1
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zhang YM, Li B, Wu WQ. Single-molecule insights into repetitive helicases. J Biol Chem 2024; 300:107894. [PMID: 39424144 DOI: 10.1016/j.jbc.2024.107894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Helicases are ubiquitous motors involved in almost all aspects of nucleic acid metabolism; therefore, revealing their unwinding behaviors and mechanisms is fundamentally and medically essential. In recent decades, single-molecule applications have revolutionized our ability to study helicases by avoiding the averaging of bulk assays and bridging the knowledge gap between dynamics and structures. This advancement has updated our understanding of the biochemical properties of helicases, such as their rate, directionality, processivity, and step size, while also uncovering unprecedented mechanistic insights. Among these, repetitive motion, a new feature of helicases, is one of the most remarkable discoveries. However, comprehensive reviews and comparisons are still lacking. Consequently, the present review aims to summarize repetitive helicases, compare the repetitive phenomena, and discuss the underlying molecular mechanisms. This review may provide a systematic understanding of repetitive helicases and help understand their cellular functions.
Collapse
Affiliation(s)
- Ya-Mei Zhang
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Bo Li
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China
| | - Wen-Qiang Wu
- School of Nursing and Health, School of Life Sciences, State Key Laboratory of Crop Stress Adaptation and Improvement, Kaifeng Key Laboratory Active Prevention and Nursing of Alzheimer's Disease, Henan University, Kaifeng, China.
| |
Collapse
|
3
|
Huang J, Qiao Z, Yu H, Lu Z, Chen W, Lu J, Wu J, Bao Y, Shahid MQ, Liu X. OsRH52A, a DEAD-box protein, regulates functional megaspore specification and is required for embryo sac development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4802-4821. [PMID: 38642102 PMCID: PMC11350083 DOI: 10.1093/jxb/erae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The development of the embryo sac is an important factor that affects seed setting in rice. Numerous genes associated with embryo sac (ES) development have been identified in plants; however, the function of the DEAD-box RNA helicase family genes is poorly known in rice. Here, we characterized a rice DEAD-box protein, RH52A, which is localized in the nucleus and cytoplasm and highly expressed in the floral organs. The knockout mutant rh52a displayed partial ES sterility, including degeneration of the ES (21%) and the presence of a double-female-gametophyte (DFG) structure (11.8%). The DFG developed from two functional megaspores near the chalazal end in one ovule, and 3.4% of DFGs were able to fertilize via the sac near the micropylar pole in rh52a. RH52A was found to interact with MFS1 and ZIP4, both of which play a role in homologous recombination in rice meiosis. RNA-sequencing identified 234 down-regulated differentially expressed genes associated with reproductive development, including two, MSP1 and HSA1b, required for female germline cell specification. Taken together, our study demonstrates that RH52A is essential for the development of the rice embryo sac and provides cytological details regarding the formation of DFGs.
Collapse
Affiliation(s)
- Jinghua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengping Qiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Hang Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zijun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Weibin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Junming Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jinwen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yueming Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiangdong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Guangdong Base Bank for Lingnan Rice Germplasm Resources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Varsani A, Harrach B, Roumagnac P, Benkő M, Breitbart M, Delwart E, Franzo G, Kazlauskas D, Rosario K, Segalés J, Dunay E, Rukundo J, Goldberg TL, Fehér E, Kaszab E, Bányai K, Krupovic M. 2024 taxonomy update for the family Circoviridae. Arch Virol 2024; 169:176. [PMID: 39143430 DOI: 10.1007/s00705-024-06107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Circovirids have a circular single-stranded DNA genome packed into a small icosahedral capsid. They are classified within two genera, Circovirus and Cyclovirus, in the family Circoviridae (phylum Cressdnaviricota, class Arfiviricetes, order Cirlivirales). Over the last five years, a number of new circovirids have been identified, and, as a result, 54 new species have been created for their classification based on the previously established species demarcation criterion, namely, that viruses classified into different species share less than 80% genome-wide pairwise sequence identity. Of note, one of the newly created species includes a circovirus that was identified in human hepatocytes and suspected of causing liver damage. Furthermore, to comply with binomial species nomenclature, all new and previously recognized species have been (re)named in binomial format with a freeform epithet. Here, we provide a summary of the properties of circovirid genomes and their classification as of June 2024 (65 species in the genus Circovirus and 90 species in the genus Cyclovirus). Finally, we provide reference datasets of the nucleotide and amino acid sequences representing each of the officially recognized circovirid species to facilitate further classification of newly discovered members of the Circoviridae.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, 85287-5001, USA.
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| | - Balázs Harrach
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Philippe Roumagnac
- CIRAD-UMR PHIM, Campus International de Baillarguet, 34398, Montpellier, France
| | - Mária Benkő
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Eric Delwart
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94118, USA
| | - Giovanni Franzo
- Department of Animal Medicine, Production and Health (MAPS), Università di Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Darius Kazlauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, 10257, Vilnius, Lithuania
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20894, USA
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL, 33701, USA
| | - Joaquim Segalés
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
- Unitat Mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193, Barcelona, Spain
| | - Emily Dunay
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Joshua Rukundo
- Ngamba Island Chimpanzee Sanctuary/Chimpanzee Trust, Entebbe, Uganda
| | - Tony L Goldberg
- Department of Pathobiological Sciences, University of Wisconsin-Madison School of Veterinary Medicine, Madison, WI, USA
| | - Enikő Fehér
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Eszter Kaszab
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
| | - Krisztián Bányai
- HUN-REN Veterinary Medical Research Institute, Budapest, 1143, Hungary
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, 1078, Budapest, Hungary
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
5
|
Dai J, Liu R, He S, Li T, Hu Y, Huang H, Li Y, Guo X. The Role of SF1 and SF2 Helicases in Biotechnological Applications. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05027-w. [PMID: 39093351 DOI: 10.1007/s12010-024-05027-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Helicases, which utilize ATP hydrolysis to separate nucleic acid duplexes, play crucial roles in DNA and RNA replication, repair, recombination, and transcription. Categorized into the major groups superfamily 1 (SF1) and superfamily 2 (SF2), alongside four minor groups, these proteins exhibit a conserved catalytic core indicative of a shared evolutionary origin while displaying functional diversity through interactions with various substrates. This review summarizes the structures, functions and mechanisms of SF1 and SF2 helicases, with an emphasis on conserved ATPase sites and RecA-like domains essential for their enzymatic and nucleic acid binding capabilities. It highlights the unique 1B and 2B domains in SF1 helicases and their impact on enzymatic activity. The DNA unwinding process is detailed, covering substrate recognition, ATP hydrolysis, and conformational changes, while addressing debates over the active form of UvrD helicase and post-unwinding dissociation. More importantly, this review discusses the biotechnological potential of helicases in emerging technologies such as nanopore sequencing, protein sequencing, and isothermal amplification, focusing on their use in pathogen detection, biosensor enhancement, and cancer treatment. As understanding deepens, innovative applications in genome editing, DNA sequencing, and synthetic biology are anticipated.
Collapse
Affiliation(s)
- Jing Dai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Ronghui Liu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Tie Li
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Yuhang Hu
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China
| | - Huiqun Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Yi Li
- School of Microelectronic, Southern University of Science and Technology, Shenzhen, 518000, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
6
|
Grimes SL, Denison MR. The Coronavirus helicase in replication. Virus Res 2024; 346:199401. [PMID: 38796132 PMCID: PMC11177069 DOI: 10.1016/j.virusres.2024.199401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/16/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
The coronavirus nonstructural protein (nsp) 13 encodes an RNA helicase (nsp13-HEL) with multiple enzymatic functions, including unwinding and nucleoside phosphatase (NTPase) activities. Attempts for enzymatic inactivation have defined the nsp13-HEL as a critical enzyme for viral replication and a high-priority target for antiviral development. Helicases have been shown to play numerous roles beyond their canonical ATPase and unwinding activities, though these functions are just beginning to be explored in coronavirus biology. Recent genetic and biochemical studies, as well as work in structurally-related helicases, have provided evidence that supports new hypotheses for the helicase's potential role in coronavirus replication. Here, we review several aspects of the coronavirus nsp13-HEL, including its reported and proposed functions in viral replication and highlight fundamental areas of research that may aid the development of helicase inhibitors.
Collapse
Affiliation(s)
- Samantha L Grimes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
Lederbauer J, Das S, Piton A, Lessel D, Kreienkamp HJ. The role of DEAD- and DExH-box RNA helicases in neurodevelopmental disorders. Front Mol Neurosci 2024; 17:1414949. [PMID: 39149612 PMCID: PMC11324592 DOI: 10.3389/fnmol.2024.1414949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) represent a large group of disorders with an onset in the neonatal or early childhood period; NDDs include intellectual disability (ID), autism spectrum disorders (ASD), attention deficit hyperactivity disorders (ADHD), seizures, various motor disabilities and abnormal muscle tone. Among the many underlying Mendelian genetic causes for these conditions, genes coding for proteins involved in all aspects of the gene expression pathway, ranging from transcription, splicing, translation to the eventual RNA decay, feature rather prominently. Here we focus on two large families of RNA helicases (DEAD- and DExH-box helicases). Genetic variants in the coding genes for several helicases have recently been shown to be associated with NDD. We address genetic constraints for helicases, types of pathological variants which have been discovered and discuss the biological pathways in which the affected helicase proteins are involved.
Collapse
Affiliation(s)
- Johannes Lederbauer
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarada Das
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Amelie Piton
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Davor Lessel
- Institute of Human Genetics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Jürgen Kreienkamp
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Hausmann S, Geiser J, Allen G, Geslain S, Valentini M. Intrinsically disordered regions regulate RhlE RNA helicase functions in bacteria. Nucleic Acids Res 2024; 52:7809-7824. [PMID: 38874491 PMCID: PMC11260450 DOI: 10.1093/nar/gkae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
RNA helicases-central enzymes in RNA metabolism-often feature intrinsically disordered regions (IDRs) that enable phase separation and complex molecular interactions. In the bacterial pathogen Pseudomonas aeruginosa, the non-redundant RhlE1 and RhlE2 RNA helicases share a conserved REC catalytic core but differ in C-terminal IDRs. Here, we show how the IDR diversity defines RhlE RNA helicase specificity of function. Both IDRs facilitate RNA binding and phase separation, localizing proteins in cytoplasmic clusters. However, RhlE2 IDR is more efficient in enhancing REC core RNA unwinding, exhibits a greater tendency for phase separation, and interacts with the RNase E endonuclease, a crucial player in mRNA degradation. Swapping IDRs results in chimeric proteins that are biochemically active but functionally distinct as compared to their native counterparts. The RECRhlE1-IDRRhlE2 chimera improves cold growth of a rhlE1 mutant, gains interaction with RNase E and affects a subset of both RhlE1 and RhlE2 RNA targets. The RECRhlE2-IDRRhlE1 chimera instead hampers bacterial growth at low temperatures in the absence of RhlE1, with its detrimental effect linked to aberrant RNA droplets. By showing that IDRs modulate both protein core activities and subcellular localization, our study defines the impact of IDR diversity on the functional differentiation of RNA helicases.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandra Amandine Marie Geslain
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA. eLife 2024; 13:RP94800. [PMID: 38739430 PMCID: PMC11090510 DOI: 10.7554/elife.94800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
10
|
Bell RT, Sahakyan H, Makarova KS, Wolf YI, Koonin EV. CoCoNuTs: A diverse subclass of Type IV restriction systems predicted to target RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.31.551357. [PMID: 37790407 PMCID: PMC10542128 DOI: 10.1101/2023.07.31.551357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote CoCoNuTs (coiled-coil nuclease tandems) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with 3 distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.
Collapse
Affiliation(s)
- Ryan T. Bell
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Harutyun Sahakyan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
11
|
Li X, Jiang Y. Research Progress of Group II Intron Splicing Factors in Land Plant Mitochondria. Genes (Basel) 2024; 15:176. [PMID: 38397166 PMCID: PMC10887915 DOI: 10.3390/genes15020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/16/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Mitochondria are important organelles that provide energy for the life of cells. Group II introns are usually found in the mitochondrial genes of land plants. Correct splicing of group II introns is critical to mitochondrial gene expression, mitochondrial biological function, and plant growth and development. Ancestral group II introns are self-splicing ribozymes that can catalyze their own removal from pre-RNAs, while group II introns in land plant mitochondria went through degenerations in RNA structures, and thus they lost the ability to self-splice. Instead, splicing of these introns in the mitochondria of land plants is promoted by nuclear- and mitochondrial-encoded proteins. Many proteins involved in mitochondrial group II intron splicing have been characterized in land plants to date. Here, we present a summary of research progress on mitochondrial group II intron splicing in land plants, with a major focus on protein splicing factors and their probable functions on the splicing of mitochondrial group II introns.
Collapse
Affiliation(s)
| | - Yueshui Jiang
- School of Life Sciences, Qufu Normal University, Qufu 273165, China;
| |
Collapse
|
12
|
Hussain A, Ray MK. Role of DEAD-box RNA helicases in low-temperature adapted growth of Antarctic Pseudomonas syringae Lz4W. Microbiol Spectr 2024; 12:e0433522. [PMID: 38014988 PMCID: PMC10783127 DOI: 10.1128/spectrum.04335-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/16/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE RNA metabolism is important as RNA acts as a link between genomic information and functional biomolecules, thereby playing a critical role in cellular response to environment. We investigated the role of DEAD-box RNA helicases in low-temperature adapted growth of P. syringae, as this group of enzymes play an essential role in modulation of RNA secondary structures. This is the first report on the assessment of all major DEAD-box RNA helicases in any Antarctic bacterium. Of the five RNA helicases, three (srmB, csdA, and dbpA) are important for the growth of the Antarctic P. syringae at low temperature. However, the requisite role of dbpA and the indispensable requirement of csdA for low-temperature adapted growth are a novel finding of this study. Growth analysis of combinatorial deletion strains was performed to understand the functional interaction among helicase genes. Similarly, genetic complementation of RNA helicase mutants was conducted for identification of gene redundancy in P. syringae.
Collapse
Affiliation(s)
- Ashaq Hussain
- Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| | - Malay Kumar Ray
- Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
| |
Collapse
|
13
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Antine SP, Johnson AG, Mooney SE, Leavitt A, Mayer ML, Yirmiya E, Amitai G, Sorek R, Kranzusch PJ. Structural basis of Gabija anti-phage defence and viral immune evasion. Nature 2024; 625:360-365. [PMID: 37992757 PMCID: PMC10781630 DOI: 10.1038/s41586-023-06855-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
Bacteria encode hundreds of diverse defence systems that protect them from viral infection and inhibit phage propagation1-5. Gabija is one of the most prevalent anti-phage defence systems, occurring in more than 15% of all sequenced bacterial and archaeal genomes1,6,7, but the molecular basis of how Gabija defends cells from viral infection remains poorly understood. Here we use X-ray crystallography and cryo-electron microscopy (cryo-EM) to define how Gabija proteins assemble into a supramolecular complex of around 500 kDa that degrades phage DNA. Gabija protein A (GajA) is a DNA endonuclease that tetramerizes to form the core of the anti-phage defence complex. Two sets of Gabija protein B (GajB) dimers dock at opposite sides of the complex and create a 4:4 GajA-GajB assembly (hereafter, GajAB) that is essential for phage resistance in vivo. We show that a phage-encoded protein, Gabija anti-defence 1 (Gad1), directly binds to the Gabija GajAB complex and inactivates defence. A cryo-EM structure of the virally inhibited state shows that Gad1 forms an octameric web that encases the GajAB complex and inhibits DNA recognition and cleavage. Our results reveal the structural basis of assembly of the Gabija anti-phage defence complex and define a unique mechanism of viral immune evasion.
Collapse
Affiliation(s)
- Sadie P Antine
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alex G Johnson
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sarah E Mooney
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Azita Leavitt
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Megan L Mayer
- Harvard Center for Cryo-Electron Microscopy, Harvard Medical School, Boston, MA, USA
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
15
|
Amundsen SK, Smith GR. RecBCD enzyme: mechanistic insights from mutants of a complex helicase-nuclease. Microbiol Mol Biol Rev 2023; 87:e0004123. [PMID: 38047637 PMCID: PMC10732027 DOI: 10.1128/mmbr.00041-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023] Open
Abstract
SUMMARYRecBCD enzyme is a multi-functional protein that initiates the major pathway of homologous genetic recombination and DNA double-strand break repair in Escherichia coli. It is also required for high cell viability and aids proper DNA replication. This 330-kDa, three-subunit enzyme is one of the fastest, most processive helicases known and contains a potent nuclease controlled by Chi sites, hotspots of recombination, in DNA. RecBCD undergoes major changes in activity and conformation when, during DNA unwinding, it encounters Chi (5'-GCTGGTGG-3') and nicks DNA nearby. Here, we discuss the multitude of mutations in each subunit that affect one or another activity of RecBCD and its control by Chi. These mutants have given deep insights into how the multiple activities of this complex enzyme are coordinated and how it acts in living cells. Similar studies could help reveal how other complex enzymes are controlled by inter-subunit interactions and conformational changes.
Collapse
Affiliation(s)
| | - Gerald R. Smith
- Fred Hutchinson Cancer Center Seattle, Seattle, Washington, USA
| |
Collapse
|
16
|
Fang T, Wang X, Huangfu N. Superfamily II helicases: the potential therapeutic target for cardiovascular diseases. Front Cardiovasc Med 2023; 10:1309491. [PMID: 38152606 PMCID: PMC10752008 DOI: 10.3389/fcvm.2023.1309491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
Cardiovascular diseases (CVDs) still maintain high morbidity and mortality globally. Helicases, a unique class of enzymes, are extensively implicated in the processes of nucleic acid (NA) metabolism across various organisms. They play a pivotal role in gene expression, inflammatory response, lipid metabolism, and so forth. However, abnormal helicase expression has been associated with immune response, cancer, and intellectual disability in humans. Superfamily II (SFII) is one of the largest and most diverse of the helicase superfamilies. Increasing evidence has implicated SFⅡ helicases in the pathogenesis of multiple CVDs. In this review, we comprehensively review the regulation mechanism of SFⅡ helicases in CVDs including atherosclerosis, myocardial infarction, cardiomyopathies, and heart failure, which will contribute to the investigation of ideal therapeutic targets for CVDs.
Collapse
Affiliation(s)
- Tianxiang Fang
- Health Science Center, Ningbo University, Ningbo, China
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| | - Xizhi Wang
- Department of Cardiology, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China
| | - Ning Huangfu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Cardiology, Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Clinical Medicine Research Centre for Cardiovascular Disease of Ningbo, Ningbo, China
| |
Collapse
|
17
|
Wettasinghe AP, Seifi MO, Bravo M, Adams AC, Patel A, Lou M, Kahanda D, Peng H, Stelling AL, Fan L, Slinker JD. Molecular wrench activity of DNA helicases: Keys to modulation of rapid kinetics in DNA repair. Protein Sci 2023; 32:e4815. [PMID: 37874269 PMCID: PMC10659936 DOI: 10.1002/pro.4815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/03/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
DNA helicase activity is essential for the vital DNA metabolic processes of recombination, replication, transcription, translation, and repair. Recently, an unexpected, rapid exponential ATP-stimulated DNA unwinding rate was observed from an Archaeoglobus fulgidus helicase (AfXPB) as compared to the slower conventional helicases from Sulfolobus tokodaii, StXPB1 and StXPB2. This unusual rapid activity suggests a "molecular wrench" mechanism arising from the torque applied by AfXPB on the duplex structure in transitioning from open to closed conformations. However, much remains to be understood. Here, we investigate the concentration dependence of DNA helicase binding and ATP-stimulated kinetics of StXPB2 and AfXPB, as well as their binding and activity in Bax1 complexes, via an electrochemical assay with redox-active DNA monolayers. StXPB2 ATP-stimulated activity is concentration-independent from 8 to 200 nM. Unexpectedly, AfXPB activity is concentration-dependent in this range, with exponential rate constants varying from seconds at concentrations greater than 20 nM to thousands of seconds at lower concentrations. At 20 nM, rapid exponential signal decay ensues, linearly reverses, and resumes with a slower exponential decay. This change in AfXPB activity as a function of its concentration is rationalized as the crossover between the fast molecular wrench and slower conventional helicase modes. AfXPB-Bax1 inhibits rapid activity, whereas the StXPB2-Bax1 complex induces rapid kinetics at higher concentrations. This activity is rationalized with the crystal structures of these complexes. These findings illuminate the different physical models governing molecular wrench activity for improved biological insight into a key factor in DNA repair.
Collapse
Affiliation(s)
| | - Melodee O. Seifi
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Marco Bravo
- Department of BiochemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Austen C. Adams
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Aman Patel
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Monica Lou
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Dimithree Kahanda
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
| | - Hao‐Che Peng
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
| | | | - Li Fan
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
| | - Jason D. Slinker
- Department of PhysicsThe University of Texas at DallasRichardsonTexasUSA
- Department of ChemistryThe University of Texas at DallasRichardsonTexasUSA
- Department of Materials Science and EngineeringThe University of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
18
|
Duan X, Boo ZZ, Chua SL, Chong KHC, Long Z, Yang R, Zhou Y, Janela B, Chotirmall SH, Ginhoux F, Hu Q, Wu B, Yang L. A Bacterial Quorum Sensing Regulated Protease Inhibits Host Immune Responses by Cleaving Death Domains of Innate Immune Adaptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304891. [PMID: 37870218 PMCID: PMC10700182 DOI: 10.1002/advs.202304891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Innate immune adaptor proteins are critical components of the innate immune system that propagate pro-inflammatory responses from their upstream receptors, and lead to pathogen clearance from the host. Bacterial pathogens have developed strategies to survive inside host cells without triggering the innate immune surveillance in ways that are still not fully understood. Here, it is reported that Pseudomonas aeruginosa induces its quorum sensing mechanism after macrophage engulfment. Further investigation of its secretome identified a quorum sensing regulated product, LasB, is responsible for innate immune suppression depending on the MyD88-mediated signaling. Moreover, it is showed that this specific type of pathogen-mediated innate immune suppression is due to the enzymatic digestion of the death domains of the innate immune adaptors, mainly MyD88, and attributed to LasB's large substrate binding groove. Lastly, it is demonstrated that the secretion of LasB from P. aeruginosa directly contributed to MyD88 degradation within macrophages. Hence, it is discovered an example of bacterial quorum sensing-regulated cellular innate immune suppression by direct cleavage of immune adaptors.
Collapse
Affiliation(s)
- Xiangke Duan
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Zhao Zhi Boo
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong SAR999077P. R. China
| | - Kelvin Han Chung Chong
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Ziqi Long
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Renliang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Yachun Zhou
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Baptiste Janela
- Skin Research Institute of SingaporeSingapore308232Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore639798Singapore
| | | | - Florent Ginhoux
- Singapore Immunology NetworkAgency for Science, Technology and Research (A*STAR)8A Biomedical Grove, ImmunosSingapore138648Singapore
| | - Qinghua Hu
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Bin Wu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Liang Yang
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
19
|
Oh H, Koo J, An SY, Hong SH, Suh JY, Bae E. Structural and functional investigation of GajB protein in Gabija anti-phage defense. Nucleic Acids Res 2023; 51:11941-11951. [PMID: 37897358 PMCID: PMC10681800 DOI: 10.1093/nar/gkad951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
Bacteriophages (phages) are viruses that infect bacteria and archaea. To fend off invading phages, the hosts have evolved a variety of anti-phage defense mechanisms. Gabija is one of the most abundant prokaryotic antiviral systems and consists of two proteins, GajA and GajB. GajA has been characterized experimentally as a sequence-specific DNA endonuclease. Although GajB was previously predicted to be a UvrD-like helicase, its function is unclear. Here, we report the results of structural and functional analyses of GajB. The crystal structure of GajB revealed a UvrD-like domain architecture, including two RecA-like core and two accessory subdomains. However, local structural elements that are important for the helicase function of UvrD are not conserved in GajB. In functional assays, GajB did not unwind or bind various types of DNA substrates. We demonstrated that GajB interacts with GajA to form a heterooctameric Gabija complex, but GajB did not exhibit helicase activity when bound to GajA. These results advance our understanding of the molecular mechanism underlying Gabija anti-phage defense and highlight the role of GajB as a component of a multi-subunit antiviral complex in bacteria.
Collapse
Affiliation(s)
- Hyejin Oh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jasung Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - So Young An
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sung-Hyun Hong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Yong Suh
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Euiyoung Bae
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
20
|
Bohnsack KE, Yi S, Venus S, Jankowsky E, Bohnsack MT. Cellular functions of eukaryotic RNA helicases and their links to human diseases. Nat Rev Mol Cell Biol 2023; 24:749-769. [PMID: 37474727 DOI: 10.1038/s41580-023-00628-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/22/2023]
Abstract
RNA helicases are highly conserved proteins that use nucleoside triphosphates to bind or remodel RNA, RNA-protein complexes or both. RNA helicases are classified into the DEAD-box, DEAH/RHA, Ski2-like, Upf1-like and RIG-I families, and are the largest class of enzymes active in eukaryotic RNA metabolism - virtually all aspects of gene expression and its regulation involve RNA helicases. Mutation and dysregulation of these enzymes have been linked to a multitude of diseases, including cancer and neurological disorders. In this Review, we discuss the regulation and functional mechanisms of RNA helicases and their roles in eukaryotic RNA metabolism, including in transcription regulation, pre-mRNA splicing, ribosome assembly, translation and RNA decay. We highlight intriguing models that link helicase structure, mechanisms of function (such as local strand unwinding, translocation, winching, RNA clamping and displacing RNA-binding proteins) and biological roles, including emerging connections between RNA helicases and cellular condensates formed through liquid-liquid phase separation. We also discuss associations of RNA helicases with human diseases and recent efforts towards the design of small-molecule inhibitors of these pivotal regulators of eukaryotic gene expression.
Collapse
Affiliation(s)
- Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Sarah Venus
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Moderna, Cambridge, MA, USA.
| | - Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
21
|
Kadonaga JT. Perspectives on ATP-dependent chromatin remodeling. Enzymes 2023; 53:1-6. [PMID: 37748834 PMCID: PMC10552720 DOI: 10.1016/bs.enz.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Nucleosomes are intrinsically immobile, and thus, ATP-dependent chromatin remodeling factors are needed to alter nucleosomes to facilitate DNA-directed processes such as transcription. More generally, chromatin remodeling factors mediate chromatin dynamics, which encompasses nucleosome assembly, movement, and disruption as well as histone exchange. Here, I present selected thoughts and perspectives on the past, present, and future of these fascinating ATP-driven motor proteins.
Collapse
Affiliation(s)
- James T Kadonaga
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
22
|
Li H, Zhuang H, Gu T, Li G, Jiang Y, Xu S, Zhou Q. RAD54L promotes progression of hepatocellular carcinoma via the homologous recombination repair pathway. Funct Integr Genomics 2023; 23:128. [PMID: 37071224 DOI: 10.1007/s10142-023-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence worldwide. The underlying mechanisms remain poorly understood. The DNA metabolic process of homologous recombination repair (HRR) has been linked to a high probability of tumorigenesis and drug resistance. This study aimed to determine the role of HRR in HCC and identify critical HRR-related genes that affect tumorigenesis and prognosis. A total of 613 tumor and 252 para-carcinoma tissue samples were collected from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) to obtain differentially expressed genes (DEGs). HRR-related genes were assessed using gene enrichment and pathway analyses. Survival analysis was performed using the Kaplan-Meier method in the Gene Expression Profiling Interactive Analysis portal. The levels of RAD54L in the HRR pathway were detected by RT-qPCR and western blotting in para-carcinoma and HCC tissues and in L02 normal human liver cells and Huh7 HCC cells. Immunohistochemistry (IHC) was performed on the clinical specimens to determine the connection between gene expression and clinical features. Bioinformatics analysis revealed that the HRR pathway was enriched in HCC tissues. Upregulation of HRR pathway DEGs in HCC tissues was positively correlated with tumor pathological staging and negatively associated with patient overall survival. RAD54B, RAD54L, and EME1 genes in the HRR pathway were screened as markers for predicting HCC prognosis. RT-qPCR identified RAD54L as the most significantly expressed of the three genes. Western blotting and IHC quantitative analyses further demonstrated that RAD54L protein levels were higher in HCC tissues. IHC analysis of 39 pairs of HCC and para-carcinoma tissue samples also revealed an association between RAD54L and Edmondson-Steiner grade and the proliferation-related gene Ki67. The collective findings positively correlate RAD54L in the HRR signaling pathway with HCC staging and implicate RAD54L as a marker to predict HCC progression.
Collapse
Affiliation(s)
- Hongda Li
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Haiwen Zhuang
- Division of Gastrointestinal Surgery, Department of General Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an Second People's Hospital, Huai'an, China
| | - Tengfei Gu
- Department of Anesthesiology, People's Hospital of Lianshui County, Huai'an, China
| | - Guangyu Li
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuhang Jiang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sanrong Xu
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Qing Zhou
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
23
|
Ma W, Guan X, Miao Y, Zhang L. Whole Genome Resequencing Revealed the Effect of Helicase yqhH Gene on Regulating Bacillus thuringiensis LLP29 against Ultraviolet Radiation Stress. Int J Mol Sci 2023; 24:ijms24065810. [PMID: 36982883 PMCID: PMC10054049 DOI: 10.3390/ijms24065810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Bacillus thuringiensis (Bt) is a widely used microbial pesticide. However, its duration of effectiveness is greatly shortened due to the irradiation of ultraviolet rays, which seriously hinders the application of Bt preparations. Therefore, it is of great importance to study the resistance mechanism of Bt to UV at the molecular level to improve the UV-resistance of Bt strains. In order to know the functional genes in the UV resistance, the genome of UV-induced mutant Bt LLP29-M19 was re-sequenced and compared with the original strain Bt LLP29. It was shown that there were 1318 SNPs, 31 InDels, and 206 SV between the mutant strain and the original strain Bt LLP29 after UV irradiation, which were then analyzed for gene annotation. Additionally, a mutated gene named yqhH, a member of helicase superfamily II, was detected as an important candidate. Then, yqhH was expressed and purified successfully. Through the result of the enzymatic activity in vitro, yqhH was found to have ATP hydrolase and helicase activities. In order to further verify its function, the yqhH gene was knocked out and complemented by homologous recombinant gene knockout technology. The survival rate of the knockout mutant strain Bt LLP29-ΔyqhH was significantly lower than that of the original strain Bt LLP29 and the back-complemented strain Bt LLP29-ΔyqhH-R after treated with UV. Meanwhile, the total helicase activity was not significantly different on whether Bt carried yqhH or not. All of these greatly enrich important molecular mechanisms of Bt when it is in UV stress.
Collapse
Affiliation(s)
- Weibo Ma
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiong Guan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Miao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
24
|
Sather LM, Zamani M, Muhammed Z, Kearsley JVS, Fisher GT, Jones KM, Finan TM. A broadly distributed predicted helicase/nuclease confers phage resistance via abortive infection. Cell Host Microbe 2023; 31:343-355.e5. [PMID: 36893733 DOI: 10.1016/j.chom.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 01/11/2023] [Indexed: 03/11/2023]
Abstract
There is strong selection for the evolution of systems that protect bacterial populations from viral attack. We report a single phage defense protein, Hna, that provides protection against diverse phages in Sinorhizobium meliloti, a nitrogen-fixing alpha-proteobacterium. Homologs of Hna are distributed widely across bacterial lineages, and a homologous protein from Escherichia coli also confers phage defense. Hna contains superfamily II helicase motifs at its N terminus and a nuclease motif at its C terminus, with mutagenesis of these motifs inactivating viral defense. Hna variably impacts phage DNA replication but consistently triggers an abortive infection response in which infected cells carrying the system die but do not release phage progeny. A similar host cell response is triggered in cells containing Hna upon expression of a phage-encoded single-stranded DNA binding protein (SSB), independent of phage infection. Thus, we conclude that Hna limits phage spread by initiating abortive infection in response to a phage protein.
Collapse
Affiliation(s)
- Leah M Sather
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Maryam Zamani
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Zahed Muhammed
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Jason V S Kearsley
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| | - Gabrielle T Fisher
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Turlough M Finan
- Department of Biology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
25
|
Nonstructural N- and C-tails of Dbp2 confer the protein full helicase activities. J Biol Chem 2023; 299:104592. [PMID: 36894019 DOI: 10.1016/j.jbc.2023.104592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Human DDX5 and its yeast ortholog Dbp2 are ATP-dependent RNA helicases that play a key role in normal cell processes, cancer development and viral infection. The crystal structure of the RecA1-like domain of DDX5 is available, but the global structure of DDX5/Dbp2 subfamily proteins remains to be elucidated. Here, we report the first X-ray crystal structures of the Dbp2 helicase core alone and in complex with adenosine diphosphate nucleotide (ADP) at 3.22 Å and 3.05 Å resolutions, respectively. The structures of the ADP-bound post-hydrolysis state and apo-state demonstrate the conformational changes that occur when the nucleotides are released. Our results showed that the helicase core of Dbp2 shifted between open and closed conformation in solution, but the unwinding activity was hindered when the helicase core was restricted to a single conformation. A small-angle X-ray scattering (SAXS) experiment showed that the disordered amino- (N-) and carboxy- (C-) tails are flexible in solution. Truncation mutations confirmed that the N- and C-tails were critical for the nucleic acid binding, ATPase, and unwinding activities, with the C-tail being exclusively responsible for the annealing activity. Furthermore, we labeled the terminal tails to observe the conformational changes between the disordered tails and the helicase core upon binding nucleic acid substrates. Specifically, we found that the nonstructural N- and C-tails bind to RNA substrates and tether them to the helicase core domain, thereby conferring full helicase activities to the Dbp2 protein. This distinct structural characteristic provides new insight into the mechanism of DEAD-box RNA helicases.
Collapse
|
26
|
Piljukov VJ, Sillamaa S, Sedman T, Garber N, Rätsep M, Freiberg A, Sedman J. Mitochondrial Irc3 helicase of the thermotolerant yeast Ogataea polymorpha displays dual DNA- and RNA-stimulated ATPase activity. Mitochondrion 2023; 69:130-139. [PMID: 36764503 DOI: 10.1016/j.mito.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Irc3 is one of the six mitochondrial helicases described in Saccharomyces cerevisiae. Physiological functions of Irc3 are not completely understood as both DNA metabolic processes and mRNA translation have been suggested to be direct targets of the helicase. In vitro analysis of Irc3 has been hampered by the modest thermostability of the S. cerevisiae protein. Here, we purified a homologous helicase (Irc3op) of the thermotolerant yeast Ogataea polymorpha that retains structural integrity and catalytic activity at temperatures above 40 °C. Irc3op can complement the respiratory deficiency phenotype of a S. cerevisiae irc3Δ mutant, indicating conservation of biochemical functions. The ATPase activity of Irc3op is best stimulated by branched and double- stranded DNA cofactors. Single-stranded DNA binds Irc3op tightly but is a weak activator of the ATPase activity. We could also detect a lower level stimulation with RNA, especially with molecules possessing a compact three-dimensional structure. These results support the idea that that Irc3 might have dual specificity and remodel both DNA and RNA molecules in vivo. Furthermore, our analysis of kinetic parameters predicts that Irc3 could have a regulatory function via sensing changes of the mitochondrial ATP pool or respond to the accumulation of single-stranded DNA.
Collapse
Affiliation(s)
- Vlad-Julian Piljukov
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23B, 51010 Tartu, Estonia
| | - Sirelin Sillamaa
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23B, 51010 Tartu, Estonia
| | - Tiina Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23B, 51010 Tartu, Estonia
| | - Natalja Garber
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23B, 51010 Tartu, Estonia
| | - Margus Rätsep
- Laboratory of Biophysics, Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Arvi Freiberg
- Laboratory of Biophysics, Institute of Physics, University of Tartu, W. Ostwaldi 1, 50411 Tartu, Estonia
| | - Juhan Sedman
- Department of Biochemistry, Institute of Molecular and Cell Biology, University of Tartu, Riia 23B, 51010 Tartu, Estonia.
| |
Collapse
|
27
|
The Terminal Extensions of Dbp7 Influence Growth and 60S Ribosomal Subunit Biogenesis in Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:ijms24043460. [PMID: 36834876 PMCID: PMC9960301 DOI: 10.3390/ijms24043460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Ribosome synthesis is a complex process that involves a large set of protein trans-acting factors, among them DEx(D/H)-box helicases. These are enzymes that carry out remodelling activities onto RNAs by hydrolysing ATP. The nucleolar DEGD-box protein Dbp7 is required for the biogenesis of large 60S ribosomal subunits. Recently, we have shown that Dbp7 is an RNA helicase that regulates the dynamic base-pairing between the snR190 small nucleolar RNA and the precursors of the ribosomal RNA within early pre-60S ribosomal particles. As the rest of DEx(D/H)-box proteins, Dbp7 has a modular organization formed by a helicase core region, which contains conserved motifs, and variable, non-conserved N- and C-terminal extensions. The role of these extensions remains unknown. Herein, we show that the N-terminal domain of Dbp7 is necessary for efficient nuclear import of the protein. Indeed, a basic bipartite nuclear localization signal (NLS) could be identified in its N-terminal domain. Removal of this putative NLS impairs, but does not abolish, Dbp7 nuclear import. Both N- and C-terminal domains are required for normal growth and 60S ribosomal subunit synthesis. Furthermore, we have studied the role of these domains in the association of Dbp7 with pre-ribosomal particles. Altogether, our results show that the N- and C-terminal domains of Dbp7 are important for the optimal function of this protein during ribosome biogenesis.
Collapse
|
28
|
Nikolenko JV, Georgieva SG, Kopytova DV. Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes. Mol Biol 2023. [DOI: 10.1134/s0026893323010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
29
|
Rageshwari S, Malathi VG, Renukadevi P, Nakkeeran S. Molecular studies on tobacco streak virus (TSV) infecting cotton in Tamil Nadu, India. 3 Biotech 2023; 13:35. [PMID: 36619822 PMCID: PMC9813314 DOI: 10.1007/s13205-022-03437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/26/2022] [Indexed: 01/06/2023] Open
Abstract
Tobacco streak virus (TSV), the causal agent of cotton necrosis, is of emerging importance in the recent years. Unfortunately, all the cotton varieties and hybrids are susceptible to this virus. Cotton plants cultivated in different districts of Tamil Nadu were surveyed during 2014-2016. Samples collected from different locations confirmed the presence of TSV in cotton. TSV infection was confirmed by direct antigen coating-enzyme linked immuno sorbent assay (DAC-ELISA), dot immuno binding assay (DIBA), and reverse transcriptase polymerase chain reaction (RT-PCR). The virus was morphologically confirmed by transmission electron microscope (TEM). TSV isolate collected from Coimbatore was sequenced to obtain the full-length genome. Full length analysis was done for RNA 1 and RNA 3, whereas there was problem in obtaining few nucleotides in 5' and 3' end in spite of using different primers. Critical domain search in the nucleotide sequences revealed the presence of characteristic viral methyl transferase domain and helicase domain (RNA 1), 'GDD' motif and 'DFSKFD' of viral replicase in RNA 2 and Zinc finger motif in RNA 3. Phylogenetic analysis reveals high nucleotide similarity with TSV isolates of India and USA. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03437-3.
Collapse
Affiliation(s)
- S. Rageshwari
- Department of Plant Pathology, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003 India
- SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu India
| | - V. G. Malathi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003 India
| | - P. Renukadevi
- Department of Plant Pathology, Tamil Nadu Agricultural University, Tamil Nadu, Coimbatore, 641003 India
| | - S. Nakkeeran
- Agricultural College and Research Institute, Kudumiyanmalai, Pudukkottai, India
| |
Collapse
|
30
|
Zhao JZ, Xu LM, Ren GM, Shao YZ, Lu TY. Identification and characterization of DEAD-box RNA helicase DDX3 in rainbow trout (Oncorhynchus mykiss) and its relationship with infectious hematopoietic necrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104493. [PMID: 35840014 DOI: 10.1016/j.dci.2022.104493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
DDX3, a member of the DEAD-box RNA helicase family and has highly conserved ATP-dependent RNA helicase activity, has important roles in RNA metabolism and innate anti-viral immune responses. In this study, five transcript variants of the DDX3 gene were cloned and characterized from rainbow trout (Oncorhynchus mykiss). These five transcript variants of DDX3 encoded proteins were 74.2 kDa (686 aa), 76.4 kDa (709 aa), 77.8 kDa (711 aa), 78.0 kDa (718 aa), and 78.8 kDa (729 aa) and the predicted isoelectric points were 6.91, 7.63, 7.63, 7.18, and 7.23, respectively. All rainbow trout DDX3 proteins contained two conserved RecA-like domains that were similar to the DDX3 protein reported in mammals. Phylogenetic analysis showed that the five cloned rainbow trout DDX3 were separate from mammals but clustered with fish, especially Northern pike (Esox lucius) and Nile tilapia (Oreochromis niloticus). RT-qPCR analysis showed that the DDX3 gene was broadly expressed in all tissues studied. The expression of DDX3 after infectious hematopoietic necrosis virus (IHNV) infection increased gradually after the early stage of IHNV infection, decreased gradually with the proliferation of IHNV in vivo (liver, spleen, and kidney), and was significantly decreased after the in vitro infection of epithelioma papulosum cyprini (EPC) and rainbow trout gonad cell line-2 (RTG-2) cell lines. We also found that rainbow trout DDX3 was significantly increased by a time-dependent mechanism after the poly I:C treatment of EPC and RTG cells; however no significant changes were observed with lipopolysaccharide (LPS) treatment. Knockdown of DDX3 by siRNA showed significantly increased IHNV replication in infected RTG cells. This study suggests that DDX3 has an important role in host defense against IHNV infection and these results may provide new insights into IHNV pathogenesis and antiviral drug research.
Collapse
Affiliation(s)
- Jing-Zhuang Zhao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China; Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, PR China.
| | - Li-Ming Xu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Guang-Ming Ren
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Yi-Zhi Shao
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| | - Tong-Yan Lu
- Heilongjiang River Fishery Research Institute of Chinese Academy of Fishery Sciences, Harbin, 150070, PR China.
| |
Collapse
|
31
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Mechanism of Activated Catalysis in P-loop Fold Nucleoside Triphosphatases-United in Diversity. Biomolecules 2022; 12:1346. [PMID: 36291556 PMCID: PMC9599734 DOI: 10.3390/biom12101346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
32
|
Kozlova MI, Shalaeva DN, Dibrova DV, Mulkidjanian AY. Common Patterns of Hydrolysis Initiation in P-loop Fold Nucleoside Triphosphatases. Biomolecules 2022; 12:1345. [PMID: 36291554 PMCID: PMC9599529 DOI: 10.3390/biom12101345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/20/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.
Collapse
Affiliation(s)
- Maria I. Kozlova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria N. Shalaeva
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Daria V. Dibrova
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
| | - Armen Y. Mulkidjanian
- School of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
| |
Collapse
|
33
|
Domínguez MF, Costábile A, Koziol U, Preza M, Brehm K, Tort JF, Castillo E. Cell repertoire and proliferation of germinative cells of the model cestode Mesocestoides corti. Parasitology 2022; 149:1505-1514. [PMID: 35787303 PMCID: PMC11010542 DOI: 10.1017/s0031182022000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/06/2022]
Abstract
The phylum Platyhelminthes shares a unique population of undifferentiated cells responsible for the proliferation capacity needed for cell renewal, growth, tissue repair and regeneration. These cells have been extensively studied in free-living flatworms, whereas in cestodes the presence of a set of undifferentiated cells, known as germinative cells, has been demonstrated in classical morphology studies, but poorly characterized with molecular biology approaches. Furthermore, several genes have been identified as neoblast markers in free-living flatworms that deserve study in cestode models. Here, different cell types of the model cestode Mesocestoides corti were characterized, identifying differentiated and germinative cells. Muscle cells, tegumental cells, calcareous corpuscle precursor cells and excretory system cells were identified, all of which are non-proliferative, differentiated cell types. Besides those, germinative cells were identified as a population of small cells with proliferative capacity in vivo. Primary cell culture experiments in Dulbecco's Modified Eagle Medium (DMEM), Echinococcus hydatid fluid and hepatocyte conditioned media in non-reductive or reductive conditions confirmed that the germinative cells were the only ones with proliferative capacity. Since several genes have been identified as markers of undifferentiated neoblast cells in free-living flatworms, the expression of pumilio and pL10 genes was analysed by qPCR and in situ hybridization, showing that the expression of these genes was stronger in germinative cells but not restricted to this cell type. This study provides the first tools to analyse and further characterise undifferentiated cells in a model cestode.
Collapse
Affiliation(s)
- María Fernanda Domínguez
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alicia Costábile
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Uriel Koziol
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Matías Preza
- Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - José F. Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Estela Castillo
- Sección Bioquímica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
34
|
Ruiz-Gutierrez N, Rieu M, Ouellet J, Allemand JF, Croquette V, Le Hir H. Novel approaches to study helicases using magnetic tweezers. Methods Enzymol 2022; 673:359-403. [PMID: 35965012 DOI: 10.1016/bs.mie.2022.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Helicases form a universal family of molecular motors that bind and translocate onto nucleic acids. They are involved in essentially every aspect of nucleic acid metabolism: from DNA replication to RNA decay, and thus ensure a large spectrum of functions in the cell, making their study essential. The development of micromanipulation techniques such as magnetic tweezers for the mechanistic study of these enzymes has provided new insights into their behavior and their regulation that were previously unrevealed by bulk assays. These experiments allowed very precise measures of their translocation speed, processivity and polarity. Here, we detail our newest technological advances in magnetic tweezers protocols for high-quality measurements and we describe the new procedures we developed to get a more profound understanding of helicase dynamics, such as their translocation in a force independent manner, their nucleic acid binding kinetics and their interaction with roadblocks.
Collapse
Affiliation(s)
- Nadia Ruiz-Gutierrez
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Martin Rieu
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France; Laboratoire de Physique de L'Ecole Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| | | | - Jean-François Allemand
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France; Laboratoire de Physique de L'Ecole Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, Paris, France
| | - Vincent Croquette
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France; Laboratoire de Physique de L'Ecole Normale Supérieure de Paris, CNRS, ENS, Université PSL, Sorbonne Université, Université de Paris, Paris, France; ESPCI Paris, Université PSL, Paris, France.
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
35
|
Blaine HC, Burke JT, Ravi J, Stallings CL. DciA Helicase Operators Exhibit Diversity across Bacterial Phyla. J Bacteriol 2022; 204:e0016322. [PMID: 35880876 PMCID: PMC9380583 DOI: 10.1128/jb.00163-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023] Open
Abstract
A fundamental requirement for life is the replication of an organism's DNA. Studies in Escherichia coli and Bacillus subtilis have set the paradigm for DNA replication in bacteria. During replication initiation in E. coli and B. subtilis, the replicative helicase is loaded onto the DNA at the origin of replication by an ATPase helicase loader. However, most bacteria do not encode homologs to the helicase loaders in E. coli and B. subtilis. Recent work has identified the DciA protein as a predicted helicase operator that may perform a function analogous to the helicase loaders in E. coli and B. subtilis. DciA proteins, which are defined by the presence of a DUF721 domain (termed the DciA domain herein), are conserved in most bacteria but have only been studied in mycobacteria and gammaproteobacteria (Pseudomonas aeruginosa and Vibrio cholerae). Sequences outside the DciA domain in Mycobacterium tuberculosis DciA are essential for protein function but are not conserved in the P. aeruginosa and V. cholerae homologs, raising questions regarding the conservation and evolution of DciA proteins across bacterial phyla. To comprehensively define the DciA protein family, we took a computational evolutionary approach and analyzed the domain architectures and sequence properties of DciA domain-containing proteins across the tree of life. These analyses identified lineage-specific domain architectures among DciA homologs, as well as broadly conserved sequence-structural motifs. The diversity of DciA proteins represents the evolution of helicase operation in bacterial DNA replication and highlights the need for phylum-specific analyses of this fundamental biological process. IMPORTANCE Despite the fundamental importance of DNA replication for life, this process remains understudied in bacteria outside Escherichia coli and Bacillus subtilis. In particular, most bacteria do not encode the helicase-loading proteins that are essential in E. coli and B. subtilis for DNA replication. Instead, most bacteria encode a DciA homolog that likely constitutes the predominant mechanism of helicase operation in bacteria. However, it is still unknown how DciA structure and function compare across diverse phyla that encode DciA proteins. In this study, we performed computational evolutionary analyses to uncover tremendous diversity among DciA homologs. These studies provide a significant advance in our understanding of an essential component of the bacterial DNA replication machinery.
Collapse
Affiliation(s)
- Helen C. Blaine
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph T. Burke
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
- Genomics and Molecular Genetics Undergraduate Program, Michigan State University, East Lansing, Michigan, USA
| | - Janani Ravi
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
36
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
37
|
Rattaprasert P, Suntornthiticharoen P, Limudomporn P, Thima K, Chavalitshewinkoon-Petmitr P. Inhibitory effects of anthracyclines on partially purified 5'-3' DNA helicase of Plasmodium falciparum. Malar J 2022; 21:216. [PMID: 35821133 PMCID: PMC9275250 DOI: 10.1186/s12936-022-04238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background Plasmodium falciparum has been becoming resistant to the currently used anti-malarial drugs. Searching for new drug targets is urgently needed for anti-malarial development. DNA helicases separating double-stranded DNA into single-stranded DNA intermediates are essential in nearly all DNA metabolic transactions, thus they may act as a candidate for new drug targets against malarial parasites. Methods In this study, a P. falciparum 5′ to 3′ DNA helicase (PfDH-B) was partially purified from the crude extract of chloroquine- and pyrimethamine-resistant P. falciparum strain K1, by ammonium sulfate precipitation and three chromatographic procedures. DNA helicase activity of partially purified PfDH-B was examined by measuring its ability to unwind 32P-labelled partial duplex DNA. The directionality of PfDH-B was determined, and substrate preference was tested by using various substrates. Inhibitory effects of DNA intercalators such as anthracycline antibiotics on PfDH-B unwinding activity and parasite growth were investigated. Results The native PfDH-B was partially purified with a specific activity of 4150 units/mg. The PfDH-B could unwind M13-17-mer, M13-31-mer with hanging tail at 3′ or 5′ end and a linear substrate with 3′ end hanging tail but not blunt-ended duplex DNA, and did not need a fork-like substrate. Anthracyclines including aclarubicin, daunorubicin, doxorubicin, and nogalamycin inhibited the unwinding activity of PfDH-B with an IC50 value of 4.0, 7.5, 3.6, and 3.1 µM, respectively. Nogalamycin was the most effective inhibitor on PfDH-B unwinding activity and parasite growth (IC50 = 0.1 ± 0.002 µM). Conclusion Partial purification and characterization of 5′–3′ DNA helicase of P. falciparum was successfully performed. The partially purified PfDH-B does not need a fork-like substrate structure found in P. falciparum 3′ to 5′ DNA helicase (PfDH-A). Interestingly, nogalamycin was the most potent anthracycline inhibitor for PfDH-B helicase activity and parasite growth in culture. Further studies are needed to search for more potent but less cytotoxic inhibitors targeting P. falciparum DNA helicase in the future.
Collapse
Affiliation(s)
- Pongruj Rattaprasert
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | | | - Paviga Limudomporn
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanthinich Thima
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Bangkok, 10400, Thailand
| | | |
Collapse
|
38
|
Vanson S, Li Y, Wood RD, Doublié S. Probing the structure and function of polymerase θ helicase-like domain. DNA Repair (Amst) 2022; 116:103358. [PMID: 35753097 PMCID: PMC10329254 DOI: 10.1016/j.dnarep.2022.103358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
DNA Polymerase θ is the key actuator of the recently identified double-strand break repair pathway, theta-mediated end joining (TMEJ). It is the only known polymerase to have a 3-domain architecture containing an independently functional family A DNA polymerase tethered by a long central region to an N-terminal helicase-like domain (HLD). Full-length polymerase θ and the isolated HLD hydrolyze ATP in the presence of DNA, but no processive DNA duplex unwinding has been observed. Based on sequence and structure conservation, the HLD is classified as a member of helicase superfamily II and, more specifically, the Ski2-like family. The specific subdomain composition and organization most closely resemble that of archaeal DNA repair helicases Hel308 and Hjm. The underlying structural basis as to why the HLD is not able to processively unwind duplex DNA, despite its similarity to bona fide helicases, remains elusive. Activities of the HLD include ATP hydrolysis, protein displacement, and annealing of complementary DNA. These observations have led to speculation about the role of the HLD within the context of double-strand break repair via TMEJ, such as removal of single-stranded DNA binding proteins like RPA and RAD51 and microhomology alignment. This review summarizes the structural classification and organization of the polymerase θ HLD and its homologs and explores emerging data on its biochemical activities. We conclude with a simple, speculative model for the HLD's role in TMEJ.
Collapse
Affiliation(s)
- Scott Vanson
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA
| | - Yuzhen Li
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, TX 77230, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave, Burlington, VT 05405, USA.
| |
Collapse
|
39
|
Fun30 and Rtt109 Mediate Epigenetic Regulation of the DNA Damage Response Pathway in C. albicans. J Fungi (Basel) 2022; 8:jof8060559. [PMID: 35736042 PMCID: PMC9225650 DOI: 10.3390/jof8060559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Fun30, an ATP-dependent chromatin remodeler from S. cerevisiae, is known to mediate both regulation of gene expression as well as DNA damage response/repair. The Fun30 from C. albicans has not yet been elucidated. We show that C. albicans Fun30 is functionally homologous to both S. cerevisiae Fun30 and human SMARCAD1. Further, C. albicans Fun30 can mediate double-strand break end resection as well as regulate gene expression. This protein regulates transcription of RTT109, TEL1, MEC1, and SNF2-genes that encode for proteins involved in DNA damage response and repair pathways. The regulation mediated by C. albicans Fun30 is dependent on its ATPase activity. The expression of FUN30, in turn, is regulated by histone H3K56 acetylation catalyzed by Rtt109 and encoded by RTT109. The RTT109Hz/FUN30Hz mutant strain shows sensitivity to oxidative stress and resistance to MMS as compared to the wild-type strain. Quantitative PCR showed that the sensitivity to oxidative stress results from downregulation of MEC1, RAD9, MRC1, and RAD5 expression; ChIP experiments showed that Fun30 but not H3K56ac regulates the expression of these genes in response to oxidative stress. In contrast, upon treatment with MMS, the expression of RAD9 is upregulated, which is modulated by both Fun30 and H3K56 acetylation. Thus, Fun30 and H3K56 acetylation mediate the response to genotoxic agents in C. albicans by regulating the expression of DNA damage response and repair pathway genes.
Collapse
|
40
|
Chen Z, Xiong X, Li Y, Huang M, Ren Y, Wu D, Qiu Y, Chen M, Shu T, Zhou X. The nonstructural protein 2C of Coxsackie B virus has RNA helicase and chaperoning activities. Virol Sin 2022; 37:656-663. [PMID: 35589079 PMCID: PMC9583185 DOI: 10.1016/j.virs.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis. However, little is known about whether CVB3 and CVB5 encode any RNA remodeling proteins. In this study, we showed that 2C proteins of CVB3 and CVB5 contained the conserved SF3 helicase A, B, and C motifs, and functioned not only as RNA helicase that unwound RNA helix bidirectionally in an NTP-dependent manner, but also as RNA chaperone that remodeled structured RNAs and facilitated RNA strand annealing independently of NTP. In addition, we determined that the NTPase activity and RNA helicase activity of 2C proteins of CVB3 and CVB5 were dependent on the presence of divalent metallic ions. Our findings demonstrate that 2C proteins of CVBs possess RNA-remodeling activity and underline the functional importance of 2C protein in the life cycle of CVBs. 2C proteins of CVB3 and CVB5 function as RNA helicase in an NTP-dependent manner. 2C proteins of CVB3 and CVB5 possess RNA-remodeling activity independently of NTP. 2C proteins may have functional significance in the life cycle of CVBs.
Collapse
Affiliation(s)
- Ziyu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xiaobei Xiong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yiyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Muhan Huang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yujie Ren
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Di Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ting Shu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100081, China.
| |
Collapse
|
41
|
Ozaslan D, Byrd AK, Belachew B, Raney KD. Alignment of helicases on single-stranded DNA increases activity. Methods Enzymol 2022; 672:29-54. [PMID: 35934480 PMCID: PMC9421817 DOI: 10.1016/bs.mie.2022.03.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Helicases function in most biological processes that utilize RNA or DNA nucleic acids including replication, recombination, repair, transcription, splicing, and translation. They are motor proteins that bind ATP and then catalyze hydrolysis to release energy which is transduced for conformational changes. Different conformations correspond to different steps in a process that results in movement of the enzyme along the nucleic acid track in a unidirectional manner. Some helicases such as DEAD-box helicases do not translocate, but these enzymes transduce chemical energy from ATP hydrolysis to unwind secondary structure in DNA or RNA. Some helicases function as monomers while others assemble into defined structures, either dimers or higher order oligomers. Dda helicase from bacteriophage T4 and NS3 helicase domain from the hepatitis C virus are examples of monomeric helicases. These helicases can bind to single-stranded DNA in a manner that appears like train engines on a track. When monomeric helicases align on DNA, the activity of the enzymes increases. Helicase activity can include the rate of duplex unwinding and the total number of base pairs melted during a single binding event or processivity. Dda and NS3h are considered as having low processivity, unwinding fewer than 50 base pairs per binding event. Here, we report fusing two molecules of NS3h molecules together through genetically linking the C-terminus of one molecule to the N-terminus of a second NS3h molecule. We observed increased processivity relative to NS3h possibly arising from the increased probability that at least one of the helicases will completely unwind the DNA prior to dissociation. The dimeric enzyme also binds DNA more like the full-length NS3 helicase. Finally, the dimer can displace streptavidin from biotin-labeled oligonucleotide, whereas monomeric NS3h cannot.
Collapse
Affiliation(s)
- Deniz Ozaslan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alicia K Byrd
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Binyam Belachew
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Kevin D Raney
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
42
|
Fernandez AJ, Berger JM. Biochemical methods to monitor loading and activation of hexameric helicases. Methods Enzymol 2022; 672:143-152. [PMID: 35934473 DOI: 10.1016/bs.mie.2022.03.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ring-shaped hexameric helicases are an essential class of enzymes that unwind duplex nucleic acids to support a variety of cellular processes. Because of their critical roles in cells, hexameric helicase dysfunction has been linked to DNA damage and genomic instability. Biochemical characterization of hexameric helicase activity and regulation in vitro is necessary for understanding enzyme function and aiding drug discovery efforts. In this chapter, we describe protocols for characterizing mechanisms of helicase loading, activation, and unwinding using the model replicative hexameric DnaB helicase and its cognate DnaC loading factor from E. coli.
Collapse
Affiliation(s)
- Amy J Fernandez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - James M Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
43
|
Hussain R, Khalid H, Fatmi MQ. HCV genotype-specific drug discovery through structure-based virtual screening. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Hepatitis C Virus (HCV) poses great threat worldwide, and is a major cause for liver cancer. HCV genome encodes polyprotein that is subsequently cleaved into independently functioning proteins, which spread viral infection in host. The Non-Structural 3 (NS3) protease is responsible for cleaving the polyprotein, and may serve as a potential drug target. Since HCV has seven genotypes, the available drugs are predominantly designed for genotype 1 (GT1), and others prevalent in Europe. Consequently, these drugs lose efficacy when they are used for different genotypes. The current perspective study aims to find potential drug candidate against genotype 3 (GT3), prevalent in South Asia. The current study employed molecular docking technique and in silico ADME prediction tool to highlight potentially active compounds against HCV NS3 GT3. The study revealed Li_PIO_114 and Li_PIH_191 as potential lead compounds, as suggested by their docking score and ADME properties. These two compounds could be further optimized to improve their drug likeliness for curing HCV GT3.
Collapse
Affiliation(s)
- Rashid Hussain
- Department of Chemistry , Forman Christian College University , Lahore 54000 , Pakistan
| | - Hira Khalid
- Department of Chemistry , Forman Christian College University , Lahore 54000 , Pakistan
| | - Muhammad Qaiser Fatmi
- Department of Biosciences , COMSATS University Islamabad , Park Road, Chak Shahzad , Islamabad 45600 , Pakistan
| |
Collapse
|
44
|
Chakraborty A, Krause L, Klostermeier D. Determination of rate constants for conformational changes of RNA helicases by single-molecule FRET TIRF microscopy. Methods 2022; 204:428-441. [PMID: 35304246 DOI: 10.1016/j.ymeth.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.
Collapse
Affiliation(s)
| | - Linda Krause
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany.
| |
Collapse
|
45
|
Abdoulaye AH, Jia J, Abbas A, Hai D, Cheng J, Fu Y, Lin Y, Jiang D, Xie J. Fusarivirus accessory helicases present an evolutionary link for viruses infecting plants and fungi. Virol Sin 2022; 37:427-436. [PMID: 35314402 PMCID: PMC9243621 DOI: 10.1016/j.virs.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
A significant number of mycoviruses have been identified that are related to plant viruses, but their evolutionary relationships are largely unexplored. A fusarivirus, Rhizoctonia solani fusarivirus 4 (RsFV4), was identified in phytopathogenic fungus Rhizoctonia solani (R. solani) strain XY74 co-infected by an alphaendornavirus. RsFV4 had a genome of 10,833 nt (excluding the poly-A tail), and consisted of four non-overlapping open reading frames (ORFs). ORF1 encodes an 825 aa protein containing a conserved helicase domain (Hel1). ORF3 encodes 1550 aa protein with two conserved domains, namely an RNA-dependent RNA polymerase (RdRp) and another helicase (Hel2). The ORF2 and ORF4 likely encode two hypothetical proteins (520 and 542 aa) with unknown functions. The phylogenetic analysis based on Hel2 and RdRp suggest that RsFV4 was positioned within the fusarivirus group, but formed an independent branch with three previously reported fusariviruses of R. solani. Notably, the Hel1 and its relatives were phylogenetically closer to helicases of potyviruses and hypoviruses than fusariviruses, suggesting fusarivirus Hel1 formed an evolutionary link between these three virus groups. This finding provides evidence of the occurrence of a horizontal gene transfer or recombination event between mycoviruses and plant viruses or between mycoviruses. Our findings are likely to enhance the understanding of virus evolution and diversity. Rhizoctonia solani strain XY74 hosts two mycoviruses, fusarivirus (RsFV4) and endornavirus (RsAEV1). RsFV4 consists of four ORFs and is evolutionarily associated to fusariviruses. Two ORFs of RsFV4 encode two helicases belonging to superfamly II. The accessory helicase of RsFV4 and its relatives are phylogenetically related to mycoviruses and plant viruses.
Collapse
|
46
|
GIRALDO RAMÍREZ SUSANA, SIERRA MEJÍA ANDREA, OSPINA ORTIZ MARIAISABELLA, HIGUITA VALENCIA MÓNICA, GALLO GARCÍA YULIANA, GUTIÉRREZ SÁNCHEZ PABLOANDRÉS, Marín Montoya MA. DETECCIÓN Y CARACTERIZACIÓN MOLECULAR DEL POTATO VIRUS B (PVB) EN CULTIVOS DE PAPA CRIOLLA (Solanum phureja) EN ANTIOQUIA. ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n2.89422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
La papa criolla (Solanum phureja Juz. & Bukasov) es uno de los principales productos agrícolas de la región Andina de Colombia. Su siembra ocurre principalmente en pequeñas parcelas con deficiencias técnicas y bajos rendimientos. Las enfermedades de origen viral son una de las principales limitantes de este cultivo, siendo los virus PYVV, PVS, PLRV y PVV algunos de los más importantes. El nivel de conocimiento que se tiene del viroma de la papa criolla en Colombia es incipiente. En este estudio utilizando técnicas moleculares como secuenciación de alto rendimiento (HTS) y RT-PCR en tiempo real (RT-qPCR), a partir de muestras de tejido foliar de plantas procedentes de diferentes lotes de papa criolla en Antioquia (Colombia), se detectó por primera vez para el país la infección del Potato virus B (PVB), un nepovirus hasta ahora sólo registrado en Perú. Mediante análisis bioinformáticos fue posible el ensamblaje de la mayor parte del genoma de PVB, consistente de dos segmentos de 7.126 nt (ARN1) y 4.298 nt (ARN2) que codifican para dos poliproteínas (P1 y P2). Con las secuencias obtenidas se diseñaron primers específicos para la detección del PVB por RT-qPCR y RT-PCR convencional. Los resultados indicaron niveles medios de prevalencia (35%) del PVB en los cultivos de papa criolla evaluados y su ausencia en las 20 muestras evaluadas de S. tuberosum var. Diacol-Capiro. Con las técnicas aquí empleadas, se sugiere el establecimiento de un programa de seguimiento epidemiológico de PVB en Colombia y otros países andinos.
Collapse
|
47
|
Legnardi M, Grassi L, Franzo G, Menandro ML, Tucciarone CM, Minichino A, Dipineto L, Borrelli L, Fioretti A, Cecchinato M. Detection and Molecular Characterization of a Novel Species of Circovirus in a Tawny Owl (Strix aluco) in Southern Italy. Animals (Basel) 2022; 12:ani12020135. [PMID: 35049758 PMCID: PMC8772546 DOI: 10.3390/ani12020135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The genus Circovirus groups some of the smallest viruses capable of autonomous replication, including some notable swine and avian pathogens. Among domestic and wild birds, circoviruses are often associated with immunosuppression and integumental disorders, but, despite their relevance, nothing is known about their circulation in birds of prey. By conducting molecular analyses on samples from birds of prey recovered by a wildlife rescue centre in Italy, we identified a new viral species in the spleen of a tawny owl (Strix aluco). However, there is contrasting evidence regarding its definitive host. On one hand, the virus was discovered to be phylogenetically closer to mammalian rather than avian circoviruses, which allows speculations on its host being a micromammal preyed by the tawny owl, rather than the bird itself. On the other hand, its detection in the spleen, a lymphoid organ in which other avian circoviruses are often detected, supports the tawny owl being its actual host, perhaps following a spillover event associated with predation. Adding to the growing number of circoviruses found in recent years in a diverse range of hosts, this discovery represents another step forward in the characterization of this genus of remarkable veterinary importance. Abstract Thanks to recent developments in molecular methods, many new species have been discovered within the genus Circovirus, which comprises viruses of veterinary relevance found in a broad range of hosts. In particular, several circoviruses are known to infect birds, often causing immunosuppression and feathering disorders. Nonetheless, nothing is known about their circulation in birds of prey. In this study, samples from 61 birds of prey representing ten different species, recovered by a wildlife rescue centre in Southern Italy, were taken at necropsy and analysed by PCR with pan-Circovirus primers. Only one sample, collected from a tawny owl (Strix aluco), tested positive. Its genome, sequenced by primer walking, displays the typical features of circoviruses. Based on demarcation criteria, the detected strain qualifies as a novel species, which was named “tawny owl-associated circovirus” (ToCV). Phylogenetically, ToCV clustered with mammalian rather than avian circoviruses, and its closeness to a rodent circovirus suggests that its host may have been a micromammal eaten by the tawny owl. On the other hand, its detection in the spleen fits with the tropism of other avian circoviruses. Little can be therefore said on its biology and pathogenicity, and further efforts are needed to better characterize its epidemiology.
Collapse
Affiliation(s)
- Matteo Legnardi
- Dipartimento di Medicina Animale, Produzione e Salute, Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (L.G.); (G.F.); (M.L.M.); (C.M.T.); (M.C.)
- Correspondence:
| | - Laura Grassi
- Dipartimento di Medicina Animale, Produzione e Salute, Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (L.G.); (G.F.); (M.L.M.); (C.M.T.); (M.C.)
| | - Giovanni Franzo
- Dipartimento di Medicina Animale, Produzione e Salute, Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (L.G.); (G.F.); (M.L.M.); (C.M.T.); (M.C.)
| | - Maria Luisa Menandro
- Dipartimento di Medicina Animale, Produzione e Salute, Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (L.G.); (G.F.); (M.L.M.); (C.M.T.); (M.C.)
| | - Claudia Maria Tucciarone
- Dipartimento di Medicina Animale, Produzione e Salute, Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (L.G.); (G.F.); (M.L.M.); (C.M.T.); (M.C.)
| | - Adriano Minichino
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (A.M.); (L.D.); (L.B.); (A.F.)
| | - Ludovico Dipineto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (A.M.); (L.D.); (L.B.); (A.F.)
| | - Luca Borrelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (A.M.); (L.D.); (L.B.); (A.F.)
| | - Alessandro Fioretti
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università di Napoli Federico II, Via F. Delpino 1, 80137 Napoli, Italy; (A.M.); (L.D.); (L.B.); (A.F.)
| | - Mattia Cecchinato
- Dipartimento di Medicina Animale, Produzione e Salute, Università di Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (L.G.); (G.F.); (M.L.M.); (C.M.T.); (M.C.)
| |
Collapse
|
48
|
Aicart-Ramos C, Hormeno S, Wilkinson OJ, Dillingham MS, Moreno-Herrero F. Long DNA constructs to study helicases and nucleic acid translocases using optical tweezers. Methods Enzymol 2022; 673:311-358. [DOI: 10.1016/bs.mie.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Analysis of the conformational space and dynamics of RNA helicases by single-molecule FRET in solution and on surfaces. Methods Enzymol 2022; 673:251-310. [DOI: 10.1016/bs.mie.2022.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Guo R, Pyle AM. Monitoring functional RNA binding of RNA-dependent ATPase enzymes such as SF2 helicases using RNA dependent ATPase assays: A RIG-I case study. Methods Enzymol 2022; 673:39-52. [DOI: 10.1016/bs.mie.2022.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|