1
|
Kranke N. Do concepts of individuality account for individuation practices in studies of host-parasite systems? A modeling account of biological individuality. Theory Biosci 2024; 143:279-292. [PMID: 39269598 PMCID: PMC11604681 DOI: 10.1007/s12064-024-00426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
In recent discussions, the widespread conviction that scientific individuation practices are governed by theories and concepts of biological individuality has been challenged, particularly by advocates of practice-based approaches. This discussion raises questions about the relationship between individuation practices and concepts of individuality. In this paper, I discuss four studies of host-parasite systems and analyze the respective individuation practices to see whether they correspond to established concepts of biological individuality. My analysis suggests that scientists individuate biological systems on different levels of organization and that the researchers' respective emphasis on one of the levels depends on the explanandum and research context as well as epistemic aims and purposes. It thus makes sense to use different concepts of individuality to account for different individuation practices. However, not all individuation practices are represented equally well by concepts of biological individuality. To account for this observation, I propose that concepts of individuality should be understood as abstracted, idealized, or simplified models that represent only certain aspects of scientific practice. A modeling account suggests a pluralistic view of concepts of biological individuality that not only allows the coexistence of different kinds of individuality (e.g., evolutionary individuality, immunological individuality, ecological individuality) but also of normative and descriptive concepts.
Collapse
Affiliation(s)
- Nina Kranke
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Stefan-Meier-Str. 76, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
McKean EL, Grill E, Choi YJ, Mitreva M, O'Halloran DM, Hawdon JM. Altered larval activation response associated with multidrug resistance in the canine hookworm Ancylostoma caninum. Parasitology 2024; 151:271-281. [PMID: 38163962 PMCID: PMC11007283 DOI: 10.1017/s0031182023001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024]
Abstract
Parasitic gastrointestinal nematodes pose significant health risks to humans, livestock, and companion animals, and their control relies heavily on the use of anthelmintic drugs. Overuse of these drugs has led to the emergence of resistant nematode populations. Herein, a naturally occurring isolate (referred to as BCR) of the dog hookworm, Ancylostoma caninum, that is resistant to 3 major classes of anthelmintics is characterized. Various drug assays were used to determine the resistance of BCR to thiabendazole, ivermectin, moxidectin and pyrantel pamoate. When compared to a drug-susceptible isolate of A. caninum, BCR was shown to be significantly resistant to all 4 of the drugs tested. Multiple single nucleotide polymorphisms have been shown to impart benzimidazole resistance, including the F167Y mutation in the β-tubulin isotype 1 gene, which was confirmed to be present in BCR through molecular analysis. The frequency of the resistant allele in BCR was 76.3% following its first passage in the lab, which represented an increase from approximately 50% in the founding hookworm population. A second, recently described mutation in codon 134 (Q134H) was also detected at lower frequency in the BCR population. Additionally, BCR exhibits an altered larval activation phenotype compared to the susceptible isolate, suggesting differences in the signalling pathways involved in the activation process which may be associated with resistance. Further characterization of this isolate will provide insights into the mechanisms of resistance to macrocyclic lactones and tetrahydropyrimidine anthelmintics.
Collapse
Affiliation(s)
- Elise L. McKean
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - Emilia Grill
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Young-Jun Choi
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Infectious Diseases Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University, St. Louis, MO, USA
| | - Damien M. O'Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA
| |
Collapse
|
3
|
Wiley MB, Bobardt SD, Nordgren TM, Nair MG, DiPatrizio NV. Cannabinoid Receptor Subtype-1 Regulates Allergic Airway Eosinophilia During Lung Helminth Infection. Cannabis Cannabinoid Res 2021; 6:242-252. [PMID: 33998896 PMCID: PMC8217601 DOI: 10.1089/can.2020.0167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Introduction: Over 1 billion humans carry infectious helminth parasites that can lead to chronic comorbidities such as anemia and growth retardation in children. Helminths induce a T-helper type 2 (Th2) immune response in the host and can cause severe tissue damage and fibrosis if chronic. We recently reported that mice infected with the soil-transmitted helminth, Nippostrongylus brasiliensis, displayed elevated levels of endocannabinoids (eCBs) in the lung and intestine. eCBs are lipid-signaling molecules that control inflammation; however, their function in infection is not well defined. Materials and Methods: A combination of pharmacological approaches and genetic mouse models was used to investigate roles for the eCB system in inflammatory responses and lung injury in mice during parasitic infection with N. brasiliensis. Results: Hemorrhaging of lung tissue in mice infected with N. brasiliensis was exacerbated by inhibiting peripheral cannabinoid receptor subtype-1 (CB1Rs) with the peripherally restricted CB1R antagonist, AM6545. In addition, these mice exhibited an increase in nonfunctional alveolar space and prolonged airway eosinophilia compared to vehicle-treated infected mice. In contrast to mice treated with AM6545, infected cannabinoid receptor subtype-2-null mice (Cnr2-/-) did not display any changes in these parameters compared to wild-type mice. Conclusions: Roles for the eCB system in Th2 immune responses are not well understood; however, increases in its activity in response to infection suggest an immunomodulatory role. Moreover, these findings suggest a role for eCB signaling at CB1Rs but not cannabinoid receptor subtypes-2 in the resolution of Th2 inflammatory responses, which become host destructive over time.
Collapse
Affiliation(s)
- Mark B. Wiley
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Sarah D. Bobardt
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Tara M. Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Meera G. Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| | - Nicholas V. DiPatrizio
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California, USA
| |
Collapse
|
4
|
O'Halloran DM. Considerations for anthelmintic resistance emergence in hookworm at a single locus. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2021. [PMCID: PMC8906071 DOI: 10.1016/j.crpvbd.2020.100006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Over 800 million people are infected with hookworms around the world. Hookworms of the genus Ancylostoma and Necator are examples of nematodes that harbor the ability to enter a host by penetrating the skin, and after entry the infective larvae migrate to the small intestine where they encounter host-specific signals that initiate developmental pathways and culminate in maturation to the adult stage. Currently no vaccine is available for the treatment of hookworm infection. The control strategy is limited to anthelmintic drugs, which run the risk of losing efficacy as resistance grows. Genetic resistance has developed against all classes of anthelmintic drugs against livestock parasites, and recently markers of anthelmintic resistance in human hookworm populations have been reported. As anthelmintic resistance develops in human populations of hookworm, new drugs and novel control methods like vaccines will be required in the future to control hookworm transmission. This review outlines how population genetics and anthelmintic resistance could interact at a single locus to influence current control strategies. This review outlines how population genetics and anthelmintic resistance may interact to influence current control strategies. Altering mutation rate modifies rate of emergence of anthelmintic resistance. Genotypic fitness changes the efficacy of anthelmintic administration.
Collapse
|
5
|
Gaikwad AS, Hu J, Chapple DG, O'Bryan MK. The functions of CAP superfamily proteins in mammalian fertility and disease. Hum Reprod Update 2020; 26:689-723. [PMID: 32378701 DOI: 10.1093/humupd/dmaa016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/11/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Members of the cysteine-rich secretory proteins (CRISPS), antigen 5 (Ag5) and pathogenesis-related 1 (Pr-1) (CAP) superfamily of proteins are found across the bacterial, fungal, plant and animal kingdoms. Although many CAP superfamily proteins remain poorly characterized, over the past decade evidence has accumulated, which provides insights into the functional roles of these proteins in various processes, including fertilization, immune defence and subversion, pathogen virulence, venom toxicology and cancer biology. OBJECTIVE AND RATIONALE The aim of this article is to summarize the current state of knowledge on CAP superfamily proteins in mammalian fertility, organismal homeostasis and disease pathogenesis. SEARCH METHODS The scientific literature search was undertaken via PubMed database on all articles published prior to November 2019. Search terms were based on following keywords: 'CAP superfamily', 'CRISP', 'Cysteine-rich secretory proteins', 'Antigen 5', 'Pathogenesis-related 1', 'male fertility', 'CAP and CTL domain containing', 'CRISPLD1', 'CRISPLD2', 'bacterial SCP', 'ion channel regulator', 'CatSper', 'PI15', 'PI16', 'CLEC', 'PRY proteins', 'ASP proteins', 'spermatogenesis', 'epididymal maturation', 'capacitation' and 'snake CRISP'. In addition to that, reference lists of primary and review article were reviewed for additional relevant publications. OUTCOMES In this review, we discuss the breadth of knowledge on CAP superfamily proteins with regards to their protein structure, biological functions and emerging significance in reproduction, health and disease. We discuss the evolution of CAP superfamily proteins from their otherwise unembellished prokaryotic predecessors into the multi-domain and neofunctionalized members found in eukaryotic organisms today. At least in part because of the rapid evolution of these proteins, many inconsistencies in nomenclature exist within the literature. As such, and in part through the use of a maximum likelihood phylogenetic analysis of the vertebrate CRISP subfamily, we have attempted to clarify this confusion, thus allowing for a comparison of orthologous protein function between species. This framework also allows the prediction of functional relevance between species based on sequence and structural conservation. WIDER IMPLICATIONS This review generates a picture of critical roles for CAP proteins in ion channel regulation, sterol and lipid binding and protease inhibition, and as ligands involved in the induction of multiple cellular processes.
Collapse
Affiliation(s)
- Avinash S Gaikwad
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Jinghua Hu
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
6
|
El Atab O, Darwiche R, Truax NJ, Schneiter R, Hull KG, Romo D, Asojo OA. Necator americanus Ancylostoma Secreted Protein-2 ( Na-ASP-2) Binds an Ascaroside (ascr#3) in Its Fatty Acid Binding Site. Front Chem 2020; 8:608296. [PMID: 33392151 PMCID: PMC7773830 DOI: 10.3389/fchem.2020.608296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/25/2020] [Indexed: 11/28/2022] Open
Abstract
During their infective stages, hookworms release excretory-secretory (E-S) products, small molecules, and proteins to help evade and suppress the host's immune system. Small molecules found in E-S products of mammalian hookworms include nematode derived metabolites like ascarosides, which are composed of the sugar ascarylose linked to a fatty acid side chain. The most abundant proteins found in hookworm E-S products are members of the protein family known as Ancylostoma secreted protein (ASP). In this study, two ascarosides and their fatty acid moieties were synthesized and tested for in vitro binding to Na-ASP-2 using both a ligand competition assay and microscale thermophoresis. The fatty acid moieties of both ascarosides tested and ascr#3, an ascaroside found in rat hookworm E-S products, bind to Na-ASP-2's palmitate binding cavity. These molecules were confirmed to bind to the palmitate but not the sterol binding sites. An ascaroside, oscr#10, which is not found in hookworm E-S products, does not bind to Na-ASP-2. More studies are required to determine the structural basis of ascarosides binding by Na-ASP-2 and to understand the physiological significance of these observations.
Collapse
Affiliation(s)
- Ola El Atab
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Rabih Darwiche
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Nathanyal J. Truax
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Roger Schneiter
- Division of Biochemistry, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Kenneth G. Hull
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Daniel Romo
- Department of Chemistry and Biochemistry & The CPRIT Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX, United States
| | - Oluwatoyin A. Asojo
- Department of Chemistry and Biochemistry, Hampton University, Hampton, VA, United States
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
7
|
Bernot JP, Rudy G, Erickson PT, Ratnappan R, Haile M, Rosa BA, Mitreva M, O'Halloran DM, Hawdon JM. Transcriptomic analysis of hookworm Ancylostoma ceylanicum life cycle stages reveals changes in G-protein coupled receptor diversity associated with the onset of parasitism. Int J Parasitol 2020; 50:603-610. [PMID: 32592811 PMCID: PMC7454011 DOI: 10.1016/j.ijpara.2020.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Free-living nematodes respond to variable and unpredictable environmental stimuli whereas parasitic nematodes exist in a more stable host environment. A positive correlation between the presence of environmental stages in the nematode life cycle and an increasing number of G-protein coupled receptors (GPCRs) reflects this difference in free-living and parasitic lifestyles. As hookworm larvae move from the external environment into a host, they detect uncharacterized host components, initiating a signalling cascade that results in the resumption of development and eventual maturation. Previous studies suggest this process is mediated by GPCRs in amphidial neurons. Here we set out to uncover candidate GPCRs required by a hookworm to recognise its host. First, we identified all potential Ancylostoma ceylanicum GPCRs encoded in the genome. We then used life cycle stage-specific RNA-seq data to identify differentially expressed GPCRs between the free-living infective L3 (iL3) and subsequent parasitic stages to identify receptors involved in the transition to parasitism. We reasoned that GPCRs involved in host recognition and developmental activation would be expressed at higher levels in the environmental iL3 stage than in subsequent stages. Our results support the model that a decrease in GPCR diversity occurs as the larvae develop from the free-living iL3 stage to the parasitic L3 (pL3) in the host over 24-72 h. We find that overall GPCR expression and diversity is highest in the iL3 compared with subsequent parasitic stages. By 72 h, there was an approximately 50% decrease in GPCR richness associated with the moult from the pL3 to the L4. Taken together, our data uncover a negative correlation between GPCR diversity and parasitic development in hookworm. Finally, we demonstrate proof of principal that Caenorhabditis elegans can be used as a heterologous system to examine the expression pattern of candidate host signal chemoreceptors (CRs) from hookworm. We observe expression of candidate host signal CRs in C. elegans, demonstrating that C. elegans can be effectively used as a surrogate to identify expressed hookworm genes. We present several preliminary examples of this strategy and confirm a candidate CR as neuronally expressed.
Collapse
Affiliation(s)
- James P Bernot
- Computational Biology Institute, The George Washington University, Washington DC, USA
| | - Gabriella Rudy
- Department of Biochemistry and Molecular Medicine, The George Washington University, Washington DC, USA
| | - Patti T Erickson
- Department of Biological Sciences, Salisbury University, Salisbury, MD, USA
| | - Ramesh Ratnappan
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA
| | - Meseret Haile
- Department of Biochemistry, Smith College, Northampton, MA, USA
| | - Bruce A Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Damien M O'Halloran
- Department of Biological Sciences, The George Washington University, Washington DC, USA
| | - John M Hawdon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington DC, USA.
| |
Collapse
|
8
|
Juan YC, Hsu H. Eczematous skin eruption on a farmer's leg in central Taiwan. Clin Exp Dermatol 2020; 45:360-363. [DOI: 10.1111/ced.14042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Y. C. Juan
- Department of Dermatology, 2F Changhua Christian Medical Foundation, Changhua Christian Hospital Changhua County Changhua City Taiwan
| | - H.‐C. Hsu
- Department of Dermatology, 2F Changhua Christian Medical Foundation, Changhua Christian Hospital Changhua County Changhua City Taiwan
| |
Collapse
|
9
|
Kim JY, Yi MH, Yong TS. Allergen-like Molecules from Parasites. Curr Protein Pept Sci 2020; 21:186-202. [DOI: 10.2174/1389203720666190708154300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
Parasite infections modulate immunologic responses, and the loss of parasite infections in the
last two to three decades might explain the increased prevalence of allergic diseases in developed countries.
However, parasites can enhance allergic responses. Parasites contain or release allergen-like molecules
that induce the specific immunoglobulin, IgE, and trigger type-2 immune responses. Some parasites
and their proteins, such as Anisakis and Echinococcus granulosus allergens, act as typical allergens.
A number of IgE-binding proteins of various helminthic parasites are cross-reactive to other environmental
allergens, which cause allergic symptoms or hamper accurate diagnosis of allergic diseases. The
cross-reactivity is based on the fact that parasite proteins are structurally homologous to common environmental
allergens. In addition, IgE-binding proteins of parasites might be useful for developing vaccines
to prevent host re-infection. This review discusses the functions of the IgE-biding proteins of parasites.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
10
|
Drug Screening for Discovery of Broad-spectrum Agents for Soil-transmitted Nematodes. Sci Rep 2019; 9:12347. [PMID: 31451730 PMCID: PMC6710243 DOI: 10.1038/s41598-019-48720-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Soil-transmitted nematodes (STNs), namely hookworms, whipworms, and ascarids, are extremely common parasites, infecting 1-2 billion of the poorest people worldwide. Two benzimidazoles, albendazole and mebendazole, are currently used in STN mass drug administration, with many instances of low/reduced activity reported. New drugs against STNs are urgently needed. We tested various models for STN drug screening with the aim of identifying the most effective tactics for the discovery of potent, safe and broad-spectrum agents. We screened a 1280-compound library of approved drugs to completion against late larval/adult stages and egg/larval stages of both the human hookworm parasite Ancylostoma ceylanicum and the free-living nematode Caenorhabditis elegans, which is often used as a surrogate for STNs in screens. The quality of positives was further evaluated based on cheminformatics/data mining analyses and activity against evolutionarily distant Trichuris muris whipworm adults. From these data, two pairs of positives, sulconazole/econazole and pararosaniline/cetylpyridinium, predicted to target nematode CYP-450 and HSP-90 respectively, were prioritized for in vivo evaluation against A. ceylanicum infections in hamsters. One of these positives, pararosaniline, showed a significant impact on hookworm fecundity in vivo. Taken together, our results suggest that anthelmintic screening with A. ceylanicum larval stages is superior to C. elegans based on both reduced false negative rate and superior overall quality of actives. Our results also highlight two potentially important targets for the discovery of broad-spectrum human STN drugs.
Collapse
|
11
|
Expansion of cap superfamily proteins in the genome of Mesocestoides corti : An extreme case of a general bilaterian trend. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Forrer A, Khieu V, Schär F, Vounatsou P, Chammartin F, Marti H, Muth S, Odermatt P. Strongyloides stercoralis and hookworm co-infection: spatial distribution and determinants in Preah Vihear Province, Cambodia. Parasit Vectors 2018; 11:33. [PMID: 29329561 PMCID: PMC5767026 DOI: 10.1186/s13071-017-2604-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Strongyloides stercoralis and hookworm are two soil-transmitted helminths (STH) that are highly prevalent in Cambodia. Strongyloides stercoralis causes long-lasting infections and significant morbidity but is largely neglected, while hookworm causes the highest public health burden among STH. The two parasites have the same infection route, i.e. skin penetration. The extent of co-distribution, which could result in potential high co-morbidities, is unknown in highly endemic settings like Cambodia. The aim of this study was to predict the spatial distribution of S. stercoralis-hookworm co-infection risk and to investigate determinants of co-infection in Preah Vihear Province, North Cambodia. METHODS A cross-sectional survey was conducted in 2010 in 60 villages of Preah Vihear Province. Diagnosis was performed on two stool samples, using combined Baermann technique and Koga agar culture plate for S. stercoralis and Kato-Katz technique for hookworm. Bayesian multinomial geostatistical models were used to assess demographic, socioeconomic, and behavioural determinants of S. stercoralis-hookworm co-infection and to predict co-infection risk at non-surveyed locations. RESULTS Of the 2576 participants included in the study, 48.6% and 49.0% were infected with S. stercoralis and hookworm, respectively; 43.8% of the cases were co-infections. Females, preschool aged children, adults aged 19-49 years, and participants who reported regularly defecating in toilets, systematically boiling drinking water and having been treated with anthelmintic drugs had lower odds of co-infection. While S. stercoralis infection risk did not appear to be spatially structured, hookworm mono-infection and co-infection exhibited spatial correlation at about 20 km. Co-infection risk was positively associated with longer walking distances to a health centre and exhibited a small clustering tendency. The association was only partly explained by climatic variables, suggesting a role for underlying factors, such as living conditions and remoteness. CONCLUSIONS Both parasites were ubiquitous in the province, with co-infections accounting for almost half of all cases. The high prevalence of S. stercoralis calls for control measures. Despite several years of school-based de-worming programmes, hookworm infection levels remain high. Mebendazole efficacy, as well as coverage of and compliance to STH control programmes should be investigated.
Collapse
Affiliation(s)
- Armelle Forrer
- 0000 0004 0587 0574grid.416786.aSwiss Tropical and Public Health Institute, Basel, Switzerland
- 0000 0004 1937 0642grid.6612.3University of Basel, Basel, Switzerland
| | - Virak Khieu
- grid.415732.6National Centre for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| | - Fabian Schär
- 0000 0004 0587 0574grid.416786.aSwiss Tropical and Public Health Institute, Basel, Switzerland
- 0000 0004 1937 0642grid.6612.3University of Basel, Basel, Switzerland
| | - Penelope Vounatsou
- 0000 0004 0587 0574grid.416786.aSwiss Tropical and Public Health Institute, Basel, Switzerland
- 0000 0004 1937 0642grid.6612.3University of Basel, Basel, Switzerland
| | - Frédérique Chammartin
- 0000 0004 0587 0574grid.416786.aSwiss Tropical and Public Health Institute, Basel, Switzerland
- 0000 0004 1937 0642grid.6612.3University of Basel, Basel, Switzerland
| | - Hanspeter Marti
- 0000 0004 0587 0574grid.416786.aSwiss Tropical and Public Health Institute, Basel, Switzerland
- 0000 0004 1937 0642grid.6612.3University of Basel, Basel, Switzerland
| | - Sinuon Muth
- grid.415732.6National Centre for Parasitology, Entomology and Malaria Control, Ministry of Health, Phnom Penh, Cambodia
| | - Peter Odermatt
- 0000 0004 0587 0574grid.416786.aSwiss Tropical and Public Health Institute, Basel, Switzerland
- 0000 0004 1937 0642grid.6612.3University of Basel, Basel, Switzerland
| |
Collapse
|
13
|
Barik S. Bioinformatic Analysis Reveals Conservation of Intrinsic Disorder in the Linker Sequences of Prokaryotic Dual-family Immunophilin Chaperones. Comput Struct Biotechnol J 2017; 16:6-14. [PMID: 29552333 PMCID: PMC5852385 DOI: 10.1016/j.csbj.2017.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
The two classical immunophilin families, found essentially in all living cells, are: cyclophilin (CYN) and FK506-binding protein (FKBP). We previously reported a novel class of immunophilins that are natural chimera of these two, which we named dual-family immunophilin (DFI). The DFIs were found in either of two conformations: CYN-linker-FKBP (CFBP) or FKBP-3TPR-CYN (FCBP). While the 3TPR domain can serve as a flexible linker between the FKBP and CYN modules in the FCBP-type DFI, the linker sequences in the CFBP-type DFIs are relatively short, diverse in sequence, and contain no discernible motif or signature. Here, I present several lines of computational evidence that, regardless of their primary structure, these CFBP linkers are intrinsically disordered. This report provides the first molecular foundation for the model that the CFBP linker acts as an unstructured, flexible loop, allowing the two flanking chaperone modules function independently while linked in cis, likely to assist in the folding of multisubunit client complexes. Dual-family immunophilins (DFIs) are recently discovered chimeric chaperones. Bacterial DFIs possess the structure CYN-linker-FKBP, abbreviated as CFBP. The linker sequences in CFBP are diverse but possess intrinsic disorder (ID). The large CFBP linker with ID is a novel discovery in prokaryotes. ID befits the linker's role as a flexible connector between two chaperone modules.
Collapse
|
14
|
Spatio-temporal expression of Mesocestoides corti McVAL2 during strobilar development. Exp Parasitol 2017; 181:30-39. [DOI: 10.1016/j.exppara.2017.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/09/2017] [Accepted: 07/23/2017] [Indexed: 11/18/2022]
|
15
|
Nair MG, Herbert DR. Immune polarization by hookworms: taking cues from T helper type 2, type 2 innate lymphoid cells and alternatively activated macrophages. Immunology 2016; 148:115-24. [PMID: 26928141 PMCID: PMC4863575 DOI: 10.1111/imm.12601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 12/15/2022] Open
Abstract
Cellular and molecular investigation of parasitic helminth infections has greatly accelerated the understanding of type 2 immune responses. However, there remains considerable debate regarding the specific leucocytes that kill parasites and whether these mechanisms are distinct from those responsible for tissue repair. Herein, we chronicle discoveries over the past decade highlighting current paradigms in type 2 immunity with a particular emphasis upon how CD4(+) T helper type 2 cells, type 2 innate lymphoid cells and alternatively activated macrophages coordinately control helminth-induced parasitism. Primarily, this review will draw from studies of the murine nematode parasite Nippostrongylus brasiliensis, which bears important similarities to the human hookworms Ancylostoma duodenale and Necator americanus. Given that one or more hookworm species currently infect millions of individuals across the globe, we propose that vaccine and/or pharmaceutical-based cure strategies targeting these affected human populations should incorporate the conceptual advances outlined herein.
Collapse
Affiliation(s)
- Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA
| | - De'Broski R Herbert
- Division of Experimental Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
16
|
Gelmedin V, Delaney A, Jennelle L, Hawdon JM. Expression profile of heat shock response factors during hookworm larval activation and parasitic development. Mol Biochem Parasitol 2015; 202:1-14. [PMID: 26296769 DOI: 10.1016/j.molbiopara.2015.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/19/2023]
Abstract
When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42°C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22°C. Neither gene was up-regulated in response to host temperature (37°C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12h, and slightly in activated larvae by 24h incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock protein expression, slightly down regulated both genes under similar conditions. Both modulators inhibited activation-associated feeding, but neither had an effect on hsp-1 levels in activated L3 at 16h. Both celastrol and KNK437 prevent the up-regulation of daf-21 and hsf-1 seen in non-activated control larvae during activation, and significantly down regulated expression of the HSF-1 negative regulator Aca-hsb-1 in activated larvae. Expression levels of heat shock response factors were examined in developing Ancylostoma ceylanicum larvae recovered from infected hosts and found to differ significantly from the expression profile of activated L3, suggesting that feeding during in vitro activation is regulated differently than parasitic development. Our results indicate that a classical heat shock response is not induced at host temperature and is suppressed during larval recovery and parasitic development in the host, but a partial heat shock response is induced after extended incubation at host temperature in the absence of a developmental signal, possibly to protect against heat stress.
Collapse
Affiliation(s)
- Verena Gelmedin
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - Angela Delaney
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - Lucas Jennelle
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States
| | - John M Hawdon
- Research Center for Neglected Diseases of Poverty, Department of Microbiology, Immunology and Tropical Medicine, George Washington University Medical Center, Washington, District of Columbia, United States.
| |
Collapse
|
17
|
Gao X, Goggin K, Dowling C, Qian J, Hawdon JM. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression. Parasit Vectors 2015; 8:14. [PMID: 25573064 PMCID: PMC4298947 DOI: 10.1186/s13071-014-0609-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. METHODS Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. RESULTS The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. CONCLUSIONS Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding elements. Aca-snr-3 encodes a core small nuclear ribonucleoprotein, and Aca-lpp-1 encodes a lipid phosphate phosphohydrolase. Expression of both genes peaked at the late L4 stage, suggesting a role in L4 development. The 3'-terminal genomic fragment of the snr-3 gene displayed Ac-DAF-16-dependent cis-regulatory activity.
Collapse
Affiliation(s)
- Xin Gao
- Current affiliation: The Genome Institute at Washington University, 4444 Forest Park Ave, St. Louis, MO, 63108, USA.
| | - Kevin Goggin
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| | - Camille Dowling
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| | - Jason Qian
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| | - John M Hawdon
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC, USA.
| |
Collapse
|
18
|
Cantacessi C, Hofmann A, Campbell BE, Gasser RB. Impact of next-generation technologies on exploring socioeconomically important parasites and developing new interventions. Methods Mol Biol 2015; 1247:437-474. [PMID: 25399114 DOI: 10.1007/978-1-4939-2004-4_31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-throughput molecular and computer technologies have become instrumental for systems biological explorations of pathogens, including parasites. For instance, investigations of the transcriptomes of different developmental stages of parasitic nematodes give insights into gene expression, regulation and function in a parasite, which is a significant step to understanding their biology, as well as interactions with their host(s) and disease. This chapter (1) gives a background on some key parasitic nematodes of socioeconomic importance, (2) describes sequencing and bioinformatic technologies for large-scale studies of the transcriptomes and genomes of these parasites, (3) provides some recent examples of applications and (4) emphasizes the prospects of fundamental biological explorations of parasites using these technologies for the development of new interventions to combat parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | | | | |
Collapse
|
19
|
Gaze S, Bethony JM, Periago MV. Immunology of experimental and natural human hookworm infection. Parasite Immunol 2014; 36:358-66. [PMID: 25337625 DOI: 10.1111/pim.12088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human hookworm infection is one amongst the most prevalent of the neglected tropical diseases. An informative experimental animal model, that is, one that parallels a human infection, is not available for the study of human hookworm infection. Much of our current understanding of the human immune response during hookworm infection relies on the studies from experimental infection of hookworm-naïve individuals or the natural infections from individuals residing in hookworm-endemic areas. The experimental human infections tend to be acute, dose-controlled infections, often with a low larval inoculum so that they are well tolerated by human volunteers. Natural hookworm infections usually occur in areas where hookworm transmission is constant and infection is chronic. In cases where there has been drug administration in an endemic area, re-infection often occurs quickly even amongst those who were treated. Hence, although many of the characteristics of experimental and natural hookworm infection differ, both models have elements in common: mainly an intense Th2 response with the production of total and specific IgE as well as elevated levels of eosinophilia, IL-5, IL-10 and TNF. While hookworm infection affects millions of individuals worldwide, much of the human immunology of this infection still needs to be studied and understood.
Collapse
|
20
|
Hawdon JM. Controlling Soil-Transmitted Helminths: Time to Think Inside the Box? J Parasitol 2014; 100:166-88. [DOI: 10.1645/13-412.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Fitzsimmons CM, Falcone FH, Dunne DW. Helminth Allergens, Parasite-Specific IgE, and Its Protective Role in Human Immunity. Front Immunol 2014; 5:61. [PMID: 24592267 PMCID: PMC3924148 DOI: 10.3389/fimmu.2014.00061] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/03/2014] [Indexed: 12/21/2022] Open
Abstract
The Th2 immune response, culminating in eosinophilia and IgE production, is not only characteristic of allergy but also of infection by parasitic worms (helminths). Anti-parasite IgE has been associated with immunity against a range of helminth infections and many believe that IgE and its receptors evolved to help counter metazoan parasites. Allergens (IgE-antigens) are present in only a small minority of protein families and known IgE targets in helminths belong to these same families (e.g., EF-hand proteins, tropomyosin, and PR-1 proteins). During some helminth infection, especially with the well adapted hookworm, the Th2 response is moderated by parasite-expressed molecules. This has been associated with reduced allergy in helminth endemic areas and worm infection or products have been proposed as treatments for allergic conditions. However, some infections (especially Ascaris) are associated with increased allergy and this has been linked to cross-reactivity between worm proteins (e.g., tropomyosins) and highly similar molecules in dust-mites and insects. The overlap between allergy and helminth infection is best illustrated in Anisakis simplex, a nematode that when consumed in under-cooked fish can be both an infective helminth and a food allergen. Nearly 20 molecular allergens have been isolated from this species, including tropomyosin (Ani s 3) and the EF-hand protein, Ani s troponin. In this review, we highlight aspects of the biology and biochemistry of helminths that may have influenced the evolution of the IgE response. We compare dominant IgE-antigens in worms with clinically important environmental allergens and suggest that arrays of such molecules will provide important information on anti-worm immunity as well as allergy.
Collapse
|
22
|
Brooker S, Bethony JM, Rodrigues LC, Alexander N, Geiger SM, Hotez PJ. Epidemiologic, immunologic and practical considerations in developing and evaluating a human hookworm vaccine. Expert Rev Vaccines 2014. [DOI: 10.1586/14760584.4.1.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Periago MV, Bethony JM. Hookworm virulence factors: making the most of the host. Microbes Infect 2012; 14:1451-64. [DOI: 10.1016/j.micinf.2012.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/16/2012] [Accepted: 09/03/2012] [Indexed: 11/25/2022]
|
24
|
ZHAN B, SANTIAGO H, KEEGAN B, GILLESPIE P, XUE J, BETHONY J, De OLIVEIRA LM, JIANG D, DIEMERT D, XIAO SH, JONES K, FENG X, HOTEZ PJ, BOTTAZZI ME. Fusion of Na-ASP-2 with human immunoglobulin Fcγ abrogates histamine release from basophils sensitized with anti-Na-ASP-2 IgE. Parasite Immunol 2012; 34:404-11. [DOI: 10.1111/j.1365-3024.2012.01371.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Prados-Rosales RC, Roldán-Rodríguez R, Serena C, López-Berges MS, Guarro J, Martínez-del-Pozo Á, Di Pietro A. A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts. J Biol Chem 2012; 287:21970-9. [PMID: 22553200 DOI: 10.1074/jbc.m112.364034] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathogenesis-related PR-1-like protein family comprises secreted proteins from the animal, plant, and fungal kingdoms whose biological function remains poorly understood. Here we have characterized a PR-1-like protein, Fpr1, from Fusarium oxysporum, an ubiquitous fungal pathogen that causes vascular wilt disease on a wide range of plant species and can produce life-threatening infections in immunocompromised humans. Fpr1 is secreted and proteolytically processed by the fungus. The fpr1 gene is required for virulence in a disseminated immunodepressed mouse model, and its function depends on the integrity of the proposed active site of PR-1-like proteins. Fpr1 belongs to a gene family that has expanded in plant pathogenic Sordariomycetes. These results suggest that secreted PR-1-like proteins play important roles in fungal pathogenicity.
Collapse
Affiliation(s)
- Rafael C Prados-Rosales
- Departamento de Genetica, Facultad de Ciencias and Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Cordoba, 14071 Cordoba, Spain
| | | | | | | | | | | | | |
Collapse
|
26
|
Cantacessi C, Campbell BE, Gasser RB. Key strongylid nematodes of animals — Impact of next-generation transcriptomics on systems biology and biotechnology. Biotechnol Adv 2012; 30:469-88. [DOI: 10.1016/j.biotechadv.2011.08.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/09/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
|
27
|
Hookworm infection in a healthy adult that manifested as severe eosinphilia and diarrhea. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2011; 44:484-7. [DOI: 10.1016/j.jmii.2011.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 04/25/2010] [Accepted: 06/20/2010] [Indexed: 11/20/2022]
|
28
|
Dryanovski DI, Dowling C, Gelmedin V, Hawdon JM. RNA and protein synthesis is required for Ancylostoma caninum larval activation. Vet Parasitol 2011; 179:137-43. [PMID: 21354706 DOI: 10.1016/j.vetpar.2011.01.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/14/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
The developmentally arrested infective larva of hookworms encounters a host-specific signal during invasion that initiates the resumption of suspended developmental pathways. The resumption of development during infection is analogous to recovery from the facultative arrested dauer stage in the free-living nematode Caenorhabditis elegans. Infective larvae of the canine hookworm Ancylostoma caninum resume feeding and secrete molecules important for infection when exposed to a host mimicking signal in vitro. This activation process is a model for the initial steps of the infective process. Dauer recovery requires protein synthesis, but not RNA synthesis in C. elegans. To determine the role of RNA and protein synthesis in hookworm infection, inhibitors of RNA and protein synthesis were tested for their effect on feeding and secretion by A. caninum infective larvae. The RNA synthesis inhibitors α-amanitin and actinomycin D inhibit feeding dose-dependently, with IC(50) values of 30 and 8 μM, respectively. The protein synthesis inhibitors puromycin (IC(50)=110 μM), cycloheximide (IC(50)=50 μM), and anisomycin (IC(50)=200 μM) also displayed dose-dependent inhibition of larval feeding. Significant inhibition of feeding by α-amanitin and anisomycin occurred when the inhibitors were added before 12h of the activation process, but not if the inhibitors were added after 12h. None of the RNA or protein synthesis inhibitors prevented secretion of the activation-associated protein ASP-1, despite nearly complete inhibition of feeding. The results indicate that unlike dauer recovery in C. elegans, de novo gene expression is required for hookworm larval activation, and the critical genes are expressed within 12h of exposure to activating stimuli. However, secretion of infection-associated proteins is independent of gene expression, indicating that the proteins are pre-synthesized and stored for rapid release during the initial stages of infection. The genes that are inhibited represent a subset of those required for the transition to parasitism, and therefore represent interesting targets for further investigation. Furthermore, while dauer recovery provides a useful model for hookworm infection, the differences identified here highlight the importance of exercising caution before making generalizations about parasitic nematodes based on C. elegans biology.
Collapse
Affiliation(s)
- Dilyan I Dryanovski
- Laboratory of Nematode Biology, Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, 2300 I St. NW, Washington, DC 20037, USA.
| | | | | | | |
Collapse
|
29
|
Krepp J, Gelmedin V, Hawdon JM. Characterisation of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation. Int J Parasitol 2010; 41:533-43. [PMID: 21172351 DOI: 10.1016/j.ijpara.2010.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/07/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
Abstract
When hookworm infective L3s infect their mammalian host, they undergo a temperature shift from that of the ambient environment to that of their endothermic host. Additionally, L3s living in the environment can be exposed to temperature extremes associated with weather fluctuations. The heat shock response (HSR) is a conserved response to heat shock and other stress that involves the expression of protective heat shock proteins (HSPs). The HSR is controlled by heat shock factor-1 (HSF-1), a conserved transcription factor that binds to a heat shock element in the promoter of HSPs, causing their expression. HSF-1 is negatively regulated in part by a HSF binding protein (HSB-1) that binds to and removes HSF-1 trimers bound to HSP gene promoters, resulting in attenuation of the HSR. Herein we describe an HSB-1 orthologue, Ac-HSB-1, from the hookworm Ancylostoma caninum. The Ac-hsb-1 cDNA encodes a 79 amino acid protein that is 71% identical to the Caenorhabditis elegans HSB-1, and is predicted to share the characteristic coiled-coil structural motif comprised of two interacting alpha helices. Recombinant Ac-HSB-1 immunoprecipitated Ce-HSF-1 expressed in mammalian cells that had been heat shocked for 1h at 42°C, but not from cells incubated at 37°C, indicating that HSB-1 only bound to the active DNA binding form of HSF-1. Expression of Ac-hsb-1 transcripts decreased following 1h of heat shock, but increased when L3s were incubated at 37°C for 1h. Activation of hookworm L3s induces a five-sixfold increase in Ac-hsb-1 expression that peaks at 12h, coincident with L3 feeding, but that subsequently decreases to two-threefold above control at 24h. Recombinant Ac-HSB-1 immunoprecipitates greater amounts of 70 and 40kDa proteins from extracts of activated L3s than from non-activated L3s. We propose that an increase in Ac-hsb-1 levels early in activation allows feeding to resume, but that a subsequent decrease in expression permits a HSR that protects non-developing L3s at host-like temperatures. Further investigations of the HSR will clarify the role of HSB-1 and HSF-1 in hookworm infection.
Collapse
Affiliation(s)
- Joseph Krepp
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, 2300 Eye St. NW, Washington, DC 20037, USA
| | | | | |
Collapse
|
30
|
Cloning and expression of a novel component of the CAP superfamily enhanced in the inflammatory response to LPS of the ascidian Ciona intestinalis. Cell Tissue Res 2010; 342:411-21. [DOI: 10.1007/s00441-010-1072-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Accepted: 10/05/2010] [Indexed: 01/26/2023]
|
31
|
Bonafé N, Zhan B, Bottazzi ME, Perez OA, Koski RA, Asojo OA. Expression, purification, crystallization and preliminary X-ray analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:1487-9. [PMID: 21045302 DOI: 10.1107/s1744309110035669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 09/05/2010] [Indexed: 11/10/2022]
Abstract
Glioma pathogenesis-related protein 1 (GLIPR1) is a member of the CAP superfamily that includes proteins from a wide range of eukaryotic organisms. The biological functions of most CAP proteins, including GLIPR1, are unclear. GLIPR1 is up-regulated in aggressive glioblastomas and contributes to the invasiveness of cultured glioblastoma cells. In contrast, decreased GLIPR1 expression is associated with advanced prostate cancer. Forced GLIPR1 overexpression is pro-apoptotic in prostate cancer cells and is being tested in clinical trials as an experimental prostate-cancer therapy. Human GLIPR1 was expressed as a truncated soluble protein (sGLIPR1), purified and crystallized. Useful X-ray data have been collected to beyond 1.9 Å resolution from a crystal that belonged to the orthorhombic space group P2(1)2(1)2 with average unit-cell parameters a = 85.1, b = 79.5, c = 38.9 Å and either a monomer or dimer in the asymmetric unit.
Collapse
Affiliation(s)
- Nathalie Bonafé
- L2 Diagnostics LLC, 300 George Street, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
32
|
Cantacessi C, Campbell BE, Young ND, Jex AR, Hall RS, Presidente PJA, Zawadzki JL, Zhong W, Aleman-Meza B, Loukas A, Sternberg PW, Gasser RB. Differences in transcription between free-living and CO2-activated third-stage larvae of Haemonchus contortus. BMC Genomics 2010; 11:266. [PMID: 20420710 PMCID: PMC2880303 DOI: 10.1186/1471-2164-11-266] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 04/27/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The disease caused by Haemonchus contortus, a blood-feeding nematode of small ruminants, is of major economic importance worldwide. The infective third-stage larva (L3) of this gastric nematode is enclosed in a cuticle (sheath) and, once ingested with herbage by the host, undergoes an exsheathment process that marks the transition from the free-living (L3) to the parasitic (xL3) stage. This study explored changes in gene transcription associated with this transition and predicted, based on comparative analysis, functional roles for key transcripts in the metabolic pathways linked to larval development. RESULTS Totals of 101,305 (L3) and 105,553 (xL3) expressed sequence tags (ESTs) were determined using 454 sequencing technology, and then assembled and annotated; the most abundant transcripts encoded transthyretin-like, calcium-binding EF-hand, NAD(P)-binding and nucleotide-binding proteins as well as homologues of Ancylostoma-secreted proteins (ASPs). Using an in silico-subtractive analysis, 560 and 685 sequences were shown to be uniquely represented in the L3 and xL3 stages, respectively; the transcripts encoded ribosomal proteins, collagens and elongation factors (in L3), and mainly peptidases and other enzymes of amino acid catabolism (in xL3). Caenorhabditis elegans orthologues of transcripts that were uniquely transcribed in each L3 and xL3 were predicted to interact with a total of 535 other genes, all of which were involved in embryonic development. CONCLUSION The present study indicated that some key transcriptional alterations taking place during the transition from the L3 to the xL3 stage of H. contortus involve genes predicted to be linked to the development of neuronal tissue (L3 and xL3), formation of the cuticle (L3) and digestion of host haemoglobin (xL3). Future efforts using next-generation sequencing and bioinformatic technologies should provide the efficiency and depth of coverage required for the determination of the complete transcriptomes of different developmental stages and/or tissues of H. contortus as well as the genome of this important parasitic nematode. Such advances should lead to a significantly improved understanding of the molecular biology of H. contortus and, from an applied perspective, to novel methods of intervention.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Bronwyn E Campbell
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Aaron R Jex
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Ross S Hall
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| | | | - Jodi L Zawadzki
- Department of Primary Industries, Attwood, Victoria, Australia
| | - Weiwei Zhong
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| | | | - Alex Loukas
- James Cook University, Cairns, Queensland, Australia
| | - Paul W Sternberg
- Biology Division, California Institute of Technology, Pasadena, California, USA
| | - Robin B Gasser
- Department of Veterinary Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
33
|
Interaction of hookworm 14-3-3 with the forkhead transcription factor DAF-16 requires intact Akt phosphorylation sites. Parasit Vectors 2009; 2:21. [PMID: 19393088 PMCID: PMC2683825 DOI: 10.1186/1756-3305-2-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/24/2009] [Indexed: 01/29/2023] Open
Abstract
Background Third-stage infective larvae (L3) of hookworms are in an obligatory state of developmental arrest that ends upon entering the definitive host, where they receive a signal that re-activates development. Recovery from the developmentally arrested dauer stage of Caenorhabditis elegans is analogous to the resumption of development during hookworm infection. Insulin-like signaling (ILS) mediates recovery from arrest in C. elegans and activation of hookworm dauer L3. In C. elegans, phosphorylation of the forkhead transcription factor DAF-16 in response to ILS creates binding cites for the 14-3-3 protein Ce-FTT-2, which translocates DAF-16 out of the nucleus, resulting in resumption of reproductive development. Results To determine if hookworm 14-3-3 proteins play a similar role in L3 activation, hookworm FTT-2 was identified and tested for its ability to interact with A. caninum DAF-16 in vitro. The Ac-FTT-2 amino acid sequence was 91% identical to the Ce-FTT-2, and was most closely related to FTT-2 from other nematodes. Ac-FTT-2 was expressed in HEK 293T cells, and was recognized by an antibody against human 14-3-3β isoform. Reciprocal co-immunoprecipitations using anti-epitope tag antibodies indicated that Ac-FTT-2 interacts with Ac-DAF-16 when co-expressed in serum-stimulated HEK 293T cells. This interaction requires intact Akt consensus phosphorylation sites at serine107 and threonine312, but not serine381. Ac-FTT-2 was undetectable by Western blot in excretory/secretory products from serum-stimulated (activated) L3 or adult A. caninum. Conclusion The results indicate that Ac-FTT-2 interacts with DAF-16 in a phosphorylation-site dependent manner, and suggests that Ac-FTT-2 mediates activation of L3 by binding Ac-DAF-16 during hookworm infection.
Collapse
|
34
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
35
|
Gao X, Frank D, Hawdon JM. Molecular cloning and DNA binding characterization of DAF-16 orthologs from Ancylostoma hookworms. Int J Parasitol 2008; 39:407-15. [PMID: 18930062 DOI: 10.1016/j.ijpara.2008.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/19/2008] [Accepted: 09/20/2008] [Indexed: 11/30/2022]
Abstract
Infective hookworm L3s encounter a host-specific signal during infection that re-initiates a suspended developmental pathway, resulting in development to the adult stage. This resumption of development in the host is analogous to recovery of developmentally arrested Caenorhabditis elegans dauer larvae in response to favorable environmental signals. Dauer recovery in C. elegans dauers and hookworm L3s is mediated by insulin-like signaling (ILS). A key output of ILS in C. elegans is the forkhead transcription factor DAF-16, which controls the expression of genes required for maintenance of the dauer stage. The similarity between recovery pathways of L3s and dauers suggests that DAF-16 functions similarly in hookworm L3 activation. To test this, orthologs of Ce-DAF-16 were isolated from the hookworms Ancylostoma caninum and Ancylostoma ceylanicum. The protein sequences of hookworm DAF-16 DNA binding domains were identical, and shared 94% identity with the b and c isoforms of Ce-DAF-16. Ac-DAF-16 expressed in HEK293 kidney cells bound strongly to the conserved DAF family binding element (DBE), but not to a random DNA sequence. Ac-DAF-16 was able to drive transcription of a reporter gene located downstream of six copies of the DBE in NIH3T3 cells under starved conditions. Addition of serum caused a decrease in reporter gene expression, indicating that DAF-16 is negatively regulated by growth factor stimulation. These data confirm the presence of DAF-16 orthologs in hookworms, and demonstrate that Ac-DAF-16 binds to and drives transcription from a conserved DAF-16 family DNA binding element.
Collapse
Affiliation(s)
- Xin Gao
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Washington, DC 20037, USA
| | | | | |
Collapse
|
36
|
Wolpert BJ, Beauvoir MG, Wells EF, Hawdon JM. Plant vermicides of Haitian Vodou show in vitro activity against larval hookworm. J Parasitol 2008; 94:1155-60. [PMID: 18576795 DOI: 10.1645/ge-1446.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 01/02/2008] [Indexed: 11/10/2022] Open
Abstract
Haitian Vodou priests (houngans) and priestesses (mambos) use plant remedies to treat many illnesses, including intestinal parasite infections. The present study screened 12 plants used in Vodou treatments for intestinal parasites to detect in vitro activity against infective-stage larvae of the hookworm Ancylostoma caninum. Water-soluble extracts of 4 of the 12 plants inhibited serum-stimulated feeding by larval A. caninum in a dose-dependent manner. All 4 plant extracts inhibited feeding induced by the muscarinic agonist arecoline, suggesting that these plant extracts may inhibit the insulin-like signaling pathway involved in the recovery and resumption of development of arrested A. caninum larvae. These results indicate that at least some of the plants used in traditional Haitian medicine as vermifuges show activity against nematode physiological processes.
Collapse
Affiliation(s)
- Beverly J Wolpert
- Department of Epidemiology and Preventive Medicine, School of Medicine, University of Maryland-Baltimore, Baltimore, Maryland 21201, USA
| | | | | | | |
Collapse
|
37
|
Ezeamama AE, McGarvey ST, Acosta LP, Zierler S, Manalo DL, Wu HW, Kurtis JD, Mor V, Olveda RM, Friedman JF. The synergistic effect of concomitant schistosomiasis, hookworm, and trichuris infections on children's anemia burden. PLoS Negl Trop Dis 2008; 2:e245. [PMID: 18523547 PMCID: PMC2390851 DOI: 10.1371/journal.pntd.0000245] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 05/08/2008] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To estimate the degree of synergism between helminth species in their combined effects on anemia. METHODS Quantitative egg counts using the Kato-Katz method were determined for Ascaris lumbricoides, hookworm, Trichuris trichiura, and Schistosoma japonicum in 507 school-age children from helminth-endemic villages in The Philippines. Infection intensity was defined in three categories: uninfected, low, or moderate/high (M+). Anemia was defined as hemoglobin <11 g/dL. Logistic regression models were used to estimate odds ratios (OR), 95% confidence intervals (CI), and synergy index for pairs of concurrent infections. RESULTS M+ co-infection of hookworm and S. japonicum (OR = 13.2, 95% CI: 3.82-45.5) and of hookworm and T. trichiura (OR = 5.34, 95% CI: 1.76-16.2) were associated with higher odds of anemia relative to children without respective M+ co-infections. For co-infections of hookworm and S. japonicum and of T. trichiura and hookworm, the estimated indices of synergy were 2.9 (95% CI: 1.1-4.6) and 1.4 (95% CI: 0.9-2.0), respectively. CONCLUSION Co-infections of hookworm and either S. japonicum or T. trichiura were associated with higher levels of anemia than would be expected if the effects of these species had only independent effects on anemia. This suggests that integrated anti-helminthic treatment programs with simultaneous deworming for S. japonicum and some geohelminths could yield a greater than additive benefit for reducing anemia in helminth-endemic regions.
Collapse
Affiliation(s)
- Amara E Ezeamama
- Department of Community Health and International Health Institute, Brown University Providence, Rhode Island, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bethony JM, Simon G, Diemert DJ, Parenti D, Desrosiers A, Schuck S, Fujiwara R, Santiago H, Hotez PJ. Randomized, placebo-controlled, double-blind trial of the Na-ASP-2 Hookworm Vaccine in unexposed adults. Vaccine 2008; 26:2408-17. [DOI: 10.1016/j.vaccine.2008.02.049] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/14/2008] [Accepted: 02/22/2008] [Indexed: 11/27/2022]
|
39
|
Costa AFD, Gomes-Ruiz AC, Rabelo ÉM. Identification of gender-regulated genes in Ancylostoma braziliense by real-time RT-PCR. Vet Parasitol 2008; 153:277-84. [DOI: 10.1016/j.vetpar.2008.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 02/07/2008] [Accepted: 02/09/2008] [Indexed: 12/16/2022]
|
40
|
Transcriptional changes in the hookworm, Ancylostoma caninum, during the transition from a free-living to a parasitic larva. PLoS Negl Trop Dis 2008; 2:e130. [PMID: 18235850 PMCID: PMC2217673 DOI: 10.1371/journal.pntd.0000130] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/26/2007] [Indexed: 11/23/2022] Open
Abstract
Background Third-stage larvae (L3) of the canine hookworm, Ancylostoma caninum, undergo arrested development preceding transmission to a host. Many of the mRNAs up-regulated at this stage are likely to encode proteins that facilitate the transition from a free-living to a parasitic larva. The initial phase of mammalian host invasion by A. caninum L3 (herein termed “activation”) can be mimicked in vitro by culturing L3 in serum-containing medium. Methodology/Principal Findings The mRNAs differentially transcribed between activated and non-activated L3 were identified by suppression subtractive hybridisation (SSH). The analysis of these mRNAs on a custom oligonucleotide microarray printed with the SSH expressed sequence tags (ESTs) and publicly available A. caninum ESTs (non-subtracted) yielded 602 differentially expressed mRNAs, of which the most highly represented sequences encoded members of the pathogenesis-related protein (PRP) superfamily and proteases. Comparison of these A. caninum mRNAs with those of Caenorhabditis elegans larvae exiting from developmental (dauer) arrest demonstrated unexpectedly large differences in gene ontology profiles. C. elegans dauer exiting L3 up-regulated expression of mostly intracellular molecules involved in growth and development. Such mRNAs are virtually absent from activated hookworm larvae, and instead are over-represented by mRNAs encoding extracellular proteins with putative roles in host-parasite interactions. Conclusions/Significance Although this should not invalidate C. elegans dauer exit as a model for hookworm activation, it highlights the limitations of this free-living nematode as a model organism for the transition of nematode larvae from a free-living to a parasitic state. Hookworms are soil-transmitted nematodes that parasitize hundreds of millions of people in developing countries. Here we describe the genes expressed when hookworm larvae make the transition from a developmentally arrested free-living form to a tissue-penetrating parasitic stage. Ancylostoma caninum can be “tricked” into thinking it has penetrated host skin by incubating free-living larvae in host serum – this is called “activation”. To comprehensively identify genes involved in activation, we used suppressive subtractive hybridization to clone genes that were up- or down-regulated in activated larvae, with a particular focus on up-regulated genes. The subtracted genes, as well as randomly sequenced (non-subtracted) genes from public databases were then printed on a microarray to further explore differential expression. We compared predicted gene functions between activated hookworms and the free-living nematode, Caenorhabditis elegans, exiting developmental arrest (dauer), and found enormous differences in the types of genes expressed. Genes encoding secreted proteins involved in parasitism were over-represented in activated hookworms whereas genes involved in growth and development dominated in C. elegans exiting dauer. Our data implies that C. elegans dauer exit is not a reliable model for exit from developmental arrest of hookworm larvae. Many of these genes likely play critical roles in host-parasite interactions, and are therefore worthy of pursuit for vaccine and drug development.
Collapse
|
41
|
Bethony JM, Loukas A, Hotez PJ, Knox DP. Vaccines against blood-feeding nematodes of humans and livestock. Parasitology 2007; 133 Suppl:S63-79. [PMID: 17274849 DOI: 10.1017/s0031182006001818] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This paper summarises the progress towards vaccine development against the major blood-feeding nematodes of man and livestock, the hookworms and Haemonchus contortus, respectively. The impact of the diseases and the drivers for vaccine development are summarized as well as the anticipated impact of the host immune response on vaccine design. The performance requirements are discussed and progress towards these objectives using defined larval and adult antigens, many of these being shared between species. Specific examples include the Ancylostoma secreted proteins and homologues in Haemonchus as well as proteases used for digestion of the blood meal. This discussion shows that many of the major vaccine candidates are shared between these blood-feeding species, not only those from the blood-feeding stages but also those expressed by infective L3s in the early stages of infection. Challenges for the future include: exploiting the expanding genome information for antigen discovery, use of different recombinant protein expression systems, formulation with new adjuvants, and novel methods of field testing vaccine efficacy.
Collapse
Affiliation(s)
- J M Bethony
- Centro de Pesquisas René Rachou/CPqRR, A FIOCRUZ em Minas Gerais. Rene Rachou Research Center/CPqRR, The Oswaldo Cruz Foundation, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
42
|
Inan M, Fanders SA, Zhang W, Hotez PJ, Zhan B, Meagher MM. Saturation of the secretory pathway by overexpression of a hookworm (Necator americanus) Protein (Na-ASP1). Methods Mol Biol 2007; 389:65-76. [PMID: 17951635 DOI: 10.1007/978-1-59745-456-8_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Human hookworm infection is one of the most significant parasitic infections, and a leading global cause of anemia and malnutrition of adults and children in rural areas of the tropics and subtropics. Necator americanus secretory protein (Na-ASP1), which is a potential vaccine candidate against hookworm infections, has been expressed in Pichia pastoris. Na-ASP1 protein was expressed extracellulary by employing the leader sequence of the alpha-mating factor of Saccharomyces cerevisiae. Most of the protein produced by single copy clones was secreted outside the cell. The Na-ASP1 steady state mRNA levels of the clones were correlated to their Na-ASP1 gene copy number. However, increasing gene copy number of Na-ASP1 protein in P. pastoris saturated secretory capacity and therefore, decreased the amount of secreted protein in clones harboring multiple copies of Na-ASP1 gene.
Collapse
Affiliation(s)
- Mehmet Inan
- Department of Chemical Engineering, University of Nebraska, Lincoln, NE. USA
| | | | | | | | | | | |
Collapse
|
43
|
Loukas A, Bethony J, Brooker S, Hotez P. Hookworm vaccines: past, present, and future. THE LANCET. INFECTIOUS DISEASES 2006; 6:733-41. [PMID: 17067922 DOI: 10.1016/s1473-3099(06)70630-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Hookworms are gastrointestinal nematodes that infect almost 1 billion people in developing countries. The main clinical symptom of human hookworm infections is iron-deficiency anaemia, a direct consequence of the intestinal blood loss resulting from the parasite's feeding behaviour. Although treatment is available and currently used for the periodic removal of adult hookworms from patients, this approach has not effectively controlled hookworm in areas of rural poverty. Furthermore, treated individuals remain susceptible to reinfection following exposure to third-stage infective hookworm larvae in the soil as early as 4-12 months after drug treatment. Therefore, a prophylactic vaccine against hookworm infection would provide an attractive additional tool for the public-health control of this disease. The feasibility of developing a vaccine is based on the previous success of an attenuated larval vaccine against canine hookworm. Several laboratory and field studies have explored the development of a human anti-hookworm vaccine, describing potential protective mechanisms and identifying candidate antigens, one of which is now in clinical trials. The current roadmap that investigators have conceived has been influenced by vaccine development for blood-feeding nematodes of livestock and companion animals; however, recombinant vaccines have yet to be developed for nematodes that parasitise animals or human beings. The roadmap also addresses the obstacles facing development of a vaccine for developing countries, where there is no commercial market.
Collapse
Affiliation(s)
- Alex Loukas
- Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | |
Collapse
|
44
|
Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 2006; 367:1521-32. [PMID: 16679166 DOI: 10.1016/s0140-6736(06)68653-4] [Citation(s) in RCA: 1457] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The three main soil-transmitted helminth infections, ascariasis, trichuriasis, and hookworm, are common clinical disorders in man. The gastrointestinal tract of a child living in poverty in a less developed country is likely to be parasitised with at least one, and in many cases all three soil-transmitted helminths, with resultant impairments in physical, intellectual, and cognitive development. The benzimidazole anthelmintics, mebendazole and albendazole, are commonly used to remove these infections. The use of these drugs is not limited to treatment of symptomatic soil-transmitted helminth infections, but also for large-scale prevention of morbidity in children living in endemic areas. As a result of data showing improvements in child health and education after deworming, and the burden of disease attributed to soil-transmitted helminths, the worldwide community is awakening to the importance of these infections. Concerns about the sustainability of periodic deworming with benzimidazole anthelmintics and the emergence of resistance have prompted efforts to develop and test new control tools.
Collapse
Affiliation(s)
- Jeffrey Bethony
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, 20037, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Ranjit N, Jones MK, Stenzel DJ, Gasser RB, Loukas A. A survey of the intestinal transcriptomes of the hookworms, Necator americanus and Ancylostoma caninum, using tissues isolated by laser microdissection microscopy. Int J Parasitol 2006; 36:701-10. [PMID: 16545815 DOI: 10.1016/j.ijpara.2006.01.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 01/27/2006] [Accepted: 01/31/2006] [Indexed: 11/16/2022]
Abstract
The gastrointestinal tracts of multi-cellular blood-feeding parasites are targets for vaccines and drugs. Recently, recombinant vaccines that interrupt the digestion of blood in the hookworm gut have shown efficacy, so we explored the intestinal transcriptomes of the human and canine hookworms, Necator americanus and Ancylostoma caninum, respectively. We used Laser Microdissection Microscopy to dissect gut tissue from the parasites, extracted the RNA and generated cDNA libraries. A total of 480 expressed sequence tags were sequenced from each library and assembled into contigs, accounting for 268 N. americanus genes and 276 A. caninum genes. Only 17% of N. americanus and 36% of A. caninum contigs were assigned Gene Ontology classifications. Twenty-six (9.8%) N. americanus and 18 (6.5%) A. caninum contigs did not have homologues in any databases including dbEST-of these novel clones, seven N. americanus and three A. caninum contigs had Open Reading Frames with predicted secretory signal peptides. The most abundant transcripts corresponded to mRNAs encoding cholesterol-and fatty acid-binding proteins, C-type lectins, Activation-Associated Secretory Proteins, and proteases of different mechanistic classes, particularly astacin-like metallopeptidases. Expressed sequence tags corresponding to known and potential recombinant vaccines were identified and these included homologues of proteases, anti-clotting factors, defensins and integral membrane proteins involved in cell adhesion.
Collapse
Affiliation(s)
- N Ranjit
- Division of Infectious Diseases and Immunology, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, QLD 4006, Australia
| | | | | | | | | |
Collapse
|
46
|
Williamson AL, Lustigman S, Oksov Y, Deumic V, Plieskatt J, Mendez S, Zhan B, Bottazzi ME, Hotez PJ, Loukas A. Ancylostoma caninum MTP-1, an astacin-like metalloprotease secreted by infective hookworm larvae, is involved in tissue migration. Infect Immun 2006; 74:961-7. [PMID: 16428741 PMCID: PMC1360348 DOI: 10.1128/iai.74.2.961-967.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infective larvae (L3) of nematodes secrete macromolecules that are critical to infection and establishment of the parasite in the host. The dog hookworm Ancylostoma caninum secretes an astacin-like metalloprotease, Ac-MTP-1, upon activation in vitro with host serum. Recombinant Ac-MTP-1 was expressed in the baculovirus/insect cell system as a secreted protein and was purified from culture medium by two separate methods, cation-exchange fast-performance liquid chromatography and gelatin-affinity chromatography. Recombinant MTP-1 was catalytically active and digested a range of native and denatured connective tissue substrates, including gelatin, collagen, laminin, and fibronectin. A dog was immunized with recombinant Ac-MTP-1 formulated with AS03 adjuvant, and the antiserum was used to immunolocalize the anatomic sites of expression within A. caninum L3 to secretory granules in the glandular esophagus and the channels that connect the esophagus to the L3 surface and to the cuticle. Antiserum inhibited the ability of recombinant MTP-1 to digest collagen by 85% and inhibited larval migration through tissue in vitro by 70 to 75%, in contrast to just 5 to 10% inhibition obtained with preimmunization serum. The metalloprotease inhibitors EDTA and 1,10-phenanthroline also reduced the penetration of L3 through skin in vitro by 43 to 61%. The data strongly suggest that Ac-MTP-1 is critical for the invasion process of hookworm larvae, and moreover, that antibodies against the enzyme can neutralize its function and inhibit migration.
Collapse
Affiliation(s)
- Angela L Williamson
- Department of Microbiology and Tropical Medicine, George Washington University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Goud GN, Bottazzi ME, Zhan B, Mendez S, Deumic V, Plieskatt J, Liu S, Wang Y, Bueno L, Fujiwara R, Samuel A, Ahn SY, Solanki M, Asojo OA, Wang J, Bethony JM, Loukas A, Roy M, Hotez PJ. Expression of the Necator americanus hookworm larval antigen Na-ASP-2 in Pichia pastoris and purification of the recombinant protein for use in human clinical trials. Vaccine 2005; 23:4754-64. [PMID: 16054275 DOI: 10.1016/j.vaccine.2005.04.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/26/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
The ASP-2 protein secreted by infective larvae of the human hookworm, Necator americanus, is under development as a recombinant vaccine. Recombinant Na-ASP-2 was expressed in Pichia pastoris, and the purified protein was characterized. At the 60 L scale, the 21.3 kDa recombinant protein was produced at a yield of 0.4 g/L. When formulated with Alhydrogel and injected into rats to determine immunological potency, three 50 microg doses of the formulated recombinant protein elicited geometric mean antibody titers up to 1:234,881. Rat anti-Na-ASP-2 antibody recognized larval-derived ASP-2 and also inhibited larval migration through skin in vitro. The processes developed and tested for the high yield production of recombinant Na-ASP-2 provide a foundation for clinical vaccine development.
Collapse
Affiliation(s)
- Gaddam Narsa Goud
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, Ross Hall 736, 2300 Eye Street NW, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Brand AM, Varghese G, Majewski W, Hawdon JM. Identification of a DAF-7 ortholog from the hookworm Ancylostoma caninum. Int J Parasitol 2005; 35:1489-98. [PMID: 16135366 DOI: 10.1016/j.ijpara.2005.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 07/05/2005] [Accepted: 07/25/2005] [Indexed: 11/19/2022]
Abstract
Infective hookworm L3 encounter a host specific signal during invasion that re-activates suspended developmental pathways. Response to this cue is critical for the successful infection and completion of the life cycle in the host. In the free-living nematode Caenorhabditis elegans, recovery from the developmentally arrested dauer stage in response to environmental cues is analogous to the resumption of development in invading hookworm L3. Transforming growth factor beta (TGF-beta) and insulin-like signalling pathways mediate dauer formation and recovery. An insulin-like signalling pathway mediates L3 activation in hookworms. To determine the role of TGF-beta signalling in hookworm infection, an ortholog of the C. elegans TGF-beta signalling molecule daf-7 was cloned and characterised. Sequence from a hookworm expressed sequence tag was used to design specific primers for PCR amplification of Ac-daf-7 from Ancylostoma caninum infective L3 cDNA. Amplicons from the 5' and 3' ends were cloned, sequenced, and combined to create a full-length composite Ac-daf-7 cDNA sequence. The 1,634 nucleotide cDNA encoded a 355 amino acid open reading frame with significant homology to Ce-DAF-7 and other TGF-beta signalling molecules. The deduced amino acid sequence contained seven conserved cysteines characteristic of TGF-beta family members, as well as two additional conserved cysteines found in members of the TGF-beta/activin subfamily. Ac-DAF-7 contains a characteristic C-terminal ligand domain that is predicted to be released from a propeptide by proteolytic cleavage at a tetrabasic cleavage site. Ac-daf-7 mRNA was strongly detected by reverse transcriptase PCR in L3 and serum stimulated L3 cDNA, and weakly in cDNA from L1 and adult life cycle stages. Antiserum against Escherichia coli expressed recombinant Ac-DAF-7 detected the mature protein in L3 and adult soluble extracts, but not in excretory/secretory products from serum stimulated L3 or adults. Increased expression in arrested L3 stages suggests that Ac-daf-7 is important for developmental arrest.
Collapse
Affiliation(s)
- Andrea M Brand
- Department of Microbiology and Tropical Medicine, The George Washington University Medical Center, 725 Ross Hall, 2300 Eye St. NW, Washington, DC 20037, USA
| | | | | | | |
Collapse
|
49
|
Mendez S, Zhan B, Goud G, Ghosh K, Dobardzic A, Wu W, Liu S, Deumic V, Dobardzic R, Liu Y, Bethony J, Hotez PJ. Effect of combining the larval antigens Ancylostoma secreted protein 2 (ASP-2) and metalloprotease 1 (MTP-1) in protecting hamsters against hookworm infection and disease caused by Ancylostoma ceylanicum. Vaccine 2005; 23:3123-30. [PMID: 15837211 DOI: 10.1016/j.vaccine.2004.12.022] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 12/22/2004] [Accepted: 12/28/2004] [Indexed: 10/27/2022]
Abstract
Syrian Golden hamsters were vaccinated with the recombinant fusion proteins Ay-ASP-2 and Ay-MTP-1 from the infective larvae of the hookworm Ancylostoma ceylanicum. Vaccines comprised each antigen alone or the combination of the two proteins. All vaccinated group developed high antibody titers (>1:40,000); coadministration of a second antigen did not significantly affect the magnitude of the antibody response. Following challenge, hamsters vaccinated with each single antigen exhibited reductions in worm burden (32% and 28% to Ay-ASP-2 and Ay-MTP-1, respectively) and fecal egg counts (56% and 43%, respectively). A vaccine cocktail, containing both antigens further reduced worm burden (36%) and fecal egg counts (59%) (p<0.001). Moreover, vaccination with the antigen cocktail significantly improved hemoglobin values (p=0.01) and body weights (p=0.001) compared to what achieved with either each antigen or adjuvant alone. Taken together, these data suggest that combination of two or more antigens may present an effective vaccine development strategy to improve protection and/or disease symptoms in affected individuals.
Collapse
Affiliation(s)
- Susana Mendez
- Department of Microbiology and Tropical Medicine and Sabin Vaccine Institute, The George Washington University Medical Center, Rose Hall 736, 2300 Eye Street, NW, Washington, DC 20037, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bethony J, Loukas A, Smout M, Brooker S, Mendez S, Plieskatt J, Goud G, Bottazzi ME, Zhan B, Wang Y, Williamson A, Lustigman S, Correa-Oliveira R, Xiao S, Hotez PJ. Antibodies against a secreted protein from hookworm larvae reduce the intensity of hookworm infection in humans and vaccinated laboratory animals. FASEB J 2005; 19:1743-5. [PMID: 16037096 DOI: 10.1096/fj.05-3936fje] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of a vaccine would provide an important new tool for the control of human hookworm infection. On the basis of successful vaccination of laboratory animals with living irradiated, third-stage hookworm larvae (L3), we examined the antibody responses of individuals from hookworm endemic areas of Brazil and China against the most abundant L3 secreted antigens, the ancylostoma secreted proteins, ASP-1 and ASP-2. Logistic regression was used to investigate the effects of antibody isotype responses to ASPs on the risk of an individual harboring heavy hookworm infection. A significant protective association was observed between increasing anti-ASP-2 IgE levels and the risk of heavy hookworm infection. To confirm that ASP-2 is a protective antigen, laboratory dogs were immunized with recombinant ASP-2 formulated with the GlaxoSmithKline Adjuvant, AS03. Sera obtained from the immunized dogs exhibited high geometric mean antibody titers, immunoprecipitated native ASP-2 from L3 extracts and localized the site of ASP-2 expression to the glandular esophagus and body channels exiting to the cuticle. The sera also exhibited an increased ability to inhibit migration of L3 through tissue in vitro relative to sera from AS03-injected controls. Upon L3 challenge, the ASP-2 vaccinated dogs exhibited significant reductions in fecal egg counts and intestinal hookworm burden. These findings provide strong support for the development of an effective recombinant vaccine against hookworm infection in humans.
Collapse
Affiliation(s)
- Jeffrey Bethony
- Department of Microbiology and Tropical Medicine, The George Washington University, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|