1
|
Drosophila ß Heavy-Spectrin is required in polarized ensheathing glia that form a diffusion-barrier around the neuropil. Nat Commun 2021; 12:6357. [PMID: 34737284 PMCID: PMC8569210 DOI: 10.1038/s41467-021-26462-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
In the central nervous system (CNS), functional tasks are often allocated to distinct compartments. This is also evident in the Drosophila CNS where synapses and dendrites are clustered in distinct neuropil regions. The neuropil is separated from neuronal cell bodies by ensheathing glia, which as we show using dye injection experiments, contribute to the formation of an internal diffusion barrier. We find that ensheathing glia are polarized with a basolateral plasma membrane rich in phosphatidylinositol-(3,4,5)-triphosphate (PIP3) and the Na+/K+-ATPase Nervana2 (Nrv2) that abuts an extracellular matrix formed at neuropil-cortex interface. The apical plasma membrane is facing the neuropil and is rich in phosphatidylinositol-(4,5)-bisphosphate (PIP2) that is supported by a sub-membranous ßHeavy-Spectrin cytoskeleton. ßHeavy-spectrin mutant larvae affect ensheathing glial cell polarity with delocalized PIP2 and Nrv2 and exhibit an abnormal locomotion which is similarly shown by ensheathing glia ablated larvae. Thus, polarized glia compartmentalizes the brain and is essential for proper nervous system function.
Collapse
|
2
|
Liu N, Wang J, Yun Y, Wang J, Xu C, Wu S, Xu L, Li B, Kolodkin-Gal I, Dawood DH, Zhao Y, Ma Z, Chen Y. The NDR kinase-MOB complex FgCot1-Mob2 regulates polarity and lipid metabolism in Fusarium graminearum. Environ Microbiol 2021; 23:5505-5524. [PMID: 34347361 DOI: 10.1111/1462-2920.15698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/08/2023]
Abstract
Members of the NDR (nuclear Dbf2-related) protein-kinase family are essential for cell differentiation and polarized morphogenesis. However, their functions in plant pathogenic fungi are not well understood. Here, we characterized the NDR kinase FgCot1 and its activator FgMob2 in Fusarium graminearum, a major pathogen causing Fusarium head blight (FHB) in wheat. FgCot1 and FgMob2 formed a NDR kinase-MOB protein complex. Localization assays using FgCot1-GFP or FgMob2-RFP constructs showed diverse subcellular localizations, including cytoplasm, septum, nucleus and hyphal tip. ΔFgcot1 and ΔFgmob2 exhibited serious defects in hyphal growth, polarity, fungal development and cell wall integrity as well as reduced virulence in planta. In contrast, lipid droplet accumulation was significantly increased in these two mutants. Phosphorylation of FgCot1 at two highly conserved residues (S462 and T630) as well as five new sites synergistically contributed its role in various cellular processes. In addition, non-synonymous mutations in two MAPK (mitogen-activated protein kinase) proteins, FgSte11 and FgGpmk1, partially rescued the growth defect of ΔFgmob2, indicating a functional link between the FgCot1-Mob2 complex and the FgGpmk1 signalling pathway in regulating filamentous fungal growth. These results indicated that the FgCot1-Mob2 complex is critical for polarity, fungal development, cell wall organization, lipid metabolism and virulence in F. graminearum.
Collapse
Affiliation(s)
- Na Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yingzi Yun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Chaoyun Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Siqi Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Luona Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Baohua Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Dawood H Dawood
- Department of Agriculture Chemistry, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Ankyrin-G regulated epithelial phenotype is required for mouse lens morphogenesis and growth. Dev Biol 2018; 446:119-131. [PMID: 30562487 DOI: 10.1016/j.ydbio.2018.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/24/2022]
Abstract
Epithelial cell polarity, adhesion, proliferation, differentiation and survival are essential for morphogenesis of various organs and tissues including the ocular lens. The molecular mechanisms regulating the lens epithelial phenotype however, are not well understood. Here we investigated the role of scaffolding protein ankyrin-G (AnkG) in mouse lens development by conditional suppression of AnkG expression using the Cre-LoxP recombination approach. AnkG, which serves to link integral membrane proteins to the spectrin/actin cytoskeleton, was found to distribute predominantly to the lateral membranes of lens epithelium with several isoforms of the protein being detected in the mouse lens. Conditional deficiency of AnkG impaired mouse lens morphogenesis starting from embryonic stage E15.5, with neonatal (P1) AnkG cKO lenses exhibiting overt abnormalities in shape, size, epithelial cell height, sheet length and lateral membrane assembly together with defective fiber cell orientation relative to lenses from littermate AnkG floxed or Cre expressing mice. Severe disruptions in E-cadherin/β-catenin-based adherens junctions, and the membrane organization of spectrin-actin cytoskeleton, ZO-1, connexin-50 and Na+-K+-ATPase were noted in AnkG deficient lenses, along with detection in lens epithelium of α-smooth muscle actin, a marker of epithelial to mesenchymal transition. Moreover, lens epithelial cell proliferation and survival were severely compromised while differentiation appears to be normal in AnkG deficient mouse lenses. Collectively, these results indicate that AnkG regulates establishment of the epithelial phenotype via lateral membrane assembly, stabilization of E-cadherin-based cell-cell junctions, polarity and membrane organization of transport and adhesion proteins and the spectrin-actin skeleton, and provide evidence for an obligatory role for AnkG in lens morphogenesis and growth.
Collapse
|
4
|
Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell Tissue Res 2016; 366:163-74. [PMID: 27210106 DOI: 10.1007/s00441-016-2423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023]
Abstract
The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.
Collapse
|
5
|
Localization of Hippo signalling complexes and Warts activation in vivo. Nat Commun 2015; 6:8402. [PMID: 26420589 PMCID: PMC4598633 DOI: 10.1038/ncomms9402] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 08/19/2015] [Indexed: 01/20/2023] Open
Abstract
Hippo signalling controls organ growth and cell fate by regulating the activity of the kinase Warts. Multiple Hippo pathway components localize to apical junctions in epithelial cells, but the spatial and functional relationships among components have not been clarified, nor is it known where Warts activation occurs. We report here that Hippo pathway components in Drosophila wing imaginal discs are organized into distinct junctional complexes, including separate distributions for Salvador, Expanded, Warts and Hippo. These complexes are reorganized on Hippo pathway activation, when Warts shifts from associating with its inhibitor Jub to its activator Expanded, and Hippo concentrates at Salvador sites. We identify mechanisms promoting Warts relocalization, and using a phospho-specific antisera and genetic manipulations, identify where Warts activation occurs: at apical junctions where Expanded, Salvador, Hippo and Warts overlap. Our observations define spatial relationships among Hippo signalling components and establish the functional importance of their localization to Warts activation. Components of the Hippo signalling pathway localize to apical junctions in epithelial cells, where they regulate growth in response to mechanical and biochemical cues. Sun et al. show that these proteins are organized into distinct junctional complexes, which reorganize up on Hippo pathway activation.
Collapse
|
6
|
Fox RM, Andrew DJ. Changes in organelle position and epithelial architecture associated with loss of CrebA. Biol Open 2015; 4:317-30. [PMID: 25681391 PMCID: PMC4359738 DOI: 10.1242/bio.201411205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Drosophila CrebA facilitates high-level secretion by transcriptional upregulation of the protein components of the core secretory machinery. In CrebA mutant embryos, both salivary gland (SG) morphology and epidermal cuticle secretion are abnormal, phenotypes similar to those observed with mutations in core secretory pathway component genes. Here, we examine the cellular defects associated with CrebA loss in the SG epithelium. Apically localized secretory vesicles are smaller and less abundant, consistent with overall reductions in secretion. Unexpectedly, global mislocalization of cellular organelles and excess membrane accumulation in the septate junctions (SJs) are also observed. Whereas mutations in core secretory pathway genes lead to organelle localization defects similar to those of CrebA mutants, they have no effect on SJ-associated membrane. Mutations in tetraspanin genes, which are normally repressed by CrebA, have mild defects in SJ morphology that are rescued by simultaneous CrebA loss. Correspondingly, removal of several tetraspanins gives partial rescue of the CrebA SJ phenotype, supporting a role for tetraspanins in SJ organization.
Collapse
Affiliation(s)
- Rebecca M Fox
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J Andrew
- The Department of Cell Biology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Morais-de-Sá E, Mukherjee A, Lowe N, St Johnston D. Slmb antagonises the aPKC/Par-6 complex to control oocyte and epithelial polarity. Development 2014; 141:2984-92. [PMID: 25053432 PMCID: PMC4197659 DOI: 10.1242/dev.109827] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Drosophila anterior-posterior axis is specified when the posterior follicle cells signal to polarise the oocyte, leading to the anterior/lateral localisation of the Par-6/aPKC complex and the posterior recruitment of Par-1, which induces a microtubule reorganisation that localises bicoid and oskar mRNAs. Here we show that oocyte polarity requires Slmb, the substrate specificity subunit of the SCF E3 ubiquitin ligase that targets proteins for degradation. The Par-6/aPKC complex is ectopically localised to the posterior of slmb mutant oocytes, and Par-1 and oskar mRNA are mislocalised. Slmb appears to play a related role in epithelial follicle cells, as large slmb mutant clones disrupt epithelial organisation, whereas small clones show an expansion of the apical domain, with increased accumulation of apical polarity factors at the apical cortex. The levels of aPKC and Par-6 are significantly increased in slmb mutants, whereas Baz is slightly reduced. Thus, Slmb may induce the polarisation of the anterior-posterior axis of the oocyte by targeting the Par-6/aPKC complex for degradation at the oocyte posterior. Consistent with this, overexpression of the aPKC antagonist Lgl strongly rescues the polarity defects of slmb mutant germline clones. The role of Slmb in oocyte polarity raises an intriguing parallel with C. elegans axis formation, in which PAR-2 excludes the anterior PAR complex from the posterior cortex to induce polarity, but its function can be substituted by overexpressing Lgl.
Collapse
Affiliation(s)
- Eurico Morais-de-Sá
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Avik Mukherjee
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Nick Lowe
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Daniel St Johnston
- The Gurdon Institute, The Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
8
|
Bizzarri M, Palombo A, Cucina A. Theoretical aspects of Systems Biology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2013; 112:33-43. [PMID: 23562476 DOI: 10.1016/j.pbiomolbio.2013.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 12/20/2022]
Abstract
The natural world consists of hierarchical levels of complexity that range from subatomic particles and molecules to ecosystems and beyond. This implies that, in order to explain the features and behavior of a whole system, a theory might be required that would operate at the corresponding hierarchical level, i.e. where self-organization processes take place. In the past, biological research has focused on questions that could be answered by a reductionist program of genetics. The organism (and its development) was considered an epiphenomenona of its genes. However, a profound rethinking of the biological paradigm is now underway and it is likely that such a process will lead to a conceptual revolution emerging from the ashes of reductionism. This revolution implies the search for general principles on which a cogent theory of biology might rely. Because much of the logic of living systems is located at higher levels, it is imperative to focus on them. Indeed, both evolution and physiology work on these levels. Thus, by no means Systems Biology could be considered a 'simple' 'gradual' extension of Molecular Biology.
Collapse
Affiliation(s)
- Mariano Bizzarri
- Department of Experimental Medicine, Systems Biology Group Lab, Sapienza University of Rome, via Scarpa 14-16, 00161 Rome, Italy.
| | | | | |
Collapse
|
9
|
Jahchan NS, Wang D, Bissell MJ, Luo K. SnoN regulates mammary gland alveologenesis and onset of lactation by promoting prolactin/Stat5 signaling. Development 2012; 139:3147-56. [PMID: 22833129 DOI: 10.1242/dev.079616] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mammary epithelial cells undergo structural and functional differentiation at late pregnancy and parturition to produce and secrete milk. Both TGF-β and prolactin pathways are crucial regulators of this process. However, how the activities of these two antagonistic pathways are orchestrated to initiate lactation has not been well defined. Here, we show that SnoN, a negative regulator of TGF-β signaling, coordinates TGF-β and prolactin signaling to control alveologenesis and lactogenesis. SnoN expression is induced at late pregnancy by the coordinated actions of TGF-β and prolactin. The elevated SnoN promotes Stat5 signaling by enhancing its stability, thereby sharply increasing the activity of prolactin signaling at the onset of lactation. SnoN-/- mice display severe defects in alveologenesis and lactogenesis, and mammary epithelial cells from these mice fail to undergo proper morphogenesis. These defects can be rescued by an active Stat5. Thus, our study has identified a new player in the regulation of milk production and revealed a novel function of SnoN in mammary alveologenesis and lactogenesis in vivo through promotion of Stat5 signaling.
Collapse
Affiliation(s)
- Nadine S Jahchan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
10
|
Niu J, Mo Q, Wang H, Li M, Cui J, Li Z, Li Z. Invasion inhibition by a MEK inhibitor correlates with the actin-based cytoskeleton in lung cancer A549 cells. Biochem Biophys Res Commun 2012; 422:80-4. [PMID: 22560902 DOI: 10.1016/j.bbrc.2012.04.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 04/20/2012] [Indexed: 11/30/2022]
Abstract
Metastasis remains the primary cause of lung cancer. The molecules involved in metastasis may be candidates for new targets in the therapy of lung cancer. The MEK/ERK signaling pathway has been highlighted in a number of studies on invasiveness and metastasis. In this paper, we show that the MEK inhibitor U0126 induces flattened morphology, remodels the actin-based cytoskeleton, and potently inhibits chemotaxis and Matrigel invasion in the human lung cancer A549 cell line. Furthermore, downregulation of ERK by small interfering RNA significantly inhibits the invasion of A549 cells and induces stress fiber formation. Taken together, our findings provide the first evidence that the inhibition of invasion of lung cancer A549 cells by inhibiting MEK/ERK signaling activity is associated with remodeling of the actin cytoskeleton, suggesting a novel link between MEK/ERK signaling-mediated cell invasion and the actin-based cytoskeleton.
Collapse
Affiliation(s)
- Junmei Niu
- Department of First Internal Medicine, Tuberculosis Division, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Kelly FD, Nurse P. Spatial control of Cdc42 activation determines cell width in fission yeast. Mol Biol Cell 2011; 22:3801-11. [PMID: 21849474 PMCID: PMC3192860 DOI: 10.1091/mbc.e11-01-0057] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fission yeast Schizosaccharomyces pombe is a rod-shaped cell that grows by linear extension at the cell tips, with a nearly constant width throughout the cell cycle. This simple geometry makes it an ideal system for studying the control of cellular dimensions. In this study, we carried out a near-genome-wide screen for mutants wider than wild-type cells. We found 11 deletion mutants that were wider; seven of the deleted genes are implicated in the control of the small GTPase Cdc42, including the Cdc42 guanine nucleotide exchange factor (GEF) Scd1 and the Cdc42 GTPase-activating protein (GAP) Rga4. Deletions of rga4 and scd1 had additive effects on cell width, and the proteins localized independently of one another, with Rga4 located at the cell sides and Scd1 at the cell tips. Activated Cdc42 localization is altered in rga4Δ, scd1Δ, and scd2Δ mutants. Delocalization and ectopic retargeting experiments showed that the localizations of Rga4 and Scd1 are crucial for their roles in determining cell width. We propose that the GAP Rga4 and the GEF Scd1 establish a gradient of activated Cdc42 within the cellular tip plasma membrane, and it is this gradient that determines cell growth-zone size and normal cell width.
Collapse
|
12
|
Rajagopal R, Huang J, Dattilo LK, Kaartinen V, Mishina Y, Deng CX, Umans L, Zwijsen A, Roberts AB, Beebe DC. The type I BMP receptors, Bmpr1a and Acvr1, activate multiple signaling pathways to regulate lens formation. Dev Biol 2009; 335:305-16. [PMID: 19733164 DOI: 10.1016/j.ydbio.2009.08.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 06/18/2009] [Accepted: 08/25/2009] [Indexed: 12/14/2022]
Abstract
BMPs play multiple roles in development and BMP signaling is essential for lens formation. However, the mechanisms by which BMP receptors function in vertebrate development are incompletely understood. To determine the downstream effectors of BMP signaling and their functions in the ectoderm that will form the lens, we deleted the genes encoding the type I BMP receptors, Bmpr1a and Acvr1, and the canonical transducers of BMP signaling, Smad4, Smad1 and Smad5. Bmpr1a and Acvr1 regulated cell survival and proliferation, respectively. Absence of both receptors interfered with the expression of proteins involved in normal lens development and prevented lens formation, demonstrating that BMPs induce lens formation by acting directly on the prospective lens ectoderm. Remarkably, the canonical Smad signaling pathway was not needed for most of these processes. Lens formation, placode cell proliferation, the expression of FoxE3, a lens-specific transcription factor, and the lens protein, alphaA-crystallin were regulated by BMP receptors in a Smad-independent manner. Placode cell survival was promoted by R-Smad signaling, but in a manner that did not involve Smad4. Of the responses tested, only maintaining a high level of Sox2 protein, a transcription factor expressed early in placode formation, required the canonical Smad pathway. A key function of Smad-independent BMP receptor signaling may be reorganization of actin cytoskeleton to drive lens invagination.
Collapse
Affiliation(s)
- Ramya Rajagopal
- Departments of Ophthalmology and Visual Sciences, Washington University, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
JNK signaling controls border cell cluster integrity and collective cell migration. Curr Biol 2008; 18:538-44. [PMID: 18394890 DOI: 10.1016/j.cub.2008.03.029] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 03/13/2008] [Accepted: 03/14/2008] [Indexed: 12/16/2022]
Abstract
Collective cell movement is a mechanism for invasion identified in many developmental events. Examples include the movement of lateral-line neurons in Zebrafish, cells in the inner blastocyst, and metastasis of epithelial tumors [1]. One key model to study collective migration is the movement of border cell clusters in Drosophila. Drosophila egg chambers contain 15 nurse cells and a single oocyte surrounded by somatic follicle cells. At their anterior end, polar cells recruit several neighboring follicle cells to form the border cell cluster [2]. By stage 9, and over 6 hr, border cells migrate as a cohort between nurse cells toward the oocyte. The specification and directionality of border cell movement are regulated by hormonal and signaling mechanisms [3]. However, how border cells are held together while they migrate is not known. Here, we show that a negative-feedback loop controlling JNK activity regulates border cell cluster integrity. JNK signaling modulates contacts between border cells and between border cells and substratum to sustain collective migration by regulating several effectors including the polarity factor Bazooka and the cytoskeletal adaptor D-Paxillin. We anticipate a role for the JNK pathway in controlling collective cell movements in other morphogenetic and clinical models.
Collapse
|
14
|
Alves-Silva J, Hahn I, Huber O, Mende M, Reissaus A, Prokop A. Prominent actin fiber arrays in Drosophila tendon cells represent architectural elements different from stress fibers. Mol Biol Cell 2008; 19:4287-97. [PMID: 18667532 PMCID: PMC2555930 DOI: 10.1091/mbc.e08-02-0182] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Tendon cells are specialized cells of the insect epidermis that connect basally attached muscle tips to the cuticle on their apical surface via prominent arrays of microtubules. Tendon cells of Drosophila have become a useful genetic model system to address questions with relevance to cell and developmental biology. Here, we use light, confocal, and electron microscopy to present a refined model of the subcellular organization of tendon cells. We show that prominent arrays of F-actin exist in tendon cells that fully overlap with the microtubule arrays, and that type II myosin accumulates in the same area. The F-actin arrays in tendon cells seem to represent a new kind of actin structure, clearly distinct from stress fibers. They are highly resistant to F-actin-destabilizing drugs, to the application of myosin blockers, and to loss of integrin, Rho1, or mechanical force. They seem to represent an important architectural element of tendon cells, because they maintain a connection between apical and basal surfaces even when microtubule arrays of tendon cells are dysfunctional. Features reported here and elsewhere for tendon cells are reminiscent of the structural and molecular features of support cells in the inner ear of vertebrates, and they might have potential translational value.
Collapse
Affiliation(s)
- Juliana Alves-Silva
- Faculty of Life Sciences, Wellcome Trust Centre of Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
15
|
Stiening C, Hoying J, Abdallah M, Hoying A, Pandey R, Greer K, Collier R. The Effects of Endocrine and Mechanical Stimulation on Stage I Lactogenesis in Bovine Mammary Epithelial Cells. J Dairy Sci 2008; 91:1053-66. [DOI: 10.3168/jds.2007-0161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Lee CH. Phosphoinositides Signaling and Epithelial-to-Mesenchymal Transition: Putative Topic for Basic Toxicological Research. Toxicol Res 2008; 24:1-9. [PMID: 32038770 PMCID: PMC7006266 DOI: 10.5487/tr.2008.24.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 02/19/2008] [Indexed: 11/27/2022] Open
Abstract
Ptdlns(4,5)P2 is a key cellular phosphoinositide that localizes in separate and distinctive pools in subcellular membrane and vesicular compartments. In membranes, Ptdlns(4,5)P2 acts as a precursor to second messengers and is itself a main signaling and targeting molecule. Specific subcellular localization of type I PIP kinases directed by interacting with specific targeting module differentiates Ptdlns(4,5)P2 production in a spatial and temporal manner. Several lines of evidences support the idea that Ptdlns(4,5)P2 is generated in very specific pools in a spatial and temporal manner or by feeding Ptdlns(4,5)P2 directly to effectors. In this concept, the interaction of PIPKI isoforms with a specific targeting module to allow precise subcellular targeting modulates highly specific Ptdlns(4,5)P2 synthesis and channeling overall effectors. For instance, localization of PIPKIγ661 to focal adhesions by an interaction with talin results in spatial and temporal production of Ptdlns(4,5)P2, which regulates EGF-stimulated directional cell migration. In addition, Type lγ PIPK is targeted to E-cadherin in cell adherence junction and plays a role in controlling dynamics of cell adherence junction and endocytosis of E-cadherin. Characterizing how PIP kinase isoforms are regulated by interactions with their targeting modules, as well as the mechanisms by which their product, Ptdlns(4,5)P2, exerts its effects on cellular signaling processes, is crucial to understand the harmonized control of numerous cellular signaling pathways. Thus, in this review the roles of the Ptdlns(4)P(5) kinases and Ptdlns(4,5)P2 were described and critically reviewed in terms of regulation of the E-cadherin trafficking, cell migration, and formation of cell adherence junction which is indispensable and is tightly controlled in epithelial-to-mesenchymal transition process.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Pharmacology and Biomedical Science, College of Medicine, Hanyang University, Sungdong-gu, Seoul, 133-791 Korea
| |
Collapse
|
17
|
Drosophila follicle cells: morphogenesis in an eggshell. Semin Cell Dev Biol 2008; 19:271-82. [PMID: 18304845 DOI: 10.1016/j.semcdb.2008.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 01/16/2008] [Indexed: 01/15/2023]
Abstract
Epithelial morphogenesis is important for organogenesis and pivotal for carcinogenesis, but mechanisms that control it are poorly understood. The Drosophila follicular epithelium is a genetically tractable model to understand these mechanisms in vivo. This epithelium of follicle cells encases germline cells to create an egg. In this review, we summarize progress toward understanding mechanisms that maintain the epithelium or permit migrations essential for oogenesis. Cell-cell communication is important, but the same signals are used repeatedly to control distinct events. Understanding intrinsic mechanisms that alter responses to developmental signals will be important to understand regulation of cell shape and organization.
Collapse
|
18
|
Bournier O, Kroviarski Y, Rotter B, Nicolas G, Lecomte MC, Dhermy D. Spectrin interacts with EVL (Enabled/vasodilator-stimulated phosphoprotein-like protein), a protein involved in actin polymerization. Biol Cell 2006; 98:279-93. [PMID: 16336193 DOI: 10.1042/bc20050024] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND INFORMATION The alpha- and beta-spectrin chains constitute the filaments of the spectrin-based skeleton, which was first identified in erythrocytes. The discovery of analogous structures at plasma membranes of eukaryotic cells has led to investigations of the role of this spectrin skeleton in many cellular processes. The alphaII-spectrin chain expressed in nucleated cells harbours in its central region several functional motifs, including an SH3 (Src homology 3) domain. RESULTS Using yeast two-hybrid screening, we have identified EVL [Enabled/VASP (vasodilator-stimulated phosphoprotein)-like protein] as a new potential partner of the alphaII-spectrin SH3 domain. In the present study, we investigated the interaction of the alphaII-spectrin SH3 domain with EVL and compared this with other proteins related to EVL [Mena (mammalian Enabled) and VASP]. We confirmed the in vitro interaction between EVL and the alphaII-spectrin SH3 domain by GST (glutathione S-transferase) pull-down assays, and showed that the co-expression of EVL with the alphaII-spectrin SH3 domain in COS-7 cells resulted in the partial delocalization of the SH3 domain from cytoplasm to filopodia and lamellipodia, where it was co-localized with EVL. In kidney epithelial and COS-7 cells, we demonstrated the co-immunoprecipitation of the alphaII-spectrin chain with over-expressed EVL. Immunofluorescence studies showed that the over-expression of EVL in COS-7 cells promoted the formation of filopodia and lamellipodia, and the expressed EVL was detected in filopodial tips and the leading edge of lamellipodia. In these cells over-expressing EVL, the alphaII-spectrin membrane labelling lagged behind EVL staining in lamellipodia and filopodia, with co-localization of these two stains in the contact area. In kidney epithelial cell lines, focused co-localization of spectrin with expressed EVL was observed in the membrane of the lateral domain, where the cell-cell contacts are reinforced. CONCLUSIONS The possible link between the spectrin-based skeleton and actin via the EVL protein suggests a new way of integrating the spectrin-based skeleton in areas of dynamic actin reorganization.
Collapse
|
19
|
MacLellan DL, Steen H, Adam RM, Garlick M, Zurakowski D, Gygi SP, Freeman MR, Solomon KR. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells. Proteomics 2005; 5:4733-42. [PMID: 16267816 DOI: 10.1002/pmic.200500044] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signals that promote proliferation and migration of smooth muscle cells (SMC) have been implicated in pathologic growth of hollow organs. Members of the platelet-derived growth factor (PDGF) family, potent mitogens and motility factors for SMC, have been shown to signal through cholesterol-enriched lipid rafts. We recently demonstrated that PDGF-stimulated DNA synthesis in urinary tract SMC was dependent on the integrity of lipid rafts. Despite its known ability to rapidly alter discrete proteins within rafts, the effect of PDGF on overall raft protein composition is unknown. In this study, we employed isotope coded affinity tag (ICAT) analysis to evaluate PDGF-induced protein changes in lipid rafts of primary culture human SMC. Following acute (i.e., 15 min) exposure of SMC to PDGF, 23 proteins increased in rafts >20%. In contrast, raft localization of only three proteins increased after 12 h of PDGF treatment. Among the proteins that increased at 15 min were the glycophosphatidylinositol-anchored proteins Thy-1, 5'-nucleotidase, and CD55, the cytoskeletal proteins actin, actinin, tropomyosin-3 and -4, and the endocytosis-related proteins clathrin and beta-adaptin. In addition, eight Rho family members were localized to rafts by ICAT analysis. Collectively, these observations suggest a role for lipid rafts in regulation of PDGF-stimulated changes in the cytoskeleton.
Collapse
Affiliation(s)
- Dawn L MacLellan
- Department of Urology, The Urological Diseases Research Center, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Goto T, Davidson L, Asashima M, Keller R. Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation. Curr Biol 2005; 15:787-93. [PMID: 15854914 DOI: 10.1016/j.cub.2005.03.040] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 02/28/2005] [Accepted: 03/02/2005] [Indexed: 11/24/2022]
Abstract
The noncanonical wnt/planar cell polarity (PCP) pathway [1] regulates the mediolaterally (planarly) polarized cell protrusive activity and intercalation that drives the convergent extension movements of vertebrate gastrulation [2], yet the underlying mechanism is unknown. We report that perturbing expression of Xenopus PCP genes, Strabismus (Xstbm), Frizzled (Xfz7), and Prickle (Xpk), disrupts radially polarized fibronectin fibril assembly on mesodermal tissue surfaces, mediolaterally polarized motility, and intercalation. Polarized motility is restored in Xpk-perturbed explants but not in Xstbm- or Xfz7-perturbed explants cultured on fibronectin surfaces. The PCP complex, including Xpk, first regulates polarized surface assembly of the fibronectin matrix, which is necessary for mediolaterally polarized motility, and then, without Xpk, has an additional and necessary function in polarizing motility. These results show that the PCP complex regulates several cell polarities (radial, planar) and several processes (matrix deposition, motility), by indirect and direct mechanisms, and acts in several modes, either with all or a subset of its components, during vertebrate morphogenesis.
Collapse
Affiliation(s)
- Toshiyasu Goto
- International Cooperative Research Project, Japan Science and Technology Corporation
| | | | | | | |
Collapse
|
21
|
Grizzi F, Chiriva-Internati M. The complexity of anatomical systems. Theor Biol Med Model 2005; 2:26. [PMID: 16029490 PMCID: PMC1180857 DOI: 10.1186/1742-4682-2-26] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/19/2005] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The conception of anatomical entities as a hierarchy of infinitely graduated forms and the increase in the number of observed anatomical sub-entities and structural variables has generated a growing complexity, thus highlighting new properties of organised biological matter. RESULTS (1) Complexity is so pervasive in the anatomical world that it has come to be considered as a primary characteristic of anatomical systems. (2) Anatomical entities, when viewed at microscopic as well as macroscopic level of observation, show a different degree of complexity. (3) Complexity can reside in the structure of the anatomical system (having many diverse parts with varying interactions or an intricate architecture) or in its behaviour. Often complexity in structure and behaviour go together. (4) Complex systems admit many descriptions (ways of looking at the system) each of which is only partially true. Each way of looking at a complex system requires its own description, its own mode of analysis and its own breaking down of the system in different parts; (5) Almost all the anatomical entities display hierarchical forms: their component structures at different spatial scales or their process at different time scales are related to each other. CONCLUSION The need to find a new way of observing and measuring anatomical entities, and objectively quantifying their different structural changes, prompted us to investigate the non-Euclidean geometries and the theories of complexity, and to apply their concepts to human anatomy. This attempt has led us to reflect upon the complex significance of the shape of an observed anatomical entity. Its changes have been defined in relation to variations in its status: from a normal (i.e. natural) to a pathological or altered state introducing the concepts of kinematics and dynamics of anatomical forms, speed of their changes, and that of scale of their observation.
Collapse
Affiliation(s)
- Fabio Grizzi
- Scientific Direction, Istituto Clinico Humanitas, IRCCS, Via Manzoni 56, 20089 Rozzano, Milan, Italy
- Michele Rodriguez Foundation, Scientific Institute for Quantitative Measures in Medicine, Via Ludovico Di Breme 79, 20100 Milan, Italy
| | - Maurizio Chiriva-Internati
- Department of Microbiology & Immunology, Texas Tech University Health Sciences Center and Southwest Cancer Treatment and Research Center, 79430 Lubbock, Texas, USA
| |
Collapse
|
22
|
Lehtonen S, Ryan JJ, Kudlicka K, Iino N, Zhou H, Farquhar MG. Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc Natl Acad Sci U S A 2005; 102:9814-9. [PMID: 15994232 PMCID: PMC1175008 DOI: 10.1073/pnas.0504166102] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nephrin is a cell surface receptor of the Ig superfamily that localizes to slit diaphragms, the specialized junctions between the interdigitating foot processes of the glomerular epithelium (podocytes) in the kidney. Mutations in the NPHS1 gene encoding nephrin lead to proteinuria and congenital nephrotic syndrome, indicating that nephrin is essential for normal glomerular development and function. To identify nephrin-binding proteins, we performed mass spectrometry on proteins obtained from pull-down assays with GST-nephrin cytoplasmic domain. Nephrin specifically pulled down six proteins from glomerular lysates, MAGI-2/S-SCAM (membrane-associated guanylate kinase inverted 2/synaptic scaffolding molecule), IQGAP1 (IQ motif-containingGTPase-activatingprotein1),CASK(calcium/calmodulin-dependent serine protein kinase), alpha-actinin, alphaII spectrin, and betaII spectrin. All of these scaffolding proteins are often associated with cell junctions. By immunofluorescence these proteins are expressed in glomerular epithelial cells, where they colocalize with nephrin in the foot processes. During glomerular development, IQGAP1 is expressed in the junctional complexes between the earliest identifiable podocytes, MAGI-2/S-SCAM is first detected in junctional complexes in podocytes after their migration to the base of the cells. Thus, the nephrin-slit diaphragm protein complex contains a group of scaffolding proteins that function to connect junctional membrane proteins to the actin cytoskeleton and signaling cascades. Despite their special morphology and function, there is considerable compositional similarity between the podocyte slit diaphragm and typical junctional complexes of other epithelial cells.
Collapse
Affiliation(s)
- Sanna Lehtonen
- Departments of Cellular and Molecular Medicine and Pathology, and Ludwig Institute for Cancer Research, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
23
|
Adell T, Gamulin V, Perović-Ottstadt S, Wiens M, Korzhev M, Müller IM, Müller WEG. Evolution of metazoan cell junction proteins: the scaffold protein MAGI and the transmembrane receptor tetraspanin in the demosponge Suberites domuncula. J Mol Evol 2005; 59:41-50. [PMID: 15383906 DOI: 10.1007/s00239-004-2602-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 01/12/2004] [Indexed: 11/26/2022]
Abstract
Until recently the positioning of the sponges (phylum Porifera) within the metazoan systematics was hampered by the lack of molecular evidence for the existence of junctional structures in the surface cell layers. In this study two genes related to the tight junctions are characterized from the demosponge Suberites domuncula: tetraspanin (SDTM4SF), a cell surface receptor, and MAGI (SDMAGI), a MAGUK (membrane-associated guanylate kinase homologue) protein. Especially the MAGI protein is known in other metazoan animal phyla to exist exclusively in tight junctions. The characteristic domains of MAGI proteins (six PDZ domains, two WW domains, and a truncated guanylate kinase motif) are conserved in the sponge protein. The functional analysis of SDMAGI done by in situ hybridization shows its expression in the surface epithelial layers (exopinacoderm and endopinacoderm). Northern blot studies reveal that expression of SDMAGI and SDTM4SF increases after formation of the pinacoderm layer in the animals as well as in primmorphs. These results support earlier notions that sponges contain junctional structures. We conclude that sponges contain epithelia whose cells are organized by cell junctions.
Collapse
Affiliation(s)
- Teresa Adell
- Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Nikolaou S, Hartman D, Nisbet AJ, Presidente PJA, Gasser RB. Genomic organization and expression analysis for hcstk, a serine/threonine protein kinase gene of Haemonchus contortus, and comparison with Caenorhabditis elegans par-1. Gene 2005; 343:313-22. [PMID: 15588586 DOI: 10.1016/j.gene.2004.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2004] [Revised: 08/02/2004] [Accepted: 09/23/2004] [Indexed: 11/19/2022]
Abstract
The organization and expression of a putative serine/threonine kinase gene (designated hcstk), proposed to relate to a conserved eukaryotic signal transduction pathway, was characterized for the socio-economically important pathogen Haemonchus contortus (Nematoda). The entire hcstk gene is approximately 26.7 kb in size, has 26 exons and is inferred to produce multiple isoforms via alternative splicing in its N-terminal header and spacer domains. Comparison of hcstk with its Caenorhabditis elegans homologue, par-1, revealed major differences in genomic organization, exon number and inferred mRNA processing. The expression of hcstk transcripts was highest in the first- and late-fourth-stage larvae of the parasite compared with other developmental stages, somewhat distinct from par-1 in C. elegans. In spite of a substantial amino acid sequence identity in the functional domains between the predicted proteins HcSTK and PAR-1, overall, the findings suggest a unique functional role for each molecule.
Collapse
Affiliation(s)
- Sia Nikolaou
- Primary Industries Research Victoria (Animal Genetics and Genomics), 475 Mickleham Road, Attwood, Victoria 3049, Australia
| | | | | | | | | |
Collapse
|
25
|
Huang T, You Y, Spoor MS, Richer EJ, Kudva VV, Paige RC, Seiler MP, Liebler JM, Zabner J, Plopper CG, Brody SL. Foxj1 is required for apical localization of ezrin in airway epithelial cells. J Cell Sci 2004; 116:4935-45. [PMID: 14625387 DOI: 10.1242/jcs.00830] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Establishment and maintenance of epithelial cell polarity depend on cytoskeletal organization and protein trafficking to polarized cortical membranes. ERM (ezrin, radixin, moesin) family members link polarized proteins with cytoskeletal actin. Although ERMs are often considered to be functionally similar, we found that, in airway epithelial cells, apical localization of ERMs depend on cell differentiation and is independently regulated. Moesin was present in the apical membrane of all undifferentiated epithelial cells. However, in differentiated cells, ezrin and moesin were selectively localized to apical membranes of ciliated airway cells and were absent from secretory cells. To identify regulatory proteins required for selective ERM trafficking, we evaluated airway epithelial cells lacking Foxj1, an F-box factor that directs programs required for cilia formation at the apical membrane. Interestingly, Foxj1 expression was also required for localization of apical ezrin, but not moesin. Additionally, membrane-cytoskeletal and threonine-phosphorylated ezrin were decreased in Foxj1-null cells, consistent with absent apical ezrin. Although apical moesin expression was present in null cells, it could not compensate for ezrin because ERM-associated EBP50 and the beta2 adrenergic receptor failed to localize apically in the absence of Foxj1. These findings indicate that Foxj1 regulates ERM proteins differentially to selectively direct the apical localization of ezrin for the organization of multi-protein complexes in apical membranes of airway epithelial cells.
Collapse
Affiliation(s)
- Tao Huang
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Segbert C, Johnson K, Theres C, van Fürden D, Bossinger O. Molecular and functional analysis of apical junction formation in the gut epithelium of Caenorhabditis elegans. Dev Biol 2004; 266:17-26. [PMID: 14729475 DOI: 10.1016/j.ydbio.2003.10.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Caenorhabditis elegans intestine is a simple and accessible model system to analyze the mechanism of junction assembly. In comparison to Drosophila and vertebrates, the C. elegans apical junction is remarkable because a single electron-dense structure is implicated in complex processes such as epithelial tightness, vectorial transport and cell adhesion. Here we present evidence in support of a heterogeneous molecular assembly of junctional proteins found in Drosophila and vertebrate epithelia associated with different junctions or regions of the plasma membrane. In addition, we show that molecularly diverse complexes participate in different aspects of epithelial maturation in the C. elegans intestine. DLG-1 (Discs large) acts synergistically with the catenin-cadherin complex (HMP-1-HMP-2-HMR-1) and the Ezrin-Radixin-Moesin homolog (ERM-1) to ensure tissue integrity of the intestinal tube. The correct localization of DLG-1 itself depends on AJM-1, a coiled-coil protein. Double depletion of HMP-1 (alpha-catenin) and LET-413 (C. elegans homolog of Drosophila Scribble) suggests that the catenin-cadherin complex is epistatic to LET-413, while additional depletion of subapically expressed CRB-1 (Crumbs) emphasizes a role of CRB-1 concerning apical junction formation in the C. elegans intestine.
Collapse
Affiliation(s)
- Christoph Segbert
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
27
|
Lemmers C, Michel D, Lane-Guermonprez L, Delgrossi MH, Médina E, Arsanto JP, Le Bivic A. CRB3 binds directly to Par6 and regulates the morphogenesis of the tight junctions in mammalian epithelial cells. Mol Biol Cell 2004; 15:1324-33. [PMID: 14718572 PMCID: PMC363137 DOI: 10.1091/mbc.e03-04-0235] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Crumbs is an apical transmembrane protein crucial for epithelial morphogenesis in Drosophila melanogaster embryos. A protein with all the characteristics for a Crumbs homologue has been identified from patients suffering from retinitis pigmentosa group 12, but this protein (CRB1) is only expressed in retina and some parts of the brain, both in human and mouse. Here, we describe CRB3, another Crumbs homologue that is preferentially expressed in epithelial tissues and skeletal muscles in human. CRB3 shares the conserved cytoplasmic domain with other Crumbs but exhibits a very short extracellular domain without the EGF- and laminin A-like G repeats present in the other Crumbs. CRB3 is localized to the apical and subapical area of epithelial cells from the mouse and human intestine, suggesting that it could play a role in epithelial morphogenesis. Indeed, expression of CRB3 or of a chimera containing the extracellular domain of the neurotrophin receptor p75NTR and the transmembrane and cytoplasmic domains of CRB3 led to a slower development of functional tight junctions in Madin-Darby canine kidney cells. This phenotype relied on the presence of CRB3 four last amino acids (ERLI) that are involved in a direct interaction with Par6, a regulator of epithelial polarity and tight junction formation. Thus, CRB3, through its cytoplasmic domain and its interactors, plays a role in apical membrane morphogenesis and tight junction regulation.
Collapse
Affiliation(s)
- Céline Lemmers
- Laboratoire de Neurogenèse et Morphogenèse au cours du Développement et chez l'Adulte, Unité Mixte Recherche 6156 Centre National de la Recherche Scientifique, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Watanabe T, Miyatani S, Katoh I, Kobayashi S, Ikawa Y. Expression of a novel secretory form (Crb1s) of mouse Crumbs homologue Crb1 in skin development. Biochem Biophys Res Commun 2004; 313:263-70. [PMID: 14684155 DOI: 10.1016/j.bbrc.2003.11.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drosophila Crumbs and the mammalian homologues encoded by the Crb genes are transmembrane proteins required for determination of retinal cell polarity. We cloned a novel variant of mouse Crb1 and termed it Crb1s. Since the 3'-end of exon 6 remained unspliced, Crb1s coded for a short secretory protein lacking the transmembrane and cytoplasmic domains required for the function of Crb1. The Crb1 expression was confined to brain and eye, whereas Crb1s was detectable in various tissues including skin, lung, and kidney in adult mice. Active expression of Crb1s, but not Crb1, was observed during the skin development, in which localization of the Crb1s protein was altered from the basal layer to the upper layers. Cultured mouse keratinocytes synthesized the Crb1s protein and secreted a 80 kDa processed form to the supernatant. After Ca(2+)-induced differentiation, Crb1s became associated with focal adhesions and cell-cell contacts. Crb1s may play a role distinct from that of Crb1 in epidermal tissue morphogenesis.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Department of Molecular Physiology, Kyoritsu University of Pharmacy, 1-5-30 Shiba-Koen, Minatoku, Tokyo 105-8512, Japan
| | | | | | | | | |
Collapse
|
29
|
Abstract
During embryonic development, polarized epithelial cells are either formed during cleavage or formed from mesenchymal cells. Because the formation of epithelia during embryogenesis has to occur with high fidelity to ensure proper development, embryos allow a functional approach to study epithelial cell polarization in vivo. In particular, genetic model organisms have greatly advanced our understanding of the generation and maintenance of epithelial cell polarity. Many novel and important polarity genes have been identified and characterized in invertebrate systems, like Drosophila melanogaster and Caenorhabditis elegans. With the rapid identification of mammalian homologues of these invertebrate polarity genes, it has become clear that many important protein domains, single proteins and even entire protein complexes are evolutionarily conserved. It is to be expected that the field of epithelial cell polarity is just experiencing the 'top of the iceberg' of a large protein network that is fundamental for the specific adhesive, cell signalling and transport functions of epithelial cells.
Collapse
Affiliation(s)
- H-Arno J Müller
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, Düsseldorf D-40225, Germany.
| | | |
Collapse
|
30
|
Nelson B, Kurischko C, Horecka J, Mody M, Nair P, Pratt L, Zougman A, McBroom LDB, Hughes TR, Boone C, Luca FC. RAM: a conserved signaling network that regulates Ace2p transcriptional activity and polarized morphogenesis. Mol Biol Cell 2003; 14:3782-803. [PMID: 12972564 PMCID: PMC196567 DOI: 10.1091/mbc.e03-01-0018] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In Saccharomyces cerevisiae, polarized morphogenesis is critical for bud site selection, bud development, and cell separation. The latter is mediated by Ace2p transcription factor, which controls the daughter cell-specific expression of cell separation genes. Recently, a set of proteins that include Cbk1p kinase, its binding partner Mob2p, Tao3p (Pag1p), and Hym1p were shown to regulate both Ace2p activity and cellular morphogenesis. These proteins seem to form a signaling network, which we designate RAM for regulation of Ace2p activity and cellular morphogenesis. To find additional RAM components, we conducted genetic screens for bilateral mating and cell separation mutants and identified alleles of the PAK-related kinase Kic1p in addition to Cbk1p, Mob2p, Tao3p, and Hym1p. Deletion of each RAM gene resulted in a loss of Ace2p function and caused cell polarity defects that were distinct from formin or polarisome mutants. Two-hybrid and coimmunoprecipitation experiments reveal a complex network of interactions among the RAM proteins, including Cbk1p-Cbk1p, Cbk1p-Kic1p, Kic1p-Tao3p, and Kic1p-Hym1p interactions, in addition to the previously documented Cbk1p-Mob2p and Cbk1p-Tao3p interactions. We also identified a novel leucine-rich repeat-containing protein Sog2p that interacts with Hym1p and Kic1p. Cells lacking Sog2p exhibited the characteristic cell separation and cell morphology defects associated with perturbation in RAM signaling. Each RAM protein localized to cortical sites of growth during both budding and mating pheromone response. Hym1p was Kic1p- and Sog2p-dependent and Sog2p and Kic1p were interdependent for localization, indicating a close functional relationship between these proteins. Only Mob2p and Cbk1p were detectable in the daughter cell nucleus at the end of mitosis. The nuclear localization and kinase activity of the Mob2p-Cbk1p complex were dependent on all other RAM proteins, suggesting that Mob2p-Cbk1p functions late in the RAM network. Our data suggest that the functional architecture of RAM signaling is similar to the S. cerevisiae mitotic exit network and Schizosaccharomyces pombe septation initiation network and is likely conserved among eukaryotes.
Collapse
Affiliation(s)
- Bryce Nelson
- Department of Biology Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Doerflinger H, Benton R, Shulman JM, St Johnston D. The role of PAR-1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 2003; 130:3965-75. [PMID: 12874119 DOI: 10.1242/dev.00616] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The PAR-1 kinase plays a conserved role in cell polarity in C. elegans, Drosophila and mammals. We have investigated the role of PAR-1 in epithelial polarity by generating null mutant clones in the Drosophila follicular epithelium. Large clones show defects in apicobasal membrane polarity, but small clones induced later in development usually have a normal membrane polarity. However, all cells that lack PAR-1 accumulate spectrin and F-actin laterally, and show a strong increase in the density of microtubules. This is consistent with the observation that the mammalian PAR-1 homologues, the MARKs, dramatically reduce the number of microtubules, when overexpressed in tissue culture cells. The MARKs have been proposed to destabilize microtubules by inhibiting the stabilizing activity of the Tau family of microtubule-associated proteins. This is not the case in Drosophila, however, as null mutations in the single tau family member in the genome have no effect on the microtubule organisation in the follicle cells. Furthermore, PAR-1 activity stabilises microtubules, as microtubules in mutant cells depolymerise much more rapidly after cold or colcemid treatments. Loss of PAR-1 also disrupts the basal localisation of the microtubule plus ends, which are mislocalised to the centre of mutant cells. Thus, Drosophila PAR-1 regulates the density, stability and apicobasal organisation of microtubules. Although the direct targets of PAR-1 are unknown, we suggest that it functions by regulating the plus ends, possibly by capping them at the basal cortex.
Collapse
Affiliation(s)
- Hélène Doerflinger
- The Wellcome Trust/Cancer Research UK Institute and the Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
32
|
Bissell MJ, Bilder D. Polarity determination in breast tissue: desmosomal adhesion, myoepithelial cells, and laminin 1. Breast Cancer Res 2003; 5:117-9. [PMID: 12631393 PMCID: PMC154157 DOI: 10.1186/bcr579] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 01/16/2003] [Accepted: 01/22/2003] [Indexed: 01/01/2023] Open
Abstract
In all epithelial organs, apicobasal polarity determines functional integrity and contributes to the maintenance of tissue and organ specificity. In the breast, the functional unit is a polar double-layered tube consisting of luminal epithelial cells surrounded by myoepithelial cells and a basement membrane. It is far from clear how this double-layered structure is established and how polarity is maintained. Two recent papers have shed some light onto this intriguing problem in mammary gland biology. The results point to desmosomes and laminin 1 as having crucial roles. However, some questions remain.
Collapse
Affiliation(s)
- Mina J Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
| | | |
Collapse
|
33
|
Médina E, Williams J, Klipfell E, Zarnescu D, Thomas CM, Le Bivic A. Crumbs interacts with moesin and beta(Heavy)-spectrin in the apical membrane skeleton of Drosophila. J Cell Biol 2002; 158:941-51. [PMID: 12213838 PMCID: PMC2173152 DOI: 10.1083/jcb.200203080] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The apical transmembrane protein Crumbs is necessary for both cell polarization and the assembly of the zonula adherens (ZA) in Drosophila epithelia. The apical spectrin-based membrane skeleton (SBMS) is a protein network that is essential for epithelial morphogenesis and ZA integrity, and exhibits close colocalization with Crumbs and the ZA in fly epithelia. These observations suggest that Crumbs may stabilize the ZA by recruiting the SBMS to the junctional region. Consistent with this hypothesis, we report that Crumbs is necessary for the organization of the apical SBMS in embryos and Schneider 2 cells, whereas the localization of Crumbs is not affected in karst mutants that eliminate the apical SBMS. Our data indicate that it is specifically the 4.1 protein/ezrin/radixin/moesin (FERM) domain binding consensus, and in particular, an arginine at position 7 in the cytoplasmic tail of Crumbs that is essential to efficiently recruit both the apical SBMS and the FERM domain protein, DMoesin. Crumbs, Discs lost, betaHeavy-spectrin, and DMoesin are all coimmunoprecipitated from embryos, confirming the existence of a multimolecular complex. We propose that Crumbs stabilizes the apical SBMS via DMoesin and actin, leading to reinforcement of the ZA and effectively coupling epithelial morphogenesis and cell polarity.
Collapse
Affiliation(s)
- Emmanuelle Médina
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et l'Adulte, Institut de Biologie du Développement de Marseille, Université de la Méditerranée, 13288 Marseille, cedex 09, France
| | - Janice Williams
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Elizabeth Klipfell
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Daniela Zarnescu
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M. Thomas
- Departments of Biology and of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - André Le Bivic
- Laboratoire de Neurogenèse et Morphogenèse dans le Développement et l'Adulte, Institut de Biologie du Développement de Marseille, Université de la Méditerranée, 13288 Marseille, cedex 09, France
| |
Collapse
|
34
|
Dillon C, Creer A, Kerr K, Kümin A, Dickson C. Basolateral targeting of ERBB2 is dependent on a novel bipartite juxtamembrane sorting signal but independent of the C-terminal ERBIN-binding domain. Mol Cell Biol 2002; 22:6553-63. [PMID: 12192053 PMCID: PMC135631 DOI: 10.1128/mcb.22.18.6553-6563.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ERBB2 is a receptor tyrosine kinase present on the basolateral membrane of polarized epithelia and has important functions in organ development and tumorigenesis. Using mutagenic analyses and Madin-Darby canine kidney (MDCK) cells, we have investigated the signals that regulate basolateral targeting of ERBB2. We show that basolateral delivery of ERBB2 is dependent on a novel bipartite juxtamembrane sorting signal residing between Gln-692 and Thr-701. The signal shows only limited sequence homology to known basolateral targeting signals and is both necessary and sufficient for correct sorting of ERBB2. In addition we demonstrate that this motif can function as a dominant basolateral targeting signal by its ability to redirect the apically localized P75 neurotrophin receptor to the basolateral membrane domain of polarized epithelial cells. Interestingly, LLC-PK1 cells, which are deficient for the micro 1B subunit of the AP1B adaptor complex, missort a large proportion of ERBB2 to the apical membrane domain. This missorting can be partially corrected by the introduction of micro 1B, suggesting a possible role for AP1B in ERBB2 endosomal trafficking. Furthermore, we find that the C-terminal ERBIN binding domain of ERBB2 is not necessary for its basolateral targeting in MDCK cells.
Collapse
|
35
|
Lemmers C, Médina E, Delgrossi MH, Michel D, Arsanto JP, Le Bivic A. hINADl/PATJ, a homolog of discs lost, interacts with crumbs and localizes to tight junctions in human epithelial cells. J Biol Chem 2002; 277:25408-15. [PMID: 11964389 DOI: 10.1074/jbc.m202196200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dCrumbs is an apical organizer crucial for the maintenance of epithelial polarity in Drosophila (1). It is known that dCrumbs interacts with Discs lost (Dlt), a protein with four PDZ (PSD95/Discs Large/ZO-1) domains (2), and Stardust (Sdt), a protein of the MAGUK (membrane-associated guanylate kinase) family (3, 4). We have searched for potential homologs of Dlt in human epithelial cells and characterized one of them in intestinal epithelial cells. Human INAD-like (hINADl) contains 8 PDZ domains, is concentrated in tight junctions, and is also found at the apical plasma membrane. Overexpression of hINADl disrupted the tight junctions localization of ZO-1 and 3. We also identified a partial cDNA coding the transmembrane and cytoplasmic domains of a new human crumbs (CRB3) expressed in Caco-2 cells. This CRB3 was able to interact through its C-terminal end with the N-terminal domain of hINADl. Taken together, the data indicate that hINADl is likely to represent a Dlt homolog in mammalian epithelial cells and might be involved in regulating the integrity of tight junctions. We thus propose to rename hINADl PATJ for protein associated to tight junctions.
Collapse
Affiliation(s)
- Céline Lemmers
- Laboratoire de Neurogenèse et Morphogenèse du Développement à l'Adulte (NMDA, Unité Mixte de Recherche 6165), Institut de Biologie du Développement de Marseille, Faculté des Sciences de Luminy, Université de la Méditerranée, France
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
As organisms have evolved in size and complexity, tubular systems have developed to enable the efficient transport of substances into and out of tissues. These tubular systems are generated using strategies that are based on common elements of cell behaviour, including cell polarization, tube migration to target sites, cell-fate diversification and localization of specialized cells to different regions of the tube system. Using examples from both invertebrate and vertebrate systems, this review highlights progress in understanding these basic principles and briefly discusses the possible evolution of strategies to regulate the morphogenesis of tubular systems.
Collapse
Affiliation(s)
- Brigid L M Hogan
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Vanderbilt Medical Center, Nashville, Tennessee 37232-2175, USA.
| | | |
Collapse
|
37
|
Gollan L, Sabanay H, Poliak S, Berglund EO, Ranscht B, Peles E. Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr. J Cell Biol 2002; 157:1247-56. [PMID: 12082082 PMCID: PMC2173544 DOI: 10.1083/jcb.200203050] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr-contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr-contactin chimera from the cell surface. These results suggest that Caspr serves as a "transmembrane scaffold" that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.
Collapse
Affiliation(s)
- Leora Gollan
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Sun X, Zhao J, Jin S, Palka K, Visa N, Aissouni Y, Daneholt B, Alzhanova-Ericsson AT. A novel protein localized to the fibrillar compartment of the nucleolus and to the brush border of a secretory cell. Eur J Cell Biol 2002; 81:125-37. [PMID: 11998864 DOI: 10.1078/0171-9335-00231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report the identification and molecular characterization of a novel abundant nucleolar protein of the dipteran Chironomus tentans. As shown by Western blot analysis, this protein is present in nuclear extracts in a phosphorylated form with a mobility corresponding to 100 kDa. Therefore, the protein has been termed Chironomus tentans p100, or p100 for short. Analysis of the cDNA-derived primary structure of p100 indicates a protein that contains a combination of structural domains which could be involved in interactions with proteins and nucleic acids: twelve alternating acidic and basic repeats, a glycine-arginine-rich domain and a region with two zinc fingers of the C4-type. Acidic and basic repeats are typical for a group of nonribosomal nucleolar proteins. The best-studied representatives of this group are Nopp140 and nucleolin, proteins with structural and regulatory functions in rDNA transcription. Immunocytology and immunoelectron microscopy of Chironomus tentans salivary gland cells have shown that the p100 protein is located in the fibrillar compartment of the nucleolus, while it is almost absent from the granular compartment and from the nucleoplasm. The p100 protein remains in the nucleolus after removal of RNA and DNA by digestion with nucleases. This indicates that p100 might be a constituent of the nucleolar proteinaceous framework. Remarkably, p100 is also localized in the brush border in the apical part of the salivary gland cell. The presence of p100 both in the nucleolus and at the apical plasma membrane suggests that it could be involved in coordination of the level of protein production and export from the cell through regulation of the level of rRNA production in the nucleolus.
Collapse
Affiliation(s)
- Xin Sun
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Rearrangements of the actin cytoskeleton are involved in a variety of cellular processes from locomotion of cells to morphological alterations of the cell surface. One important question is how local interactions of cells with the extracellular space are translated into alterations of their membrane organization. To address this problem, we studied CASK, a member of the membrane-associated guanylate kinase homologues family of adaptor proteins. CASK has been shown to bind the erythrocyte isoform of protein 4.1, a class of proteins that promote formation of actin/spectrin microfilaments. In neurons, CASK also interacts via its PDZ domain with the cytosolic C termini of neurexins, neuron-specific cell-surface proteins. We now show that CASK binds a brain-enriched isoform of protein 4.1, and nucleates local assembly of actin/spectrin filaments. These interactions can be reconstituted on the cytosolic tail of neurexins. Furthermore, CASK can be recovered with actin filaments prepared from rat brain extracts, and neurexins are recruited together with CASK and protein 4.1 into these actin filaments. Thus, analogous to the PDZ-domain protein p55 and glycophorin C at the erythrocyte membrane, a similar complex comprising CASK and neurexins exists in neurons. Our data suggest that intercellular junctions formed by neurexins, such as junctions initiated by beta-neurexins with neuroligins, are at least partially coupled to the actin cytoskeleton via an interaction with CASK and protein 4.1.
Collapse
Affiliation(s)
- T Biederer
- Center for Basic Neuroscience, Department of Molecular Genetics, and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| | | |
Collapse
|
40
|
Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, Rosen JM, Robinson GW, Hennighausen L. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 2001; 155:531-42. [PMID: 11706048 PMCID: PMC2198867 DOI: 10.1083/jcb.200107065] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2001] [Revised: 10/08/2001] [Accepted: 10/08/2001] [Indexed: 11/22/2022] Open
Abstract
Functional development of mammary epithelium during pregnancy depends on prolactin signaling. However, the underlying molecular and cellular events are not fully understood. We examined the specific contributions of the prolactin receptor (PrlR) and the signal transducers and activators of transcription 5a and 5b (referred to as Stat5) in the formation and differentiation of mammary alveolar epithelium. PrlR- and Stat5-null mammary epithelia were transplanted into wild-type hosts, and pregnancy-mediated development was investigated at a histological and molecular level. Stat5-null mammary epithelium developed ducts but failed to form alveoli, and no milk protein gene expression was observed. In contrast, PrlR-null epithelium formed alveoli-like structures with small open lumina. Electron microscopy revealed undifferentiated features of organelles and a perturbation of cell-cell contacts in PrlR- and Stat5-null epithelia. Expression of NKCC1, an Na-K-Cl cotransporter characteristic for ductal epithelia, and ZO-1, a protein associated with tight junction, were maintained in the alveoli-like structures of PrlR- and Stat5-null epithelia. In contrast, the Na-Pi cotransporter Npt2b, and the gap junction component connexin 32, usually expressed in secretory epithelia, were undetectable in PrlR- and Stat5-null mice. These data demonstrate that signaling via the PrlR and Stat5 is critical for the proliferation and differentiation of mammary alveoli during pregnancy.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Division
- Connexins/metabolism
- Connexins/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Epidermal Growth Factor/administration & dosage
- Epidermal Growth Factor/metabolism
- Epithelial Cells/cytology
- Female
- Growth Hormone/administration & dosage
- Growth Hormone/metabolism
- Mammary Glands, Animal/anatomy & histology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/embryology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Milk Proteins
- Pregnancy
- Pregnancy, Animal
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Receptors, Prolactin/physiology
- STAT5 Transcription Factor
- Sodium-Potassium-Chloride Symporters/metabolism
- Solute Carrier Family 12, Member 2
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Gap Junction beta-1 Protein
Collapse
Affiliation(s)
- K Miyoshi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
O'Brien LE, Jou TS, Pollack AL, Zhang Q, Hansen SH, Yurchenco P, Mostov KE. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 2001; 3:831-8. [PMID: 11533663 DOI: 10.1038/ncb0901-831] [Citation(s) in RCA: 369] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cellular polarization involves the generation of asymmetry along an intracellular axis. In a multicellular tissue, the asymmetry of individual cells must conform to the overlying architecture of the tissue. However, the mechanisms that couple cellular polarization to tissue morphogenesis are poorly understood. Here, we report that orientation of apical polarity in developing Madin-Darby canine kidney (MDCK) epithelial cysts requires the small GTPase Rac1 and the basement membrane component laminin. Dominant-negative Rac1 alters the supramolecular assembly of endogenous MDCK laminin and causes a striking inversion of apical polarity. Exogenous laminin is recruited to the surface of these cysts and rescues apical polarity. These findings implicate Rac1-mediated laminin assembly in apical pole orientation. By linking apical orientation to generation of the basement membrane, epithelial cells ensure the coordination of polarity with tissue architecture.
Collapse
Affiliation(s)
- L E O'Brien
- Department of Anatomy, Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Embryonic development begins with cleavage of the fertilized egg. Cleavage comprises two major processes: cytokinesis and formation of a polarized epithelial cell layer. The focus of this review is comparison of the generation of membrane polarity during embryonic cleavage in three different developmental model systems. In mammalian embryos, as exemplified by analysis of the mouse, generation of distinct membrane domains is uncoupled from cleavage divisions and is initiated in a specific developmental phase, called compaction. In Xenopus laevis embryos, generation of polarized blastomeres occurs simultaneously with cytokinesis. The origin of specific membrane domains of X. laevis polar blastomeres, however, can be traced back to oogenesis. Finally, in Drosophila melanogaster, generation of polarized cells occurs at cellularization. The relevance of cell adhesion, cell junctions and cytocortical scaffolds will be discussed for each of the model systems. Despite enormous morphologic differences, the three models share many common features; in particular, many important molecular interactions are conserved.
Collapse
Affiliation(s)
- H A Müller
- Heinrich Heine Universität Düsseldorf, Institut für Genetik, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
43
|
Ebnet K, Suzuki A, Horikoshi Y, Hirose T, Meyer zu Brickwedde MK, Ohno S, Vestweber D. The cell polarity protein ASIP/PAR-3 directly associates with junctional adhesion molecule (JAM). EMBO J 2001; 20:3738-48. [PMID: 11447115 PMCID: PMC125258 DOI: 10.1093/emboj/20.14.3738] [Citation(s) in RCA: 292] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The establishment and maintenance of cellular polarity are critical for the development of multicellular organisms. PAR (partitioning-defective) proteins were identified in Caenorhabditis elegans as determinants of asymmetric cell division and polarized cell growth. Recently, vertebrate orthologues of two of these proteins, ASIP/PAR-3 and PAR-6, were found to form a signalling complex with the small GTPases Cdc42/Rac1 and with atypical protein kinase C (PKC). Here we show that ASIP/PAR-3 associates with the tight-junction-associated protein junctional adhesion molecule (JAM) in vitro and in vivo. No binding was observed with claudin-1, -4 or -5. In fibroblasts and CHO cells overexpressing JAM, endogenous ASIP is recruited to JAM at sites of cell-cell contact. Over expression of truncated JAM lacking the extracellular part disrupts ASIP/PAR-3 localization at intercellular junctions and delays ASIP/PAR-3 recruitment to newly formed cell junctions. During junction formation, JAM appears early in primordial forms of junctions. Our data suggest that the ASIP/PAR-3-aPKC complex is tethered to tight junctions via its association with JAM, indicating a potential role for JAM in the generation of cell polarity in epithelial cells.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| | - Atsushi Suzuki
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| | - Yosuke Horikoshi
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| | - Tomonori Hirose
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| | - Maria-Katharina Meyer zu Brickwedde
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| | - Shigeo Ohno
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| | - Dietmar Vestweber
- Institute of Cell Biology, ZMBE, University of Muenster, D-48149 Muenster, Max-Planck-Institute of Physiological and Clinical Research, D-61231 Bad Nauheim, Germany and Department of Molecular Biology, Yokohama City University School of Medicine, 3-9, Fuku-ura, Kanazawa-ku, Yokohama 236-0004, Japan Corresponding authors e-mail: or K.Ebnet and A.Suzuki contributed equally to this work
| |
Collapse
|
44
|
Affiliation(s)
- S Kerridge
- Laboratoire de Génétique et Physiologie du Développement, IBDM, CNRS-INSERM-Université de la Méditerranée de Marseille, France.
| |
Collapse
|