1
|
Ashagrie H, Baye K, Guibert B, Rochette I, Tisseyre P, Humblot C. The use of propionic and lactic acid bacteria to produce cobalamin and folate in injera, an Ethiopian cereal-based fermented food. Int J Food Microbiol 2025; 426:110909. [PMID: 39288569 DOI: 10.1016/j.ijfoodmicro.2024.110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Like in many developing countries, the traditional Ethiopian diet relies mainly on starchy staple foods and often lacks sufficient animal-sourced foods which are crucial for cobalamin intake. Furthermore, the concentration of folate in traditionally prepared injera, an Ethiopian cereal-based fermented staple food, is highly variable and injera contains biologically inactive corrinoids. This study aimed to improve the cobalamin and folate content of injera by using cobalamin-producing Propionibacterium freudenreichii and folate-producing Lactiplantibacillus plantarum strains, both individually and combined. Since injera is fermented using backslopping, we also assessed the ability of these strains to produce cobalamin and folate consistently across successive fermentation batches. Changes in the microbial ecosystem were monitored using real-time PCR. The theoretical contribution of the injera prepared using the selected strains to the cobalamin and folate intake of children and women of reproductive age was also calculated. Results showed that using the selected bacterial strains individually increased cobalamin (up to 19.2 μg/100 g of dry matter) and folate (up to 180.2 μg/100 g of dry matter) levels in the injera dough over several backslopping fermentation batches. Regular consumption of the injera with enhanced vitamin content produced using each strain alone would be capable of fulfilling the entire recommended nutrient intake for cobalamin and up to 29 % of the recommended intake for folate for children and women of reproductive age. However, when the strains were used together, the production of both vitamins was reduced. The presence of certain common endogenous bacterial species and genera exhibited significant variability, highlighting the complex response of the native microbiota to the different inoculation strategies employed. Future experiments should consider selecting a microbial consortium comprising non-competing microorganisms to ensure the simultaneous production of cobalamin and folate in fermented foods.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Pierre Tisseyre
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
2
|
Obermaier L, Candelaria Cucick AC, Gombossy de Melo Franco BD, Isay Saad SM, Skurk T, Rychlik M. Assessing a Fermented Whey Beverage Biofortified with Folate as a Potential Folate Source for Humans. Mol Nutr Food Res 2024; 68:e2300888. [PMID: 39094123 DOI: 10.1002/mnfr.202300888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/27/2024] [Indexed: 08/04/2024]
Abstract
Folate, a vital water-soluble vitamin (B9), requires specific attention as its recommended daily intake frequently is not reached in countries without mandatory fortification. In this regard, biofortification with microorganisms like Bifidobacterium and Streptococcus offers a compelling approach for enhancing food with natural folates. A randomized, nonblinded, and monocentric human pilot study is conducted to assess the bioavailability of a folate-biofortified fermented whey beverage, comprising 3 intervention days and a controlled replenishment phase before and during the assay. Folate plasma concentration (5-CH3-H4folate) is determined using a stable isotope dilution assay and LC-MS/MS detection. Biokinetic parameters (cmax and tmax) are determined, and areas under the curve (AUC) normalized to the basal folate plasma concentration are calculated. An average bioavailability of 17.1% in relation to the 5-CH3-H4folate supplement, ranging from 0% to 39.8%, is obtained. These results reiterate the significance of additional research into folate bioavailability in general and dairy products. Further investigations are warranted into folate-binding proteins (FBP) and other potential limiting factors within the food and individual factors. In summary, biofortification via fermentation emerges as a promising avenue for enhancing the natural folate content in dairy and other food products.
Collapse
Affiliation(s)
- Lisa Obermaier
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354, Freising, Germany
| | - Ana Clara Candelaria Cucick
- School of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, Brazil
- Food Research Center, University of São Paulo (USP), São Paulo, Brazil
| | | | - Susana Marta Isay Saad
- School of Pharmaceutical Sciences, University of Sao Paulo (USP), São Paulo, Brazil
- Food Research Center, University of São Paulo (USP), São Paulo, Brazil
| | - Thomas Skurk
- ZIEL, Institute for Food & Health, Core Facility Human Studies, Technical University of Munich, 85354, Freising, Germany
- Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technical University of Munich, 85354, Freising, Germany
- Centre for Nutrition and Food Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Bermúdez-Humarán LG, Chassaing B, Langella P. Exploring the interaction and impact of probiotic and commensal bacteria on vitamins, minerals and short chain fatty acids metabolism. Microb Cell Fact 2024; 23:172. [PMID: 38867272 PMCID: PMC11167913 DOI: 10.1186/s12934-024-02449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
There is increasing evidence that probiotic and commensal bacteria play a role in substrate metabolism, energy harvesting and intestinal homeostasis, and may exert immunomodulatory activities on human health. In addition, recent research suggests that these microorganisms interact with vitamins and minerals, promoting intestinal and metabolic well-being while producing vital microbial metabolites such as short-chain fatty acids (SCFAs). In this regard, there is a flourishing field exploring the intricate dynamics between vitamins, minerals, SCFAs, and commensal/probiotic interactions. In this review, we summarize some of the major hypotheses beyond the mechanisms by which commensals/probiotics impact gut health and their additional effects on the absorption and metabolism of vitamins, minerals, and SCFAs. Our analysis includes comprehensive review of existing evidence from preclinical and clinical studies, with particular focus on the potential interaction between commensals/probiotics and micronutrients. Finally, we highlight knowledge gaps and outline directions for future research in this evolving field.
Collapse
Affiliation(s)
- Luis G Bermúdez-Humarán
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM U1306, Paris, France
- INSERM U1016, team Mucosal microbiota in chronic inflammatory diseases, CNRS UMR 8104, Université de Paris, Paris, France
| | - Philippe Langella
- Laboratory of Commensals and Probiotics-Host Interactions, Université Paris-Saclay, INRAE, Micalis Institute, Jouy-en-Josas, AgroParisTech, 78350, France.
| |
Collapse
|
4
|
Yan C, Li X, Zhang G, Bi J, Hao H, Hou H. AHL-differential quorum sensing regulation of amino acid metabolism in Hafnia alvei H4. Microbiol Spectr 2024; 12:e0068723. [PMID: 38391231 PMCID: PMC10986605 DOI: 10.1128/spectrum.00687-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Quorum sensing (QS) regulation of functional metabolites is rarely reported but a common trait of some bacteria. In this study, we found that QS promoted the extracellular accumulation of glycine and serine while inhibiting the extracellular accumulation of methionine in Hafnia alvei H4. The correlation analysis of five QS signals with the above three QS-regulated amino acids suggested that these QS signals may have functional differences in amino acid regulation. The exogenous AHL add-back studies on genes involved in glycine, serine, and methionine metabolic pathway highlighted that N-octanoyl-l-homoserine lactone (C8-HSL) downregulated the expression of sdhC/fumA genes involved in the succinate to malate pathway, thereby reducing the metabolic flux of the tricarboxylic acid (TCA) cycle as an amino acid metabolism platform. Further in-depth research revealed that the QS system promoted the conversion of folate to tetrahydrofolate (THF) by positively regulating the expression of folA and folM, thus impairing the ability of folate to promote methionine accumulation. Moreover, folate positively regulated the expression of the QS signal synthesis gene luxI, promoting the synthesis of QS signals, which may further enhance the influence of the QS system on amino acid metabolism. These findings contribute to the understanding of amino acid metabolism regulated by QS and provide new perspectives for accurate control of metabolic regulation caused by QS.IMPORTANCEAs one of the important regulatory mechanisms of microorganisms, quorum sensing (QS) is involved in the regulation of various physiological activities. However, few studies on the regulation of amino acid metabolism by QS are available. This study demonstrated that the LuxI-type QS system of Hafnia alvei H4 was involved in the regulation of multiple amino acid metabolism, and different types of QS signals exhibited different roles in regulating amino acid metabolism. Additionally, the regulatory effects of the QS system on amino acid metabolism were investigated from two important cycles that influence the conversion of amino acids, including the TCA cycle and the folate cycle. These findings provide new ideas on the role of QS system in the regulation of amino acid metabolism in organisms.
Collapse
Affiliation(s)
- Congyang Yan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongshun Hao
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian, China
| |
Collapse
|
5
|
D’Aimmo MR, Satti M, Scarafile D, Modesto M, Pascarelli S, Biagini SA, Luiselli D, Mattarelli P, Andlid T. Folate-producing bifidobacteria: metabolism, genetics, and relevance. MICROBIOME RESEARCH REPORTS 2023; 3:11. [PMID: 38455078 PMCID: PMC10917623 DOI: 10.20517/mrr.2023.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/11/2023] [Accepted: 11/29/2023] [Indexed: 03/09/2024]
Abstract
Folate (the general term for all bioactive forms of vitamin B9) plays a crucial role in the evolutionary highly conserved one-carbon (1C) metabolism, a network including central reactions such as DNA and protein synthesis and methylation of macromolecules. Folate delivers 1C units, such as methyl and formyl, between reactants. Plants, algae, fungi, and many bacteria can naturally produce folate, whereas animals, including humans, must obtain folate from external sources. For humans, folate deficiency is, however, a widespread problem. Bifidobacteria constitute an important component of human and many animal microbiomes, providing various health advantages to the host, such as producing folate. This review focuses on bifidobacteria and folate metabolism and the current knowledge of the distribution of genes needed for complete folate biosynthesis across different bifidobacterial species. Biotechnologies based on folate-trophic probiotics aim to create fermented products enriched with folate or design probiotic supplements that can synthesize folate in the colon, improving overall health. Therefore, bifidobacteria (alone or in association with other microorganisms) may, in the future, contribute to reducing widespread folate deficiencies prevalent among vulnerable human population groups, such as older people, women at child-birth age, and people in low-income countries.
Collapse
Affiliation(s)
| | - Maria Satti
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Donatella Scarafile
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Monica Modesto
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | - Stefano Pascarelli
- Protein Engineering and Evolution Unit, Okinawa Institute of Science, Technology Graduate University, Okinawa 40-0193, Japan
| | - Simone Andrea Biagini
- Institut de Biologia Evolutiva (UPF-CSIC), Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona 08003, Spain
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna 48121, Italy
| | - Paola Mattarelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40127, Italy
| | | |
Collapse
|
6
|
Ashagrie H, Baye K, Guibert B, Seyoum Y, Rochette I, Humblot C. Cereal-based fermented foods as a source of folate and cobalamin: The role of endogenous microbiota. Food Res Int 2023; 174:113625. [PMID: 37986477 DOI: 10.1016/j.foodres.2023.113625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 10/21/2023] [Indexed: 11/22/2023]
Abstract
Folate (vitamin B9) and cobalamin (vitamin B12) deficiencies potentially affect millions of people worldwide, leading to different pathologies. In Ethiopia, the diet is characterized by high consumption of fermented cereal-based foods such as injera, a good source of folate but not of cobalamin, which is only found in foods of animal origin that are rarely consumed. Some of the bacteria responsible for the fermentation of cereals can synthesize cobalamin, but whether or not fermented cereal food products contain cobalamin remains underexplored. The objective of this study was to assess the folate and cobalamin content of injera collected from various households in Ethiopia at different stages of production. Global (16S rRNA gene sequencing) and specific (real-time PCR quantification of bacteria known for folate or cobalamin production) bacterial composition of these samples was assessed. UPLC-PDA was used to identify the cobalamin to see whether the active or inactive form was present. Surprisingly, teff flour contained 0.8 μg/100 g of cobalamin, most probably due to microbial contamination from the environment and the harvesting process. While fermentation increased the folate and cobalamin content in some households, their levels decreased in others. Conversely, cooking consistently reduced the level of the vitamins. Fresh injera contained, on average, 21.2 μg/100 g of folate and 2.1 μg/100 g of cobalamin, which is high, but with marked variation depending on the sample. However, the form of cobalamin was a corrinoid that is biologically inactive in humans. Injera fermentation was dominated by lactic acid bacteria, with significant correlations observed between certain bacterial species and folate and cobalamin levels. For example, a high proportion of Fructilactobacillus sanfranciscensis, a known folate consumer, was negatively correlated with the folate content of injera. On the contrary, Lactobacillus coryniformis, known for its cobalamin synthesis ability was present in high proportion in the cobalamin-rich samples. These findings highlight the complex interrelationship between microorganisms and suggest the involvement of specific bacteria in the production of folate and cobalamin during injera fermentation. Controlled fermentation using vitamin-producing bacteria is thus a promising tool to promote folate and cobalamin production in fermented food.
Collapse
Affiliation(s)
- Henok Ashagrie
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Kaleab Baye
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Benjamin Guibert
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Yohannes Seyoum
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Isabelle Rochette
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France
| | - Christèle Humblot
- QualiSud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de la Réunion, 911 avenue Agropolis, 34394 Montpellier Cedex, France.
| |
Collapse
|
7
|
Paszczyk B, Czarnowska-Kujawska M, Klepacka J, Tońska E. Health-Promoting Ingredients in Goat's Milk and Fermented Goat's Milk Drinks. Animals (Basel) 2023; 13:907. [PMID: 36899767 PMCID: PMC10000185 DOI: 10.3390/ani13050907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The present study aimed to determine the content of health-promoting compounds, and fatty acids, with particular emphasis on the content of cis9trans11 C18:2 (CLA) acid, selected minerals, folates in organic and commercial goat's milk and fermented goat's milk drinks. The analyzed milk and yoghurts had various contents of particular groups of fatty acids, CLA, minerals, and folates. Raw organic goat's milk had a significantly (p < 0.05) higher content of CLA (3.26 mg/g fat) compared to commercial milk (2.88 mg/g fat and 2.54 mg/g fat). Among the analyzed fermented goat's milk drinks, the highest CLA content (4.39 mg/g fat) was determined in commercial natural yoghurts, while the lowest one was in organic natural yoghurts (3.28 mg/g fat). The highest levels of calcium (1322.9-2324.4 µg/g), phosphorus (8148.1-11,309.9 µg/g), and copper (0.072-0.104 µg/g) were found in all commercial products and those of manganese (0.067-0.209 µg/g) in organic products. The contents of the other assayed elements (magnesium, sodium, potassium, iron, and zinc) did not depend on the production method, but only on the product type, i.e., the degree of goat's milk processing. The highest folate content in the analyzed milks was found in the organic sample (3.16 µg/100 g). Organic Greek yoghurts had a several times higher content of folates, reaching 9.18 µg/100 g, compared to the other analyzed fermented products.
Collapse
Affiliation(s)
| | | | - Joanna Klepacka
- Department of Commodity and Food Analysis, The Faculty of Food Sciences, University of Warmia and Mazury in Olsztyn, 10-726 Olsztyn, Poland
| | | |
Collapse
|
8
|
Celik OF, O'Sullivan DJ. Correlation of gene content in selected bifidobacteria with folate supplier or scavenger status during growth in laboratory media. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
FAYEMI OE, AKANNI GB, SOBOWALE SS, OELOFSE A, BUYS EM. Potential for increasing folate contents of traditional African fermented sorghum gruel (Motoho) using presumptive probiotic lactic acid bacteria. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Changes in the Folate Content and Fatty Acid Profile in Fermented Milk Produced with Different Starter Cultures during Storage. Molecules 2021; 26:molecules26196063. [PMID: 34641607 PMCID: PMC8512886 DOI: 10.3390/molecules26196063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The application of bacterial cultures in food fermentation is a novel strategy to increase the “natural” levels of bioactive compounds. The unique ability of lactic acid bacteria (LAB) to produce folate, B vitamins, and conjugated linolenic acid cis9trans11 C18:2 (CLA) during cold storage up to 21 days was studied. Although some species of LAB can produce folates and other important nutrients, little is known about the production ability of yogurt starter cultures. Pasteurized milk samples were inoculated with four different combinations of commercially available yogurt vaccines, including starter cultures of Bifidobacterium bifidum. Both the type of vaccine and the time of storage at 8 °C had a significant effect on the folate and CLA contents in the tested fermented milks. The highest folate content (105.4 µg/kg) was found in fresh fermented milk inoculated with Lactobacillus delbrueckii, Streptococcus thermophilus, and Bifidobacterium bifidum. Only the mix of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, and Bifidobacterium bifidum showed potential (59% increase) to synthesize folate during seven days of storage. A significant increase in the content of CLA, when compared to fresh fermented milk, was observed during cold storage for up to 21 days in products enriched with Bifidobacterium bifidum.
Collapse
|
11
|
Barkhidarian B, Roldos L, Iskandar MM, Saedisomeolia A, Kubow S. Probiotic Supplementation and Micronutrient Status in Healthy Subjects: A Systematic Review of Clinical Trials. Nutrients 2021; 13:3001. [PMID: 34578878 PMCID: PMC8472411 DOI: 10.3390/nu13093001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022] Open
Abstract
Micronutrient deficiencies are a worldwide public health concern. Emerging evidence supports the ability of probiotics to enhance micronutrient status, which could aid in the prevention of non-communicable disease-associated malnutrition. This systematic review evaluated evidence of the efficacy of probiotic supplementation to improve micronutrient status in healthy subjects. The authors searched for published English language peer-reviewed journal articles in PubMed, Scopus, Embase, and Google Scholar databases from inception to July 2020 using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of eligible studies was assessed using the Revised Cochrane Risk-of-Bias tool (RoB)2 and Risk of Bias in Non-Randomized Studies of Interventions tool (ROBINS-I tool). Fourteen original studies out of 2790 met the inclusion criteria. The results indicated that, despite varying degrees of efficacy, the intake of certain probiotics in healthy subjects was associated with a positive impact on the status of certain micronutrients (vitamin B12, calcium, folate, iron and zinc). A limitation was that studies were widely heterogeneous in terms of participant age, probiotic strain, species, dosage, intervention duration, and form of administration. Additional clinical trials are warranted to determine the most effective strains of probiotics, doses and durations of interventions.
Collapse
Affiliation(s)
- Bahareh Barkhidarian
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Keshavarz Blvd., Tehran 1471613151, Iran;
| | - Lucas Roldos
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| | - Michèle M. Iskandar
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| | - Ahmad Saedisomeolia
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Keshavarz Blvd., Tehran 1471613151, Iran;
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| | - Stan Kubow
- School of Human Nutrition, McGill University, 21111 Lakeshore, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada; (L.R.); (M.M.I.)
| |
Collapse
|
12
|
Mahara FA, Nuraida L, Lioe HN. Folate in Milk Fermented by Lactic Acid Bacteria from Different Food Sources. Prev Nutr Food Sci 2021; 26:230-240. [PMID: 34316488 PMCID: PMC8276708 DOI: 10.3746/pnf.2021.26.2.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 11/06/2022] Open
Abstract
Folates are essential micronutrients, and folate deficiency still occurs in many countries. Lactic acid bacteria (LAB) are known to be able to synthesize folates during fermentation, but the folate production is strain-dependent and influenced by the fermentation medium, presence of a folate precursor, and fermentation time. This study aimed to screen extracellular folate-producing LAB from local food sources and evaluate the factors influencing their folate biosynthesis during milk fermentation. The selection of folate-producing LAB was based on their ability to grow in folate-free medium (FACM), with folate concentrations quantified by microbiological assay. Growth of the 18 LAB in FACM varied between isolates, with only 8 isolates growing well and able to synthesize extracellular folate at relatively high concentrations (up to 24.27 ng/mL). The isolates with highest extracellular folate levels, Lactobacillus fermentum JK13 from kefir granules, Lactobacillus plantarum 4C261 from salted mustard, and Lactobacillus rhamnosus R23 from breast milk, were applied to milk fermentation. The last two isolates were probiotic candidates. The three isolates consumed folate when it was present in the milk, and its consumption was in line with their growth. The availability of folate precursors affected the amount of folate consumed, but did not lead to increased folate concentrations in the medium after 72 h fermentation. The results of this study indicate that these isolates cannot be utilized for producing folate in folate-containing milk, as it shows feedback inhibition on folate biosynthesis.
Collapse
Affiliation(s)
- Fenny Amilia Mahara
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology and
| | - Lilis Nuraida
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology and.,Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor 16680, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology and
| |
Collapse
|
13
|
Abstract
Clean label is an important trend in the food industry. It aims at washing foods of chemicals perceived as unhealthy by consumers. Microorganisms are present in many foods (usually fermented), they exhibit a diversity of metabolism and some can bring probiotic properties. They are usually well considered by consumers and, with progresses in the knowledge of their physiology and behavior, they can become very precise tools to produce or degrade specific compounds. They are thus an interesting means to obtain clean label foods. In this review, we propose to discuss some current research to use microorganisms to produce clean label foods with examples improving sensorial, textural, health and nutritional properties.
Collapse
|
14
|
Lu C, Liu Y, Li J, Liu L, Du G. Engineering of Biosynthesis Pathway and NADPH Supply for Improved L-5-Methyltetrahydrofolate Production by Lactococcus lactis. J Microbiol Biotechnol 2021; 31:154-162. [PMID: 31893598 PMCID: PMC9705839 DOI: 10.4014/jmb.1910.10069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022]
Abstract
L-5-methyltetrahydrofolate (5-MTHF) is one of the biological active forms of folate, which is widely used as a nutraceutical. However, low yield and serious pollution associated with the chemical synthesis of 5-MTHF hampers its sustainable supply. In this study, 5-MTHF production was improved by engineering the 5-MTHF biosynthesis pathway and NADPH supply in Lactococcus lactis for developing a green and sustainable biosynthesis approach. Specifically, overexpressing the key rate-limiting enzyme methylenetetrahydrofolate reductase led to intracellular 5-MTHF accumulation, reaching 18 μg/l. Next, 5-MTHF synthesis was further enhanced by combinatorial overexpression of 5-MTHF synthesis pathway enzymes with methylenetetrahydrofolate reductase, resulting in 1.7-fold enhancement. The folate supply pathway was strengthened by expressing folE encoding GTP cyclohydrolase I, which increased 5-MTHF production 2.4-fold to 72 μg/l. Furthermore, glucose-6-phosphate dehydrogenase was overexpressed to improve the redox cofactor NADPH supply for 5-MTHF biosynthesis, which led to a 60% increase in intracellular NADPH and a 35% increase in 5-MTHF production (97 μg/l). To reduce formation of the by-product 5-formyltetrahydrofolate, overexpression of 5-formyltetrahydrofolate cyclo-ligase converted 5-formyltetrahydrofolate to 5,10-methyltetrahydrofolate, which enhanced the 5-MTHF titer to 132 μg/l. Finally, combinatorial addition of folate precursors to the fermentation medium boosted 5-MTHF production, reaching 300 μg/l. To the best of our knowledge, this titer is the highest achieved by L. lactis. This study lays the foundation for further engineering of L. lactis for efficient 5-MTHF biosynthesis.
Collapse
Affiliation(s)
- Chuanchuan Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China,Corresponding authors Y.Liu Phone: +86-510-85197117 Fax: +86-510-85918309 E-mail:
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 2422, P.R. China,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 141, P.R. China,G.Du Phone: +86-510-85918309 Fax: +86-510-85918309 E-mail:
| |
Collapse
|
15
|
Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Buffalo-milk-based dairy products provide various health benefits to humans since buffalo milk serves as a rich source of protein, fat, lactose, calcium, iron, phosphorus, vitamin A and natural antioxidants. Dairy products such as Meekiri, Dadih, Dadi and Lassie, which are derived from Artisanal fermentation of buffalo milk, have been consumed for many years. Probiotic potentials of indigenous microflora in fermented buffalo milk have been well documented. Incorporation of certain probiotics into the buffalo-milk-based dairy products conferred vital health benefits to the consumers, although is not a common practice. However, several challenges are associated with incorporating probiotics into buffalo-milk-based dairy products. The viability of probiotic bacteria can be reduced due to processing and environmental stress during storage. Further, incompatibility of probiotics with traditional starter cultures and high acidity of fermented dairy products may lead to poor viability of probiotics. The weak acidifying performance of probiotics may affect the organoleptic quality of fermented dairy products. Besides these challenges, several innovative technologies such as the use of microencapsulated probiotics, ultrasonication, the inclusion of prebiotics, use of appropriate packaging and optimal storage conditions have been reported, promising stability and viability of probiotics in buffalo-milk-based fermented dairy products.
Collapse
|
16
|
Jiao W, Wang S, Guan J, Shi J, Evivie SE, Yan F, Li N, Chen J, Li B, Huo G. Milk fermented with Lactococcus lactis KLDS4.0325 alleviates folate status in deficient mice. Food Funct 2020; 11:4571-4581. [PMID: 32400792 DOI: 10.1039/c9fo03067k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folate is an essential B vitamin and its deficiency is common in many parts of the world. Natural folate produced by microorganisms may be an alternative to chemically synthesized folic acid (FA) as a dietary supplement. Previously, two lactic acid bacteria (LAB) strains, a high folate-producing Lactococcus lactis subsp. lactis KLDS4.0325 and a weak folate-producing Lactococcus lactis subsp. lactis KLDS4.0613, were identified. The aim of this study was to evaluate the effect of milk fermented with L. lactis KLDS4.0325 (folate-enriched fermented milk, FEFM) in alleviating folate deficiency status using murine folate deficiency models. In addition, the link between gut microbiota diversity and folate levels in mice was investigated. Results showed that FEFM increased FA and 5-methyltetrahydrofolate (5-MTHF) concentrations in the whole blood and liver, and decreased plasma homocysteine (Hcy) levels. 16S rDNA sequence analysis also revealed that the supplementation of FEFM (containing 0.6 μg mL-1 folate) and 0.6 μg d-1 FA (FEFM + LFA) significantly improved the poor status of the gut microbiota composition caused by folate deficiency, and the effect was better than that with 1.2 μg d-1 FA (HFA) supplementation. Our findings show that FEFM can be used as a folate-fortified food to alleviate folate deficiency effectively. In addition, it may be considered as a partial or total replacement for synthetic FA.
Collapse
Affiliation(s)
- Wenshu Jiao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, Heilongjiang Province, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Albano C, Silvetti T, Brasca M. Screening of lactic acid bacteria producing folate and their potential use as adjunct cultures for cheese bio-enrichment. FEMS Microbiol Lett 2020; 367:5818765. [PMID: 32275307 DOI: 10.1093/femsle/fnaa059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Lactic acid bacteria (LAB) can be used to increase the folate in foods by in situ fortification. Seventy LAB were screened for their ability to produce folate during growth in de Man, Rogosa and Sharpe/M17 broth. Lactobacillus casei, Lactobacillus plantarum, Lactobacillus paracasei subsp. paracasei, Lactobacillus rhamnosus, Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactococcus lactis subsp. lactis, Enterococcus faecium and Enterococcus lactis were able to synthetize folates in the medium, even if to a different extent. The 47 folate-producing strains were further analyzed by microbiological assay, for total, extra and intracellular folate. Enterococcus faecium VC223 and E. lactis BT161 were able to produce in cultural medium 123,625.74 ± 8.00 ng/ml and 384.22 ± 5.00 ng/ml of folate, respectively. Five strains were further examined for their ability to synthesize folate in cheese. The folate content increased with ripening up to by 54% after 30 d when L. casei VC199 was used and up to 108% and 113% after 60 d, with L. paracasei SE160 and E. lactis BT161 respectively exceeding 100 ng/100g. Results encourage the use of specific LAB to obtain natural folate bio-enriched dairy products improving folate intake.
Collapse
Affiliation(s)
- Clara Albano
- Institute of Sciences of Food Production, National Research Council, Via G. Celoria 2, Milan, 20133, Italy
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council, Via G. Celoria 2, Milan, 20133, Italy
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council, Via G. Celoria 2, Milan, 20133, Italy
| |
Collapse
|
18
|
Evaluation of the bioavailability and intestinal effects of milk fermented by folate producing lactic acid bacteria in a depletion/repletion mice model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
19
|
Khalili M, Rad AH, Khosroushahi AY, Khosravi H, Jafarzadeh S. Application of Probiotics in Folate Bio-Fortification of Yoghurt. Probiotics Antimicrob Proteins 2019; 12:756-763. [DOI: 10.1007/s12602-019-09560-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Kok DE, Steegenga WT, Smid EJ, Zoetendal EG, Ulrich CM, Kampman E. Bacterial folate biosynthesis and colorectal cancer risk: more than just a gut feeling. Crit Rev Food Sci Nutr 2018; 60:244-256. [DOI: 10.1080/10408398.2018.1522499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dieuwertje E. Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Wilma T. Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Eddy J. Smid
- Laboratory of Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Erwin G. Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Cornelia M. Ulrich
- Department of Population Health Sciences and Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Ellen Kampman
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Lee ES, Song EJ, Nam YD, Lee SY. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J Microbiol 2018; 56:773-782. [PMID: 30353462 DOI: 10.1007/s12275-018-8293-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023]
Abstract
Probiotics are the most useful tools for balancing the gut microbiota and thereby influencing human health and disease. Probiotics have a range of effects, from those on nutritional status to medical conditions throughout the body from the gut to non-intestinal body sites such as the brain and skin. Research interest in probiotics with nutritive claims (categorized as nutribiotics) has evolved into interest in therapeutic and pharmacological probiotics with health claims (pharmabiotics). The concept of pharmabiotics emerged only two decades ago, and the new categorization of probiotics to nutribiotics and pharmabiotics was recently suggested, which are under the different regulation depending on that they are food or drug. Information of the gut microbiome has been continuously accumulating, which will make possible the gut microbiome-based healthcare in the future, when nutribiotics show potential for maintaining health while pharmabiotics are effective therapeutic tools for human diseases. This review describes the current understanding in the conceptualization and classification of probiotics. Here, we reviewed probiotics as nutribiotics with nutritional functions and pharmabiotics with pharmaceutic functions in different diseases.
Collapse
Affiliation(s)
- Eun-Sook Lee
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea
| | - Eun-Ji Song
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Young-Do Nam
- Research Group of Healthcare, Korea Food Research Institute, Wanju, 55365, Republic of Korea.,Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - So-Young Lee
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea. .,Research Group of Natural Materials and Metabolism, Korea Food Research Institute, Wanju, 55365, Republic of Korea.
| |
Collapse
|
22
|
Oxidative stress decreases the redox ratio and folate content in the gut microbe, Enterococcus durans (MTCC 3031). Sci Rep 2018; 8:12138. [PMID: 30108274 PMCID: PMC6092354 DOI: 10.1038/s41598-018-30691-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/02/2018] [Indexed: 12/24/2022] Open
Abstract
Gut microbiome plays an important role in determining the effectiveness of cancer therapy. The composition of the microbiome is crucial to maintain good digestive health in the host, and to prevent and treat colorectal cancers. Most cancer therapies employ oxidative stress, which disturbs the redox status of the cell, and consequently affect growth, reductive biosynthesis and cell death. Therefore, oxidative stress can undesirably affect the gut microbiome. Hence, it is important to understand the impact of oxidative stress on gut bacteria to devise effective treatment strategies. The current study induces oxidative stress in the model gut bacterium Enterococcus durans (MTCC 3031) with menadione and H2O2. Oxidative stress considerably decreased the redox ratio (NADPH/NADP), an indicator of the redox status, by 55% (menadione) and 28% (H2O2). In addition, an oxidative stress induced decrease in redox ratio decreased folate synthesis by the bacteria, which is an undesirable consequence for the host, since folate deficiency can induce colorectal cancer. Further, oxidative stress considerably decreased growth and the biomass density by 61% (menadione) and 21% (H2O2). Thus, maintenance of the cellular redox status and management of oxidative stress in the gut microbiome may be crucial to the effectiveness of cancer treatment strategies.
Collapse
|
23
|
de Souza Pinto Lemgruber R, Valgepea K, Hodson MP, Tappel R, Simpson SD, Köpke M, Nielsen LK, Marcellin E. Quantitative analysis of tetrahydrofolate metabolites from clostridium autoethanogenum. Metabolomics 2018; 14:35. [PMID: 30830344 DOI: 10.1007/s11306-018-1331-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/30/2018] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Quantification of tetrahydrofolates (THFs), important metabolites in the Wood-Ljungdahl pathway (WLP) of acetogens, is challenging given their sensitivity to oxygen. OBJECTIVE To develop a simple anaerobic protocol to enable reliable THFs quantification from bioreactors. METHODS Anaerobic cultures were mixed with anaerobic acetonitrile for extraction. Targeted LC-MS/MS was used for quantification. RESULTS Tetrahydrofolates can only be quantified if sampled anaerobically. THF levels showed a strong correlation to acetyl-CoA, the end product of the WLP. CONCLUSION Our method is useful for relative quantification of THFs across different growth conditions. Absolute quantification of THFs requires the use of labelled standards.
Collapse
Affiliation(s)
- Renato de Souza Pinto Lemgruber
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kaspar Valgepea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Metabolomics Australia, AIBN, The University of Queensland, Brisbane, Australia
| | | | | | | | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
- Metabolomics Australia, AIBN, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
24
|
Tidona F, Meucci A, Povolo M, Pelizzola V, Zago M, Contarini G, Carminati D, Giraffa G. Applicability of Lactococcus hircilactis and Lactococcus laudensis as dairy cultures. Int J Food Microbiol 2018; 271:1-7. [PMID: 29459243 DOI: 10.1016/j.ijfoodmicro.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/18/2017] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate whether Lactococcus hircilactis and Lactococcus laudensis can be used as starter cultures. To this end, the two lactococci were characterized for traits of technological and functional interest. Tests in milk included growth at 20, 25, 30, and 37 °C, flavor production, antioxidant (AO) activity, folate and exopolysaccharide (EPS) production. At 30 °C, which resulted the best growth temperature for both strains, Lc. hircilactis and Lc. laudensis lowered the pH of the milk to 4.8 and 5.5, respectively, after 24 h of incubation. Sugar and organic acid composition indicated a higher lactose utilization, coupled with a higher lactate accumulation, by Lc. hircilactis, while galactose was completely consumed by both species. Both strains showed a Cit- phenotype after growth in a selective medium containing citrate as the sole carbon source. Nevertheless, a small amount of citrate was used by both lactococci when grown in milk. The two strains were characterized by a different flavor production, showed high AO activity, and produced small amounts of EPS (~30 mg/L). Lactococcus laudensis showed a weak proteolytic activity while Lc. hircilactis was able to accumulate folate at levels four times higher than uninoculated milk. When the two lactococci were tested as starter cultures in small-scale cheesemaking trials, cheeses resulted of satisfying quality and contained amounts of ethanol, acetic acid, diacetyl and acetoin higher than controls, obtained using a commercial culture. The application of Lc. hircilactis and Lc. laudensis as aromatic cultures in cheesemaking is proposed.
Collapse
Affiliation(s)
- Flavio Tidona
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Aurora Meucci
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Milena Povolo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Valeria Pelizzola
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Miriam Zago
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Giovanna Contarini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Domenico Carminati
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy
| | - Giorgio Giraffa
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA), Centro di Ricerca Zootecnia e Acquacoltura (CREA-ZA), 26900 Lodi, Italy.
| |
Collapse
|
25
|
Folates biosynthesis by Streptococcus thermophilus during growth in milk. Food Microbiol 2018; 69:116-122. [DOI: 10.1016/j.fm.2017.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/26/2017] [Accepted: 08/08/2017] [Indexed: 02/07/2023]
|
26
|
Saubade F, Hemery YM, Guyot JP, Humblot C. Lactic acid fermentation as a tool for increasing the folate content of foods. Crit Rev Food Sci Nutr 2018; 57:3894-3910. [PMID: 27351520 DOI: 10.1080/10408398.2016.1192986] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Folate is an essential micronutrient involved in numerous vital biological reactions. The dietary consumption of naturally occurring vitamin B9 is often inadequate in many countries, and supplementation or fortification programs (using synthetic folic acid) are implemented to alleviate folate deficiency. Other food-based alternatives are possible, such as the use of lactic acid bacteria (LAB) to synthesize folate during fermentation. Many studies have been conducted on this topic, and promising results were reported for some fermented dairy products. However, in other studies, folate consumption by LAB or rather low folate production were observed, resulting in fermented foods that may not significantly contribute to the recommended B9 intake. In addition, the optimum conditions for folate biosynthesis by LAB are still not clear. The aim of this review was thus to (i) clarify the ability of LAB to produce folate in food products, (ii) check if the production of folate by LAB in various fermented foods is sufficient to meet human vitamin B9 requirements and (iii) suggest ways to optimize folate production by LAB in fermented food products.
Collapse
Affiliation(s)
- Fabien Saubade
- a Institute of Research for Development (IRD); UMR 204 Food and Nutrition Research in the Global South (NUTRIPASS) , IRD/University of Montpellier/SupAgro , Montpellier , France
| | - Youna M Hemery
- a Institute of Research for Development (IRD); UMR 204 Food and Nutrition Research in the Global South (NUTRIPASS) , IRD/University of Montpellier/SupAgro , Montpellier , France
| | - Jean-Pierre Guyot
- a Institute of Research for Development (IRD); UMR 204 Food and Nutrition Research in the Global South (NUTRIPASS) , IRD/University of Montpellier/SupAgro , Montpellier , France
| | - Christèle Humblot
- a Institute of Research for Development (IRD); UMR 204 Food and Nutrition Research in the Global South (NUTRIPASS) , IRD/University of Montpellier/SupAgro , Montpellier , France
| |
Collapse
|
27
|
Folate production and fol genes expression by the dairy starter culture Streptococcus thermophilus CRL803 in free and controlled pH batch fermentations. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C. Lactic Acid Bacteria and Bifidobacteria with Potential to Design Natural Biofunctional Health-Promoting Dairy Foods. Front Microbiol 2017; 8:846. [PMID: 28572792 PMCID: PMC5435742 DOI: 10.3389/fmicb.2017.00846] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Consumer interest in healthy lifestyle and health-promoting natural products is a major driving force for the increasing global demand of biofunctional dairy foods. A number of commercial sources sell synthetic formulations of bioactive substances for use as dietary supplements. However, the bioactive-enrichment of health-oriented foods by naturally occurring microorganisms during dairy fermentation is in increased demand. While participating in milk fermentation, lactic acid bacteria can be exploited in situ as microbial sources for naturally enriching dairy products with a broad range of bioactive components that may cover different health aspects. Several of these bioactive metabolites are industrially and economically important, as they are claimed to exert diverse health-promoting activities on the consumer, such as anti-hypertensive, anti-inflammatory, and anti-diabetic, anti-oxidative, immune-modulatory, anti-cholesterolemic, or microbiome modulation. This review aims at discussing the potential of these health-supporting bacteria as starter or adjunct cultures for the elaboration of dairy foods with a broad spectrum of new functional properties and added value.
Collapse
Affiliation(s)
- Daniel M. Linares
- Teagasc Food Research Centre, MooreparkFermoy, Ireland
- APC Microbiome Institute, University College CorkCork, Ireland
| | | | - Erica Renes
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of LeónLeón, Spain
| | - José M. Fresno
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of LeónLeón, Spain
| | - María E. Tornadijo
- Department of Food Hygiene and Technology, Faculty of Veterinary Science, University of LeónLeón, Spain
| | - R. P. Ross
- APC Microbiome Institute, University College CorkCork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, MooreparkFermoy, Ireland
- APC Microbiome Institute, University College CorkCork, Ireland
| |
Collapse
|
29
|
Wu Z, Wu J, Cao P, Jin Y, Pan D, Zeng X, Guo Y. Characterization of probiotic bacteria involved in fermented milk processing enriched with folic acid. J Dairy Sci 2017; 100:4223-4229. [PMID: 28434721 DOI: 10.3168/jds.2017-12640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/28/2017] [Indexed: 01/02/2023]
Abstract
Yogurt products fermented with probiotic bacteria are a consumer trend and a challenge for functional food development. So far, limited research has focused on the behavior of the various probiotic strains used in milk fermentation. In the present study, we characterized folic acid production and the sensory and textural characteristics of yogurt products fermented with probiotic bacteria. Yogurt fermented with Lactobacillus plantarum had improved nutrient content and sensory and textural characteristics, but the presence of L. plantarum significantly impaired the growth and survival of Lactobacillus delbrueckii ssp. bulgaricus during refrigerated storage. Overall, L. plantarum was a good candidate for probiotic yogurt fermentation; further studies are needed to understand the major metabolite path of lactic acid bacteria in complex fermentation.
Collapse
Affiliation(s)
- Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, 315211, Zhejiang, China; Foods for Health Institute, Department of Food Science and Technology, University of California, Davis 95616
| | - Jing Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, 315211, Zhejiang, China
| | - Pei Cao
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, 315211, Zhejiang, China
| | - Yifeng Jin
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, 315211, Zhejiang, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, 315211, Zhejiang, China; Department of Food Science and Nutrition, Jinling College, Nanjing Normal University, 210097, Jiangsu, China.
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Marine Science School, Ningbo University, 315211, Zhejiang, China
| | - Yuxing Guo
- Department of Food Science and Nutrition, Jinling College, Nanjing Normal University, 210097, Jiangsu, China
| |
Collapse
|
30
|
Albuquerque MACD, Bedani R, Vieira ADS, LeBlanc JG, Saad SMI. Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures. Int J Food Microbiol 2016; 236:26-32. [PMID: 27442847 DOI: 10.1016/j.ijfoodmicro.2016.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/17/2016] [Accepted: 07/10/2016] [Indexed: 12/30/2022]
Abstract
The ability of two starter cultures (Streptococcus (S.) thermophilus ST-M6 and St. thermophilus TA-40) and eleven probiotic cultures (St. thermophilus TH-4, Lactobacillus (Lb.) acidophilus LA-5, Lb. fermentum PCC, Lb. reuteri RC-14, Lb. paracasei subsp. paracasei, Lb. casei 431, Lb. paracasei subsp. paracasei F19, Lb. rhamnosus GR-1, and Lb. rhamnosus LGG, Bifidobacterium (B.) animalis subsp. lactis BB-12, B. longum subsp. longum BB-46, and B. longum subsp. infantis BB-02) to produce folate in a modified MRS broth (mMRS) supplemented with different fruit (passion fruit, acerola, orange, and mango) and okara soybean by-products and amaranth flour was investigated. Initially, the folate content of each vegetable substrate was determined: passion fruit by-product showed the lowest folate content (8±2ng/mL) and okara the highest (457±22ng/mL). When the orange by-product and amaranth flour were added to mMRS, all strains were able to increase folate production after 24h of fermentation. B. longum subsp infantis BB-02 produced the highest concentrations (1223±116ng/mL) in amaranth flour. Okara was the substrate that had the lowest impact on the folate production by all strains evaluated. Lb. acidophilus LA-5 (297±36ng/mL) and B. animalis subsp. lactis BB-12 (237±23ng/mL) were also able to produce folate after growth in mMRS containing acerola and orange by-products, respectively. The results of this study demonstrate that folate production is not only strain-dependent but also influenced by the addition of different substrates in the growth media.
Collapse
Affiliation(s)
| | - Raquel Bedani
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, SP, Brazil
| | - Antônio Diogo Silva Vieira
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, SP, Brazil
| | | | - Susana Marta Isay Saad
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 580, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Ozturkoglu-Budak S, Akal C, Yetisemiyen A. Effect of dried nut fortification on functional, physicochemical, textural, and microbiological properties of yogurt. J Dairy Sci 2016; 99:8511-8523. [DOI: 10.3168/jds.2016-11217] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022]
|
32
|
Probiotic-loaded microcapsule system for human in situ folate production: Encapsulation and system validation. Food Res Int 2016; 90:25-32. [PMID: 29195878 DOI: 10.1016/j.foodres.2016.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/21/2016] [Accepted: 10/23/2016] [Indexed: 12/20/2022]
Abstract
This study focused on the use of a new system, an alginate|Ɛ-poly-l-lysine|alginate|chitosan microcapsule (APACM), able to immobilize a folate-producing probiotic, Lactococcus lactis ssp. cremoris (LLC), which provides a new approach to the utilization of capsules and probiotics for in situ production of vitamins. LLC is able to produce 95.25±26μg·L-1 of folate, during 10h, and was encapsulated in the APACM. APACM proved its capacity to protect LLC against the harsh conditions of a simulated digestion maintaining a viable concentration of 6logCFU·mL-1of LLC. A nutrients exchange capacity test, was performed using Lactobacillus plantarum UM7, a high lactic acid producer was used here to avoid false negative results. The production and release of 2g·L-1 of lactic acid was achieved through encapsulation of L. plantarum, after 20h. The adhesion of APACM to epithelial cells was also quantified, yielding 38% and 33% of capsules adhered to HT-29 cells and Caco-2 cells, respectively.
Collapse
|
33
|
Kopp M, Dürr K, Steigleder M, Clavel T, Rychlik M. Development of stable isotope dilution assays for the quantitation of intra- and extracellular folate patterns of Bifidobacterium adolescentis. J Chromatogr A 2016; 1469:48-59. [PMID: 27692648 DOI: 10.1016/j.chroma.2016.09.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 12/17/2022]
Abstract
Folate-producing bifidobacteria have been studied extensively but appropriate methods for detailed quantitation of intra- and extracellular pteroylmono- and pteroylpolyglutamate patterns are lacking. Therefore, B. adolescentis DSM 20083T was cultivated in folate-free medium (FFM) for 24h to develop and validate stable isotope dilution assays (SIDAs) coupled with LC-MS/MS for the determination of 5-formyltetrahydrofolic acid (5-HCO-H4folate), 10-formylfolic acid (10-HCO-PteGlu), tetrahydrofolic acid (H4folate), folic acid (PteGlu) and 5-methyltetrahydrofolic acid (5-CH3-H4folate) including its di-, tri-, and tetraglutamic vitamers (5-CH3-H4PteGlu2-4). The respective monoglutamylated isotopologues labelled with deuterium were used as internal standards for quantitation. Limits of detection and quantitation (LOD/LOQ) were sufficiently low to quantify 48.2nmol L-1 5-CH3-H4folate (5.7/17nmolL-1) and 71.0nmolL-1 5-HCO-H4folate (10/30nmolL-1) as major folate vitamers extracellularly and 124nmolL-1 5-CH3-H4folate (3.4/10nmolL-1), 213nmolL-1 5-HCO-H4folate (4.8/14nmolL-1), and 61.4nmolL-1 H4folate (2.3/7.0nmolL-1) intracellularly after deconjugation. The major portion of native 5-CH3-H4folate vitamer was ascribed to its tetraglutamate ( > 95%). Concentrations of mono-, di-, tri-, and pentaglutamylated folates were below LOD or LOQ. Intra-assay precision coefficients of variation (CVs) ranged from 7% (at a concentration of 53.9nmolL-1 for 5-CH3-H4PteGlu4), 15% (25.5nmolL-1 5-CH3-H4folate) to 18% (78.5nmolL-1 5-HCO-H4folate), extracellularly, and from 6% (60.7nmolL-1 5-CH3-H4PteGlu4), 7% (202nmolL-1 5-HCO-H4folate), 10% (67.1nmolL-1 H4folate) to 11% (127nmolL-1 5-CH3-H4folate), intracellularly. Inter-assay precision CVs ranged from 2% (54.7nmolL-1 5-CH3-H4PteGlu4), 3% (71nmolL-1 5-HCO-H4folate) to 11% (48.2nmolL-1 5-CH3-H4folate), extracellularly, and from 1% (61.4nmolL-1 H4folate), 5% (213nmolL-1 5-HCO-H4folate), 6% (63.5nmolL-1 5-CH3-H4PteGlu4) to 10% (124nmolL-1 5-CH3-H4folate), intracellularly, thus showing excellent reproducibility. Recoveries for all analytes under study ranged between 81 and 113%. These newly developed methods enable reproducible, precise and sensitive quantitation of eight bacterially synthesized folate vitamers in two totally different matrices, including both monoglutamates and polyglutamates. Furthermore, we here present the first assay using solely monoglutamylated [2H4]-5-CH3-H4folate to quantify native polyglutamate patterns of this vitamer in bacteria which might replace time-consuming determination of monoglutamates in the future.
Collapse
Affiliation(s)
- Markus Kopp
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany; ZIEL Institute for Food and Health, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Kerstin Dürr
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany
| | - Matthias Steigleder
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany
| | - Thomas Clavel
- ZIEL Institute for Food and Health, Technische Universität München, Weihenstephaner Berg 3, D-85354, Freising, Germany
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354, Freising, Germany.
| |
Collapse
|
34
|
Papastoyiannidis G, Polychroniadou A, Michaelidou AM, Alichanidis E. Fermented Milks Fortified with B-group Vitamins: Vitamin Stability and Effect on Resulting Products. FOOD SCI TECHNOL INT 2016. [DOI: 10.1177/1082013206073274] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Four fermented milks were made from cow's milk fortified with B-group vitamins (thiamine (B1), riboflavin (B2), pyridoxine, pyridoxal, pyridoxamine and folic acid) inoculated with different mixed probiotic cultures. Fermented milks made from non-fortified milk were used as controls. Some vitamins were partly lost during heating of the milk and fermentation but the level of all vitamins remained stable during storage for 16 days at 4°C. Species and strain of the culture were clearly found to affect the vitamin level throughout fermentation and storage of the products. Fortification was observed as having no impact on the composition or sensory properties of the products, attributes that were found to be mainly dependent on the culture. At the fortification level applied, fermented products could be a good alternative to dietary supplements, because they are readily consumed and combine the beneficial effects of probiotic microorganisms with important amounts of valuable vitamins.
Collapse
Affiliation(s)
- G. Papastoyiannidis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - A. Polychroniadou
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | | | - E. Alichanidis
- Department of Food Science and Technology, School of Agriculture, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
35
|
Pacheco Da Silva FF, Biscola V, LeBlanc JG, Gombossy de Melo Franco BD. Effect of indigenous lactic acid bacteria isolated from goat milk and cheeses on folate and riboflavin content of fermented goat milk. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.03.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
|
37
|
Espirito-Santo AP, Carlin F, Renard CM. Apple, grape or orange juice: Which one offers the best substrate for lactobacilli growth? — A screening study on bacteria viability, superoxide dismutase activity, folates production and hedonic characteristics. Food Res Int 2015; 78:352-360. [DOI: 10.1016/j.foodres.2015.09.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 09/13/2015] [Indexed: 11/17/2022]
|
38
|
Divya JB, Nampoothiri KM. Folate fortification of skim milk by a probiotic Lactococcus lactis CM28 and evaluation of its stability in fermented milk on cold storage. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:3513-9. [PMID: 26028733 PMCID: PMC4444896 DOI: 10.1007/s13197-014-1406-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/16/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
In order to enhance folate levels in fermented foods, a folate producing probiotic lactic acid bacterium isolated from cow's milk and identified as Lactococcus lactis CM28 by 16S rRNA sequencing was used to fortify skim milk. Optimization of medium additives such as folate precursors, prebiotics and reducing agents along with suitable culture conditions enhanced folate levels in skim milk. Optimization resulted in a four fold increase in the extracellular folate (61.02 ± 1.3 μg/L) and after deconjugation the total folate detected was 129.53 ± 1.2 μg/L. The effect of refrigerated storage on the viability of L. lactis, pH, titratable acidity (TA) in terms of percentage lactic acid and finally on the stability of folate was determined. Only a slight variation in pH (4.74 ± 0.02 to 4.415 ± 0.007) and acidity (0.28 ± 0.028 to 0.48 ± 0.014 %) was noted during folate fermentation. During storage, only less than a log unit reduction was noted in the viable count of the probiotic after 15 days and about 90 % of the produced folate was retained in an active state.
Collapse
Affiliation(s)
- Jayakumar Beena Divya
- Biotchnology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695019 Kerala India
| | - Kesavan Madhavan Nampoothiri
- Biotchnology Division, CSIR- National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, 695019 Kerala India
| |
Collapse
|
39
|
Danielle CGDS. Effect of the addition of water-soluble soybean extract and probiotic culture on chemical characteristics and folate concentration in yogurts produced with goats milk. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2015.7394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
40
|
Fernández M, Hudson JA, Korpela R, de los Reyes-Gavilán CG. Impact on human health of microorganisms present in fermented dairy products: an overview. BIOMED RESEARCH INTERNATIONAL 2015; 2015:412714. [PMID: 25839033 PMCID: PMC4369881 DOI: 10.1155/2015/412714] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| | - John Andrew Hudson
- Food Safety Programme, ESR-Christchurch Science Centre, Christchurch 8540, New Zealand
- Food and Environment Safety Programme, The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - Riitta Korpela
- Medical Nutrition Physiology Group, Pharmacology, Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Clara G. de los Reyes-Gavilán
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| |
Collapse
|
41
|
D'Aimmo MR, Modesto M, Mattarelli P, Biavati B, Andlid T. Biosynthesis and cellular content of folate in bifidobacteria across host species with different diets. Anaerobe 2014; 30:169-77. [DOI: 10.1016/j.anaerobe.2014.09.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/10/2014] [Accepted: 09/24/2014] [Indexed: 11/25/2022]
|
42
|
Laiño JE, Juarez del Valle M, Savoy de Giori G, LeBlanc JGJ. Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. Int J Food Microbiol 2014; 191:10-6. [PMID: 25217720 DOI: 10.1016/j.ijfoodmicro.2014.08.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 10/24/2022]
Abstract
The ability of 55 strains from different Lactobacillus species to produce folate was investigated. In order to evaluate folic acid productivity, lactobacilli were cultivated in the folate-free culture medium (FACM). Most of the tested strains needed folate for growth. The production and the extent of vitamin accumulation were distinctive features of individual strains. Lactobacillus amylovorus CRL887 was selected for further studies because of its ability to produce significantly higher concentrations of vitamin (81.2 ± 5.4 μg/L). The safety of this newly identified folate producing strain was evaluated through healthy experimental mice. No bacterial translocation was detected in liver and spleen after consumption of CRL887 during 7 days and no undesirable side effects were observed in the animals that received this strain. This strain in co-culture with previously selected folate producing starter cultures (Lactobacillus bulgaricus CRL871, and Streptococcus thermophilus CRL803 and CRL415) yielded a yogurt containing high folate concentrations (263.1 ± 2.4 μg/L); a single portion of which would provide 15% of the recommended dietary allowance. This is the first report where a Lactobacillus amylovorus strain was successfully used as co-culture for natural folate bio-enrichment of fermented milk.
Collapse
Affiliation(s)
- Jonathan Emiliano Laiño
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC), San Miguel de Tucumán, Tucumán, Argentina
| | - Marianela Juarez del Valle
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC), San Miguel de Tucumán, Tucumán, Argentina
| | - Graciela Savoy de Giori
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC), San Miguel de Tucumán, Tucumán, Argentina; Cátedra de Microbiología Superior, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Jean Guy Joseph LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, (T4000ILC), San Miguel de Tucumán, Tucumán, Argentina.
| |
Collapse
|
43
|
Figueiredo RF, Figueiredo N, Feguri A, Bieski I, Mello R, Espinosa M, Damazo AS. The role of the folic acid to the prevention of orofacial cleft: an epidemiological study. Oral Dis 2014; 21:240-7. [PMID: 24828118 DOI: 10.1111/odi.12256] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/06/2014] [Accepted: 04/27/2014] [Indexed: 01/12/2023]
Abstract
BACKGROUND Orofacial clefts (OFCs) have complex and multifactorial etiologies. Periconceptional folic acid supplementation can significantly reduce the risk of OFC. OBJECTIVE To evaluate the role of folate and other factors in preventing OFC by analyzing the health and socio-demographic data collected from a population sample. METHODS Retrospective case-control study in which mothers with children with or without OFC were evaluated for the following main parameters: nutritional factors, socio-demographic characteristics, pregnancy and family history, use of folate, and counseling by healthcare professionals. RESULTS Socio-epidemiological analysis of the 80 participants, 40 in the case group and 40 in the control group, found a significant impact on the risk of OFC related to economic and educational status. The mothers who had a diet rich in vegetables and white meat had a lower risk of having children with OFC. A short interval between pregnancies, subsequent pregnancy while still breastfeeding, and family history also increased risk of OFC. CONCLUSIONS Limited family planning, diet low in folate, and inadequate use of folate during the periconceptional period and during the first trimester of pregnancy were demonstrated a potential correlation with a high incidence of OFC in this study.
Collapse
Affiliation(s)
- R F Figueiredo
- Post-Graduation in Health Science, Medical School, Federal University of Mato Grosso, Cuiaba, MT, Brazil; Cuiaba Emergency Hospital, Cuiaba, MT, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
Kariluoto S, Edelmann M, Nyström L, Sontag-Strohm T, Salovaara H, Kivelä R, Herranen M, Korhola M, Piironen V. In situ enrichment of folate by microorganisms in beta-glucan rich oat and barley matrices. Int J Food Microbiol 2014; 176:38-48. [DOI: 10.1016/j.ijfoodmicro.2014.01.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/19/2014] [Accepted: 01/27/2014] [Indexed: 10/25/2022]
|
45
|
Park SY, Do JR, Kim YJ, Kim KS, Lim SD. Physiological Characteristics and Production of Folic Acid of Lactobacillus plantarum JA71 Isolated from Jeotgal, a Traditional Korean Fermented Seafood. Korean J Food Sci Anim Resour 2014; 34:106-14. [PMID: 26760752 PMCID: PMC4597824 DOI: 10.5851/kosfa.2014.34.1.106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/15/2022] Open
Abstract
Folic acid, one of the B group of vitamins, is an essential substance for maintaining the functions of the nervous system, and is also known to decrease the level of homocysteine in plasma. Homocysteine influences the lowering of the cognitive function in humans, and especially in elderly people. In order to determine the strains with a strong capacity to produce folic acid, 190 bacteria were isolated from various kinds of jeotgal and chungkuk-jang. In our test experiment, JA71 was found to contain 9.03μg/mL of folic acid after 24 h of incubation in an MRS broth. This showed that JA71 has the highest folic acid production ability compared to the other lactic acid bacteria that were isolated. JA71 was identified as Lactobacillus plantarum by the result of API carbohydrate fermentation pattern and 16s rDNA sequence. JA71 was investigated for its physiological characteristics. The optimum growth temperature of JA71 was 37℃, and the cultures took 12 h to reach pH 4.4. JA71 proved more sensitive to bacitracin when compared with fifteen different antibiotics, and showed most resistance to neomycin and vancomycin. Moreover, it was comparatively tolerant of bile juice and acid, and displayed resistance to Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus with restraint rates of 60.4%, 96.7%, and 76.2%, respectively. These results demonstrate that JA71 could be an excellent strain for application to functional products.
Collapse
Affiliation(s)
| | | | | | | | - Sang-Dong Lim
- Korea Food Research Institute, Seongnam 463-746, Korea
| |
Collapse
|
46
|
Laiño JE, Juarez del Valle M, Savoy de Giori G, LeBlanc JGJ. Development of a high folate concentration yogurt naturally bio-enriched using selected lactic acid bacteria. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2013.05.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Najim N, Aryana KJ. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12. J Dairy Sci 2013; 96:3424-34. [PMID: 23587394 DOI: 10.3168/jds.2012-5842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 01/19/2013] [Indexed: 11/19/2022]
Abstract
Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes.
Collapse
Affiliation(s)
- N Najim
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge 70803, USA
| | | |
Collapse
|
48
|
Effects of the storage time on the folic acid added to ready-to-eat meat products manufactured by irradiation. Radiat Phys Chem Oxf Engl 1993 2013. [DOI: 10.1016/j.radphyschem.2012.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Effect of fructooligosaccharides and galactooligosaccharides on the folate production of some folate-producing bacteria in media cultures or milk. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2012.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Production potency of folate, vitamin B(12), and thiamine by lactic acid bacteria isolated from Japanese pickles. Biosci Biotechnol Biochem 2012; 76:2061-7. [PMID: 23132566 DOI: 10.1271/bbb.120414] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the extracellular production of folate, vitamin B(12), and thiamine in cultures of lactic acid bacteria (LAB) isolated from nukazuke, a traditional Japanese pickle, and the relationships between the vitamin production and such properties of LAB as tolerance to salts, ethanol, etc. Among the 180 isolates of LAB, two strains of Lactobacillus (Lb.) sakei and a strain of Lb. plantarum extracellularly produced high levels of folate (about 100 µg/L). A strain of Lb. coryniformis and one of Lb. plantarum produced about 2 µg/L of vitamin B(12), although the level was not high. No isolates produced a high level of thiamine. The type cultures of LBA (53 strains) did not show any higher production of these vitamins. Some isolates showed tolerance to high concentrations of salts and alcohol, and low initial pH. No significant relationships between folate or vitamin B(12) productions and these properties of LAB were apparent.
Collapse
|