1
|
Bo S, Sun Q, Ning P, Yuan N, Weng Y, Liang Y, Wang H, Lu Z, Li Z, Zhao X. A novel approach to analyze the association characteristics between post-spliced introns and their corresponding mRNA. Front Genet 2023; 14:1151172. [PMID: 36923795 PMCID: PMC10008863 DOI: 10.3389/fgene.2023.1151172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023] Open
Abstract
Studies have shown that post-spliced introns promote cell survival when nutrients are scarce, and intron loss/gain can influence many stages of mRNA metabolism. However, few approaches are currently available to study the correlation between intron sequences and their corresponding mature mRNA sequences. Here, based on the results of the improved Smith-Waterman local alignment-based algorithm method (SW method) and binding free energy weighted local alignment algorithm method (BFE method), the optimal matched segments between introns and their corresponding mature mRNAs in Caenorhabditis elegans (C.elegans) and their relative matching frequency (RF) distributions were obtained. The results showed that although the distributions of relative matching frequencies on mRNAs obtained by the BFE method were similar to the SW method, the interaction intensity in 5'and 3'untranslated regions (UTRs) regions was weaker than the SW method. The RF distributions in the exon-exon junction regions were comparable, the effects of long and short introns on mRNA and on the five functional sites with BFE method were similar to the SW method. However, the interaction intensity in 5'and 3'UTR regions with BFE method was weaker than with SW method. Although the matching rate and length distribution shape of the optimal matched fragment were consistent with the SW method, an increase in length was observed. The matching rates and the length of the optimal matched fragments were mainly in the range of 60%-80% and 20-30bp, respectively. Although we found that there were still matching preferences in the 5'and 3'UTR regions of the mRNAs with BFE, the matching intensities were significantly lower than the matching intensities between introns and their corresponding mRNAs with SW method. Overall, our findings suggest that the interaction between introns and mRNAs results from synergism among different types of sequences during the evolutionary process.
Collapse
Affiliation(s)
- Suling Bo
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Qiuying Sun
- Department of Oncology, Inner Mongolia Cancer Hospital and The Affiliated People's Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Pengfei Ning
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ningping Yuan
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Yujie Weng
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Ying Liang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Huitao Wang
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Zhanyuan Lu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| | - Zhongxian Li
- College of Computer Information, Inner Mongolia Medical University, Hohhot, China
| | - Xiaoqing Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China.,School of Life Science, Inner Mongolia University, Hohhot, China.,Key Laboratory of Black Soil Protection And Utilization (Hohhot), Ministry of Agriculture and Rural Affairs, Hohhot, China.,6 Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, Hohhot, China
| |
Collapse
|
2
|
Hu C, Jiao Z, Deng X, Tu X, Lu A, Xie C, Jiang K, Zeng X, Liu ZJ, Huang W, Luo Y. The ecological adaptation of the unparalleled plastome character evolution in slipper orchids. FRONTIERS IN PLANT SCIENCE 2022; 13:1075098. [PMID: 36605947 PMCID: PMC9808092 DOI: 10.3389/fpls.2022.1075098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Plastomes may have undergone adaptive evolution in the process of plant adaptation to diverse environments, whereby species may differ in plastome characters. Cypripedioideae successfully colonized distinct environments and could be an ideal group for studying the interspecific variation and adaptive evolution of plastomes. Comparative study of plastomes, ancestral state reconstruction, phylogenetic-based analysis, ecological niche modelling, and selective pressure analysis were conducted to reveal the evolutionary patterns of plastomes in Cypripedioideae and their relationship with environmental factors. The plastomes of the three evolved genera had reduced plastome size, increased GC content, and compacted gene content compared to the basal group. Variations in plastome size and GC content are proved to have clear relationships with climate regions. Furthermore, ecological niche modelling revealed that temperature and water factors are important climatic factors contributing to the distributional difference which is directly correlated with the climate regions. The temperature-sensitive genes ndh genes, infA, and rpl20 were found to be either lost/pseudogenized or under positive selection in the evolved groups. Unparalleled plastome character variations were discovered in slipper orchids. Our study indicates that variations in plastome characters have adaptive consequences and that temperature and water factors are important climatic factors that affect plastome evolution. This research highlights the expectation that plants can facilitate adaptation to different environmental conditions with the changes in plastome and has added critical insight for understanding the process of plastome evolution in plants.
Collapse
Affiliation(s)
- Chao Hu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenbin Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyan Deng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xiongde Tu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Aixian Lu
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chengzhi Xie
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Kai Jiang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Xinhua Zeng
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zhong-Jian Liu
- Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration at College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weichang Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Yibo Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
3
|
Fuertes MA, Rodrigo JR, Alonso C. Conserved Critical Evolutionary Gene Structures in Orthologs. J Mol Evol 2019; 87:93-105. [PMID: 30815710 DOI: 10.1007/s00239-019-09889-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/13/2019] [Indexed: 12/18/2022]
Abstract
Unravelling gene structure requires the identification and understanding of the constraints that are often associated with the evolutionary history and functional domains of genes. We speculated in this manuscript with the possibility of the existence in orthologs of an emergent highly conserved gene structure that might explain their coordinated evolution during speciation events and their parental function. Here, we will address the following issues: (1) is there any conserved hypothetical structure along ortholog gene sequences? (2) If any, are such conserved structures maintained and conserved during speciation events? The data presented show evidences supporting this hypothesis. We have found that, (1) most orthologs studied share highly conserved compositional structures not observed previously. (2) While the percent identity of nucleotide sequences of orthologs correlates with the percent identity of composon sequences, the number of emergent compositional structures conserved during speciation does not correlate with the percent identity. (3) A broad range of species conserves the emergent compositional stretches. We will also discuss the concept of critical gene structure.
Collapse
Affiliation(s)
- Miguel A Fuertes
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain.
| | | | - Carlos Alonso
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, c/Nicolás Cabrera 1, 28049, Madrid, Spain
| |
Collapse
|
4
|
Mitchener WG. Evolution of communication protocols using an artificial regulatory network. ARTIFICIAL LIFE 2014; 20:491-530. [PMID: 25148549 DOI: 10.1162/artl_a_00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
I describe the Utrecht Machine (UM), a discrete artificial regulatory network designed for studying how evolution discovers biochemical computation mechanisms. The corresponding binary genome format is compatible with gene deletion, duplication, and recombination. In the simulation presented here, an agent consisting of two UMs, a sender and a receiver, must encode, transmit, and decode a binary word over time using the narrow communication channel between them. This communication problem has chicken-and-egg structure in that a sending mechanism is useless without a corresponding receiving mechanism. An in-depth case study reveals that a coincidence creates a minimal partial solution, from which a sequence of partial sending and receiving mechanisms evolve. Gene duplications contribute by enlarging the regulatory network. Analysis of 60,000 sample runs under a variety of parameter settings confirms that crossover accelerates evolution, that stronger selection tends to find clumsier solutions and finds them more slowly, and that there is implicit selection for robust mechanisms and genomes at the codon level. Typical solutions associate each input bit with an activation speed and combine them almost additively. The parents of breakthrough organisms sometimes have lower fitness scores than others in the population, indicating that populations can cross valleys in the fitness landscape via outlying members. The simulation exhibits back mutations and population-level memory effects not accounted for in traditional population genetics models. All together, these phenomena suggest that new evolutionary models are needed that incorporate regulatory network structure.
Collapse
|
5
|
Milani D, Cabral-de-Mello DC. Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes. PLoS One 2014; 9:e97956. [PMID: 24871300 PMCID: PMC4037182 DOI: 10.1371/journal.pone.0097956] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022] Open
Abstract
With the aim of acquiring deeper knowledge about repetitive DNAs chromosomal organization in grasshoppers, we used fluorescent in situ hybridization (FISH) to map the distribution of 16 microsatellite repeats, including mono-, di-, tri- and tetra-nucleotides, in the chromosomes of the species Abracris flavolineata (Acrididae), which harbors B chromosome. FISH revealed two main patterns: (i) exclusively scattered signals, and (ii) scattered and specific signals, forming evident blocks. The enrichment was observed in both euchromatic and heterochromatic areas and only the motif (C)30 was absent in heterochromatin. The A and B chromosomes were enriched with all the elements that were mapped, being observed in the B chromosome more distinctive blocks for (GA)15 and (GAG)10. For A complement distinctive blocks were noticed for (A)30, (CA)15, (CG)15, (GA)15, (CAC)10, (CAA)10, (CGG)10, (GAA)10, (GAC)10 and (GATA)8. These results revealed an intense spreading of microsatellites in the A. flavolineata genome that was independent of the A+T or G+C enrichment in the repeats. The data indicate that the microsatellites compose the B chromosome and could be involved in the evolution of this element in this species, although no specific relationship with any A chromosome was observed to discuss about its origin. The systematic analysis presented here contributes to the knowledge of repetitive DNA chromosomal organization among grasshoppers including the B chromosomes.
Collapse
Affiliation(s)
- Diogo Milani
- UNESP - Univ Estadual Paulista, Instituto de Biociências/IB, Departamento de Biologia, Rio Claro, São Paulo, Brazil
| | | |
Collapse
|
6
|
Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, Xu Y, Zhou H, Xiong C, Li S, Yu J, Hong S, Yu X, Zou P, Chen C, Chang X, Wang W, Lv Y, Sun Y, Ma L, Shen B, Zhu C. Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites. BMC Genomics 2014; 15:42. [PMID: 24438588 PMCID: PMC3901762 DOI: 10.1186/1471-2164-15-42] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anopheles sinensis is an important mosquito vector of Plasmodium vivax, which is the most frequent and widely distributed cause of recurring malaria throughout Asia, and particularly in China, Korea, and Japan. RESULTS We performed 454 next-generation sequencing and obtained a draft sequence of A. sinensis assembled into scaffolds spanning 220.8 million base pairs. Analysis of this genome sequence, we observed expansion and contraction of several immune-related gene families in anopheline relative to culicine mosquito species. These differences suggest that species-specific immune responses to Plasmodium invasion underpin the biological differences in susceptibility to Plasmodium infection that characterize these two mosquito subfamilies. CONCLUSIONS The A. sinensis genome produced in this study, provides an important resource for analyzing the genetic basis of susceptibility and resistance of mosquitoes to Plasmodium parasites research which will ultimately facilitate the design of urgently needed interventions against this debilitating mosquito-borne disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu 210029, P,R, China.
| | | |
Collapse
|
7
|
Dong W, Xu C, Cheng T, Zhou S. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales. PLoS One 2013; 8:e77965. [PMID: 24205047 PMCID: PMC3799696 DOI: 10.1371/journal.pone.0077965] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 09/09/2013] [Indexed: 11/18/2022] Open
Abstract
Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated) chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC) region, 16.670 bp of a small single-copy (SSC) region, and a pair of 25,783 bp sequences of inverted repeats (IRs).The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.
Collapse
Affiliation(s)
- Wenpan Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Tao Cheng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Shiliang Zhou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
8
|
Bhadury P, Song B, Ward BB. Intron features of key functional genes mediating nitrogen metabolism in marine phytoplankton. Mar Genomics 2011; 4:207-13. [DOI: 10.1016/j.margen.2011.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 05/31/2011] [Accepted: 06/04/2011] [Indexed: 10/18/2022]
|
9
|
Wu Y, Yuan H, Tan S, Chen JQ, Tian D, Yang H. Increased complexity of gene structure and base composition in vertebrates. J Genet Genomics 2011; 38:297-305. [PMID: 21777854 DOI: 10.1016/j.jgg.2011.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/01/2011] [Accepted: 06/12/2011] [Indexed: 11/16/2022]
Abstract
How the structure and base composition of genes changed with the evolution of vertebrates remains a puzzling question. Here we analyzed 895 orthologous protein-coding genes in six multicellular animals: human, chicken, zebrafish, sea squirt, fruit fly, and worm. Our analyses reveal that many gene regions, particularly intron and 3' UTR, gradually expanded throughout the evolution of vertebrates from their invertebrate ancestors, and that the number of exons per gene increased. Studies based on all protein-coding genes in each genome provide consistent results. We also find that GC-content increased in many gene regions (especially 5' UTR) in the evolution of endotherms, except in coding-exons. Analysis of individual genomes shows that 3' UTR demonstrated stronger length and GC-content correlation with intron than 5' UTR, and gene with large intron in all six species demonstrated relatively similar GC-content. Our data indicates a great increase in complexity in vertebrate genes and we propose that the requirement for morphological and functional changes is probably the driving force behind the evolution of structure and base composition complexity in multicellular animal genes.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, China
| | | | | | | | | | | |
Collapse
|
10
|
Raffaele S, Win J, Cano LM, Kamoun S. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans. BMC Genomics 2010; 11:637. [PMID: 21080964 PMCID: PMC3091767 DOI: 10.1186/1471-2164-11-637] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 11/16/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora infestans is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The P. infestans genome experienced a repeat-driven expansion relative to the genomes of Phytophthora sojae and Phytophthora ramorum and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN) families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation. RESULTS We used in silico approaches to predict and describe the repertoire of P. infestans secreted proteins (the secretome). We defined the "plastic secretome" as a subset of the genome that (i) encodes predicted secreted proteins, (ii) is excluded from genome segments orthologous to the P. sojae and P. ramorum genomes and (iii) is encoded by genes residing in gene sparse regions of P. infestans genome. Although including only ~3% of P. infestans genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced in planta. We highlight 19 plastic secretome genes induced in planta but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors. CONCLUSIONS This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.
Collapse
Affiliation(s)
- Sylvain Raffaele
- The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, UK
| | | | | | | |
Collapse
|
11
|
Interactions Between Introns and Corresponding Protein Coding Sequences of Ribosomal Protein Genes in C. elegans*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Williford A, Comeron JM. Local effects of limited recombination: historical perspective and consequences for population estimates of adaptive evolution. J Hered 2010; 101 Suppl 1:S127-34. [PMID: 20421321 DOI: 10.1093/jhered/esq012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent years have witnessed the integration of theoretical advances in population genetics with large-scale analyses of complete genomes, with a growing number of studies suggesting pervasive natural selection that includes frequent deleterious as well as adaptive mutations. In finite populations, however, mutations under selection alter the fate of genetically linked mutations (the so-called Hill-Robertson effect). Here we review the evolutionary consequences of selection at linked sites (linked selection) focusing on its effects on nearby nucleotides in genomic regions with nonreduced recombination. We argue that these local effects of linkage may account for differences in selection intensity among genes. We also show that even high levels of recombination are unlikely to remove all effects of linked selection, causing a reduction in the polymorphism to divergence ratio (r(pd)) at neutral sites. Because a number of methods employed to estimate the magnitude and frequency of adaptive mutations take reduced r(pd) as evidence of positive selection, ignoring local linkage effects may lead to misleading estimates of the proportion of adaptive substitutions and estimates of positive selection. These biases are caused by employing methods that do not account for local variation in the relative effective population size (N(e)) caused by linked selection.
Collapse
Affiliation(s)
- Anna Williford
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | | |
Collapse
|
13
|
Rao YS, Wang ZF, Chai XW, Wu GZ, Zhou M, Nie QH, Zhang XQ. Selection for the compactness of highly expressed genes in Gallus gallus. Biol Direct 2010; 5:35. [PMID: 20465857 PMCID: PMC2883972 DOI: 10.1186/1745-6150-5-35] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Accepted: 05/14/2010] [Indexed: 11/10/2022] Open
Abstract
Background Coding sequence (CDS) length, gene size, and intron length vary within a genome and among genomes. Previous studies in diverse organisms, including human, D. Melanogaster, C. elegans, S. cerevisiae, and Arabidopsis thaliana, indicated that there are negative relationships between expression level and gene size, CDS length as well as intron length. Different models such as selection for economy model, genomic design model, and mutational bias hypotheses have been proposed to explain such observation. The debate of which model is a superior one to explain the observation has not been settled down. The chicken (Gallus gallus) is an important model organism that bridges the evolutionary gap between mammals and other vertebrates. As D. Melanogaster, chicken has a larger effective population size, selection for chicken genome is expected to be more effective in increasing protein synthesis efficiency. Therefore, in this study the chicken was used as a model organism to elucidate the interaction between gene features and expression pattern upon selection pressure. Results Based on different technologies, we gathered expression data for nuclear protein coding, single-splicing genes from Gallus gallus genome and compared them with gene parameters. We found that gene size, CDS length, first intron length, average intron length, and total intron length are negatively correlated with expression level and expression breadth significantly. The tissue specificity is positively correlated with the first intron length but negatively correlated with the average intron length, and not correlated with the CDS length and protein domain numbers. Comparison analyses showed that ubiquitously expressed genes and narrowly expressed genes with the similar expression levels do not differ in compactness. Our data provided evidence that the genomic design model can not, at least in part, explain our observations. We grouped all somatic-tissue-specific genes (n = 1105), and compared the first intron length and the average intron length between highly expressed genes (top 5% expressed genes) and weakly expressed genes (bottom 5% expressed genes). We found that the first intron length and the average intron length in highly expressed genes are not different from that in weakly expressed genes. We also made a comparison between ubiquitously expressed genes and narrowly expressed somatic genes with similar expression levels. Our data demonstrated that ubiquitously expressed genes are less compact than narrowly expressed genes with the similar expression levels. Obviously, these observations can not be explained by mutational bias hypotheses either. We also found that the significant trend between genes' compactness and expression level could not be affected by local mutational biases. We argued that the selection of economy model is most likely one to explain the relationship between gene expression and gene characteristics in chicken genome. Conclusion Natural selection appears to favor the compactness of highly expressed genes in chicken genome. This observation can be explained by the selection of economy model. Reviewers This article was reviewed by Dr. Gavin Huttley, Dr. Liran Carmel (nominated by Dr. Eugene V. Koonin) and Dr. Araxi Urrutia (nominated by Dr. Laurence D. Hurst).
Collapse
Affiliation(s)
- You S Rao
- Department of Biological Technology, Jiangxi Educational Institute, Nanchang, Jiangxi, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Lavrov DV. Rapid proliferation of repetitive palindromic elements in mtDNA of the endemic Baikalian sponge Lubomirskia baicalensis. Mol Biol Evol 2009; 27:757-60. [PMID: 20026479 DOI: 10.1093/molbev/msp317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Animal mitochondrial DNA (mtDNA) is a remarkably compact molecule largely because of the scarcity of noncoding "selfish" DNA. Recently, however, we found that mitochondrial genomes of several phylogenetically diverse species of demosponges contain small repetitive palindromic sequences, interspersed within intergenic regions and fused in protein and ribosomal RNA genes. Here, I report and analyze the proliferation of such elements in the mitochondrial genome of the endemic sponge of Lake Baikal Lubomirskia baicalensis. Because Baikal sponges are closely related to the circumglobally distributed freshwater sponge Ephydatia muelleri with which they shared a common ancestor approximately 3-10 Ma, both the rate of single nucleotide substitutions and the rate of palindromic repeat insertions can be calculated in this system. I found the rate of nucleotide substitutions in mtDNA of freshwater sponges to be extremely low (0.5-1.6 x 10(-9) per site per year), more similar to that in plants than bilaterian animals. By contrast, the per/nucleotide rate of insertions of repetitive elements is at least four times higher. This rapid rate of proliferation combined with the broad phylogenetic distribution of hairpin elements can make them a defining force in the evolution of mitochondrial genomes of demosponges.
Collapse
|
15
|
Gómez-Valero L, Latorre A, Gil R, Gadau J, Feldhaar H, Silva FJ. Patterns and rates of nucleotide substitution, insertion and deletion in the endosymbiont of ants Blochmannia floridanus. Mol Ecol 2009; 17:4382-92. [PMID: 19378410 DOI: 10.1111/j.1365-294x.2008.03912.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genome reduction is a general process that has been studied in numerous symbiotic bacteria associated with insects. We investigated the last stages of genome degradation in Blochmannia floridanus, a mutualistic bacterial endosymbiont of the ant Camponotus floridanus. We determined the tempo (rates of insertion and deletion) and mode (size and number of insertion-deletion events) of the process in the last 200,000 years by analysing a total of 16 intergenic regions in several strains of this endosymbiont from different ant populations. We provide the first calculation of the reduction rate for noncoding DNA in this endosymbiont (2.2 x 10(-8) lost nucleotides/site/year) and compare it with the rate of loss in other species. Our results confirm, as it has been observed in other organisms like Buchnera aphidicola or Rickettsia spp., that deletions larger than one nucleotide can still appear in advanced stages of genome reduction and that a substitutional deletion bias exists. However, this bias is not due to a higher proportion of deletion over insertion events but to a few deletion events being larger than the rest. Moreover, we detected a substitutional AT bias that is probably responsible for the increase in the number of the small and moderate indel events in the last stages of genome reduction. Accordingly, we found intrapopulational polymorphisms for the detected microsatellites in contrast to the stability associated with these in free-living bacteria such as Escherichia coli.
Collapse
Affiliation(s)
- L Gómez-Valero
- Biologie des bactéries intracellulaires, Institute Pasteur, 28 Rue du Dr Roux, 75724 Paris, France.
| | | | | | | | | | | |
Collapse
|
16
|
Roorkiwal M, Grover A, Sharma PC. Genome-wide analysis of conservation and divergence of microsatellites in rice. Mol Genet Genomics 2009; 282:205-15. [DOI: 10.1007/s00438-009-0457-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Accepted: 05/05/2009] [Indexed: 11/28/2022]
|
17
|
Zhu L, Zhang Y, Zhang W, Yang S, Chen JQ, Tian D. Patterns of exon-intron architecture variation of genes in eukaryotic genomes. BMC Genomics 2009; 10:47. [PMID: 19166620 PMCID: PMC2636830 DOI: 10.1186/1471-2164-10-47] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/24/2009] [Indexed: 11/16/2022] Open
Abstract
Background The origin and importance of exon-intron architecture comprises one of the remaining mysteries of gene evolution. Several studies have investigated the variations of intron length, GC content, ordinal position in a gene and divergence. However, there is little study about the structural variation of exons and introns. Results We investigated the length, GC content, ordinal position and divergence in both exons and introns of 13 eukaryotic genomes, representing plant and animal. Our analyses revealed that three basic patterns of exon-intron variation were present in nearly all analyzed genomes (P < 0.001 in most cases): an ordinal reduction of length and divergence in both exon and intron, a co-variation between exon and its flanking introns in their length, GC content and divergence, and a decrease of average exon (or intron) length, GC content and divergence as the total exon numbers of a gene increased. In addition, we observed that the shorter introns had either low or high GC content, and the GC content of long introns was intermediate. Conclusion Although the factors contributing to these patterns have not been identified, our results provide three important clues: common factor(s) exist and may shape both exons and introns; the ordinal reduction patterns may reflect a time-orderly evolution; and the larger first and last exons may be splicing-required. These clues provide a framework for elucidating mechanisms involved in the organization of eukaryotic genomes and particularly in building exon-intron structures.
Collapse
Affiliation(s)
- Liucun Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, Nanjing 210093, PR China.
| | | | | | | | | | | |
Collapse
|
18
|
Evolution of reduced and compact chloroplast genomes (cpDNAs) in gnetophytes: selection toward a lower-cost strategy. Mol Phylogenet Evol 2009; 52:115-24. [PMID: 19166950 DOI: 10.1016/j.ympev.2008.12.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 12/30/2008] [Accepted: 12/31/2008] [Indexed: 11/22/2022]
Abstract
The cpDNA of Welwitschia mirabilis (the only species of Welwitschiales) was recently reported to be the most reduced and compact among photosynthetic land plants. However, cpDNAs of the other two gnetophyte lineages (viz. Ephedrales and Gnetales) have not yet been studied. It remains unclear what underlining mechanisms have downsized the cpDNA. To pin down major factors for cpDNA reduction and compaction in gnetophytes, we have determined 4 complete cpDNAs, including one from each of the 3 gnetophyte orders, Ephedra equisetina, Gnetum parvifolium, and W. mirabilis, and one from the non-Pinus Pinaceae, Keteleeria davidiana. We report that the cpDNAs of E. equisetina (109,518bp) and G.parvifolium (114,914bp) are not only smaller but more compact than that of W. mirabilis (118,919bp). The gnetophyte cpDNAs have commonly lost at least 18 genes that are retained in other seed plants. Furthermore, they have significantly biased usages of AT-rich codons and shorter introns and intergenic spaces, which are largely due to more deletions at inter-operon than intra-operon spaces and removal of segment sequences rather than single-nucleotides. We show that the reduced gnetophyte cpDNAs clearly resulted from selection for economy by deletions of genes and non-coding sequences, which then led to the compactness and the accelerated substitution rates. The smallest C-values in gnetophyte nuclear DNAs and the competitive or resource-poor situations encountered by gnetophytes further suggest a critical need for an economic strategy.
Collapse
|
19
|
Papa R, Morrison CM, Walters JR, Counterman BA, Chen R, Halder G, Ferguson L, Chamberlain N, Ffrench-Constant R, Kapan DD, Jiggins CD, Reed RD, McMillan WO. Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies. BMC Genomics 2008; 9:345. [PMID: 18647405 PMCID: PMC2515155 DOI: 10.1186/1471-2164-9-345] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 07/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. RESULTS Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. CONCLUSION Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.
Collapse
Affiliation(s)
- Riccardo Papa
- Department of Biology, University of Puerto Rico - Rio Piedras, San Juan, Puerto Rico.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Lanier W, Moustafa A, Bhattacharya D, Comeron JM. EST analysis of Ostreococcus lucimarinus, the most compact eukaryotic genome, shows an excess of introns in highly expressed genes. PLoS One 2008; 3:e2171. [PMID: 18478122 PMCID: PMC2367439 DOI: 10.1371/journal.pone.0002171] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 03/25/2008] [Indexed: 11/19/2022] Open
Abstract
Background The genome of the pico-eukaryotic (bacterial-sized) prasinophyte green alga Ostreococcus lucimarinus has one of the highest gene densities known in eukaryotes, yet it contains many introns. Phylogenetic studies suggest this unusually compact genome (13.2 Mb) is an evolutionarily derived state among prasinophytes. The presence of introns in the highly reduced O. lucimarinus genome appears to be in opposition to simple explanations of genome evolution based on unidirectional tendencies, either neutral or selective. Therefore, patterns of intron retention in this species can potentially provide insights into the forces governing intron evolution. Methodology/Principal Findings Here we studied intron features and levels of expression in O. lucimarinus using expressed sequence tags (ESTs) to annotate the current genome assembly. ESTs were assembled into unigene clusters that were mapped back to the O. lucimarinus Build 2.0 assembly using BLAST and the level of gene expression was inferred from the number of ESTs in each cluster. We find a positive correlation between expression levels and both intron number (R = +0.0893, p = <0.0005) and intron density (number of introns/kb of CDS; R = +0.0753, p = <0.005). Conclusions/Significance In a species with a genome that has been recently subjected to a great reduction of non-coding DNA, these results imply the existence of selective/functional roles for introns that are principally detectable in highly expressed genes. In these cases, introns are likely maintained by balancing the selective forces favoring their maintenance with other mutational and/or selective forces acting on genome size.
Collapse
Affiliation(s)
- William Lanier
- Interdisciplinary Program in Genetics, University of Iowa, Iowa, United States of America
| | - Ahmed Moustafa
- Interdisciplinary Program in Genetics, University of Iowa, Iowa, United States of America
| | - Debashish Bhattacharya
- Interdisciplinary Program in Genetics, University of Iowa, Iowa, United States of America
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa, United States of America
- Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tsutsui ND, Suarez AV, Spagna JC, Johnston JS. The evolution of genome size in ants. BMC Evol Biol 2008; 8:64. [PMID: 18302783 PMCID: PMC2268675 DOI: 10.1186/1471-2148-8-64] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/26/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite the economic and ecological importance of ants, genomic tools for this family (Formicidae) remain woefully scarce. Knowledge of genome size, for example, is a useful and necessary prerequisite for the development of many genomic resources, yet it has been reported for only one ant species (Solenopsis invicta), and the two published estimates for this species differ by 146.7 Mb (0.15 pg). RESULTS Here, we report the genome size for 40 species of ants distributed across 10 of the 20 currently recognized subfamilies, thus making Formicidae the 4th most surveyed insect family and elevating the Hymenoptera to the 5th most surveyed insect order. Our analysis spans much of the ant phylogeny, from the less derived Amblyoponinae and Ponerinae to the more derived Myrmicinae, Formicinae and Dolichoderinae. We include a number of interesting and important taxa, including the invasive Argentine ant (Linepithema humile), Neotropical army ants (genera Eciton and Labidus), trapjaw ants (Odontomachus), fungus-growing ants (Apterostigma, Atta and Sericomyrmex), harvester ants (Messor, Pheidole and Pogonomyrmex), carpenter ants (Camponotus), a fire ant (Solenopsis), and a bulldog ant (Myrmecia). Our results show that ants possess small genomes relative to most other insects, yet genome size varies three-fold across this insect family. Moreover, our data suggest that two whole-genome duplications may have occurred in the ancestors of the modern Ectatomma and Apterostigma. Although some previous studies of other taxa have revealed a relationship between genome size and body size, our phylogenetically-controlled analysis of this correlation did not reveal a significant relationship. CONCLUSION This is the first analysis of genome size in ants (Formicidae) and the first across multiple species of social insects. We show that genome size is a variable trait that can evolve gradually over long time spans, as well as rapidly, through processes that may include occasional whole-genome duplication. The small genome sizes of ants, combined with their ecological, evolutionary and agricultural importance, suggest that some of these species may be good candidates for future whole-genome sequencing projects.
Collapse
Affiliation(s)
- Neil D Tsutsui
- Department of Environmental Science, Policy and Management, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Andrew V Suarez
- Department of Animal Biology and Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph C Spagna
- Department of Animal Biology and Department of Entomology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| |
Collapse
|
23
|
Kohn MH. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michael H. Kohn
- Ecology and Evolutionary Biology, Rice University, United States of America
| |
Collapse
|
24
|
Gallach M, Arnau V, Marín I. Global patterns of sequence evolution in Drosophila. BMC Genomics 2007; 8:408. [PMID: 17996078 PMCID: PMC2180185 DOI: 10.1186/1471-2164-8-408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 11/09/2007] [Indexed: 01/30/2023] Open
Abstract
Background Sequencing of the genomes of several Drosophila allows for the first precise analyses of how global sequence patterns change among multiple, closely related animal species. A basic question is whether there are characteristic features that differentiate chromosomes within a species or between different species. Results We explored the euchromatin of the chromosomes of seven Drosophila species to establish their global patterns of DNA sequence diversity. Between species, differences in the types and amounts of simple sequence repeats were found. Within each species, the autosomes have almost identical oligonucleotide profiles. However, X chromosomes and autosomes have, in all species, a qualitatively different composition. The X chromosomes are less complex than the autosomes, containing both a higher amount of simple DNA sequences and, in several cases, chromosome-specific repetitive sequences. Moreover, we show that the right arm of the X chromosome of Drosophila pseudoobscura, which evolved from an autosome 10 – 18 millions of years ago, has a composition which is identical to that of the original, left arm of the X chromosome. Conclusion The consistent differences among species, differences among X chromosomes and autosomes and the convergent evolution of X and neo-X chromosomes demonstrate that strong forces are acting on drosophilid genomes to generate peculiar chromosomal landscapes. We discuss the relationships of the patterns observed with differential recombination and mutation rates and with the process of dosage compensation.
Collapse
Affiliation(s)
- Miguel Gallach
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), Valencia, Spain.
| | | | | |
Collapse
|
25
|
Knibbe C, Coulon A, Mazet O, Fayard JM, Beslon G. A Long-Term Evolutionary Pressure on the Amount of Noncoding DNA. Mol Biol Evol 2007; 24:2344-53. [PMID: 17709335 DOI: 10.1093/molbev/msm165] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A significant part of eukaryotic noncoding DNA is viewed as the passive result of mutational processes, such as the proliferation of mobile elements. However, sequences lacking an immediate utility can nonetheless play a major role in the long-term evolvability of a lineage, for instance by promoting genomic rearrangements. They could thus be subject to an indirect selection. Yet, such a long-term effect is difficult to isolate either in vivo or in vitro. Here, by performing in silico experimental evolution, we demonstrate that, under low mutation rates, the indirect selection of variability promotes the accumulation of noncoding sequences: Even in the absence of self-replicating elements and mutational bias, noncoding sequences constituted an important fraction of the evolved genome because the indirectly selected genomes were those that were variable enough to discover beneficial mutations. On the other hand, high mutation rates lead to compact genomes, much like the viral ones, although no selective cost of genome size was applied: The indirectly selected genomes were those that were small enough for the genetic information to be reliably transmitted. Thus, the spontaneous evolution of the amount of noncoding DNA strongly depends on the mutation rate. Our results suggest the existence of an additional pressure on the amount of noncoding DNA, namely the indirect selection of an appropriate trade-off between the fidelity of the transmission of the genetic information and the exploration of the mutational neighborhood. Interestingly, this trade-off resulted robustly in the accumulation of noncoding DNA so that the best individual leaves one offspring without mutation (or only neutral ones) per generation.
Collapse
|
26
|
Meglécz E, Anderson SJ, Bourguet D, Butcher R, Caldas A, Cassel-Lundhagen A, d'Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Péténian F, Silvain JF, Wilcock HR. Microsatellite flanking region similarities among different loci within insect species. INSECT MOLECULAR BIOLOGY 2007; 16:175-85. [PMID: 17298557 DOI: 10.1111/j.1365-2583.2006.00713.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although microsatellites are ubiquitous in eukaryota, the number of available markers varies strongly among taxa. This meta-analysis was conducted on 32 insect species. Sequences were obtained from two assembled whole genomes, whole genome shotgun (WGS) sequences from 10 species and screening partial genomic libraries for microsatellites from 23 species. We have demonstrated: (1) strong differences in the abundance of microsatellites among species; (2) that microsatellites within species are often grouped into families based on similarities in their flanking sequences; (3) that the proportion of microsatellites grouped into families varies strongly among taxa; and (4) that microsatellite families were significantly more often associated with transposable elements - or their remnants - than unique microsatellite sequences.
Collapse
Affiliation(s)
- E Meglécz
- Evolution Génome et Environnement, CASE 36, Université de Provence, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Research into the origins of introns is at a critical juncture in the resolution of theories on the evolution of early life (which came first, RNA or DNA?), the identity of LUCA (the last universal common ancestor, was it prokaryotic- or eukaryotic-like?), and the significance of noncoding nucleotide variation. One early notion was that introns would have evolved as a component of an efficient mechanism for the origin of genes. But alternative theories emerged as well. From the debate between the "introns-early" and "introns-late" theories came the proposal that introns arose before the origin of genetically encoded proteins and DNA, and the more recent "introns-first" theory, which postulates the presence of introns at that early evolutionary stage from a reconstruction of the "RNA world." Here we review seminal and recent ideas about intron origins. Recent discoveries about the patterns and causes of intron evolution make this one of the most hotly debated and exciting topics in molecular evolutionary biology today.
Collapse
Affiliation(s)
- Francisco Rodríguez-Trelles
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | |
Collapse
|
28
|
Ustinova J, Achmann R, Cremer S, Mayer F. Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus. J Mol Evol 2006; 62:158-67. [PMID: 16474983 DOI: 10.1007/s00239-005-0022-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
It is commonly believed that both the average length and the frequency of microsatellites correlate with genome size. We have estimated the frequency and the average length for 69 perfect dinucleotide microsatellites in an insect with an exceptionally large genome: Chorthippus biguttulus (Orthoptera, Acrididae). Dinucleotide microsatellites are not more frequent in C. biguttulus, but repeat arrays are 1.4 to 2 times longer than in other insect species. The average repeat number in C. biguttulus lies in the range of higher vertebrates. Natural populations are highly variable. At least 30 alleles per locus were found and the expected heterozygosity is above 0.95 at all three loci studied. In contrast, the observed heterozygosity is much lower (< or = 0.51), which could be caused by long null alleles.
Collapse
Affiliation(s)
- Jana Ustinova
- Institute of Zoology II, University of Erlangen, Staudtstrasse 5, Erlangen, D-91058, Germany.
| | | | | | | |
Collapse
|
29
|
Graham T, Boissinot S. The genomic distribution of L1 elements: the role of insertion bias and natural selection. J Biomed Biotechnol 2006; 2006:75327. [PMID: 16877820 PMCID: PMC1510949 DOI: 10.1155/jbb/2006/75327] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 12/06/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons constitute the most successful family of retroelements in mammals and account for as much as 20% of mammalian DNA. L1 elements can be found in all genomic regions but they are far more abundant in AT-rich, gene-poor, and low-recombining regions of the genome. In addition, the sex chromosomes and some genes seem disproportionately enriched in L1 elements. Insertion bias and selective processes can both account for this biased distribution of L1 elements. L1 elements do not appear to insert randomly in the genome and this insertion bias can at least partially explain the genomic distribution of L1. The contrasted distribution of L1 and Alu elements suggests that postinsertional processes play a major role in shaping L1 distribution. The most likely mechanism is the loss of recently integrated L1 elements that are deleterious (negative selection) either because of disruption of gene function or their ability to mediate ectopic recombination. By comparison, the retention of L1 elements because of some positive effect is limited to a small fraction of the genome. Understanding the respective importance of insertion bias and selection will require a better knowledge of insertion mechanisms and the dynamics of L1 inserts in populations.
Collapse
Affiliation(s)
- Todd Graham
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
| | - Stephane Boissinot
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Graduate School and University Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
30
|
Cruz F, Pérez M, Presa P. Distribution and abundance of microsatellites in the genome of bivalves. Gene 2005; 346:241-7. [PMID: 15716000 DOI: 10.1016/j.gene.2004.11.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 09/24/2004] [Accepted: 11/17/2004] [Indexed: 11/15/2022]
Abstract
Understanding how microsatellites are distributed in eukaryotic genomes is important to clarify the differential abundance of these repeats under an evolutionary scenario. We have concatenated data from 3165 DNA sequences of 326 Bivalvia species to search for taxonomic patterns of microsatellite distribution in genomic regions of markedly different functionality. Some microsatellite motifs in bivalves showed one of the lowest genomic densities observed among eukaryotes. Contrary to the expectation of a random distribution of microsatellites, they were overrepresented in introns (245 loci/Mb) compared to their frequency in exons (85 loci/Mb). Closely related species showed remarkable differences in microsatellite density suggesting species-specific properties as for mutation/repair efficiency on replication slippage. There was no evidence of a positive correlation between the density of microsatellites in intergenic DNA and the DNA-content. This research is relevant to better understand the forces shaping the distribution of microsatellites in the genome of bivalves.
Collapse
Affiliation(s)
- Fernando Cruz
- University of Vigo, Faculty of Biology, Department of Biochemistry, Genetics and Immunology, 36310 Vigo, Spain
| | | | | |
Collapse
|
31
|
Abstract
We have found a negative correlation between evolutionary rate at the protein level (as measured by d(N)) and intron size in Drosophila. Although such a relation is expected if introns reduce Hill-Robertson interference within genes, it seems more likely to be explained by the higher abundance of cis-regulatory elements in introns (especially first introns) in genes under strong selective constraints.
Collapse
Affiliation(s)
- Gabriel Marais
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, UK
| | | | | | | |
Collapse
|
32
|
Vinogradov AE. Genome size and chromatin condensation in vertebrates. Chromosoma 2005; 113:362-9. [PMID: 15647899 DOI: 10.1007/s00412-004-0323-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/05/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
Cell membrane-dependent chromatin condensation was studied by flow cytometry in erythrocytes of 36 species from six classes of vertebrates. A positive relationship was found between the degree of condensation and genome size. The distribution of variances among taxonomic levels is similar for both parameters. However, chromatin condensation varied relatively more at the lower taxonomic levels, which suggests that the degree of DNA packaging might serve for fine-tuning the 'skeletal' and/or 'buffering' function of noncoding DNA (although the range of this fine-tuning is smaller than the range of genome size changes). For two closely related amphibian species differing in genome size, change in chromatin condensation under the action of elevated extracellular salinity was investigated. Condensation was steadier and its reaction to changes in solvent composition was more inertial in the species with a larger genome, which is in agreement with the buffering function postulated for redundant DNA. The uppermost genome size in vertebrates (and in living beings in general) was updated using flow cytometry and was found to be about 80 pg (78,400 Mb). The widespread opinion that the largest genome occurs in unicellular organisms is rejected as being based on artifacts.
Collapse
Affiliation(s)
- Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, St. Petersburg, 194064, Russia.
| |
Collapse
|
33
|
Nelson CE, Hersh BM, Carroll SB. The regulatory content of intergenic DNA shapes genome architecture. Genome Biol 2004; 5:R25. [PMID: 15059258 PMCID: PMC395784 DOI: 10.1186/gb-2004-5-4-r25] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 01/09/2004] [Accepted: 02/08/2004] [Indexed: 11/21/2022] Open
Abstract
The relationship between regulatory complexity and gene spacing was examined in Caenorhabditis elegans and Drosophila melanogaster. Intergenic distance, and hence genome architecture, is shaped by regulatory information contained in noncoding DNA. Background Factors affecting the organization and spacing of functionally unrelated genes in metazoan genomes are not well understood. Because of the vast size of a typical metazoan genome compared to known regulatory and protein-coding regions, functional DNA is generally considered to have a negligible impact on gene spacing and genome organization. In particular, it has been impossible to estimate the global impact, if any, of regulatory elements on genome architecture. Results To investigate this, we examined the relationship between regulatory complexity and gene spacing in Caenorhabditis elegans and Drosophila melanogaster. We found that gene density directly reflects local regulatory complexity, such that the amount of noncoding DNA between a gene and its nearest neighbors correlates positively with that gene's regulatory complexity. Genes with complex functions are flanked by significantly more noncoding DNA than genes with simple or housekeeping functions. Genes of low regulatory complexity are associated with approximately the same amount of noncoding DNA in D. melanogaster and C. elegans, while loci of high regulatory complexity are significantly larger in the more complex animal. Complex genes in C. elegans have larger 5' than 3' noncoding intervals, whereas those in D. melanogaster have roughly equivalent 5' and 3' noncoding intervals. Conclusions Intergenic distance, and hence genome architecture, is highly nonrandom. Rather, it is shaped by regulatory information contained in noncoding DNA. Our findings suggest that in compact genomes, the species-specific loss of nonfunctional DNA reveals a landscape of regulatory information by leaving a profile of functional DNA in its wake.
Collapse
Affiliation(s)
- Craig E Nelson
- Howard Hughes Medical Institute, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53703, USA.
| | | | | |
Collapse
|
34
|
Abstract
Numerous theories have been proposed to account for the pronounced differences in the quantity of non-coding DNA among eukaryotic genomes, but the current repertoire remains incomplete because the only explicit mechanisms it provides involve DNA gain. It has been proposed more recently that biases in spontaneous insertions and deletions (indels) can lead to genome shrinkage by mutational mechanisms alone. The present article provides the first detailed critical discussion of this approach, and covers three different ideas related to it: (1) the general notion of DNA loss by deletion bias, (2) the "DNA loss hypothesis" which supposes that variation in genome size can be attributed to differences in DNA loss rate, and (3) the "mutational equilibrium model" which attempts to describe the long-term evolution of genome size. The mutational equilibrium model is found to be problematic, and it is noted that DNA loss by small indels is too slow in real time to determine variation in genome size above a relatively low threshold. Some alternative explanations for the observed patterns are provided, and the critique also identifies some potential problems with the current dataset. These include a failure to cite a more detailed (and somewhat contradictory) mammalian dataset, a questionable use of arithmetic means with highly skewed data, and important discrepancies among the particular DNA sequences so far analyzed. Overall, evolutionary reductions in genome size are considered important, but the specific mechanism relating to small deletion bias is far too weak to be accepted as a primary determinant of genome size variation in general.
Collapse
Affiliation(s)
- T Ryan Gregory
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA.
| |
Collapse
|
35
|
Kohn MH, Fang S, Wu CI. Inference of Positive and Negative Selection on the 5′ Regulatory Regions of Drosophila Genes. Mol Biol Evol 2004; 21:374-83. [PMID: 14660692 DOI: 10.1093/molbev/msh026] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Both positive selection and negative selection have been shown to drive the evolution of coding regions. It is of interest to know if the corresponding 5' regions of genes may be subjected to selection of comparable intensities. For such a comparison, we chose the Accessory gland protein (Acp) genes as our test case. About 700 bp and 600 bp for the 5' and coding regions, respectively, of eight previously unstudied genes were sequenced from 21 isogenic lines of D. melanogaster and one line from D. simulans. The ratio of divergence at the amino-acid replacement sites (A) over that at the synonymous sites (S) was twice the ratio for common polymorphism. Interestingly, the 5' region shows the same trend, with the 5'/S divergence ratio being 1.8 times higher than the 5'/S ratio for common polymorphism. There are several possible explanations for the 5'/S ratios, including demography, negative selection, and positive selection. Under normal conditions, positive selection is the most likely explanation. If that is true, about 45 to 50 percent of all fixed differences at both the replacement and 5' sites were adaptive, even though the substitution rate in the former is only half that of the latter (K(A)/K(S) approximately 0.3 vs. K(5')/K(S) approximately 0.6). As previous analyses have indicated, the inclusion of slightly deleterious polymorphism confounds the inference of positive selection. The analysis of published polymorphism data covering 97 verified 5' regions of Drosophila suggests more pronounced selective constraint on the 5' untranslated region and the core promoter (together corresponding to approximately 200 bp in this data set) when compared to the more distal portion of the 5' region of genes.
Collapse
Affiliation(s)
- Michael H Kohn
- Department of Ecology & Evolution, The University of Chicago, USA.
| | | | | |
Collapse
|
36
|
Brosius J. The contribution of RNAs and retroposition to evolutionary novelties. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
37
|
Liu SV, Saunders NJ, Jeffries A, Rest RF. Genome analysis and strain comparison of correia repeats and correia repeat-enclosed elements in pathogenic Neisseria. J Bacteriol 2002; 184:6163-73. [PMID: 12399486 PMCID: PMC151967 DOI: 10.1128/jb.184.22.6163-6173.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole genome sequences of Neisseria meningitidis strains Z2491 and MC58 and Neisseria gonorrhoeae FA1090 were analyzed for Correia repeats (CR) and CR-enclosed elements (CREE). A total of 533, 516, and 256 copies of CR and 270, 261, and 102 copies of CREE were found in these three genomes, respectively. The lengths of CREE range from 28 to 348 bp, and the lengths of multicopy CREE appear mainly in the ranges of 154 to 156 bp and 105 to 107 bp. The distribution of CREE lengths is similar between the two N. meningitidis genomes, with a greater number of 154- to 156-bp CREE (163 and 152 copies in N. meningitidis strain Z2491 and N. meningitidis strain MC58, respectively) than 105- to 107-bp CREE (72 and 77 copies). In the N. gonorrhoeae strain FA1090 genome there are relatively more 105- to 107-bp CREE (51 copies) than 154- to 156-bp CREE (36 copies). The genomic distribution of 107-bp CREE also shows similarity between the two N. meningitidis strains (15 copies share the same loci) and differences between N. meningitidis strains and N. gonorrhoeae FA1090 (only one copy is located in the same locus). Detailed sequence analysis showed that both the terminal inverted repeats and the core regions of CREE are composed of distinct basic sequence blocks. Direct TA dinucleotide repeats exist at the termini of all CREE. A survey of DNA sequence upstream of the sialyltransferase gene, lst, in several Neisseria isolates showed that 5 N. meningitidis strains contain a 107-bp CREE in this region but 25 N. gonorrhoeae strains show an exact absence of a 105-bp sequence block (i.e., the 107-bp CREE without a 5' TA dinucleotide) in the same region. Whole-genome sequence analysis confirmed that this 105-bp indel exists in many homologous 107-bp CREE loci. Thus, we postulate that all CREE are made of target TA with indels of various lengths. Analysis of 107-bp CREE revealed that they exist predominantly in intergenic regions and are often near virulence, metabolic, and transporter genes. The abundance of CREE in Neisseria genomes suggests that they may have played a role in genome organization, function, and evolution. Their differential distribution in different pathogenic Neisseria strains may contribute to the distinct behaviors of each Neisseria species.
Collapse
Affiliation(s)
- Shi V Liu
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
38
|
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JMC, Wides R, Salzberg SL, Loftus B, Yandell M, Majoros WH, Rusch DB, Lai Z, Kraft CL, Abril JF, Anthouard V, Arensburger P, Atkinson PW, Baden H, de Berardinis V, Baldwin D, Benes V, Biedler J, Blass C, Bolanos R, Boscus D, Barnstead M, Cai S, Center A, Chaturverdi K, Christophides GK, Chrystal MA, Clamp M, Cravchik A, Curwen V, Dana A, Delcher A, Dew I, Evans CA, Flanigan M, Grundschober-Freimoser A, Friedli L, Gu Z, Guan P, Guigo R, Hillenmeyer ME, Hladun SL, Hogan JR, Hong YS, Hoover J, Jaillon O, Ke Z, Kodira C, Kokoza E, Koutsos A, Letunic I, Levitsky A, Liang Y, Lin JJ, Lobo NF, Lopez JR, Malek JA, McIntosh TC, Meister S, Miller J, Mobarry C, Mongin E, Murphy SD, O'Brochta DA, Pfannkoch C, Qi R, Regier MA, Remington K, Shao H, Sharakhova MV, Sitter CD, Shetty J, Smith TJ, Strong R, Sun J, Thomasova D, Ton LQ, Topalis P, Tu Z, Unger MF, Walenz B, Wang A, Wang J, Wang M, Wang X, Woodford KJ, Wortman JR, Wu M, Yao A, Zdobnov EM, Zhang H, Zhao Q, Zhao S, Zhu SC, Zhimulev I, Coluzzi M, della Torre A, Roth CW, Louis C, Kalush F, Mural RJ, Myers EW, Adams MD, Smith HO, Broder S, Gardner MJ, Fraser CM, Birney E, Bork P, Brey PT, Venter JC, Weissenbach J, Kafatos FC, Collins FH, Hoffman SL. The genome sequence of the malaria mosquito Anopheles gambiae. Science 2002; 298:129-49. [PMID: 12364791 DOI: 10.1126/science.1076181] [Citation(s) in RCA: 1399] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Anopheles gambiae is the principal vector of malaria, a disease that afflicts more than 500 million people and causes more than 1 million deaths each year. Tenfold shotgun sequence coverage was obtained from the PEST strain of A. gambiae and assembled into scaffolds that span 278 million base pairs. A total of 91% of the genome was organized in 303 scaffolds; the largest scaffold was 23.1 million base pairs. There was substantial genetic variation within this strain, and the apparent existence of two haplotypes of approximately equal frequency ("dual haplotypes") in a substantial fraction of the genome likely reflects the outbred nature of the PEST strain. The sequence produced a conservative inference of more than 400,000 single-nucleotide polymorphisms that showed a markedly bimodal density distribution. Analysis of the genome sequence revealed strong evidence for about 14,000 protein-encoding transcripts. Prominent expansions in specific families of proteins likely involved in cell adhesion and immunity were noted. An expressed sequence tag analysis of genes regulated by blood feeding provided insights into the physiological adaptations of a hematophagous insect.
Collapse
Affiliation(s)
- Robert A Holt
- Celera Genomics, 45 West Gude Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Rogozin IB, Makarova KS, Natale DA, Spiridonov AN, Tatusov RL, Wolf YI, Yin J, Koonin EV. Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucleic Acids Res 2002; 30:4264-71. [PMID: 12364605 PMCID: PMC140549 DOI: 10.1093/nar/gkf549] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prokaryotic genomes are considered to be 'wall-to-wall' genomes, which consist largely of genes for proteins and structural RNAs, with only a small fraction of the genomic DNA allotted to intergenic regions, which are thought to typically contain regulatory signals. The majority of bacterial and archaeal genomes contain 6-14% non-coding DNA. Significant positive correlations were detected between the fraction of non-coding DNA and inter- and intra-operonic distances, suggesting that different classes of non-coding DNA evolve congruently. In contrast, no correlation was found between any of these characteristics of non-coding sequences and the number of genes or genome size. Thus, the non-coding regions and the gene sets in prokaryotes seem to evolve in different regimes. The evolution of non-coding regions appears to be determined primarily by the selective pressure to minimize the amount of non-functional DNA, while maintaining essential regulatory signals, because of which the content of non-coding DNA in different genomes is relatively uniform and intra- and inter-operonic non-coding regions evolve congruently. In contrast, the gene set is optimized for the particular environmental niche of the given microbe, which results in the lack of correlation between the gene number and the characteristics of non-coding regions.
Collapse
Affiliation(s)
- Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
We have used microsatellite sequences to evaluate the influence of the mismatch repair system on mutation bias in D. melanogaster. While mismatch-proficient cells have the highest mutation rate at (GT)(n) repeats, (AT)(n) repeats were the least stable ones in spel1(-/-) flies lacking functional mismatch repair. Furthermore, the mutation spectrum of long microsatellite alleles in spel1(-/-) was slightly upward biased, resulting in a gain of repeats, whereas wild-type flies have a strong downward bias. Interestingly, this mismatch repair-mediated downward mutation bias is reflected in the genome composition of D. melanogaster. When compared to other species, D. melanogaster has significantly shorter microsatellites. Our results suggest that the mismatch repair system may have an important role in shaping genome composition.
Collapse
Affiliation(s)
- Bettina Harr
- Institut für Tierzucht und Genetik, Veterinärmedizinische Universität Wien, Veterinärplatz 1, Austria
| | | | | |
Collapse
|
41
|
Abstract
Weakly selected mutations are most likely to be physically clustered across genomes and, when sufficiently linked, they alter each others' fixation probability, a process we call interference selection (IS). Here we study population genetics and evolutionary consequences of IS on the selected mutations themselves and on adjacent selectively neutral variation. We show that IS reduces levels of polymorphism and increases low-frequency variants and linkage disequilibrium, in both selected and adjacent neutral mutations. IS can account for several well-documented patterns of variation and composition in genomic regions with low rates of crossing over in Drosophila. IS cannot be described simply as a reduction in the efficacy of selection and effective population size in standard models of selection and drift. Rather, IS can be better understood with models that incorporate a constant "traffic" of competing alleles. Our simulations also allow us to make genome-wide predictions that are specific to IS. We show that IS will be more severe at sites in the center of a region containing weakly selected mutations than at sites located close to the edge of the region. Drosophila melanogaster genomic data strongly support this prediction, with genes without introns showing significantly reduced codon bias in the center of coding regions. As expected, if introns relieve IS, genes with centrally located introns do not show reduced codon bias in the center of the coding region. We also show that reasonably small differences in the length of intermediate "neutral" sequences embedded in a region under selection increase the effectiveness of selection on the adjacent selected sequences. Hence, the presence and length of sequences such as introns or intergenic regions can be a trait subject to selection in recombining genomes. In support of this prediction, intron presence is positively correlated with a gene's codon bias in D. melanogaster. Finally, the study of temporal dynamics of IS after a change of recombination rate shows that nonequilibrium codon usage may be the norm rather than the exception.
Collapse
Affiliation(s)
- Josep M Comeron
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|