1
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
2
|
Kang MG, Byun K, Kim JH, Park NH, Heinsen H, Ravid R, Steinbusch HW, Lee B, Park YM. Proteogenomics of the human hippocampus: The road ahead. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:788-97. [PMID: 25770686 DOI: 10.1016/j.bbapap.2015.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 02/10/2015] [Accepted: 02/15/2015] [Indexed: 12/26/2022]
Abstract
The hippocampus is one of the most essential components of the human brain and plays an important role in learning and memory. The hippocampus has drawn great attention from scientists and clinicians due to its clinical importance in diseases such as Alzheimer's disease (AD), non-AD dementia, and epilepsy. Understanding the function of the hippocampus and related disease mechanisms requires comprehensive knowledge of the orchestration of the genome, epigenome, transcriptome, proteome, and post-translational modifications (PTMs) of proteins. The past decade has seen remarkable advances in the high-throughput sequencing techniques that are collectively called next generation sequencing (NGS). NGS enables the precise analysis of gene expression profiles in cells and tissues, allowing powerful and more feasible integration of expression data from the gene level to the protein level, even allowing "-omic" level assessment of PTMs. In addition, improved bioinformatics algorithms coupled with NGS technology are finally opening a new era for scientists to discover previously unidentified and elusive proteins. In the present review, we will focus mainly on the proteomics of the human hippocampus with an emphasis on the integrated analysis of genomics, epigenomics, transcriptomics, and proteomics. Finally, we will discuss our perspectives on the potential and future of proteomics in the field of hippocampal biology. This article is part of a Special Issue entitled: Neuroproteomics: Applications in Neuroscience and Neurology.
Collapse
Affiliation(s)
- Myoung-Goo Kang
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Republic of Korea
| | - Kyunghee Byun
- Center for Genomics and Proteomics, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 406-840, Republic of Korea
| | - Jae Ho Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea
| | - Nam Hyun Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Helmut Heinsen
- Morphological Brain Research Unit, Department of Psychiatry, Universität of Würzburg, Würzburg, Germany
| | - Rivka Ravid
- Brain Bank Consultant, Amsterdam, The Netherlands
| | - Harry W Steinbusch
- School for Mental Health and Neuroscience, Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bonghee Lee
- Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea.
| | - Young Mok Park
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 305-811, Republic of Korea; Mass Spectrometry Research Center, Korea Basic Science Institute, Chungbuk 363-883, Republic of Korea; Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea.
| |
Collapse
|
3
|
Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D, Zhang H, Krag SS, Betenbaugh MJ. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem Biophys Res Commun 2014; 453:243-53. [PMID: 24971539 PMCID: PMC4544737 DOI: 10.1016/j.bbrc.2014.06.067] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/13/2014] [Indexed: 01/01/2023]
Abstract
Voltage-gated ion channels are transmembrane proteins that regulate electrical excitability in cells and are essential components of the electrically active tissues of nerves, muscle and the heart. Potassium channels are one of the largest subfamilies of voltage sensitive channels and are among the most-studied of the voltage-gated ion channels. Voltage-gated channels can be glycosylated and changes in the glycosylation pattern can affect ion channel function, leading to neurological and neuromuscular disorders and congenital disorders of glycosylation (CDG). Alterations in glycosylation can also be acquired and appear to play a role in development and aging. Recent studies have focused on the impact of glycosylation and sialylation on ion channels, particularly for voltage-gated potassium and sodium channels. The terminal step of sialylation often affects channel activation and inactivation kinetics. The presence of sialic acids on O or N-glycans can alter the gating mechanism and cause conformational changes in the voltage-sensing domains due to sialic acid's negative charges. This manuscript will provide an overview of sialic acids, potassium and sodium channel function, and the impact of sialylation on channel activation and deactivation.
Collapse
Affiliation(s)
- Deniz Baycin-Hizal
- Chemical and Biomolecular Engineering, Johns Hopkins University, United States.
| | - Allan Gottschalk
- Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, United States
| | - Elena Jacobson
- Chemical and Biomolecular Engineering, Johns Hopkins University, United States
| | - Sunny Mai
- Chemical and Biomolecular Engineering, Johns Hopkins University, United States
| | - Daniel Wolozny
- Chemical and Biomolecular Engineering, Johns Hopkins University, United States
| | - Hui Zhang
- Pathology, Johns Hopkins University, United States
| | - Sharon S Krag
- Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, United States
| | | |
Collapse
|
4
|
Stett A, Burkhardt C, Weber U, Van Stiphout P, Knott T. CYTOCENTERING : A Novel Technique Enabling Automated Cell-by-Cell Patch Clamping with the C YTO P ATCH ™ Chip. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Worley JF, Main MJ. An Industrial Perspective on Utilizing Functional Ion Channel Assays for High Throughput Screening. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820214643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Karlova MG, Pischalnikova AV, Ramonova AA, Moisenovich MM, Sokolova OS, Shaitan KV. In vitro fluorescence assay to study the folding of Kv ion channels. Biophysics (Nagoya-shi) 2011. [DOI: 10.1134/s0006350911020138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Chen K, Godfrey DA, Ilyas O, Xu J, Preston TW. Cerebellum-related characteristics of Scn8a-mutant mice. THE CEREBELLUM 2009; 8:192-201. [PMID: 19424768 DOI: 10.1007/s12311-009-0110-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 04/22/2009] [Indexed: 12/19/2022]
Abstract
Among ten sodium channel alpha-subunit genes mapped in human and mouse genomes, the SCN8A gene is primarily expressed in neurons and glia. Mice with two types of Scn8a null mutations--Scn8a ( med ) and Scn8a ( medTg )--live for only 21-24 days, but those with incomplete mutations-Scn8a ( medJ ) and Scn8a ( medJo )--and those with knockout of Scn8a only in cerebellar Purkinje cells live to adult age. We review here previous work on cerebellum and related regions of Scn8a mutant mice and include some newer immunohistochemical and microchemical results. The resurgent sodium current that underlies the repeated firing of Purkinje cells is reduced in Scn8a mutant and knockout mice. Purkinje cells of mutant mice have greatly reduced spontaneous activity, as do the analogous cartwheel cells of the dorsal cochlear nucleus. Up-regulation of GABA(A) receptors in regions to which Purkinje cells project may partially compensate for their decreased activity in the mutant mice. The somata of cerebellar Purkinje cells of Scn8a ( medJ ) and Scn8a ( medJo ) mice, as revealed by PEP-19 immunoreaction, are slightly smaller than normal, and their axons, especially in Scn8a ( medJo ) mice, sometimes show enlargements similar to those in other types of mutant mice. Density of GABA-like immunoreactivity is decreased in Purkinje somata and regions of termination in deep cerebellar and vestibular nuclei of Scn8a ( medJ ) mice, but measured GABA concentration is not significantly reduced in microdissected samples of these regions. The concentrations of taurine and glutamine are significantly increased in cerebellar-related regions of Scn8a ( medJ ) mice, possibly suggesting up-regulation of glial amino acid metabolism.
Collapse
|
8
|
The Domain and Conformational Organization in Potassium Voltage-Gated Ion Channels. J Neuroimmune Pharmacol 2008; 4:71-82. [DOI: 10.1007/s11481-008-9130-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 09/10/2008] [Indexed: 11/26/2022]
|
9
|
Joho RH, Street C, Matsushita S, Knöpfel T. Behavioral motor dysfunction in Kv3-type potassium channel-deficient mice. GENES BRAIN AND BEHAVIOR 2006; 5:472-82. [PMID: 16923152 DOI: 10.1111/j.1601-183x.2005.00184.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The voltage-gated potassium channels Kv3.1 and Kv3.3 are expressed in several distinct neuronal subpopulations in brain areas known to be involved in motor control such as cortex, basal ganglia and cerebellum. Depending on the lack of Kv3.1 or Kv3.3 channel subunits, mutant mice show different Kv3-null allele-dependent behavioral alterations that include constitutive hyperactivity, sleep loss, impaired motor performance and, in the case of the Kv3.1/Kv3.3 double mutant, also severe ataxia, tremor and myoclonus (Espinosa et al. 2001, J Neurosci 21, 6657-6665, Genes, Brain Behav 3, 90-100). The lack of Kv3.1 channel subunits is mainly responsible for the constitutively increased locomotor activity and for sleep loss, whereas the absence of Kv3.3 subunits affects cerebellar function, in particular Purkinje cell discharges and olivocerebellar system properties (McMahon et al. 2004, Eur J Neurosci 19, 3317-3327). Here, we describe two sensitive and non-invasive tests to reliably quantify normal and abnormal motor functions, and we apply these tests to characterize motor dysfunction in Kv3-mutant mice. In contrast to wildtype and Kv3.1-single mutants, Kv3.3-single mutants and Kv3 mutants lacking three and four Kv3 alleles display Kv3-null allele-dependent gait alterations. Although the Kv3-null allele-dependent gait changes correlate with reduced motor performance, they appear to not affect the training-induced improvement of motor performance. These findings suggest that altered cerebellar physiology in the absence of Kv3.3 channels is responsible for impaired motor task execution but not motor task learning.
Collapse
Affiliation(s)
- R H Joho
- Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | | | | | | |
Collapse
|
10
|
Falconer M, Smith F, Surah-Narwal S, Congrave G, Liu Z, Hayter P, Ciaramella G, Keighley W, Haddock P, Waldron G, Sewing A. High-throughput screening for ion channel modulators. ACTA ACUST UNITED AC 2003; 7:460-5. [PMID: 14599362 DOI: 10.1177/108705702237678] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ion channels present a group of targets for major clinical indications, which have been difficult to address due to the lack of suitable rapid but biologically significant methodologies. To address the need for increased throughput in primary screening, the authors have set up a Beckman/Sagian core system to fully automate functional fluorescence-based assays that measure ion channel function. They apply voltage-sensitive fluorescent probes, and the activity of channels is monitored using Aurora's Voltage/Ion Probe Reader (VIPR). The system provides a platform for fully automated high-throughput screening as well as pharmacological characterization of ion channel modulators. The application of voltage-sensitive fluorescence dyes coupled with fluorescence resonance energy transfer is the basis of robust assays, which can be adapted to the study of a variety of ion channels to screen for both inhibitors and activators of voltage-gated and other ion channels.
Collapse
Affiliation(s)
- Margaret Falconer
- Lead Discovery Technologies, Pfizer Global Research and Development, Sandwich, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gill S, Gill R, Lee SS, Hesketh JC, Fedida D, Rezazadeh S, Stankovich L, Liang D. Flux Assays in High Throughput Screening of Ion Channels in Drug Discovery. Assay Drug Dev Technol 2003; 1:709-17. [PMID: 15090243 DOI: 10.1089/154065803770381066] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ion channels have been identified as therapeutic targets in various disorders, such as cardiovascular disease, neurological disease, and cystic fibrosis. Flux assays to detect functional ionic flux through ion channels are becoming increasingly popular as tools for screening compounds. In an optimized flux assay, modulation of ion channel activity may produce readily detectable changes in radiolabeled or nonradiolabeled ionic flux. Technologies based on flux assays are currently available in a fully automated high throughput format for efficient screening. This application offers sensitive, precise, and reproducible measurements giving accurate drug rank orders matching those of patch clamp data. Conveniently, the flux assay is amenable to adaptation for different ion channels, such as potassium, sodium, calcium, and chloride channels, by using suitable tracer ions. The nonradiolabeled rubidium-based flux assay coupled with the ion channel reader (ICR) technology has become very successful in ion channel activity analysis and is emerging as a popular technique in modern drug discovery.
Collapse
|
12
|
Brüggemann A, George M, Klau M, Beckler M, Steindl J, Behrends JC, Fertig N. High Quality Ion Channel Analysis on a Chip with the NPC© Technology. Assay Drug Dev Technol 2003; 1:665-73. [PMID: 15090239 DOI: 10.1089/154065803770381020] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In evaluating ion channel function, electrophysiology, e.g., patch clamping, provides the highest information content. For the analysis of ion channel-modulating compounds, one variant of the patch-clamp technique, the whole-cell configuration, is particularly useful. We present here patch-clamp recordings in the whole-cell configuration and single channel recordings performed with planar patch-clamp chips, which are microstructured from borosilicate glass substrate. The chips are used in the Port-a-Patch, an ion channel research/screening instrument that enables automated patch-clamp experiments on a single cell. A software runs the experiment by executing user-determined protocols for cell positioning, as well as for electrical stimulation and current readout. In various electrophysiological experiments, the high quality of recordings and the versatility of the perfusion of the recorded cells are demonstrated. Quantitative pharmacological experiments are performed on sodium channels expressed in HEK cells using solution volumes in the low microliter range. The exceptionally low volume consumption in the experiments make the system attractive for work on rare or expensive compounds. Due to the low volumes necessary, a rapid solution exchange is facilitated, which is shown on RBL cells. The patch-clamp chip enables a rapid and precise perfusion, allowing sophisticated investigations on ion channel function with the Port-a-Patch.
Collapse
|
13
|
Ritsner M, Amir S, Koronyo-Hamaoui M, Gak E, Ziv H, Halperin T, Kitain L, Navon R. Association study of CAG repeats in the KCNN3 gene in Israeli patients with major psychosis. Psychiatr Genet 2003; 13:143-50. [PMID: 12960745 DOI: 10.1097/00041444-200309000-00002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Several studies reported contradictory findings regarding the association of major psychosis with CAG repeats in the KCNN3 gene. We investigated the contribution of the CAG repeat at the KCNN3 gene, localized to chromosome 1q21.3, to the genetic susceptibility for schizophrenia, schizoaffective and bipolar disorders. METHODS Analysis of the number of CAG repeats and the differences in allele length were performed for Israeli Ashkenazi Jews, non-Ashkenazi Jews, and Arabs diagnosed with major psychosis (n=181) versus matched ethnic controls (n=207). RESULTS We found no significant difference in the number of CAG repeats between the entire sample of patients and controls. However, an analysis of the differences of allele length revealed a significantly greater number of patients with identical allele length (43.1%) when compared with normal controls (30.4%). Furthermore, an earlier age of non-paranoid schizophrenia onset was found associated with differences in allele sizes. There were no significant differences in the number of CAG repeats and the differences in allele length when subjects were grouped according to gender, ethnic origins of their parents, family history, and diagnostic groups. CONCLUSIONS Our results support the hypothesis that a contribution of the KCNN3 gene to genetic susceptibility to major psychosis and their phenotypic polymorphism may be related to the difference of allele length rather than to the number of CAG repeats.
Collapse
Affiliation(s)
- Michael Ritsner
- Sha'ar Menashe Mental Health Center, Mobile Post Hefer 38814, Hadera, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tiran Z, Peretz A, Attali B, Elson A. Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon. J Biol Chem 2003; 278:17509-14. [PMID: 12615930 DOI: 10.1074/jbc.m212766200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated potassium (Kv) channels are a complex and heterogeneous family of proteins that play major roles in brain and cardiac excitability. Although Kv channels are activated by changes in cell membrane potential, tyrosine phosphorylation of channel subunits can modulate the extent of channel activation by depolarization. We have previously shown that dephosphorylation of Kv2.1 by the nonreceptor-type tyrosine phosphatase PTPepsilon (cyt-PTPepsilon) down-regulates channel activity and counters its phosphorylation and up-regulation by Src or Fyn. In the present study, we identify tyrosine 124 within the T1 cytosolic domain of Kv2.1 as a target site for the activities of Src and cyt-PTPepsilon. Tyr(124) is phosphorylated by Src in vitro; in whole cells, Y124F Kv2.1 is significantly less phosphorylated by Src and loses most of its ability to bind the D245A substrate-trapping mutant of cyt-PTPepsilon. Phosphorylation of Tyr(124) is critical for Src-mediated up-regulation of Kv2.1 channel activity, since Y124F Kv2.1-mediated K(+) currents are only marginally up-regulated by Src, in contrast with a 3-fold up-regulation of wild-type Kv2.1 channels by the kinase. Other properties of Kv2.1, such as expression levels, subcellular localization, and voltage dependence of channel activation, are unchanged in Y124F Kv2.1, indicating that the effects of the Y124F mutation are specific. Together, these results indicate that Tyr(124) is a significant site at which the mutually antagonistic activities of Src and cyt-PTPepsilon affect Kv2.1 phosphorylation and activity.
Collapse
Affiliation(s)
- Zohar Tiran
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
15
|
Abstract
Metalloneurochemistry is the study of metal ion function in the brain and nervous system at the molecular level. Research in this area is exemplified through discussion of several forefront areas where significant progress has been made in recent years. The structure and function of ion channels have been elucidated through high-resolution x-ray structural work on the bacterial K(+) ion channel. Selection of potassium over sodium ions is achieved by taking advantage of key principles of coordination chemistry. The role of calcium ions in neuronal signal transduction is effected by several Ca(2+)-binding protein such as calmodulin, calcineurin, and synaptotagmin. Structural changes in response to calcium ion concentrations allow these proteins to function in memory formation and other neurochemical roles. Metallochaperones help to achieve metal ion homeostasis and thus prevent neurological diseases because of metal ion imbalance. Much detailed chemical information about these systems has become available recently. Zinc is another important metal ion in neuroscience. Its concentration in brain is in part controlled by metallothionein, and zinc is released in the hippocampus at glutamatergic synapses. New fluorescent sensors have become available to help track such zinc release.
Collapse
Affiliation(s)
- Shawn C Burdette
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
16
|
Chan B, Villella A, Funes P, Hall JC. Courtship and other behaviors affected by a heat-sensitive, molecularly novel mutation in the cacophony calcium-channel gene of Drosophila. Genetics 2003; 162:135-53. [PMID: 12242229 PMCID: PMC1462238 DOI: 10.1093/genetics/162.1.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cacophony (cac) locus of Drosophila melanogaster, which encodes a calcium-channel subunit, has been mutated to cause courtship-song defects or abnormal responses to visual stimuli. However, the most recently isolated cac mutant was identified as an enhancer of a comatose mutation's effects on general locomotion. We analyzed the cac(TS2) mutation in terms of its intragenic molecular change and its effects on behaviors more complex than the fly's elementary ability to move. The molecular etiology of this mutation is a nucleotide substitution that causes a proline-to-serine change in a region of the polypeptide near its EF hand. Given that this motif is involved in channel inactivation, it was intriguing that cac(TS2) males generate song pulses containing larger-than-normal numbers of cycles--provided that such males are exposed to an elevated temperature. Similar treatments caused only mild visual-response abnormalities and generic locomotor sluggishness. These results are discussed in the context of calcium-channel functions that subserve certain behaviors and of defects exhibited by the original cacophony mutant. Despite its different kind of amino-acid substitution, compared with that of cac(TS2), cac(S) males sing abnormally in a manner that mimics the new mutant's heat-sensitive song anomaly.
Collapse
Affiliation(s)
- Betty Chan
- Department of Biology, Brandeis University, Waltham, Massachussetts 02454, USA
| | | | | | | |
Collapse
|
17
|
Roll P, Massacrier A, Pereira S, Robaglia-Schlupp A, Cau P, Szepetowski P. New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families. Gene 2002; 285:141-8. [PMID: 12039040 DOI: 10.1016/s0378-1119(02)00416-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cotransporters represent a major class of proteins that make use of ion gradients to drive active transport of substrate into cells. A new human gene, KST1, encoding a member of the sodium/glucose cotransporter family, was identified onto human chromosome 16p12-p11. This genomic region contains a major gene responsible for a syndrome of infantile convulsions and paroxysmal dyskinesia (ICCA syndrome), inherited as an autosomal dominant trait, as well as for benign familial infantile convulsions (BFIC). The entire coding sequence of the human KST1 gene was determined using a combination of methods including in silico comparison of its rabbit orthologous DNA complementary to RNA (cDNA) to the corresponding human genomic sequences, reverse transcription-polymerase chain reaction on human brain RNA, 5' and 3' rapid amplification of cDNA ends. The gene is divided into 16 exons and the predicted protein of 675 amino acids contains 14 transmembrane domains. It shares significant homology to the sodium-glucose transporter 1 cotransporter proteins. An alternatively spliced transcript resulting from the skipping of exon 6 led to a predicted protein lacking the 4th transmembrane domain. As ion transporters are good candidates for a large variety of human diseases, including paroxysmal disorders, a mutation search was performed in four families with ICCA or BFIC syndromes. No pathogenic mutation was found, although several polymorphic variants with amino acids exchanges were identified. Due to its broad expression in human tissues, the human KST1 gene could be involved in several other diseases mapped to human chromosome 16p12-p11.
Collapse
MESH Headings
- Amino Acid Sequence
- Athetosis/complications
- Athetosis/genetics
- Base Sequence
- Blotting, Northern
- Chorea/complications
- Chorea/genetics
- Cloning, Molecular
- DNA Mutational Analysis
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Epilepsy, Benign Neonatal/genetics
- Exons
- Family Health
- Gene Expression
- Genes/genetics
- Humans
- Infant
- Infant, Newborn
- Introns
- Molecular Sequence Data
- Monosaccharide Transport Proteins/genetics
- Mutation
- Phylogeny
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Seizures/complications
- Seizures/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sodium-Glucose Transport Proteins
- Symporters
Collapse
Affiliation(s)
- Patrice Roll
- INSERM U491, Faculté de Médecine de la Timone, 27 Bd J Moulin, 13385, Marseille Cedex 5, France
| | | | | | | | | | | |
Collapse
|
18
|
Yi BA, Minor DL, Lin YF, Jan YN, Jan LY. Controlling potassium channel activities: Interplay between the membrane and intracellular factors. Proc Natl Acad Sci U S A 2001; 98:11016-23. [PMID: 11572962 PMCID: PMC58676 DOI: 10.1073/pnas.191351798] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neural signaling is based on the regulated timing and extent of channel opening; therefore, it is important to understand how ion channels open and close in response to neurotransmitters and intracellular messengers. Here, we examine this question for potassium channels, an extraordinarily diverse group of ion channels. Voltage-gated potassium (Kv) channels control action-potential waveforms and neuronal firing patterns by opening and closing in response to membrane-potential changes. These effects can be strongly modulated by cytoplasmic factors such as kinases, phosphatases, and small GTPases. A Kv alpha subunit contains six transmembrane segments, including an intrinsic voltage sensor. In contrast, inwardly rectifying potassium (Kir) channels have just two transmembrane segments in each of its four pore-lining alpha subunits. A variety of intracellular second messengers mediate transmitter and metabolic regulation of Kir channels. For example, Kir3 (GIRK) channels open on binding to the G protein betagamma subunits, thereby mediating slow inhibitory postsynaptic potentials in the brain. Our structure-based functional analysis on the cytoplasmic N-terminal tetramerization domain T1 of the voltage-gated channel, Kv1.2, uncovered a new function for this domain, modulation of voltage gating, and suggested a possible means of communication between second messenger pathways and Kv channels. A yeast screen for active Kir3.2 channels subjected to random mutagenesis has identified residues in the transmembrane segments that are crucial for controlling the opening of Kir3.2 channels. The identification of structural elements involved in potassium channel gating in these systems highlights principles that may be important in the regulation of other types of channels.
Collapse
Affiliation(s)
- B A Yi
- Department of Physiology and Biochemistry, Howard Hughes Medical Institute, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
19
|
Wissenbach U, Niemeyer BA, Fixemer T, Schneidewind A, Trost C, Cavalie A, Reus K, Meese E, Bonkhoff H, Flockerzi V. Expression of CaT-like, a novel calcium-selective channel, correlates with the malignancy of prostate cancer. J Biol Chem 2001; 276:19461-8. [PMID: 11278579 DOI: 10.1074/jbc.m009895200] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of intracellular Ca(2+) plays a key role in the development and growth of cells. Here we report the cloning and functional expression of a highly calcium-selective channel localized on the human chromosome 7. The sequence of the new channel is structurally related to the gene product of the CaT1 protein cloned from rat duodenum and is therefore called CaT-like (CaT-L). CaT-L is expressed in locally advanced prostate cancer, metastatic and androgen-insensitive prostatic lesions but is undetectable in healthy prostate tissue and benign prostatic hyperplasia. Additionally, CaT-L is expressed in normal placenta, exocrine pancreas, and salivary glands. New markers with well defined biological function that correlate with aberrant cell growth are needed for the molecular staging of cancer and to predict the clinical outcome. The human CaT-L channel represents a marker for prostate cancer progression and may serve as a target for therapeutic strategies.
Collapse
Affiliation(s)
- U Wissenbach
- Institut für Pharmakologie und Toxikologie, Institut für Humangnetik, und Institut für Pathologie der Universität des Saarlandes, D 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Knowledge of signaling mechanisms has increased dramatically during the past decade, particularly in the areas of development, biochemical signaling cascades, synaptic transmission and ion channel biophysics.
Collapse
Affiliation(s)
- L Y Jan
- Howard Hughes Medical Institute, University of California, 533 Parnassus Avenue, San Francisco, CA 94143-0725, USA.
| | | |
Collapse
|