signalling activate the Na+-K+ ATPase which, by consuming ATP, generates intracellular adenosine that is then released via transporters. By measuring adenosine release directly with microelectrode biosensors, we have demonstrated that AMPA-receptor evoked adenosine release in basal forebrain and cortex depends on extracellular Na+. We have simultaneously imaged intracellular Na+ and measured adenosine release. The accumulation of intracellular Na+ during AMPA receptor activation preceded adenosine release by some 90 s. By removing extracellular Ca2+, and thus preventing indiscriminate neuronal activation, we used ouabain to test the role of the Na+-K+ ATPase in the release of adenosine. Under conditions which caused a Na+ influx, brief applications of ouabain increased the accumulation of intracellular Na+ but conversely rapidly reduced extracellular adenosine levels. In addition, ouabain greatly reduced the amount of adenosine released during application of AMPA. Our data therefore suggest that activity of the Na+-K+ ATPase is directly linked to the efflux of adenosine and could provide a universal mechanism that couples adenosine release to neuronal activity. The Na+-K+ ATPase-dependent adenosine efflux is likely to provide adenosine-mediated activity-dependent negative feedback that will be important in many diverse functional contexts including the regulation of sleep.
Collapse
Affiliation(s)
- Robert Edward Sims
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
36
|
Nguyen MD, Lee ST, Ross AE, Ryals M, Choudhry VI, Venton BJ. Characterization of spontaneous, transient adenosine release in the caudate-putamen and prefrontal cortex. PLoS One 2014; 9:e87165. [PMID: 24494035 PMCID: PMC3907895 DOI: 10.1371/journal.pone.0087165] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/19/2013] [Indexed: 12/20/2022] Open
Abstract
Adenosine is a neuroprotective agent that inhibits neuronal activity and modulates neurotransmission. Previous research has shown adenosine gradually accumulates during pathologies such as stroke and regulates neurotransmission on the minute-to-hour time scale. Our lab developed a method using carbon-fiber microelectrodes to directly measure adenosine changes on a sub-second time scale with fast-scan cyclic voltammetry (FSCV). Recently, adenosine release lasting a couple of seconds has been found in murine spinal cord slices. In this study, we characterized spontaneous, transient adenosine release in vivo, in the caudate-putamen and prefrontal cortex of anesthetized rats. The average concentration of adenosine release was 0.17±0.01 µM in the caudate and 0.19±0.01 µM in the prefrontal cortex, although the range was large, from 0.04 to 3.2 µM. The average duration of spontaneous adenosine release was 2.9±0.1 seconds and 2.8±0.1 seconds in the caudate and prefrontal cortex, respectively. The concentration and number of transients detected do not change over a four hour period, suggesting spontaneous events are not caused by electrode implantation. The frequency of adenosine transients was higher in the prefrontal cortex than the caudate-putamen and was modulated by A1 receptors. The A1 antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine, 6 mg/kg i.p.) increased the frequency of spontaneous adenosine release, while the A1 agonist CPA (N(6)-cyclopentyladenosine, 1 mg/kg i.p.) decreased the frequency. These findings are a paradigm shift for understanding the time course of adenosine signaling, demonstrating that there is a rapid mode of adenosine signaling that could cause transient, local neuromodulation.
Collapse
Affiliation(s)
- Michael D. Nguyen
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Scott T. Lee
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ashley E. Ross
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Matthew Ryals
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - Vishesh I. Choudhry
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
| | - B. Jill Venton
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
37
|
FACS array profiling identifies Ecto-5' nucleotidase as a striatopallidal neuron-specific gene involved in striatal-dependent learning. J Neurosci 2013; 33:8794-809. [PMID: 23678122 DOI: 10.1523/jneurosci.2989-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The striatopallidal (STP) and striatonigral (STN) neurons constitute the main neuronal populations of the striatum. Despite the increasing knowledge concerning their involvement in multiple tasks associated with the striatum, it is still challenging to understand the precise differential functions of these two neuronal populations and to identify and study new genes involved in these functions. Here, we describe a reliable approach, applied on adult mouse brain, to generate specific STP and STN neuron gene profiles. STP and STN neurons were identified in the same animal using the transgenic Adora2A-Cre × Z/EG mouse model combined with retrograde labeling, respectively. Gene profiling was generated from FACS-purified neurons leading to the identification of new STP and STN neuron-specific genes. Knock-down models based on Cre-dependent lentiviral vector were developed to investigate their function either in striatal or in STP neurons. Thereby, we demonstrate that ecto-5'-nucleotidase (NT5e) is specifically expressed in STP neurons and is at the origin of most of the extracellular adenosine produced in the striatum. Behavioral analysis of striatal and STP neuron knock-down mouse models as well as NT5e knock-out mice demonstrates the implication of this STP neuron enzyme in motor learning.
Collapse
|
38
|
Wall MJ, Dale N. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent adenosine release in the hippocampus. J Physiol 2013; 591:3853-71. [PMID: 23713028 DOI: 10.1113/jphysiol.2013.253450] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The neuromodulator adenosine plays an important role in many physiological and pathological processes within the mammalian CNS. However, the precise mechanisms of how the concentration of extracellular adenosine increases following neural activity remain contentious. Here we have used microelectrode biosensors to directly measure adenosine release induced by focal stimulation in stratum radiatum of area CA1 in mouse hippocampal slices. Adenosine release was both action potential and Ca²⁺ dependent and could be evoked with low stimulation frequencies and small numbers of stimuli. Adenosine release required the activation of ionotropic glutamate receptors and could be evoked by local application of glutamate receptor agonists. Approximately 40% of stimulated-adenosine release occurred by translocation of adenosine via equilibrative nucleoside transporters (ENTs). This component of release persisted in the presence of the gliotoxin fluoroacetate and thus results from the direct release of adenosine from neurons. A reduction of adenosine release in the presence of NTPDase blockers, in slices from CD73(-/-) and dn-SNARE mice, provides evidence that a component of adenosine release arises from the extracellular metabolism of ATP released from astrocytes. This component of release appeared to have slower kinetics than the direct ENT-mediated release of adenosine. These data suggest that activity-dependent adenosine release is surprisingly complex and, in the hippocampus, arises from at least two distinct mechanisms with different cellular sources.
Collapse
Affiliation(s)
- Mark J Wall
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
39
|
Palygin O, Staruschenko A. Detection of endogenous substances with enzymatic microelectrode biosensors in the kidney. Am J Physiol Regul Integr Comp Physiol 2013; 305:R89-91. [PMID: 23594609 DOI: 10.1152/ajpregu.00135.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct real-time measurements of purinergic agents and reactive oxygen species concentrations have been of great value in understanding the functional roles of these substances in a number of diseases including chronic kidney disease and hypertension. The interstitial concentrations of these intermediate signaling molecules and dynamics of their release are important autocrine and paracrine factors in the kidney, which play a key role in the regulation of oxidative stress, inflammation, and kidney damage. Analysis of signaling mechanisms, especially in vivo and ex vivo, has been slowed by deficiencies of existing methods for direct measurements of the signaling molecules concentrations in whole organs and acute changes in response to endocrine factors. The multienzymatic microelectrode biosensors technique was originally developed and used for the detection of purines release in the brain and in present could be modified to identify the interplay between different substances that could be measured simultaneously in whole organs, such as the kidney. Adaptation of this method for renal and cardiovascular studies represents a unique powerful approach for real-time monitoring of substance level fluctuations in organs or tissues under normal or pathological conditions.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
40
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Ryan RP, Cowley AW, Staruschenko A. Real-time electrochemical detection of ATP and H₂O₂ release in freshly isolated kidneys. Am J Physiol Renal Physiol 2013; 305:F134-41. [PMID: 23594827 DOI: 10.1152/ajprenal.00129.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Extracellular nucleotides such as adenosine-5'-triphosphate (ATP) and reactive oxygen species are essential local signaling molecules in the kidney. However, measurements of changes in the interstitial concentrations of these substances in response to various stimuli remain hindered due to limitations of existing experimental techniques. The goal of this study was to develop a novel approach suitable for real-time measurements of ATP and H₂O₂ levels in freshly isolated rat kidney. Rats were anesthetized and the kidneys were flushed to clear blood before isolation for consequent perfusion. The perfused kidneys were placed into a bath solution and dual simultaneous amperometric recordings were made with the enzymatic microelectrode biosensors detecting ATP and H₂O₂. It was found that basal levels of H₂O₂ were increased in Dahl salt-sensitive (SS) rats fed a high-salt diet compared with SS and Sprague-Dawley rats fed a low-salt diet and that medulla contained higher levels of H₂O₂ compared with cortex in both strains. In contrast, ATP levels did not change in SS rats when animals were fed a high-salt diet. Importantly, angiotensin II via AT₁ receptor induced rapid release of both ATP and H₂O₂ and this effect was enhanced in SS rats. These results demonstrate that ATP and H₂O₂ are critical in the development of salt-sensitive hypertension and that the current method represents a unique powerful approach for the real-time monitoring of the changes in endogenous substance levels in whole organs.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Heinrich A, Andó RD, Túri G, Rózsa B, Sperlágh B. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study. Br J Pharmacol 2013; 167:1003-20. [PMID: 22394324 DOI: 10.1111/j.1476-5381.2012.01932.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K(+) concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K(+) , with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca(2+) -free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K(+) -evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels.
Collapse
Affiliation(s)
- A Heinrich
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary Femtonics Ltd, Budapest, Hungary
| | | | | | | | | |
Collapse
|
42
|
|
43
|
Çete S, Bal Ö. Preparation of Pt/polypyrrole–para toluene sulfonate hydrogen peroxide sensitive electrode for the utilizing as a biosensor. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 41:414-20. [DOI: 10.3109/21691401.2012.759121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Sims RE, Wu HHT, Dale N. Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents: an in vitro study. PLoS One 2013; 8:e53814. [PMID: 23326515 PMCID: PMC3543262 DOI: 10.1371/journal.pone.0053814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 12/05/2012] [Indexed: 12/24/2022] Open
Abstract
Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state.
Collapse
Affiliation(s)
- Robert Edward Sims
- School of Life Sciences, University of Warwick, Coventry, West Midlands, United Kingdom.
| | | | | |
Collapse
|
45
|
Vasylieva N, Marinesco S. Enzyme Immobilization on Microelectrode Biosensors. NEUROMETHODS 2013. [DOI: 10.1007/978-1-62703-370-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
46
|
Lowe CR. The future: biomarkers, biosensors, neuroinformatics, and e-neuropsychiatry. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 101:375-400. [PMID: 22050860 DOI: 10.1016/b978-0-12-387718-5.00015-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The emergence of molecular biomarkers for psychological, psychiatric, and neurodegenerative disorders is beginning to change current diagnostic paradigms for this debilitating family of mental illnesses. The development of new genomic, proteomic, and metabolomic tools has created the prospect of sensitive and specific biochemical tests to replace traditional pen-and-paper questionnaires. In the future, the realization of biosensor technologies, point-of-care testing, and the fusion of clinical biomarker data, electroencephalogram, and MRI data with the patient's past medical history, biopatterns, and prognosis may create personalized bioprofiles or fingerprints for brain disorders. Further, the application of mobile communications technology and grid computing to support data-, computation- and knowledge-based tasks will assist disease prediction, diagnosis, prognosis, and compliance monitoring. It is anticipated that, ultimately, mobile devices could become the next generation of personalized pharmacies.
Collapse
Affiliation(s)
- Christopher R Lowe
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Ross AE, Venton BJ. Nafion-CNT coated carbon-fiber microelectrodes for enhanced detection of adenosine. Analyst 2012; 137:3045-51. [PMID: 22606688 PMCID: PMC3392196 DOI: 10.1039/c2an35297d] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adenosine is a neuromodulator that regulates neurotransmission. Adenosine can be monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes and ATP is a possible interferent in vivo because the electroactive moiety, adenine, is the same for both molecules. In this study, we investigated carbon-fiber microelectrodes coated with Nafion and carbon nanotubes (CNTs) to enhance the sensitivity of adenosine and decrease interference by ATP. Electrodes coated in 0.05 mg mL(-1) CNTs in Nafion had a 4.2 ± 0.2 fold increase in current for adenosine, twice as large as for Nafion alone. Nafion-CNT electrodes were 6 times more sensitive to adenosine than ATP. The Nafion-CNT coating did not slow the temporal response of the electrode. Comparing different purine bases shows that the presence of an amine group enhances sensitivity and that purines with carbonyl groups, such as guanine and hypoxanthine, do not have as great an enhancement after Nafion-CNT coating. The ribose group provides additional sensitivity enhancement for adenosine over adenine. The Nafion-CNT modified electrodes exhibited significantly more current for adenosine than ATP in brain slices. Therefore, Nafion-CNT modified electrodes are useful for sensitive, selective detection of adenosine in biological samples.
Collapse
|
48
|
Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci 2012; 32:4417-25. [PMID: 22457491 DOI: 10.1523/jneurosci.5689-11.2012] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of sleep causes an increase in sleep drive and deficits in hippocampal-dependent memory. Both of these responses are thought to require activation of adenosine A1 receptors (adorA1Rs) and release of transmitter molecules including ATP, which is rapidly converted to adenosine in the extracellular space, from astrocytes in a process termed gliotransmission. Although it is increasingly clear that astrocyte-derived adenosine plays an important role in driving the homeostatic sleep response and the effects of sleep loss on memory (Halassa et al., 2009; Florian et al., 2011), previous studies have not determined whether the concentration of this signaling molecule increases in response to wakefulness. Here, we show that the level of adorA1R activation increases in response to wakefulness in mice (Mus musculus). We found that this increase affected synaptic transmission in the hippocampus and modulated network activity in the cortex. Direct biosensor-based measurement of adenosine showed that the net extracellular concentration of this transmitter increased in response to normal wakefulness and sleep deprivation. Genetic inhibition of gliotransmission prevented this increase and attenuated the wakefulness-dependent changes in synaptic and network regulation by adorA1R. Consequently, we conclude that wakefulness increases the level of extracellular adenosine in the hippocampus and that this increase requires the release of transmitters from astroctyes.
Collapse
|
49
|
Deletion of ecto-5'-nucleotidase (CD73) reveals direct action potential-dependent adenosine release. J Neurosci 2012; 32:3842-7. [PMID: 22423104 DOI: 10.1523/jneurosci.6052-11.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Purinergic signaling is a highly complex system of extracellular communication involved in many physiological and pathological functions in the mammalian brain. Its complexity stems from the multitude of purine receptor subtypes and endogenous purine receptor ligands (including ATP, ADP, UTP, UDP, and adenosine). Potentially all of these ligands could be directly released, and some could also arise from extracellular metabolism. A widely held consensus is that, except under pathological conditions, extracellular adenosine arises only from ectoATPase-mediated metabolism of previously released ATP. Here, we have used mice that lack the CD73 gene (encoding ecto-5'-nucleotidase that converts AMP to adenosine) to test whether action potential-dependent adenosine release in the cerebellum depends on prior ATP release. Surprisingly, we have uncovered two parallel pathways of adenosine release: one that is indirect via glutamate receptor-dependent release of ATP and a second of equal amplitude that has no dependence on prior release of ATP and thus represents the direct release of adenosine. This component of adenosine release is blocked by bafilomycin and modulated by mGlu4 receptor activation, strongly supporting adenosine release by exocytosis from parallel fibers. Our findings are a major step in understanding the mechanisms of adenosine release and are likely to have implications for all aspects of physiology where adenosine plays a key modulatory role.
Collapse
|
50
|
Yang GK, Squires PE, Tian F, Kieffer TJ, Kwok YN, Dale N. Glucose decreases extracellular adenosine levels in isolated mouse and rat pancreatic islets. Islets 2012; 4:64-70. [PMID: 22504862 PMCID: PMC3365802 DOI: 10.4161/isl.19037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The pancreatic islets of Langerhans are responsible for the regulated release of the endocrine hormones insulin and glucagon that participate in the control of glucose homeostasis. Abnormal regulation of these hormones can result in glucose intolerance and lead to the development of diabetes. Numerous efforts have been made to better understand the physiological regulators of insulin and glucagon secretion. One of these regulators is the purine nucleoside, adenosine. Though exogenous application of adenosine has been demonstrated to stimulate glucagon release and inhibit insulin release, the physiological significance of this pathway has been unclear. We used a novel 7 µm enzyme-coated electrode biosensor to measure adenosine levels in isolated rodent islets. In the mouse islets, basal adenosine levels in the presence of 3 mM glucose were estimated to be 5.7 ± 0.6 µM. As glucose was increased, extracellular adenosine diminished. A 10-fold increase of extracellular KCl increased adenosine levels to 16.4 ± 2.0 µM. This release required extracellular Ca (2+) suggesting that it occurred via an exocytosis-dependent mechanism. We also found that while rat islets were able to convert exogenous ATP into adenosine, mouse islets were unable to do this. Our study demonstrates for the first time the basal levels of adenosine and its inverse relationship to extracellular glucose in pancreatic islets.
Collapse
Affiliation(s)
- Gary K. Yang
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
| | - Paul E. Squires
- School of Life Sciences; University of Warwick; Coventry, West Midlands, UK
| | - Faming Tian
- School of Life Sciences; University of Warwick; Coventry, West Midlands, UK
- Sarissa Biomedical Ltd.; Coventry, West Midlands, UK
| | - Timothy J. Kieffer
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
- Department of Surgery; University of British Columbia; Vancouver, BC Canada
| | - Yin Nam Kwok
- Department of Cellular and Physiological Sciences; University of British Columbia; Vancouver, BC Canada
| | - Nicholas Dale
- School of Life Sciences; University of Warwick; Coventry, West Midlands, UK
- * Correspondence to: Nicholas Dale;
| |
Collapse
|