1
|
Sun SR, Wu XB, Chen JS, Huang MT, Fu HY, Wang QN, Rott P, Gao SJ. Identification of a sugarcane bacilliform virus promoter that is activated by drought stress in plants. Commun Biol 2024; 7:368. [PMID: 38532083 PMCID: PMC10965894 DOI: 10.1038/s42003-024-06075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/20/2024] [Indexed: 03/28/2024] Open
Abstract
Sugarcane (Saccharum spp.) is an important sugar and biofuel crop in the world. It is frequently subjected to drought stress, thus causing considerable economic losses. Transgenic technology is an effective breeding approach to improve sugarcane tolerance to drought using drought-inducible promoter(s) to activate drought-resistance gene(s). In this study, six different promoters were cloned from sugarcane bacilliform virus (SCBV) genotypes exhibiting high genetic diversity. In β-glucuronidase (GUS) assays, expression of one of these promoters (PSCBV-YZ2060) is similar to the one driven by the CaMV 35S promoter and >90% higher compared to the other cloned promoters and Ubi1. Three SCBV promoters (PSCBV-YZ2060, PSCBV-TX, and PSCBV-CHN2) function as drought-induced promoters in transgenic Arabidopsis plants. In Arabidopsis, GUS activity driven by promoter PSCBV-YZ2060 is also upregulated by abscisic acid (ABA) and is 2.2-5.5-fold higher when compared to the same activity of two plant native promoters (PScRD29A from sugarcane and PAtRD29A from Arabidopsis). Mutation analysis revealed that a putative promoter region 1 (PPR1) and two ABA response elements (ABREs) are required in promoter PSCBV-YZ2060 to confer drought stress response and ABA induction. Yeast one-hybrid and electrophoretic mobility shift assays uncovered that transcription factors ScbZIP72 from sugarcane and AREB1 from Arabidopsis bind with two ABREs of promoter PSCBV-YZ2060. After ABA treatment or drought stress, the expression levels of endogenous ScbZIP72 and heterologous GUS are significantly increased in PSCBV-YZ2060:GUS transgenic sugarcane plants. Consequently, promoter PSCBV-YZ2060 is a possible alternative promoter for genetic engineering of drought-resistant transgenic crops such as sugarcane.
Collapse
Affiliation(s)
- Sheng-Ren Sun
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, Hainan, China
| | - Xiao-Bin Wu
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361000, Fujian, China
| | - Jian-Sheng Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qin-Nan Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, Guangdong, China
| | - Philippe Rott
- CIRAD, UMR PHIM, 34398, Montpellier, France.
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
2
|
Wang W, An X, Yan K, Li Q. Construction and Application of Orthogonal T7 Expression System in Eukaryote: An Overview. Adv Biol (Weinh) 2023; 7:e2200218. [PMID: 36464626 DOI: 10.1002/adbi.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/17/2022] [Indexed: 12/12/2022]
Abstract
The T7 system is an orthogonal transcription-system, which is characterized by simplicity, higher efficiency, and higher processivity, and it is used for protein or mRNA synthesis in various biological-systems. In comparison with prokaryotes, the construction of the T7 expression system is still on-going in eukaryotes, but it shows greatly applicable prospects. In the present paper, development of T7 expression system construction in eukaryotes is reviewed, including its construction in animal (mammalian cells, trypanosomatid protozoa, Xenopus oocytes, zebrafish), plant, and microorganism and its application in vaccine production and gene therapy. In addition, the innate challenges of T7 expression system construction in eukaryote and its potential application in vaccine production and gene therapy are discussed.
Collapse
Affiliation(s)
- Wenya Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoyan An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Kun Yan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qiang Li
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
3
|
Basu D, South PF. Design and Analysis of Native Photorespiration Gene Motifs of Promoter Untranslated Region Combinations Under Short Term Abiotic Stress Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:828729. [PMID: 35251099 PMCID: PMC8888687 DOI: 10.3389/fpls.2022.828729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 05/09/2023]
Abstract
Quantitative traits are rarely controlled by a single gene, thereby making multi-gene transformation an indispensable component of modern synthetic biology approaches. However, the shortage of unique gene regulatory elements (GREs) for the robust simultaneous expression of multiple nuclear transgenes is a major bottleneck that impedes the engineering of complex pathways in plants. In this study, we compared the transcriptional efficacies of a comprehensive list of well-documented promoter and untranslated region (UTR) sequences side by side. The strength of GREs was examined by a dual-luciferase assay in conjunction with transient expression in tobacco. In addition, we created suites of new GREs with higher transcriptional efficacies by combining the best performing promoter-UTR sequences. We also tested the impact of elevated temperature and high irradiance on the effectiveness of these GREs. While constitutive promoters ensure robust expression of transgenes, they lack spatiotemporal regulations exhibited by native promoters. Here, we present a proof-of-principle study on the characterization of synthetic promoters based on cis-regulatory elements of three key photorespiratory genes. This conserved biochemical process normally increases under elevated temperature, low CO2, and high irradiance stress conditions and results in ∼25% loss in fixed CO2. To select stress-responsive cis-regulatory elements involved in photorespiration, we analyzed promoters of two chloroplast transporters (AtPLGG1 and AtBASS6) and a key plastidial enzyme, AtPGLP using PlantPAN3.0 and AthaMap. Our results suggest that these motifs play a critical role for PLGG1, BASS6, and PGLP in mediating response to elevated temperature and high-intensity light stress. These findings will not only enable the advancement of metabolic and genetic engineering of photorespiration but will also be instrumental in related synthetic biology approaches.
Collapse
Affiliation(s)
| | - Paul F. South
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
4
|
Das A, Banik BK. Advances in heterocycles as DNA intercalating cancer drugs. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The insertion of a molecule between the bases of DNA is known as intercalation. A molecule is able to interact with DNA in different ways. DNA intercalators are generally aromatic, planar, and polycyclic. In chemotherapeutic treatment, to suppress DNA replication in cancer cells, intercalators are used. In this article, we discuss the anticancer activity of 10 intensively studied DNA intercalators as drugs. The list includes proflavine, ethidium bromide, doxorubicin, dactinomycin, bleomycin, epirubicin, mitoxantrone, ellipticine, elinafide, and echinomycin. Considerable structural diversities are seen in these molecules. Besides, some examples of the metallo-intercalators are presented at the end of the chapter. These molecules have other crucial properties that are also useful in the treatment of cancers. The successes and limitations of these molecules are also presented.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Ospina Nieto CA, Lammerts van Bueren ET, Allefs S, Vos PG, van der Linden G, Maliepaard CA, Struik PC. Association Mapping of Physiological and Morphological Traits Related to Crop Development under Contrasting Nitrogen Inputs in a Diverse Set of Potato Cultivars. PLANTS 2021; 10:plants10081727. [PMID: 34451774 PMCID: PMC8398069 DOI: 10.3390/plants10081727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 11/25/2022]
Abstract
Ample nitrogen (N) is required for potato production, but its use efficiency is low. N supply strongly interacts with maturity type of the cultivar grown. We assessed whether variation among 189 cultivars grown with 75 or 185 kg available N/ha in 2 years would allow detecting quantitative trait loci (QTLs) for relevant traits. Using phenotypic data, we estimated various traits and carried out a genome-wide association study (GWAS) with kinship correction. Twenty-four traits and 10,747 markers based on single-nucleotide polymorphisms from a 20K Infinium array for 169 cultivars were combined in the analysis. N level affected most traits and their interrelations and influenced the detection of marker–trait associations; some were N-dependent, others were detected at both N levels. Ninety percent of the latter accumulated on a hotspot on Chromosome 5. Chromosomes 2 and 4 also contained regions with multiple associations. After correcting for maturity, the number of QTLs detected was much lower, especially of those common to both N levels; however, interestingly, the region on Chromosome 2 accumulated several QTLs. There is scope for marker-assisted selection for maturity, with the main purpose of improving characteristics within a narrow range of maturity types, in order to break the strong links between maturity type and traits like N use efficiency.
Collapse
Affiliation(s)
- Cesar A. Ospina Nieto
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands;
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Edith T. Lammerts van Bueren
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Sjefke Allefs
- Agrico Research, Burchtweg 17, 8314 PP Bant, The Netherlands;
| | - Peter G. Vos
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Gerard van der Linden
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Chris A. Maliepaard
- Wageningen UR Plant Breeding, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (E.T.L.v.B.); (P.G.V.); (G.v.d.L.); (C.A.M.)
| | - Paul C. Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands;
- Correspondence: ; Tel.: +31-(0)317-484246
| |
Collapse
|
6
|
Particle bombardment technology and its applications in plants. Mol Biol Rep 2020; 47:9831-9847. [PMID: 33222118 DOI: 10.1007/s11033-020-06001-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
Particle bombardment, or biolistics, has emerged as an excellent alternative approach for plant genetic transformation which circumvents the limitations of Agrobacterium-mediated genetic transformation. The method has no biological constraints and can transform a wide range of plant species. Besides, it has been the most efficient way to achieve organelle transformation (for both chloroplasts and mitochondria) so far. Along with the recent advances in genome editing technologies, conventional gene delivery tools are now being repurposed to deliver targeted gene editing reagents into the plants. One of the key advantages is that the particle bombardment allows DNA-free gene editing of the genome. It enables the direct delivery of proteins, RNAs, and RNPs into plants. Owing to the versatility and wide-range applicability of the particle bombardment, it will likely remain one of the major genetic transformation methods in the future. This article provides an overview of the current status of particle bombardment technology and its applications in the field of plant research and biotechnology.
Collapse
|
7
|
Lee JH, Won HJ, Oh ES, Oh MH, Jung JH. Golden Gate Cloning-Compatible DNA Replicon/2A-Mediated Polycistronic Vectors for Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:559365. [PMID: 33193484 PMCID: PMC7609577 DOI: 10.3389/fpls.2020.559365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/30/2020] [Indexed: 05/31/2023]
Abstract
The expression of multiple proteins and high-throughput vector assembly system are highly relevant in the field of plant genetic engineering and synthetic biology. Deployment of the self-cleaving 2A peptide that mediates polycistronic gene expression has been an effective strategy for multigene expression, as it minimizes issues in coordinated transgene regulation and trait staking in plants. However, efficient vector assembly systems optimized for 2A peptide-mediated polycistronic expression are currently unavailable. Furthermore, it is unclear whether protein expression levels are influenced by the transgene position in the polycistronic expression cassette. In this article, we present Golden Gate cloning-compatible modular systems allowing rapid and flexible construction of polycistronic expression vectors applicable for plants. The genetic modules comprised 2A peptides (T2A and P2A)-linked tricistron expression cassette and its acceptor backbones, named pGO-DV1 and pGO-DV2. While both acceptor backbones were binary T-DNA vectors, pGO-DV2 was specially designed to function as a DNA replicon enhancing gene expression levels. Using the Golden Gate cloning, a set of six tricistronic vectors was constructed, whereby three transgenes encoding fluorescent proteins (mCherry, eYFP, and eGFP) were combinatorially placed along the expression cassette in each of the binary vectors. Transient expression of the construct in tobacco leaves revealed that the expression levels of three fluorescent proteins were comparable each other regardless of the gene positions in the tricistronic expression cassette. pGO-DV2-based constructs were able to increase protein expression level by up to 71%, as compared to pGO-DV1-based constructs.
Collapse
Affiliation(s)
- Jae Hoon Lee
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| | - Hyo Jun Won
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Daejeon, South Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Je Hyeong Jung
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, South Korea
| |
Collapse
|
8
|
Lin B, Cui Y, Yan M, Wang Y, Gao Z, Meng C, Qin S. Construction of astaxanthin metabolic pathway in the green microalga Dunaliella viridis. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101697] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
RAZMI SHAHLA, JALALI JAVARAN MOKHTAR, BAGHERI ABDOLREZA, HONARI HOSSEIN, SOLEIMANI ZADEH MOJGAN. Expression of human interferon gamma in tobacco chloroplasts. ROMANIAN BIOTECHNOLOGICAL LETTERS 2019. [DOI: 10.25083/rbl/24.2/208.215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Narra M, Kota S, Ellendula R, Kasula K, Kalva BK, Sadanandam A. Efficient chloroplast transformation in Scoparia dulcis L. using pFaadAII vector. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0392-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Legen J, Ruf S, Kroop X, Wang G, Barkan A, Bock R, Schmitz-Linneweber C. Stabilization and translation of synthetic operon-derived mRNAs in chloroplasts by sequences representing PPR protein-binding sites. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:8-21. [PMID: 29418028 DOI: 10.1111/tpj.13863] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 12/28/2017] [Accepted: 01/17/2018] [Indexed: 05/08/2023]
Abstract
The chloroplast is a prime target for genetic engineering in plants, offering various advantages over nuclear transformation. For example, chloroplasts allow the expression of polycistronic transcripts and thus to engineer complex metabolic pathways. Each cistron within such a longer transcript needs its own expression elements. Within the 5'-UTR, such expression elements are needed for stabilizing mRNAs and for translation of the downstream reading frame. One of the few effective expression elements used so far in transplastomic approaches is the intercistronic expression element (IEE). The IEE is derived from the psbT-psbH intergenic region and includes a target sequence of the RNA binding protein HCF107. We here show that excessive expression of the IEE can lead to specific defects of endogenous chloroplast mRNA stabilization, likely via depletion of HCF107. Key players in chloroplast transcript stabilization and translation are pentatricopeptide repeat (PPR) proteins, which are structurally related to HCF107. PPR proteins that stabilize mRNAs leave behind short RNA footprints that are indicators of their activity. We identified such sRNAs in tobacco, and demonstrate that they are sufficient to stabilize and stimulate translation of mRNAs from synthetic dicistronic transgenes in chloroplasts. Thus, minimal sequence elements are generally adequate to support key steps in chloroplast gene expression, i.e. RNA stability and translation. Furthermore, our analysis expands the repertoire of available expression elements to facilitate the assembly and expression of multi-gene ensembles in the chloroplast.
Collapse
Affiliation(s)
- Julia Legen
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Xenia Kroop
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Gongwei Wang
- Institut für Biologie, Humboldt-Universität Berlin, Philippstr. 13, Rhoda-Erdmann-Haus, Berlin, 10115, Germany
| | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | |
Collapse
|
12
|
Muralikrishna N, Srinivas K, Kumar KB, Sadanandam A. Stable plastid transformation in Scoparia dulcis L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:575-581. [PMID: 27924130 PMCID: PMC5120043 DOI: 10.1007/s12298-016-0386-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 05/16/2023]
Abstract
In the present investigation we report stable plastid transformation in Scoparia dulcis L., a versatile medicinal herb via particle gun method. The vector KNTc, harbouring aadA as a selectable marker and egfp as a reporter gene which were under the control of synthetic promoter pNG1014a, targets inverted repeats, trnR/trnN of the plastid genome. By use of this heterologous vector, recovery of transplastomic lines with suitable selection protocol have been successfully established with overall efficiency of two transgenic lines for 25 bombarded leaf explants. PCR and Southern blot analysis demonstrated stable integration of foreign gene into the target sequences. The results represent a significant advancement of the plastid transformation technology in medicinal plants, which relevantly implements a change over in enhancing and regulating of certain metabolic pathways.
Collapse
Affiliation(s)
| | - Kota Srinivas
- Department of Biotechnology, Kakatiya University, Warangal, 506009 India
| | | | | |
Collapse
|
13
|
Li Y, Wang R, Hu Z, Li H, Lu S, Zhang J, Lin Y, Zhou F. Expression of a Codon-Optimized dsdA Gene in Tobacco Plastids and Rice Nucleus Confers D-Serine Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:640. [PMID: 27242842 PMCID: PMC4863892 DOI: 10.3389/fpls.2016.00640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/26/2016] [Indexed: 06/05/2023]
Abstract
D-serine is toxic to plants. D-serine ammonia lyase, which is encoded by the dsdA gene, can attenuate this toxicity with high specificity. In the present study, we explored the function of codon-optimized dsdA with tobacco plastids and rice nuclear transformation system. It was shown that dsdA gene was site-specifically integrated into the tobacco plastid genome and displayed a high level of expression. Genetic analysis of the progenies showed that dsdA gene is maternally inherited and confers sufficient D-serine resistance in tobacco. The effective screening concentrations of D-serine for seed germination, callus regeneration and foliar spray were 10, 30, and 75 mM, respectively. In addition, calluses from homozygous transgenic rice lines also showed significant tolerance to D-serine (up to 75 mM). Our study proves the feasibility of using dsdA gene as a selectable marker in both plastid and nuclear transformation systems.
Collapse
|
14
|
Kumar S, AlAbed D, Whitteck JT, Chen W, Bennett S, Asberry A, Wang X, DeSloover D, Rangasamy M, Wright TR, Gupta M. A combinatorial bidirectional and bicistronic approach for coordinated multi-gene expression in corn. PLANT MOLECULAR BIOLOGY 2015; 87:341-53. [PMID: 25657118 DOI: 10.1007/s11103-015-0281-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/31/2014] [Indexed: 05/22/2023]
Abstract
Transgene stacking in trait development process through genetic engineering is becoming complex with increased number of desired traits and multiple modes of action for each trait. We demonstrate here a novel gene stacking strategy by combining bidirectional promoter (BDP) and bicistronic approaches to drive coordinated expression of multi-genes in corn. A unidirectional promoter, Ubiquitin-1 (ZMUbi1), from Zea mays was first converted into a synthetic BDP, such that a single promoter can direct the expression of two genes from each end of the promoter. The BDP system was then combined with a bicistronic organization of genes at both ends of the promoter by using a Thosea asigna virus 2A auto-cleaving domain. With this gene stacking configuration, we have successfully obtained expression in transgenic corn of four transgenes; three transgenes conferring insect (cry34Ab1 and cry35Ab1) and herbicide (aad1) resistance, and a phiyfp reporter gene using a single ZMUbi1 bidirectional promoter. Gene expression analyses of transgenic corn plants confirmed better coordinated expression of the four genes compared to constructs driving each gene by independent unidirectional ZmUbi1 promoter. To our knowledge, this is the first report that demonstrates application of a single promoter for co-regulation of multiple genes in a crop plant. This stacking technology would be useful for engineering metabolic pathways both for basic and applied research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN, 46268, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Khan MS, Yin X, van der Putten PE, Struik PC. An ecophysiological model analysis of yield differences within a set of contrasting cultivars and an F1 segregating population of potato (Solanum tuberosum L.) grown under diverse environments. Ecol Modell 2014. [DOI: 10.1016/j.ecolmodel.2013.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Shahid M, Shahzad A, Malik A, Sahai A. Plant Edible Vaccines: A Revolution in Vaccination. RECENT TRENDS IN BIOTECHNOLOGY AND THERAPEUTIC APPLICATIONS OF MEDICINAL PLANTS 2013. [PMCID: PMC7120501 DOI: 10.1007/978-94-007-6603-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mohd. Shahid
- Arabian Gulf University, Department Of Medical Microbiology, College of Medicine & Medical Sciences, Manama, Bahrain
| | - Anwar Shahzad
- , Department of Botany, Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| | - Abida Malik
- , Department of Microbiology, Aligarh Muslim University, J. N. Medical College & Hospital, Aligarh, 202002 Uttar Pradesh India
| | - Aastha Sahai
- , Department of Botany, Aligarh Muslim University, Aligarh, 202002 Uttar Pradesh India
| |
Collapse
|
17
|
Egelkrout E, Rajan V, Howard JA. Overproduction of recombinant proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 184:83-101. [PMID: 22284713 DOI: 10.1016/j.plantsci.2011.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 05/21/2023]
Abstract
Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.
Collapse
Affiliation(s)
- Erin Egelkrout
- Applied Biotechnology Institute, Cal Poly Technology Park, Building 83, San Luis Obispo, CA 93407, USA
| | | | | |
Collapse
|
18
|
A Modified MultiSite Gateway Cloning Strategy for Consolidation of Genes in Plants. Mol Biotechnol 2012; 53:129-38. [DOI: 10.1007/s12033-012-9499-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Zeevi V, Liang Z, Arieli U, Tzfira T. Zinc finger nuclease and homing endonuclease-mediated assembly of multigene plant transformation vectors. PLANT PHYSIOLOGY 2012; 158:132-44. [PMID: 22082504 PMCID: PMC3252105 DOI: 10.1104/pp.111.184374] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 11/11/2011] [Indexed: 05/23/2023]
Abstract
Binary vectors are an indispensable component of modern Agrobacterium tumefaciens-mediated plant genetic transformation systems. A remarkable variety of binary plasmids have been developed to support the cloning and transfer of foreign genes into plant cells. The majority of these systems, however, are limited to the cloning and transfer of just a single gene of interest. Thus, plant biologists and biotechnologists face a major obstacle when planning the introduction of multigene traits into transgenic plants. Here, we describe the assembly of multitransgene binary vectors by using a combination of engineered zinc finger nucleases (ZFNs) and homing endonucleases. Our system is composed of a modified binary vector that has been engineered to carry an array of unique recognition sites for ZFNs and homing endonucleases and a family of modular satellite vectors. By combining the use of designed ZFNs and commercial restriction enzymes, multiple plant expression cassettes were sequentially cloned into the acceptor binary vector. Using this system, we produced binary vectors that carried up to nine genes. Arabidopsis (Arabidopsis thaliana) protoplasts and plants were transiently and stably transformed, respectively, by several multigene constructs, and the expression of the transformed genes was monitored across several generations. Because ZFNs can potentially be engineered to digest a wide variety of target sequences, our system allows overcoming the problem of the very limited number of commercial homing endonucleases. Thus, users of our system can enjoy a rich resource of plasmids that can be easily adapted to their various needs, and since our cloning system is based on ZFN and homing endonucleases, it may be possible to reconstruct other types of binary vectors and adapt our vectors for cloning on multigene vector systems in various binary plasmids.
Collapse
|
20
|
Ma L, Dong J, Jin Y, Chen M, Shen X, Wang T. RMDAP: a versatile, ready-to-use toolbox for multigene genetic transformation. PLoS One 2011; 6:e19883. [PMID: 21603635 PMCID: PMC3094388 DOI: 10.1371/journal.pone.0019883] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 04/20/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The use of transgenes to improve complex traits in crops has challenged current genetic transformation technology for multigene transfer. Therefore, a multigene transformation strategy for use in plant molecular biology and plant genetic breeding is thus needed. METHODOLOGY/PRINCIPAL FINDINGS Here we describe a versatile, ready-to-use multigene genetic transformation method, named the Recombination-assisted Multifunctional DNA Assembly Platform (RMDAP), which combines many of the useful features of existing plant transformation systems. This platform incorporates three widely-used recombination systems, namely, Gateway technology, in vivo Cre/loxP and recombineering into a highly efficient and reliable approach for gene assembly. RMDAP proposes a strategy for gene stacking and contains a wide range of flexible, modular vectors offering a series of functionally validated genetic elements to manipulate transgene overexpression or gene silencing involved in a metabolic pathway. In particular, the ability to construct a multigene marker-free vector is another attractive feature. The built-in flexibility of original vectors has greatly increased the expansibility and applicability of the system. A proof-of-principle experiment was confirmed by successfully transferring several heterologous genes into the plant genome. CONCLUSIONS/SIGNIFICANCE This platform is a ready-to-use toolbox for full exploitation of the potential for coordinate regulation of metabolic pathways and molecular breeding, and will eventually achieve the aim of what we call "one-stop breeding."
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongsheng Jin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Mingliang Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoye Shen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
21
|
Ren F, Chen QJ, Xie M, Li LJ, Wu WH, Chen J, Wang XC. Engineering the K+ uptake regulatory pathway by MultiRound Gateway. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1412-1417. [PMID: 20708297 DOI: 10.1016/j.jplph.2010.03.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 03/22/2010] [Accepted: 03/22/2010] [Indexed: 05/29/2023]
Abstract
In a previous study, we described improved versions of MultiRound Gateway vectors. Here, we engineered a calcineurin B-like (CBL) pathway for potassium (K+) nutrition to demonstrate their effectiveness. Using the two improved entry vectors pL12R34H-Ap and pL34R12-Cm, and through 2-4 rounds of Gateway recombination reactions, we generated five pMDC99-derived binary vectors [pK21 (CIPK23+CBL1), pK29 (CIPK23+CBL9), pK31 (CIPK23+CBL1+AKT1), pK39 (CIPK23+CBL9+AKT1), and pK4 (CIPK23+CBL1+AKT1+CBL9)], in which all four genes have the same pSuper promoter and tNos terminator. pK31, pK39 and pK4 were transformed into Arabidopsis. PCR analysis confirmed that all transgenes usually co-existed in the K31, K39 or K4 transgenic plants, and qRT-PCR analysis indicated that the transgenes were expressed at reasonably high levels. The eight overexpression lines, except K31-1, displayed significantly tolerant phenotypes to low-K+ and low-K+ combined with low-Ca2+ compared to the wild type. Significant differences between the K31, K39 and K4 lines were not observed. These results indicate that the improved MultiRound Gateway vectors efficiently assembled multiple transgenes, which were stably inherited and expressed in transformed plants, even with the same promoter and terminator.
Collapse
Affiliation(s)
- Fei Ren
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC. MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. PLANT PHYSIOLOGY 2010; 153:41-51. [PMID: 20200068 PMCID: PMC2862421 DOI: 10.1104/pp.109.152249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/01/2010] [Indexed: 05/20/2023]
Abstract
We describe a highly efficient in vivo DNA assembly method, multiple-round in vivo site-specific assembly (MISSA), which facilitates plant multiple-gene transformation. MISSA is based on conjugational transfer, which is driven by donor strains, and two in vivo site-specific recombination events, which are mediated by inducible Cre recombinase and phage lambda site-specific recombination proteins in recipient strains, to enable in vivo transfer and in vivo assembly of multiple transgenic DNA. The assembly reactions can be performed circularly and iteratively through alternate use of the two specially designed donor vectors. As proof-of-principle experiments, we constructed a few plant multigene binary vectors. One of these vectors was generated by 15 rounds of MISSA reactions and was confirmed in transgenic Arabidopsis (Arabidopsis thaliana). As MISSA simplifies the tedious and time-consuming in vitro manipulations to a simple mixing of bacterial strains, it will greatly save time, effort, and expense associated with the assembly of multiple transgenic or synthetic DNA. The principle that underlies MISSA is applicable to engineering polygenic traits, biosynthetic pathways, or protein complexes in all organisms, such as Escherichia coli, yeast, plants, and animals. MISSA also has potential applications in synthetic biology, whether for basic theory or for applied biotechnology, aiming at the assembly of genetic pathways for the production of biofuels, pharmaceuticals, and industrial compounds from natural or synthetic DNA.
Collapse
Affiliation(s)
- Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|
23
|
Cheng L, Li HP, Qu B, Huang T, Tu JX, Fu TD, Liao YC. Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. PLANT CELL REPORTS 2010; 29:371-81. [PMID: 20179937 DOI: 10.1007/s00299-010-0828-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/08/2010] [Accepted: 02/03/2010] [Indexed: 05/07/2023]
Abstract
A protocol for chloroplast transformation of an elite rapeseed cultivar (Brassica napus L.) was developed based on optimized conditions for callus induction and regeneration from cotyledonary tissues. Comparison of six different media with three elite cultivars showed that B5 medium plus 3 mg/l AgNO(3) supplemented with 0.6 mg/l 2,4-dichlorophenoxyacetic acid and 0.2 mg/l 6-furfurylaminopurine was optimal for callus formation and maintenance without differentiation, while the medium suitable for regeneration was B5 medium supplemented with 1 mg/l 6-benzylaminopurine, 1 mg/l 6-furfurylaminopurine and 0.5 mg/l alpha-naphthaleneacetic acid. A rapeseed-specific chloroplast transformation vector was constructed with the trnI and trnA sequences amplified from the rapeseed chloroplast genome using two primers designed according to Arabidopsis homologs. The aadA gene was used as a selection marker regulated by the ribosome-binding site from the bacteriophage T7 gene 10L, the tobacco 16S rRNA promoter and the psbA terminator. After bombardment, cotyledonary segments were cultured for callus formation on media containing 10 mg/l spectinomycin and regeneration was carried out on medium with 20 mg/l spectinomycin. Heteroplasmic plastid transformants were isolated. An overall efficiency for the chloroplast transformation was one transplastomic plant per four bombarded plates. Southern blot analyses demonstrated proper integration of the target sequence into the rapeseed chloroplast genome via homologous recombination. The expression of the aadA gene was confirmed by Northern blot analysis. Analysis of T1 transplastomic plants revealed that the transgenes integrated into the chloroplast were inheritable with a ratio of about 8%. These results suggest that rapeseed may be a suitable crop for chloroplast transformation with cotyledons as explants under appropriate conditions.
Collapse
Affiliation(s)
- Lin Cheng
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Sourrouille C, Marshall B, Liénard D, Faye L. From Neanderthal to nanobiotech: from plant potions to pharming with plant factories. Methods Mol Biol 2009; 483:1-23. [PMID: 19183890 DOI: 10.1007/978-1-59745-407-0_1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plants were the main source for human drugs until the beginning of the nineteenth century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. During the last decades of the twentieth century, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. After a temporary decrease in interest, plants are rapidly moving back into human pharmacopoeia, with the recent development of plant-based recombinant protein production systems offering a safe and extremely cost-effective alternative to microbial and mammalian cell cultures. In this short review, we will illustrate that current improvements in plant expression systems are making them suitable as alternative factories for the production of either simple or highly complex therapeutic proteins.
Collapse
|
26
|
Karasev AV. Chloroplast-derived vaccine antigens and biopharmaceuticals: expression, folding, assembly and functionality. Curr Top Microbiol Immunol 2009; 332:33-54. [PMID: 19401820 PMCID: PMC2764311 DOI: 10.1007/978-3-540-70868-1_3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Collapse
Affiliation(s)
- Alexander V. Karasev
- Department of Plant, Soil & Entomological Sciences, University of Idaho, Moscow, ID 83844-2339 USA
| |
Collapse
|
27
|
Shimizu M, Goto M, Hanai M, Shimizu T, Izawa N, Kanamoto H, Tomizawa KI, Yokota A, Kobayashi H. Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. PLANT PHYSIOLOGY 2008; 147:1976-83. [PMID: 18515641 PMCID: PMC2492613 DOI: 10.1104/pp.108.120519] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 05/20/2008] [Indexed: 05/22/2023]
Abstract
Strategies employed for the production of genetically modified (GM) crops are premised on (1) the avoidance of gene transfer in the field; (2) the use of genes derived from edible organisms such as plants; (3) preventing the appearance of herbicide-resistant weeds; and (4) maintaining transgenes without obstructing plant cell propagation. To this end, we developed a novel vector system for chloroplast transformation with acetolactate synthase (ALS). ALS catalyzes the first step in the biosynthesis of the branched amino acids, and its enzymatic activity is inhibited by certain classes of herbicides. We generated a series of Arabidopsis (Arabidopsis thaliana) mutated ALS (mALS) genes and introduced constructs with mALS and the aminoglycoside 3'-adenyltransferase gene (aadA) into the tobacco (Nicotiana tabacum) chloroplast genome by particle bombardment. Transplastomic plants were selected using their resistance to spectinomycin. The effects of herbicides on transplastomic mALS activity were examined by a colorimetric assay using the leaves of transplastomic plants. We found that transplastomic G121A, A122V, and P197S plants were specifically tolerant to pyrimidinylcarboxylate, imidazolinon, and sulfonylurea/pyrimidinylcarboxylate herbicides, respectively. Transplastomic plants possessing mALSs were able to grow in the presence of various herbicides, thus affirming the relationship between mALSs and the associated resistance to herbicides. Our results show that mALS genes integrated into the chloroplast genome are useful sustainable markers that function to exclude plants other than those that are GM while maintaining transplastomic crops. This investigation suggests that the resistance management of weeds in the field amid growing GM crops is possible using (1) a series of mALSs that confer specific resistance to herbicides and (2) a strategy that employs herbicide rotation.
Collapse
Affiliation(s)
- Masanori Shimizu
- Graduate School of Nutritional and Environmental Science, University of Shizuoka, Shizuoka 422-8526, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang J, Tan W, Yang XH, Zhang HX. Plastid-expressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. PLANT CELL REPORTS 2008; 27:1113-24. [PMID: 18437388 DOI: 10.1007/s00299-008-0549-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 03/26/2008] [Accepted: 04/11/2008] [Indexed: 05/08/2023]
Abstract
Glycine betaine (GlyBet), a quaternary ammonium compound, functions as an osmoprotectant in many organisms including plants. Previous research has shown that over-expression of enzymes for GlyBet biosynthesis in transgenic plants improved abiotic stress tolerance, but so far no study on the effects of plastid-expression of choline monooxygenase, the enzyme that catalyzes the conversion of choline into betaine aldehyde, has been reported. In the present study, tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants were transformed with a gene for choline monooxygenase (BvCMO) from beet (Beta vulgaris) via plastid genetic engineering. Transplastomic plants constitutively expressing BvCMO under the control of the ribosomal RNA operon promoter and a synthetic T7 gene G10 leader were able to accumulate GlyBet in leaves, roots and seeds, and exhibited improved tolerance to toxic level of choline and to salt/drought stress when compared to wild type plants. Transplastomic plants also demonstrated higher net photosynthetic rate and apparent quantum yield of photosynthesis in the presence of 150 mM NaCl. Salt stress caused no significant change on the maximal efficiency of PSII photochemistry (Fv/Fm) in both wild type and transplastomic plants, but a decrease in the actual efficiency of PSII (PhiPSII) was observed, and such a decrease was much greater in wild type plants. Our results demonstrate the feasibility of improving salt and drought tolerance in plants through plastid transformation with BvCMO gene.
Collapse
Affiliation(s)
- Jiang Zhang
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | |
Collapse
|
29
|
Dafny-Yelin M, Tzfira T. Delivery of multiple transgenes to plant cells. PLANT PHYSIOLOGY 2007; 145:1118-28. [PMID: 18056862 PMCID: PMC2151730 DOI: 10.1104/pp.107.106104] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 08/23/2007] [Indexed: 05/20/2023]
Affiliation(s)
- Mery Dafny-Yelin
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
30
|
Zhou F, Karcher D, Bock R. Identification of a plastid intercistronic expression element (IEE) facilitating the expression of stable translatable monocistronic mRNAs from operons. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:961-72. [PMID: 17825052 PMCID: PMC2230500 DOI: 10.1111/j.1365-313x.2007.03261.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 07/12/2007] [Indexed: 05/17/2023]
Abstract
Most plastid genes are part of operons and expressed as polycistronic mRNAs. Many primary polycistronic transcripts undergo post-transcriptional processing in monocistronic or oligocistronic units. At least some polycistronic transcripts are not translatable, and endonucleolytic processing may therefore be a prerequisite for translation to occur. As the requirements for intercistronic mRNA processing into stable monocistronic transcript are not well understood, we have sought to define minimum sequence elements that trigger processing and thus are capable of generating stable translatable monocistronic mRNAs. We describe here the in vivo identification of a small intercistronic expression element that mediates intercistronic cleavage into stable monocistronic transcripts. Separation of foreign genes by this element facilitates transgene stacking in operons, and thus will help to expand the range of applications of transplastomic technology.
Collapse
Affiliation(s)
- Fei Zhou
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP)Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP)Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP)Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Abstract
Vaccination is an important tool for handling healthcare programs both in developed and developing countries. The current global scenario calls for a more-efficacious, acceptable, cost-effective and reliable method of immunization for many fatal diseases. It is hoped that the adoption of oral vaccines will help to provide an effective vaccination strategy, especially in developing countries. Mucosal immunity generated by oral vaccines can serve as a strong first line of defense against most of the pathogens infecting through the mucosal lining. Advances in elucidating the mechanism of action of oral vaccines will facilitate the design of more effective, new generation vaccines. There are promising developments in the use of different agents to effectively deliver the vaccine candidate. It is hoped that ongoing research may be able to set another cardinal point, after polio vaccine, in eradicating infectious diseases.
Collapse
Affiliation(s)
- Mohd Azhar Aziz
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | |
Collapse
|
32
|
Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:571-90. [PMID: 17534593 PMCID: PMC2674615 DOI: 10.1007/s00122-007-0567-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 04/23/2007] [Indexed: 05/07/2023]
Abstract
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5' end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16-21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C-U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.
Collapse
Affiliation(s)
- Christopher Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Seung-Bum Lee
- 4000 Central Florida Blvd, Department of Molecular Biology and Microbiology, Biomolecular Science, University of Central Florida, Building #20, Orlando, FL 32816-2364, USA
| | - Siri Fjellheim
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway
| | - Chittibabu Guda
- Gen*NY* Sis Center for Excellence in Cancer Genomics and Department of Epidemiology and Biostatistics, State University of New York at Albany, 1 Discovery Dr Rensselaer, New York, NY 12144, USA
| | - Robert K. Jansen
- Section of Integrative Biology and Institute of Cellular and Molecular Biology, Biological Laboratories 404, University of Texas, Austin, TX 78712, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Jeffrey Tomkins
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | - Odd Arne Rognli
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Aas, Norway
| | - Henry Daniell
- 4000 Central Florida Blvd, Department of Molecular Biology and Microbiology, Biomolecular Science, University of Central Florida, Building #20, Orlando, FL 32816-2364, USA, e-mail:
| | - Jihong Liu Clarke
- Department of Genetics and Biotechnology, Norwegian Institute for Agricultural and Environmental Sciences, 1432 Aas, Norway
| |
Collapse
|
33
|
Saski C, Lee SB, Fjellheim S, Guda C, Jansen RK, Luo H, Tomkins J, Rognli OA, Daniell H, Clarke JL. Complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera, and comparative analyses with other grass genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:591. [PMID: 17534593 DOI: 10.1007/s00122-007-0595-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Comparisons of complete chloroplast genome sequences of Hordeum vulgare, Sorghum bicolor and Agrostis stolonifera to six published grass chloroplast genomes reveal that gene content and order are similar but two microstructural changes have occurred. First, the expansion of the IR at the SSC/IRa boundary that duplicates a portion of the 5' end of ndhH is restricted to the three genera of the subfamily Pooideae (Agrostis, Hordeum and Triticum). Second, a 6 bp deletion in ndhK is shared by Agrostis, Hordeum, Oryza and Triticum, and this event supports the sister relationship between the subfamilies Erhartoideae and Pooideae. Repeat analysis identified 19-37 direct and inverted repeats 30 bp or longer with a sequence identity of at least 90%. Seventeen of the 26 shared repeats are found in all the grass chloroplast genomes examined and are located in the same genes or intergenic spacer (IGS) regions. Examination of simple sequence repeats (SSRs) identified 16-21 potential polymorphic SSRs. Five IGS regions have 100% sequence identity among Zea mays, Saccharum officinarum and Sorghum bicolor, whereas no spacer regions were identical among Oryza sativa, Triticum aestivum, H. vulgare and A. stolonifera despite their close phylogenetic relationship. Alignment of EST sequences and DNA coding sequences identified six C-U conversions in both Sorghum bicolor and H. vulgare but only one in A. stolonifera. Phylogenetic trees based on DNA sequences of 61 protein-coding genes of 38 taxa using both maximum parsimony and likelihood methods provide moderate support for a sister relationship between the subfamilies Erhartoideae and Pooideae.
Collapse
Affiliation(s)
- Christopher Saski
- Clemson University Genomics Institute, Clemson University, Biosystems Research Complex, 51 New Cherry Street, Clemson, SC 29634, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Biolistic delivery of DNA initiated plastid transformation research and still is the most widelyused approach to generate transplastomic lines in both algae and higher plants. The principal designof transformation vectors is similar in both phylogenetic groups. Although important additions tothe list of species transformed in their plastomes have been made in algae and in higher plants, thekey organisms in the area are still the two species, in which stable plastid transformation was initiallysuccessful, i.e., Chlamydomonas reinhardtii and tobacco. Basicresearch into organelle biology has substantially benefited from the homologous recombination-basedcapability to precisely insert at predetermined loci, delete, disrupt, or exchange plastid genomesequences. Successful expression of recombinant proteins, including pharmaceutical proteins, hasbeen demonstrated in Chlamydomonas as well as in higher plants,where some interesting agronomic traits were also engineered through plastid transformation.
Collapse
|
35
|
Liénard D, Sourrouille C, Gomord V, Faye L. Pharming and transgenic plants. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:115-47. [PMID: 17875476 DOI: 10.1016/s1387-2656(07)13006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.
Collapse
Affiliation(s)
- David Liénard
- Université de Rouen, CNRS UMR 6037, IFRMP 23, GDR 2590, Faculté des Sciences, Bât. Ext. Biologie, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
36
|
Abstract
Selectable marker genes (SMGs) have been extraordinarily useful in enabling plant transformation because of the low efficiency of transgene integration. The most used SMGs encode proteins resistant to antibiotics or herbicides and use negative selection, i.e., by killing nontransgenic tissue. However, there are perceived risks in wide-scale deployment of SMG-transgenic plants, and therefore research has recently been performed to develop marker-free systems. In this review, transformation using markers not based on antibiotic or herbicide resistance genes, as well as different systems of marker gene deletion, are discussed.
Collapse
Affiliation(s)
- Behrooz Darbani
- Agriculture Biotechnology Research Institute for Northwest & West of Iran, Tabriz, Iran
| | | | | | | |
Collapse
|
37
|
Chen QJ, Zhou HM, Chen J, Wang XC. A Gateway-based platform for multigene plant transformation. PLANT MOLECULAR BIOLOGY 2006; 62:927-36. [PMID: 16941206 DOI: 10.1007/s11103-006-9065-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 07/25/2006] [Indexed: 05/10/2023]
Abstract
The post-genomic era offers unrivalled opportunities for genetic manipulation of polygenic traits, multiple traits, and multiple gene products. However, remaining technical hurdles make the manipulation of multiple genes in plants difficult. Here we describe a Gateway-based vector system to enable multiple transgenes to be directly linked or fused. The vector system consists of a destination vector and two special attL-flanked entry vectors each containing an attR cassette incompatible with the attL. By multiple rounds of LR recombination reactions, which we call MultiRound Gateway, multiple transgenes can be delivered sequentially and indefinitely into the Gateway-compatible destination vector through alternate use of the two special entry vectors. In our proof-of-principle experiments we have used this vector system to construct a plant transformation vector containing seven functional DNA fragments, including a screening marker gene, two reporter genes and four matrix attachment region sequences. This system provides a platform for fully realizing the potential of plant genetic manipulation.
Collapse
Affiliation(s)
- Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | | | | | | |
Collapse
|
38
|
Lee SM, Kang K, Chung H, Yoo SH, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 2006; 21:401-10. [PMID: 16819304 PMCID: PMC3481850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The plastid transformation approach offers a number of unique advantages, including high-level transgene expression, multi-gene engineering, transgene containment, and a lack of gene silencing and position effects. The extension of plastid transformation technology to monocotyledonous cereal crops, including rice, bears great promise for the improvement of agronomic traits, and the efficient production of pharmaceutical or nutritional enhancement. Here, we report a promising step towards stable plastid transformation in rice. We produced fertile transplastomic rice plants and demonstrated transmission of the plastid-expressed green fluorescent protein (GFP) and aminoglycoside 3'-adenylyltransferase genes to the progeny of these plants. Transgenic chloroplasts were determined to have stably expressed the GFP, which was confirmed by both confocal microscopy and Western blot analyses. Although the produced rice plastid transformants were found to be heteroplastomic, and the transformation efficiency requires further improvement, this study has established a variety of parameters for the use of plastid transformation technology in cereal crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung-Bum Lee
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL32816-2364, USA
| | | | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL32816-2364, USA
| | - Minkyun Kim
- To whom correspondence should be addressed. Tel: 82-2-880-4641; Fax: 82-2-873-3112,
| |
Collapse
|
39
|
Kang KS, Kim MK. Expression of the Glyphosate Resistant Gene, cp4-epsps, through Plastid Transformation in Rice (Oryza sativa L.). ACTA ACUST UNITED AC 2006. [DOI: 10.5010/jpb.2006.33.2.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Abstract
Recent advances in molecular biology and plant biotechnology have shifted the concept of growing crops as a food source to serving as a bioreactor for the production of therapeutic recombinant proteins. Plants are potential biopharming factories because they are capable of producing unlimited numbers and amounts of recombinant proteins safely and inexpensively. In the last two decades, plant production systems have been developed for monoclonal antibody production, which has been useful in passive immunization of viral or bacterial diseases. Recently, a recombinant monoclonal antibody for rabies prophylaxis was produced in transgenic plants. Rabies virus epidemics remain still problematic throughout the world, and adequate treatment has been hampered by the worldwide shortage and high cost of prophylactic antibodies such as HRIG. Successful mass production of this monoclonal antibody in plants might help to overcome these problems. An effective plant production system for recombinant biologicals requires the appropriate heterologous plant expression system, the optimal combination of gene expression regulatory elements, control of post-translational processing of recombinant products, and efficient purification methods for product recovery. This review discusses recent biotechnology developments for plant-derived monoclonal antibodies and discusses these products as a promising approach to rabies prophylaxis and the consequence for global health benefits.
Collapse
Affiliation(s)
- Kisung Ko
- Biotechnology Foundation Laboratories at Thomas Jefferson University, 1020 Locust Street, Room M85 JAH, Philadelphia, PA 19107, USA
| | | |
Collapse
|
41
|
Quesada-Vargas T, Ruiz ON, Daniell H. Characterization of heterologous multigene operons in transgenic chloroplasts: transcription, processing, and translation. PLANT PHYSIOLOGY 2005; 138:1746-62. [PMID: 15980187 PMCID: PMC1176443 DOI: 10.1104/pp.105.063040] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 05/03/2023]
Abstract
The first characterization of transcriptional, posttranscriptional, and translational processes of heterologous operons expressed via the tobacco (Nicotiana tabacum) chloroplast genome is reported here. Northern-blot analyses performed on chloroplast transgenic lines harboring seven different heterologous operons revealed that polycistronic mRNA was the predominant transcript produced. Despite the lack of processing of such polycistrons, large amounts of foreign protein accumulation was observed in these transgenic lines, indicating abundant translation of polycistrons. This is supported by polysome fractionation assays, which allowed detection of polycistronic RNA in lower fractions of the sucrose gradients. These results show that the chloroplast posttranscriptional machinery can indeed detect and translate multigenic sequences that are not of chloroplast origin. In contrast to native transcripts, processed and unprocessed heterologous polycistrons were stable, even in the absence of 3' untranslated regions (UTRs). Unlike native 5'UTRs, heterologous secondary structures or 5'UTRs showed efficient translational enhancement independent of cellular control. Abundant read-through transcripts were observed in the presence of chloroplast 3'UTRs but they were efficiently processed at introns present within the native operon. Heterologous genes regulated by the psbA (the photosystem II polypeptide D1) promoter, 5' and 3'UTRs have greater abundance of transcripts than the endogenous psbA gene because transgenes were integrated into the inverted repeat region. Addressing questions about polycistrons, and the sequences required for their processing and transcript stability, are essential in chloroplast metabolic engineering. Knowledge of such factors would enable engineering of foreign pathways independent of the chloroplast complex posttranscriptional regulatory machinery.
Collapse
Affiliation(s)
- Tania Quesada-Vargas
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32816-2364, USA
| | | | | |
Collapse
|
42
|
Ruiz ON, Daniell H. Engineering cytoplasmic male sterility via the chloroplast genome by expression of {beta}-ketothiolase. PLANT PHYSIOLOGY 2005; 138:1232-46. [PMID: 16009998 PMCID: PMC1176397 DOI: 10.1104/pp.104.057729] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 02/21/2005] [Accepted: 03/14/2005] [Indexed: 05/03/2023]
Abstract
While investigating expression of the polydroxybutyrate pathway in transgenic chloroplasts, we addressed the specific role of beta-ketothiolase. Therefore, we expressed the phaA gene via the chloroplast genome. Prior attempts to express the phaA gene in transgenic plants were unsuccessful. We studied the effect of light regulation of the phaA gene using the psbA promoter and 5' untranslated region, and evaluated expression under different photoperiods. Stable transgene integration into the chloroplast genome and homoplasmy were confirmed by Southern analysis. The phaA gene was efficiently transcribed in all tissue types examined, including leaves, flowers, and anthers. Coomassie-stained gel and western blots confirmed hyperexpression of beta-ketothiolase in leaves and anthers, with proportionately high levels of enzyme activity. The transgenic lines were normal except for the male-sterile phenotype, lacking pollen. Scanning electron microscopy revealed a collapsed morphology of the pollen grains. Floral developmental studies revealed that transgenic lines showed an accelerated pattern of anther development, affecting their maturation, and resulted in aberrant tissue patterns. Abnormal thickening of the outer wall, enlarged endothecium, and vacuolation affected pollen grains and resulted in the irregular shape or collapsed phenotype. Reversibility of the male-sterile phenotype was observed under continuous illumination, resulting in viable pollen and copious amount of seeds. This study results in the first engineered cytoplasmic male-sterility system in plants, offers a new tool for transgene containment for both nuclear and organelle genomes, and provides an expedient mechanism for F(1) hybrid seed production.
Collapse
Affiliation(s)
- Oscar N Ruiz
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, Florida 32816-2364. USA
| | | |
Collapse
|
43
|
LeDuc DL, Terry N. Phytoremediation of toxic trace elements in soil and water. J Ind Microbiol Biotechnol 2005; 32:514-20. [PMID: 15883830 DOI: 10.1007/s10295-005-0227-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Accepted: 03/26/2005] [Indexed: 10/25/2022]
Abstract
Toxic heavy metals and metalloids, such as cadmium, lead, mercury, arsenic, and selenium, are constantly released into the environment. There is an urgent need to develop low-cost, effective, and sustainable methods for their removal or detoxification. Plant-based approaches, such as phytoremediation, are relatively inexpensive since they are performed in situ and are solar-driven. In this review, we discuss specific advances in plant-based approaches for the remediation of contaminated water and soil. Dilute concentrations of trace element contaminants can be removed from large volumes of wastewater by constructed wetlands. We discuss the potential of constructed wetlands for use in remediating agricultural drainage water and industrial effluent, as well as concerns over their potential ecotoxicity. In upland ecosystems, plants may be used to accumulate metals/metalloids in their harvestable biomass (phytoextraction). Plants can also convert and release certain metals/metalloids in a volatile form (phytovolatilization). We discuss how genetic engineering has been used to develop plants with enhanced efficiencies for phytoextraction and phytovolatilization. For example, metal-hyperaccumulating plants and microbes with unique abilities to tolerate, accumulate, and detoxify metals and metalloids represent an important reservoir of unique genes that could be transferred to fast-growing plant species for enhanced phytoremediation. There is also a need to develop new strategies to improve the acceptability of using genetically engineered plants for phytoremediation.
Collapse
Affiliation(s)
- Danika L LeDuc
- Department of Plant and Microbial Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720-3102, USA
| | | |
Collapse
|
44
|
Halpin C. Gene stacking in transgenic plants--the challenge for 21st century plant biotechnology. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:141-55. [PMID: 17173615 DOI: 10.1111/j.1467-7652.2004.00113.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One of the major technical hurdles impeding the advance of plant genetic engineering and biotechnology is the fact that the expression or manipulation of multiple genes in plants is still difficult to achieve. Although a small proportion of commercial genetically modified (GM) crops present 'stacked' or 'pyramided' traits, only a handful of products have been developed by introducing three or more novel genes. On the research front, a variety of conventional and more novel methods have been employed to introduce multiple genes into plants, but all techniques suffer from certain drawbacks. In this review, the potential and problems of these various techniques and strategies are discussed, and the prospects for improving these technologies in the future are presented.
Collapse
Affiliation(s)
- Claire Halpin
- Plant Research Unit, School of Life Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
45
|
Viitanen PV, Devine AL, Khan MS, Deuel DL, Van Dyk DE, Daniell H. Metabolic engineering of the chloroplast genome using the Echerichia coli ubiC gene reveals that chorismate is a readily abundant plant precursor for p-hydroxybenzoic acid biosynthesis. PLANT PHYSIOLOGY 2004; 136:4048-60. [PMID: 15563620 PMCID: PMC535836 DOI: 10.1104/pp.104.050054] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Revised: 10/15/2004] [Accepted: 10/17/2004] [Indexed: 05/19/2023]
Abstract
p-Hydroxybenzoic acid (pHBA) is the major monomer in liquid crystal polymers. In this study, the Escherichia coli ubiC gene that codes for chorismate pyruvate-lyase (CPL) was integrated into the tobacco (Nicotiana tabacum) chloroplast genome under the control of the light-regulated psbA 5' untranslated region. CPL catalyzes the direct conversion of chorismate, an important branch point intermediate in the shikimate pathway that is exclusively synthesized in plastids, to pHBA and pyruvate. The leaf content of pHBA glucose conjugates in fully mature T1 plants exposed to continuous light (total pooled material) varied between 13% and 18% dry weight, while the oldest leaves had levels as high as 26.5% dry weight. The latter value is 50-fold higher than the best value reported for nuclear-transformed tobacco plants expressing a chloroplast-targeted version of CPL. Despite the massive diversion of chorismate to pHBA, the plastid-transformed plants and control plants were indistinguishable. The highest CPL enzyme activity in pooled leaf material from adult T1 plants was 50,783 pkat/mg of protein, which is equivalent to approximately 35% of the total soluble protein and approximately 250 times higher than the highest reported value for nuclear transformation. These experiments demonstrate that the current limitation for pHBA production in nuclear-transformed plants is CPL enzyme activity, and that the process becomes substrate-limited only when the enzyme is present at very high levels in the compartment of interest, such as the case with plastid transformation. Integration of CPL into the chloroplast genome provides a dramatic demonstration of the high-flux potential of the shikimate pathway for chorismate biosynthesis, and could prove to be a cost-effective route to pHBA. Moreover, exploiting this strategy to create an artificial metabolic sink for chorismate could provide new insight on regulation of the plant shikimate pathway and its complex interactions with downstream branches of secondary metabolism, which is currently poorly understood.
Collapse
Affiliation(s)
- Paul V Viitanen
- DuPont Experimental Station, Wilmington, Delaware 19880-0402, USA
| | | | | | | | | | | |
Collapse
|
46
|
Watson J, Koya V, Leppla SH, Daniell H. Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 2004; 22:4374-84. [PMID: 15474731 PMCID: PMC3481842 DOI: 10.1016/j.vaccine.2004.01.069] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Revised: 12/09/2003] [Accepted: 01/30/2004] [Indexed: 10/26/2022]
Abstract
The Centers for Disease Control (CDC) lists Bacillus anthracis as a category A agent and estimates the cost of an anthrax attack to exceed US$ 26 billion per 100,000 exposed individuals. Concerns regarding anthrax vaccine purity, a requirement for multiple injections, and a limited supply of the protective antigen (PA), underscore the urgent need for an improved vaccine. Therefore, the 83 kDa immunogenic Bacillus anthracis protective antigen was expressed in transgenic tobacco chloroplasts. The PA gene (pag) was cloned into a chloroplast vector along with the psbA regulatory signals to enhance translation. Chloroplast integration of the transgenes was confirmed by PCR and Southern blot analyses. Crude plant extracts contained up to 2.5 mg full length PA/g of fresh leaf tissue and this showed exceptional stability for several months in stored leaves or crude extracts. Maximum levels of expression were observed in mature leaves under continuous illumination. Co-expression of the ORF2 chaperonin from Bacillus thuringiensis did not increase PA accumulation or induce folding into cuboidal crystals in transgenic chloroplasts. Trypsin, chymotrypsin and furin proteolytic cleavage sites present in PA were protected in transgenic chloroplasts because only full length PA 83 was observed without any degradation products. Both CHAPS and SDS detergents extracted PA with equal efficiency and PA was observed in the soluble fraction. Chloroplast-derived PA was functionally active in lysing mouse macrophages when combined with lethal factor (LF). Crude leaf extracts contained up to 25 microg functional PA/ml. With an average yield of 172 mg of PA per plant using an experimental transgenic cultivar grown in a greenhouse, 400 million doses of vaccine (free of contaminants) could be produced per acre, a yield that could be further enhanced 18-fold using a commercial cultivar in the field.
Collapse
Affiliation(s)
- Jennifer Watson
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science Building #20, Room 336, Orlando, FL 32816-2364, USA
| | - Vijay Koya
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science Building #20, Room 336, Orlando, FL 32816-2364, USA
| | - Stephen H. Leppla
- Microbial Pathogenesis Section, National Institute of Allergy and Infectious Diseases, NIH, Building 30, Room 303, 30 Convent Dr. Bethesda, MD 20892-4350, USA
| | - Henry Daniell
- Department of Molecular Biology and Microbiology, University of Central Florida, Biomolecular Science Building #20, Room 336, Orlando, FL 32816-2364, USA
| |
Collapse
|
47
|
Kumar S, Dhingra A, Daniell H. Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. PLANT MOLECULAR BIOLOGY 2004; 56:203-16. [PMID: 15604738 PMCID: PMC3481848 DOI: 10.1007/s11103-004-2907-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chloroplast genetic engineering overcomes concerns of gene containment, low levels of transgene expression, gene silencing, positional and pleiotropic effects or presence of vector sequences in transformed genomes. Several therapeutic proteins and agronomic traits have been highly expressed via the tobacco chloroplast genome but extending this concept to important crops has been a major challenge; lack of 100 homologous species-specific chloroplast transformation vectors containing suitable selectable markers, ability to regulate transgene expression in developing plastids and inadequate tissue culture systems via somatic embryogenesis are major challenges. We employed a 'Double Gene/Single Selection (DGSS)' plastid transformation vector that harbors two selectable marker genes (aph A-6 and npt II) to detoxify the same antibiotic by two enzymes, irrespective of the type of tissues or plastids; by combining this with an efficient regeneration system via somatic embryogenesis, cotton plastid transformation was achieved for the first time. The DGSS transformation vector is at least 8-fold (1 event/2.4 bombarded plates) more efficient than 'Single Gene/Single Selection (SGSS)' vector (aph A-6; 1 event per 20 bombarded plates). Chloroplast transgenic lines were fertile, flowered and set seeds similar to untransformed plants. Transgenes stably integrated into the cotton chloroplast genome were maternally inherited and were not transmitted via pollen when out-crossed with untransformed female plants. Cotton is one of the most important genetically modified crops (120 billion US dollars US annual economy). Successful transformation of the chloroplast genome should address concerns about transgene escape, insects developing resistance, inadequate insect control and promote public acceptance of genetically modified cotton.
Collapse
Affiliation(s)
- Shashi Kumar
- Department ofMolecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg # 20, Room 336, Orlando FL 32816-2364, USA
| | - Amit Dhingra
- Department ofMolecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg # 20, Room 336, Orlando FL 32816-2364, USA
| | - Henry Daniell
- Department ofMolecular Biology and Microbiology, University of Central Florida, Biomolecular Science, Bldg # 20, Room 336, Orlando FL 32816-2364, USA
| |
Collapse
|
48
|
Kumar S, Dhingra A, Daniell H. Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. PLANT PHYSIOLOGY 2004; 136:2843-54. [PMID: 15347789 PMCID: PMC523346 DOI: 10.1104/pp.104.045187] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/24/2004] [Accepted: 06/25/2004] [Indexed: 05/18/2023]
Abstract
Salinity is one of the major factors that limits geographical distribution of plants and adversely affects crop productivity and quality. We report here high-level expression of betaine aldehyde dehydrogenase (BADH) in cultured cells, roots, and leaves of carrot (Daucus carota) via plastid genetic engineering. Homoplasmic transgenic plants exhibiting high levels of salt tolerance were regenerated from bombarded cell cultures via somatic embryogenesis. Transformation efficiency of carrot somatic embryos was very high, with one transgenic event per approximately seven bombarded plates under optimal conditions. In vitro transgenic carrot cells transformed with the badh transgene were visually green in color when compared to untransformed carrot cells, and this offered a visual selection for transgenic lines. BADH enzyme activity was enhanced 8-fold in transgenic carrot cell cultures, grew 7-fold more, and accumulated 50- to 54-fold more betaine (93-101 micromol g(-1) dry weight of beta-Ala betaine and Gly betaine) than untransformed cells grown in liquid medium containing 100 mm NaCl. Transgenic carrot plants expressing BADH grew in the presence of high concentrations of NaCl (up to 400 mm), the highest level of salt tolerance reported so far among genetically modified crop plants. BADH expression was 74.8% in non-green edible parts (carrots) containing chromoplasts, and 53% in proplastids of cultured cells when compared to chloroplasts (100%) in leaves. Demonstration of plastid transformation via somatic embryogenesis utilizing non-green tissues as recipients of foreign DNA for the first time overcomes two of the major obstacles in extending this technology to important crop plants.
Collapse
Affiliation(s)
- Shashi Kumar
- Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|
49
|
Nguyen HT, Leelavathi S, Reddy VS. Bacteriophage T7 RNA polymerase-directed, inducible and tissue-specific over-expression of foreign genes in transgenic plants. PLANT BIOTECHNOLOGY JOURNAL 2004; 2:301-10. [PMID: 17134391 DOI: 10.1111/j.1467-7652.2004.00071.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A widely applicable bacteriophage T7 RNA polymerase-directed, tissue-specific and inducible over-expression of foreign genes in transgenic plants was developed. This was achieved through the simultaneous transformation of a modified T7 RNA polymerase to specifically transcribe the foreign gene placed under the control of T7 expression signals. The T7 RNA polymerase recognized the chimeric uidA gene integrated randomly into tobacco and rice genomes. Results from the use of six different promoters with different tissue specificities indicated that the recombinant protein was expressed at a several-fold (3-10-fold) higher level when compared with transgenes expressed directly under the control of these tissue-specific promoters. An important feature of the T7 system in plants was the near-uniform expression in the independently transformed plants, in contrast with the large variations observed in transgene expression under the direct control of plant promoters. In addition, our results demonstrated the application of the T7 system in the regulation of transgene expression through chemically inducible mechanisms. This versatility of controlled and regulated expression offers a powerful tool that could be used in various programmes in plant biotechnology and genomic studies.
Collapse
Affiliation(s)
- Huu Tam Nguyen
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | |
Collapse
|
50
|
Dhingra A, Portis AR, Daniell H. Enhanced translation of a chloroplast-expressed RbcS gene restores small subunit levels and photosynthesis in nuclear RbcS antisense plants. Proc Natl Acad Sci U S A 2004; 101:6315-20. [PMID: 15067115 PMCID: PMC395966 DOI: 10.1073/pnas.0400981101] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Indexed: 11/18/2022] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a key enzyme that converts atmospheric carbon to food and supports life on this planet. Its low catalytic activity and specificity for oxygen leads to photorespiration, severely limiting photosynthesis and crop productivity. Consequently, Rubisco is a primary target for genetic engineering. Separate localization of the genes in the nuclear and chloroplast genomes and a complex assembly process resulting in a very low catalytic activity of hybrid Rubisco enzymes have rendered several earlier attempts of Rubisco engineering unsuccessful. Here we demonstrate that the RbcS gene, when integrated at a transcriptionally active spacer region of the chloroplast genome, in a nuclear RbcS antisense line and expressed under the regulation of heterologous (gene 10) or native (psbA) UTRs, results in the assembly of a functional holoenzyme and normal plant growth under ambient CO(2) conditions, fully shortcircuiting nuclear control of gene regulation. There was approximately 150-fold more RbcS transcript in chloroplast transgenic lines when compared with the nuclear RbcS antisense line, whereas the wild type has 7-fold more transcript. The small subunit protein levels in the gene 10/RbcS and psbA/RbcS plants were 60% and 106%, respectively, of the wild type. Photosynthesis of gene 10/RbcS plants was approximately double that of the antisense plants, whereas that of psbA/RbcS plants was restored almost completely to the wild-type rates. These results have opened an avenue for using chloroplast engineering for the evaluation of foreign Rubisco genes in planta that eventually can result in achieving efficient photosynthesis and increased crop productivity.
Collapse
Affiliation(s)
- Amit Dhingra
- Department of Molecular Biology and Microbiology, University of Central Florida, 4000 Central Florida Boulevard, Biomolecular Science, Building 20, Room 336, Orlando, FL 32816-2364, USA
| | | | | |
Collapse
|