1
|
Müh F, Bothe A, Zouni A. Towards understanding the crystallization of photosystem II: influence of poly(ethylene glycol) of various molecular sizes on the micelle formation of alkyl maltosides. PHOTOSYNTHESIS RESEARCH 2024; 162:273-289. [PMID: 38488943 PMCID: PMC11615006 DOI: 10.1007/s11120-024-01079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
The influence of poly(ethylene glycol) (PEG) polymers H-(O-CH2-CH2)p-OH with different average molecular sizes p on the micelle formation of n-alkyl-β-D-maltoside detergents with the number of carbon atoms in the alkyl chain ranging from 10 to 12 is investigated with the aim to learn more about the detergent behavior under conditions suitable for the crystallization of the photosynthetic pigment-protein complex photosystem II. PEG is shown to increase the critical micelle concentration (CMC) of all three detergents in the crystallization buffer in a way that the free energy of micelle formation increases linearly with the concentration of oxyethylene units (O-CH2-CH2) irrespective of the actual molecular weight of the polymer. The CMC shift is modeled by assuming for simplicity that it is dominated by the interaction between PEG and detergent monomers and is interpreted in terms of an increase of the transfer free energy of a methylene group of the alkyl chain by 0.2 kJ mol-1 per 1 mol L-1 increase of the concentration of oxyethylene units at 298 K. Implications of this effect for the solubilization and crystallization of protein-detergent complexes as well as detergent extraction from crystals are discussed.
Collapse
Affiliation(s)
- Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Strasse 69, 4040, Linz, Austria.
| | - Adrian Bothe
- Institut für Molekularbiologie und Biophysik, ETH Zürich, HPK, Otto-Stern-Weg 5, CH-8093, Zurich, Switzerland
| | - Athina Zouni
- Institut für Biologie, Humboldt Universität zu Berlin, Leonor-Michaelis-Haus, Philippstrasse 13, 10095, Berlin, Germany
| |
Collapse
|
2
|
Jiko C, Li J, Moon Y, Tanaka Y, Gopalasingam CC, Shigematsu H, Chae PS, Kurisu G, Gerle C. NDT-C11 as a Viable Novel Detergent for Single Particle Cryo-EM. Chempluschem 2024; 89:e202400242. [PMID: 38881532 DOI: 10.1002/cplu.202400242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/18/2024]
Abstract
Single particle cryo electron microscopy (cryo-EM) is now the major method for the determination of integral membrane protein structure. For the success of a given project the type of membrane mimetic used for extraction from the native cell membrane, purification to homogeneity and finally cryo-grid vitrification is crucial. Although small molecule amphiphiles - detergents - are the most widely used membrane mimetic, specific tailoring of detergent structure for single particle cryo-EM is rare and the demand for effective detergents not satisfied. Here, we compare the popular detergent lauryl maltose-neopentyl glycol (LMNG) with the novel detergent neopentyl glycol-derived triglucoside-C11 (NDT-C11) in its behavior as free detergent and when bound to two types of multisubunit membrane protein complexes - cyanobacterial photosystem I (PSI) and mammalian F-ATP synthase. We conclude that NDT-C11 has high potential to become a very useful detergent for single particle cryo-EM of integral membrane proteins.
Collapse
Affiliation(s)
- Chimari Jiko
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka, 590-0494, Japan
| | - Jiannan Li
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Youngsun Moon
- Department of Bionano Engineering, Hanyang University, Ansan, 155-88, South Korea
| | - Yoshito Tanaka
- Graduate School of Life Science, University of Hyogo, Kamigori, 678-1297, Japan
| | - Chai C Gopalasingam
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, SPring-8, Sayo, 679-5148, Japan
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan, 155-88, South Korea
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Christoph Gerle
- Life Science Research Infrastructure Group, RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| |
Collapse
|
3
|
Woubshete M, Cioccolo S, Byrne B. Advances in Membrane Mimetic Systems for Manipulation and Analysis of Membrane Proteins: Detergents, Polymers, Lipids and Scaffolds. Chempluschem 2024; 89:e202300678. [PMID: 38315323 DOI: 10.1002/cplu.202300678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Extracting membrane proteins from the hydrophobic environment of the biological membrane, in a physiologically relevant and stable state, suitable for downstream analysis remains a challenge. The traditional route to membrane protein extraction has been to use detergents and the last 15 years or so have seen a veritable explosion in the development of novel detergents with improved properties, making them more suitable for individual proteins and specific applications. There have also been significant advances in the development of encapsulation of membrane proteins in lipid based nanodiscs, either directly from the native membrane using polymers allowing effective capture of the protein and protein-associated membrane lipids, or via reconstitution of detergent extracted and purified protein into nanodiscs of defined lipid composition. All of these advances have been successfully applied to the study of membrane proteins via a range of techniques and there have been some spectacular membrane protein structures solved. In addition, the first detailed structural and biophysical analyses of membrane proteins retained within a biological membrane have been reported. Here we summarise and review the recent advances with respect to these new agents and systems for membrane protein extraction, reconstitution and analysis.
Collapse
Affiliation(s)
- Menebere Woubshete
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| | - Sara Cioccolo
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
- Department of Chemistry, Imperial College London, White City, London, W12 0BZ, United Kingdom
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ, United Kingdom
| |
Collapse
|
4
|
Bothe A, Zouni A, Müh F. Refined definition of the critical micelle concentration and application to alkyl maltosides used in membrane protein research. RSC Adv 2023; 13:9387-9401. [PMID: 36968053 PMCID: PMC10031436 DOI: 10.1039/d2ra07440k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The critical micelle concentration (CMC) of nonionic detergents is defined as the breaking point in the monomer concentration as a function of the total detergent concentration, identified by setting the third derivate of this function to zero. Combined with a mass action model for micelle formation, this definition yields analytic formulae for the concentration ratio of monomers to total detergent at the CMC and the relationship between the CMC and the free energy of micellization g mic. The theoretical breaking point is shown to coincide with the breaking point of the experimental titration curve, if the fluorescence enhancement of 8-anilino-1-naphthalene-sulfonic acid (ANS) or a similar probe dye is used to monitor micelle formation. Application to a series of n-alkyl-β-d-maltosides with the number of carbon atoms in the alkyl chain ranging from 8 to 12 demonstrates the good performance of a molecular thermodynamic model, in which the free energy of micellization is given by g mic = σΦ + g pack + g st. In this model, σ is a fit parameter with the dimension of surface tension, Φ represents the change in area of hydrophobic molecular surfaces in contact with the aqueous phase, and g pack and g st are contributions, respectively, from alkyl chain packing in the micelle interior and steric repulsion of detergent head groups. The analysis of experimental data from different sources shows that varying experimental conditions such as co-solutes in the aqueous phase can be accounted for by adapting only σ, if the co-solutes do not bind to the detergent to an appreciable extent. The model is considered a good compromise between theory and practicability to be applied in the context of in vitro investigations of membrane proteins.
Collapse
Affiliation(s)
- Adrian Bothe
- Institut für Biologie, Humboldt Universität zu Berlin Leonor-Michaelis-Haus, Philippstrasse 13 D-10095 Berlin Germany
| | - Athina Zouni
- Institut für Biologie, Humboldt Universität zu Berlin Leonor-Michaelis-Haus, Philippstrasse 13 D-10095 Berlin Germany
| | - Frank Müh
- Institut für Theoretische Physik, Johannes Kepler Universität Linz Altenberger Strasse 69 A-4040 Linz Austria
| |
Collapse
|
5
|
Li S. Detergents and alternatives in cryo-EM studies of membrane proteins. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1049-1056. [PMID: 35866608 PMCID: PMC9828306 DOI: 10.3724/abbs.2022088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/28/2022] [Indexed: 11/25/2022] Open
Abstract
Structure determination of membrane proteins has been a long-standing challenge to understand the molecular basis of life processes. Detergents are widely used to study the structure and function of membrane proteins by various experimental methods, and the application of membrane mimetics is also a prevalent trend in the field of cryo-EM analysis. This review focuses on the widely-used detergents and corresponding properties and structures, and also discusses the growing interests in membrane mimetic systems used in cryo-EM studies, providing insights into the role of detergent alternatives in structure determination.
Collapse
Affiliation(s)
- Shuo Li
- />Department of Life ScienceNational Natural Science Foundation of ChinaBeijing100085China
| |
Collapse
|
6
|
Jeong C, Franklin R, Edler KJ, Vanommeslaeghe K, Krueger S, Curtis JE. Styrene-Maleic Acid Copolymer Nanodiscs to Determine the Shape of Membrane Proteins. J Phys Chem B 2022; 126:1034-1044. [PMID: 35089036 DOI: 10.1021/acs.jpcb.1c05050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipid nanodiscs can be used to solubilize functional membrane proteins (MPs) in nativelike environments. Thus, they are promising reagents that have been proven useful to characterize MPs. Both protein and non-protein molecular belts have shown promise to maintain the structural integrity of MPs in lipid nanodiscs. Small-angle neutron scattering (SANS) can be used to determine low-resolution structures of proteins in solution, which can be enhanced through the use of contrast variation methods. We present theoretical contrast variation SANS results for protein and styrene-maleic acid copolymer (SMA) belt 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) nanodiscs with and without additional bound or transmembrane proteins. The predicted scattering properties are derived from atomistic molecular dynamics simulations to account for conformational fluctuations, and we determine deuterium-labeling conditions such that SANS intensity profiles only include contributions from the scattering of the MP of interest. We propose strategies to tune the neutron scattering length densities (SLDs) of the SMA and DMPC using selective deuterium labeling such that the SLD of the nanodisc becomes homogeneous and its scattering can essentially be eliminated in solvents containing an appropriate amount of D2O. These finely tuned labeled polymer-based nanodiscs are expected to be useful to extract the size and molecular shape information of MPs using SANS-based contrast variation experiments, and they can be used with MPs of any molecular weight.
Collapse
Affiliation(s)
- Cheol Jeong
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States.,Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Ryan Franklin
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Karen J Edler
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Kenno Vanommeslaeghe
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modelling─FABI, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Susan Krueger
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Joseph E Curtis
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
7
|
Haslem L, Brown M, Zhang XA, Hays JM, Hays FA. Purification of Membrane Proteins Overexpressed in Saccharomyces cerevisiae. Methods Mol Biol 2022; 2507:143-173. [PMID: 35773581 PMCID: PMC9400948 DOI: 10.1007/978-1-0716-2368-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Membrane protein (MP) functional and structural characterization requires large quantities of high-purity protein for downstream studies. Barriers to MP characterization include ample overexpression, solubilization, and purification of target proteins while maintaining native activity and structure. These barriers can be overcome by utilizing an efficient purification protocol in a high-yield eukaryotic expression system such as Saccharomyces cerevisiae. S. cerevisiae offers improved protein folding and posttranslational modifications compared to prokaryotic expression systems. This chapter contains practices used to overcome barriers of solubilization and purification using S. cerevisiae that are broadly applicable to diverse membrane associated, and membrane integrated, protein targets.
Collapse
Affiliation(s)
- Landon Haslem
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Marina Brown
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xin A Zhang
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jennifer M Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Franklin A Hays
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
8
|
Cleveland IV T, Blick E, Krueger S, Leung A, Darwish T, Butler P. Direct localization of detergents and bacteriorhodopsin in the lipidic cubic phase by small-angle neutron scattering. IUCRJ 2021; 8:22-32. [PMID: 33520240 PMCID: PMC7792994 DOI: 10.1107/s2052252520013974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Lipidic cubic phase (LCP) crystallization methods have been essential in obtaining crystals of certain membrane proteins, particularly G-protein-coupled receptors. LCP crystallization is generally optimized across a large number of potential variables, one of which may be the choice of the solubilizing detergent. A better fundamental understanding of the behavior of detergents in the LCP may guide and simplify the detergent selection process. This work investigates the distribution of protein and detergent in LCP using the membrane protein bacteriorhodopsin (bR), with the LCP prepared from highly deuterated monoolein to allow contrast-matched small-angle neutron scattering. Contrast-matching allows the scattering from the LCP bilayer itself to be suppressed, so that the distribution and behavior of the protein and detergent can be directly studied. The results showed that, for several common detergents, the detergent micelle dissociates and incorporates into the LCP bilayer essentially as free detergent monomers. In addition, the detergent octyl glucoside dissociates from bR, and neither the protein nor detergent forms clusters in the LCP. The lack of detergent assemblies in the LCP implies that, upon incorporation, micelle sizes and protein/detergent interactions become less important than they would be in solution crystallization. Crystallization screening confirmed this idea, with crystals obtained from bR in the presence of most detergents tested. Thus, in LCP crystallization, detergents can be selected primarily on the basis of protein stabilization in solution, with crystallization suitability a lesser consideration.
Collapse
Affiliation(s)
- Thomas Cleveland IV
- National Institute of Standards and Technology and Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD 20850, USA
- National Institute of Standards and Technology Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Emily Blick
- National Institute of Standards and Technology Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Susan Krueger
- National Institute of Standards and Technology Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Anna Leung
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
- Scientific Activities Division, European Spallation Source ERIC, Lund 224 84, Sweden
| | - Tamim Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Paul Butler
- National Institute of Standards and Technology Center for Neutron Research, 100 Bureau Drive, Gaithersburg, MD 20899, USA
- Department of Chemistry, University of Tennessee, 552 Buehler Hall, 1420 Circle Dr., Knoxville, TN 37996-1600, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Colburn Laboratory, Newark, DE 19716, USA
| |
Collapse
|
9
|
Fake It 'Till You Make It-The Pursuit of Suitable Membrane Mimetics for Membrane Protein Biophysics. Int J Mol Sci 2020; 22:ijms22010050. [PMID: 33374526 PMCID: PMC7793082 DOI: 10.3390/ijms22010050] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/13/2022] Open
Abstract
Membrane proteins evolved to reside in the hydrophobic lipid bilayers of cellular membranes. Therefore, membrane proteins bridge the different aqueous compartments separated by the membrane, and furthermore, dynamically interact with their surrounding lipid environment. The latter not only stabilizes membrane proteins, but directly impacts their folding, structure and function. In order to be characterized with biophysical and structural biological methods, membrane proteins are typically extracted and subsequently purified from their native lipid environment. This approach requires that lipid membranes are replaced by suitable surrogates, which ideally closely mimic the native bilayer, in order to maintain the membrane proteins structural and functional integrity. In this review, we survey the currently available membrane mimetic environments ranging from detergent micelles to bicelles, nanodiscs, lipidic-cubic phase (LCP), liposomes, and polymersomes. We discuss their respective advantages and disadvantages as well as their suitability for downstream biophysical and structural characterization. Finally, we take a look at ongoing methodological developments, which aim for direct in-situ characterization of membrane proteins within native membranes instead of relying on membrane mimetics.
Collapse
|
10
|
Van Truong T, Ghosh M, Wachtel E, Friedman N, Jung KH, Sheves M, Patchornik G. Promoting crystallization of intrinsic membrane proteins with conjugated micelles. Sci Rep 2020; 10:12199. [PMID: 32699228 PMCID: PMC7376161 DOI: 10.1038/s41598-020-68689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022] Open
Abstract
A new technique for promoting nucleation and growth of membrane protein (MP) crystals from micellar environments is reported. It relies on the conjugation of micelles that sequester MPs in protein detergent complexes (PDCs). Conjugation via amphiphilic [metal:chelator] complexes presumably takes place at the micelle/water interface, thereby bringing the PDCs into proximity, promoting crystal nucleation and growth. We have successfully applied this approach to two light-driven proton pumps: bacteriorhodopsin (bR) and the recently discovered King Sejong 1-2 (KS1-2), using the amphiphilic 4,4'-dinonyl-2,2'-dipyridyl (Dinonyl) (0.7 mM) chelator in combination with Zn2+, Fe2+, or Ni2+ (0.1 mM). Crystal growth in the presence of the [metal-chelator] complexes leads to purple, hexagonal crystals (50-75 µm in size) of bR or pink, rectangular/square crystals (5-15 µm) of KS1-2. The effects of divalent cation identity and concentration, chelator structure and concentration, ionic strength and pH on crystal size, morphology and process kinetics, are described.
Collapse
Affiliation(s)
- Thien Van Truong
- Department of Chemical Sciences, Ariel University, 40700, Ariel, Israel
| | - Mihir Ghosh
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Ellen Wachtel
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Noga Friedman
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul, 121-742, South Korea
| | - Mordechai Sheves
- Faculty of Chemistry, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Guy Patchornik
- Department of Chemical Sciences, Ariel University, 40700, Ariel, Israel.
| |
Collapse
|
11
|
Critical micelle concentration, composition and thermodynamic properties of n-octyl-β-d-glucopyranoside and sodium dodecylsulfate mixed micelles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Antoshvili M, Caspy I, Hippler M, Nelson N. Structure and function of photosystem I in Cyanidioschyzon merolae. PHOTOSYNTHESIS RESEARCH 2019; 139:499-508. [PMID: 29582227 DOI: 10.1007/s11120-018-0501-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 05/19/2023]
Abstract
The evolution of photosynthesis from primitive photosynthetic bacteria to higher plants has been driven by the need to adapt to a wide range of environmental conditions. The red alga Cyanidioschyzon merolae is a primitive organism, which is capable of performing photosynthesis in extreme acidic and hot environments. The study of its photosynthetic machinery may provide new insight on the evolutionary path of photosynthesis and on light harvesting and its regulation in eukaryotes. With that aim, the structural and functional properties of the PSI complex were investigated by biochemical characterization, mass spectrometry, and X-ray crystallography. PSI was purified from cells grown at 25 and 42 °C, crystallized and its crystal structure was solved at 4 Å resolution. The structure of C. merolae reveals a core complex with a crescent-shaped structure, formed by antenna proteins. In addition, the structural model shows the position of PsaO and PsaM. PsaG and PsaH are present in plant complex and are missing from the C. merolae model as expected. This paper sheds new light onto the evolution of photosynthesis, which gives a strong indication for the chimerical properties of red algae PSI. The subunit composition of the PSI core from C. merolae and its associated light-harvesting antennae suggests that it is an evolutionary and functional intermediate between cyanobacteria and plants.
Collapse
Affiliation(s)
- Maya Antoshvili
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, 48143, Münster, Germany
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
13
|
Peng Y, Alexov E, Basu S. Structural Perspective on Revealing and Altering Molecular Functions of Genetic Variants Linked with Diseases. Int J Mol Sci 2019; 20:ijms20030548. [PMID: 30696058 PMCID: PMC6386852 DOI: 10.3390/ijms20030548] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/25/2022] Open
Abstract
Structural information of biological macromolecules is crucial and necessary to deliver predictions about the effects of mutations-whether polymorphic or deleterious (i.e., disease causing), wherein, thermodynamic parameters, namely, folding and binding free energies potentially serve as effective biomarkers. It may be emphasized that the effect of a mutation depends on various factors, including the type of protein (globular, membrane or intrinsically disordered protein) and the structural context in which it occurs. Such information may positively aid drug-design. Furthermore, due to the intrinsic plasticity of proteins, even mutations involving radical change of the structural and physico⁻chemical properties of the amino acids (native vs. mutant) can still have minimal effects on protein thermodynamics. However, if a mutation causes significant perturbation by either folding or binding free energies, it is quite likely to be deleterious. Mitigating such effects is a promising alternative to the traditional approaches of designing inhibitors. This can be done by structure-based in silico screening of small molecules for which binding to the dysfunctional protein restores its wild type thermodynamics. In this review we emphasize the effects of mutations on two important biophysical properties, stability and binding affinity, and how structures can be used for structure-based drug design to mitigate the effects of disease-causing variants on the above biophysical properties.
Collapse
Affiliation(s)
- Yunhui Peng
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| | - Sankar Basu
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
14
|
Kreitler DF, Yao Z, Steinkruger JD, Mortenson DE, Huang L, Mittal R, Travis BR, Forest KT, Gellman SH. A Hendecad Motif Is Preferred for Heterochiral Coiled-Coil Formation. J Am Chem Soc 2019; 141:1583-1592. [PMID: 30645104 DOI: 10.1021/jacs.8b11246] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structural principles that govern interactions between l- and d-peptides are not well understood. Among natural proteins, coiled-coil assemblies formed between or among α-helices are the most regular feature of tertiary and quaternary structures. We recently reported the first high-resolution structures for heterochiral coiled-coil dimers, which represent a starting point for understanding associations of l- and d-polypeptides. These structures were an unexpected outcome from crystallization of a racemic peptide corresponding to the transmembrane domain of the influenza A M2 protein (M2-TM). The reported structures raised the possibility that heterochiral coiled-coil dimers prefer an 11-residue (hendecad) sequence repeat, in contrast to the 7-residue (heptad) sequence repeat that is dominant among natural coiled coils. To gain insight on sequence repeat preferences of heterochiral coiled-coils, we have examined three M2-TM variants containing substitutions intended to minimize steric clashes between side chains at the coiled-coil interface. In each of the three new crystal structures, we observed heterochiral coiled-coil associations that closely match a hendecad sequence motif, which strengthens the conclusion that this motif is intrinsic to the pairing of α-helices with opposite handedness. In each case, the presence of a hendecad motif was established by comparing the observed helical frequency to that of an ideal hendecad. This comparison revealed that decreasing the size of the amino acid side chain at positions that project toward the superhelical axis produces tighter packing, as determined by the size of the coiled-coil radius. These results provide a basis for future design of heterochiral coiled-coil pairings.
Collapse
Affiliation(s)
- Dale F Kreitler
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Zhihui Yao
- Graduate Program in Biophysics , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Jay D Steinkruger
- School of Natural Sciences , University of Central Missouri , Warrensburg , Missouri 64093 , United States
| | - David E Mortenson
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Lijun Huang
- Anatrace , Maumee , Ohio 43537 , United States
| | | | | | - Katrina T Forest
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Graduate Program in Biophysics , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Department of Bacteriology , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Samuel H Gellman
- Department of Chemistry , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States.,Graduate Program in Biophysics , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
15
|
Thonghin N, Kargas V, Clews J, Ford RC. Cryo-electron microscopy of membrane proteins. Methods 2018; 147:176-186. [DOI: 10.1016/j.ymeth.2018.04.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022] Open
|
16
|
Bommu UD, Konidala KK, Pamanji R, Yeguvapalli S. Structural Probing, Screening and Structure-Based Drug Repositioning Insights into the Identification of Potential Cox-2 Inhibitors from Selective Coxibs. Interdiscip Sci 2017; 11:153-169. [DOI: 10.1007/s12539-017-0244-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 12/11/2022]
|
17
|
Bhat B, Ganai NA, Andrabi SM, Shah RA, Singh A. TM-Aligner: Multiple sequence alignment tool for transmembrane proteins with reduced time and improved accuracy. Sci Rep 2017; 7:12543. [PMID: 28970546 PMCID: PMC5624947 DOI: 10.1038/s41598-017-13083-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/18/2017] [Indexed: 11/23/2022] Open
Abstract
Membrane proteins plays significant role in living cells. Transmembrane proteins are estimated to constitute approximately 30% of proteins at genomic scale. It has been a difficult task to develop specific alignment tools for transmembrane proteins due to limited number of experimentally validated protein structures. Alignment tools based on homology modeling provide fairly good result by recapitulating 70-80% residues in reference alignment provided all input sequences should have known template structures. However, homology modeling tools took substantial amount of time, thus aligning large numbers of sequences becomes computationally demanding. Here we present TM-Aligner, a new tool for transmembrane protein sequence alignment. TM-Aligner is based on Wu-Manber and dynamic string matching algorithm which has significantly improved its accuracy and speed of multiple sequence alignment. We compared TM-Aligner with prevailing other popular tools and performed benchmarking using three separate reference sets, BaliBASE3.0 reference set7 of alpha-helical transmembrane proteins, structure based alignment of transmembrane proteins from Pfam database and structure alignment from GPCRDB. Benchmarking against reference datasets indicated that TM-Aligner is more advanced method having least turnaround time with significant improvements over the most accurate methods such as PROMALS, MAFFT, TM-Coffee, Kalign, ClustalW, Muscle and PRALINE. TM-Aligner is freely available through http://lms.snu.edu.in/TM-Aligner/ .
Collapse
Affiliation(s)
- Basharat Bhat
- Department of Life Science, Shiv Nadar University, Greater Noida, UP, 201314, India
| | - Nazir A Ganai
- Department of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shuhama, Jammu and Kashmir, 190016, India
| | - Syed Mudasir Andrabi
- Department of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shuhama, Jammu and Kashmir, 190016, India
| | - Riaz A Shah
- Department of Animal Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shuhama, Jammu and Kashmir, 190016, India
| | - Ashutosh Singh
- Department of Life Science, Shiv Nadar University, Greater Noida, UP, 201314, India.
| |
Collapse
|
18
|
Lupala CS, Rasaeifar B, Gomez-Gutierrez P, Perez JJ. Using molecular dynamics for the refinement of atomistic models of GPCRs by homology modeling. J Biomol Struct Dyn 2017; 36:2436-2448. [PMID: 28728517 DOI: 10.1080/07391102.2017.1357503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Despite GPCRs sharing a common seven helix bundle, analysis of the diverse crystallographic structures available reveal specific features that might be relevant for ligand design. Despite the number of crystallographic structures of GPCRs steadily increasing, there are still challenges that hamper the availability of new structures. In the absence of a crystallographic structure, homology modeling remains one of the important techniques for constructing 3D models of proteins. In the present study we investigated the use of molecular dynamics simulations for the refinement of GPCRs models constructed by homology modeling. Specifically, we investigated the relevance of template selection, ligand inclusion as well as the length of the simulation on the quality of the GPCRs models constructed. For this purpose we chose the crystallographic structure of the rat muscarinic M3 receptor as reference and constructed diverse atomistic models by homology modeling, using different templates. Specifically, templates used in the present work include the human muscarinic M2; the more distant human histamine H1 and the even more distant bovine rhodopsin as shown in the GPCRs phylogenetic tree. We also investigated the use or not of a ligand in the refinement process. Hence, we conducted the refinement process of the M3 model using the M2 muscarinic as template with tiotropium or NMS docked in the orthosteric site and compared with the results obtained with a model refined without any ligand bound.
Collapse
Affiliation(s)
- Cecylia S Lupala
- a Department of Chemical Engineering (ETSEIB) , Universitat Politecnica de Catalunya , Av. Diagonal, 647. 08028 Barcelona , Spain
| | - Bahareh Rasaeifar
- a Department of Chemical Engineering (ETSEIB) , Universitat Politecnica de Catalunya , Av. Diagonal, 647. 08028 Barcelona , Spain
| | - Patricia Gomez-Gutierrez
- a Department of Chemical Engineering (ETSEIB) , Universitat Politecnica de Catalunya , Av. Diagonal, 647. 08028 Barcelona , Spain
| | - Juan J Perez
- a Department of Chemical Engineering (ETSEIB) , Universitat Politecnica de Catalunya , Av. Diagonal, 647. 08028 Barcelona , Spain
| |
Collapse
|
19
|
Dakal TC, Kumar R, Ramotar D. Structural modeling of human organic cation transporters. Comput Biol Chem 2017; 68:153-163. [PMID: 28343125 DOI: 10.1016/j.compbiolchem.2017.03.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/01/2017] [Accepted: 03/11/2017] [Indexed: 12/12/2022]
Abstract
Human organic cation transporters (hOCTs) belong to solute carriers (SLC) 22 family of membrane proteins that play a central role in transportation of chemotherapeutic drugs for several clinical and pathological conditions, including cancer and diabetes. These transporters mediate drug transport; however, the precise mechanism of drug-binding and transport by them is not fully uncovered yet, partly due to unavailability of any crystal structure record. In this work, we performed a multi-phasic approach to compute the 3D structural models of seven human organic cation transporters (hOCTs) starting from primary protein sequence. Our structure modeling approach included 1) I-TASSER based comparative sequence alignment, threading and ab-initio protein modeling; 2) models comparison with PSIPRED secondary structure prediction; 3) loop modeling for incongruent secondary structure in Chimera 1.10.1; 4) high resolution structure simulation, refinement, energy minimization using ModRefiner, and 5) validation of the structure models using PROCHECK at SAVEs. From structural point, the computed 3D structures of hOCTs consist of a typical major facilitator superfamily (MFS) fold of twelve α-transmembrane helix domains arranged in a manner rendering hOCTs a barrel shaped structure with a large cleft that opens in cytoplasm. The modeled 3D structure of all hOCTs closely resemble to human SLC2A3 (GLUT3) transporter (PDB ID: 5c65) and displayed an outward-open confirmation and putative cyclic C1 protein symmetry. In addition, hOCTs has a large (>100 amino acids) unique extracellular loop between TMH1 and TMH2 having potential glycosylation sites (Asn-Xaa-Ser/Thr) and cysteine residues, both features indicative of putative role in drug binding and uptake. There is an intracellular three/four-helix loop between TMH6 and TMH7 containing putative phosphorylation sites for precise regulation of hOCTs function as drug transporters. There are nine loops of 4 to 11 amino acids length that protrude from membrane, both intracellularly and extracellularly, and connect adjacent TMHs. The 2D structure prediction showed Nin-Cin topology of all hOCTs. In the unavailability of the crystal structures of hOCTs, the 3D structural models computed in-silico and presented herein can be used for studying the mechanism of drug binding and transport by hOCTs.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Department of Medicine, 5415 Boul. de L' Assomption, Montréal, Québec H1T 2M4, Canada.
| | - Rajender Kumar
- Architecture et Fonction des Macromolécules Biologiques (AFMB), Campus de Luminy, Aix-Marseille Université, Marseille, France; Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | - Dindial Ramotar
- Maisonneuve-Rosemont Hospital, Research Center, Université de Montréal, Department of Medicine, 5415 Boul. de L' Assomption, Montréal, Québec H1T 2M4, Canada
| |
Collapse
|
20
|
Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 2017; 12:764-782. [PMID: 28277547 DOI: 10.1038/nprot.2016.190] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.
Collapse
|
21
|
Orwick‐Rydmark M, Arnold T, Linke D. The Use of Detergents to Purify Membrane Proteins. ACTA ACUST UNITED AC 2016; 84:4.8.1-4.8.35. [DOI: 10.1002/0471140864.ps0408s84] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Thomas Arnold
- Boehringer‐Ingelheim Veterinary Research Center Hannover Germany
| | - Dirk Linke
- University of Oslo, Department of Biosciences Oslo Norway
| |
Collapse
|
22
|
Jeong JH, Kim JS, Choi SS, Kim Y. NMR Structural Studies of Antimicrobial Peptides: LPcin Analogs. Biophys J 2016; 110:423-430. [PMID: 26789765 PMCID: PMC4724650 DOI: 10.1016/j.bpj.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
Lactophoricin (LPcin), a component of proteose peptone (113-135) isolated from bovine milk, is a cationic amphipathic antimicrobial peptide consisting of 23 amino acids. We designed a series of N- or C-terminal truncated variants, mutated analogs, and truncated mutated analogs using peptide-engineering techniques. Then, we selected three LPcin analogs of LPcin-C8 (LPcin-YK1), LPcin-T2WT6W (LPcin-YK2), and LPcin-T2WT6W-C8 (LPcin-YK3), which may have better antimicrobial activities than LPcin, and successfully expressed them in E. coli with high yield. We elucidated the 3D structures and topologies of the three LPcin analogs in membrane environments by conducting NMR structural studies. We investigated the purity of the LPcin analogs and the α-helical secondary structures by performing (1)H-(15)N 2D HSQC and HMQC-NOESY liquid-state NMR spectroscopy using protein-containing micelle samples. We measured the 3D structures and tilt angles in membranes by conducting (15)N 1D and 2D (1)H-(15)N SAMMY type solid-state NMR spectroscopy with an 800 MHz in-house-built (1)H-(15)N double-resonance solid-state NMR probe with a strip-shield coil, using protein-containing large bicelle samples aligned and confirmed by molecular-dynamics simulations. The three LPcin analogs were found to be curved α-helical structures, with tilt angles of 55-75° for normal membrane bilayers, and their enhanced activities may be correlated with these topologies.
Collapse
Affiliation(s)
- Ji-Ho Jeong
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In, Korea; Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Ji-Sun Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In, Korea; Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Sung-Sub Choi
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In, Korea; Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In, Korea
| | - Yongae Kim
- Department of Chemistry, Hankuk University of Foreign Studies, Yong-In, Korea; Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yong-In, Korea.
| |
Collapse
|
23
|
Detergents in Membrane Protein Purification and Crystallisation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 922:13-28. [PMID: 27553232 DOI: 10.1007/978-3-319-35072-1_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Detergents play a significant role in structural and functional characterisation of integral membrane proteins (IMPs). IMPs reside in the biological membranes and exhibit a great variation in their structural and physical properties. For in vitro biophysical studies, structural and functional analyses, IMPs need to be extracted from the membrane lipid bilayer environment in which they are found and purified to homogeneity while maintaining a folded and functionally active state. Detergents are capable of successfully solubilising and extracting the IMPs from the membrane bilayers. A number of detergents with varying structure and physicochemical properties are commercially available and can be applied for this purpose. Nevertheless, it is important to choose a detergent that is not only able to extract the membrane protein but also provide an optimal environment while retaining the correct structural and physical properties of the protein molecule. Choosing the best detergent for this task can be made possible by understanding the physical and chemical properties of the different detergents and their interaction with the IMPs. In addition, understanding the mechanism of membrane solubilisation and protein extraction along with crystallisation requirements, if crystallographic studies are going to be undertaken, can help in choosing the best detergent for the purpose. This chapter aims to present the fundamental properties of detergents and highlight information relevant to IMP crystallisation. The first section of the chapter reviews the physicochemical properties of detergents and parameters essential for predicting their behaviour in solution. The second section covers the interaction of detergents with the biologic membranes and proteins followed by their role in membrane protein crystallisation. The last section will briefly cover the types of detergent and their properties focusing on custom designed detergents for membrane protein studies.
Collapse
|
24
|
Synthesis of poly(sulfobetaine methacrylate)-grafted chitosan under γ-ray irradiation for alamethicin assembly. Colloids Surf B Biointerfaces 2015; 132:132-7. [DOI: 10.1016/j.colsurfb.2015.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/21/2022]
|
25
|
Kumar M, Kumaraswamy G. Phase behaviour of the ternary system: monoolein-water-branched polyethylenimine. SOFT MATTER 2015; 11:5705-5711. [PMID: 26081120 DOI: 10.1039/c5sm01082a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Addition of a branched polymer, polyethyleneimine, significantly alters the organization of a glycerol monooleate (GMO) lipid-water system. We present detailed data over a wide range of compositions (water content from 10 to 40%, relative to GMO and PEI fractions from 0 to 4%) and temperatures (25-80 °C). The PEI molecular weight effects are examined using polymers over a range from 0.8 to 25 kDa. Addition of PEI induces the formation of higher curvature reverse phases. In particular, PEI induces the formation of the Fd3m phase: a discontinuous phase comprising reverse micelles of two different sizes stacked in a cubic AB2 crystal. The formation of the Fd3m phase at room temperature, upon addition of polar, water soluble PEI is unusual, since such phases typically are formed only upon addition of apolar oils. The largest stability window for the Fd3m phase is observed for PEI with a molecular weight = 2 kDa. We discuss how PEI influences the formation and stability of high curvature phases.
Collapse
Affiliation(s)
- Manoj Kumar
- Complex Fluids and Polymer Engineering Group, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | | |
Collapse
|
26
|
Abstract
Several membrane proteins and numerous membrane-active peptides have been studied in detergent micelles by solution NMR. However, the detailed structure of these complexes remains unknown. We propose a modeling approach that treats the protein and detergent in atomistic detail and the solvent implicitly. The model is based on previous work on dodecylphosphocholine micelles, adapted for use with the CHARMM36 force field and extended to sodium dodecyl sulfate micelles. Solvation parameters were slightly adjusted to reproduce experimental data on aggregation numbers and critical micelle concentrations. To test the approach, several membrane-active peptides and three β-barrel membrane proteins were subjected to molecular dynamics simulations in the presence of a large number of detergent molecules. Their experimentally determined secondary structure was maintained and the RMSD values were less than 2 Å. Deformations were commonly observed in the N or C termini. The atomistic view of the protein-micelle systems that this approach provides could be useful in interpreting biophysical experiments carried out in the presence of detergent.
Collapse
Affiliation(s)
- Rodney E Versace
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
27
|
Setzler J, Seith C, Brieg M, Wenzel W. SLIM: an improved generalized Born implicit membrane model. J Comput Chem 2015; 35:2027-39. [PMID: 25243932 DOI: 10.1002/jcc.23717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/02/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
In most implicit continuum models, membranes are represented as heterogeneous dielectric environments, but their treatment within computationally efficient generalized Born (GB) models is challenging. Despite several previous attempts, an adequate description of multiple dielectric regions in implicit GB-based membrane models that reproduce the qualitative and quantitative features of Poisson-Boltzmann (PB) electrostatics remains an unmet prerequisite of qualitatively correct implicit membrane models. A novel scheme (SLIM) to decompose one environment consisting of multiple dielectric regions into a sum of multiple environments consisting only of two dielectric regions each is proposed to solve this issue. These simpler environments can be treated with established GB methods. This approach captures qualitative features of PB electrostatic that are not present in previous models. Simulations of three membrane proteins demonstrate that this model correctly reproduces known properties of these proteins in agreement with experimental or other computational studies.
Collapse
Affiliation(s)
- Julia Setzler
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany
| | | | | | | |
Collapse
|
28
|
Purification of a Multidrug Resistance Transporter for Crystallization Studies. Antibiotics (Basel) 2015; 4:113-35. [PMID: 27025617 PMCID: PMC4790320 DOI: 10.3390/antibiotics4010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 01/12/2023] Open
Abstract
Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters.
Collapse
|
29
|
May B, Elliott C, Iwata M, Young L, Shearman J, Albury MS, Moore AL. Expression and crystallization of the plant alternative oxidase. Methods Mol Biol 2015; 1305:281-299. [PMID: 25910742 DOI: 10.1007/978-1-4939-2639-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The alternative oxidase (AOX) is an integral monotopic membrane protein located on the inner surface of the inner mitochondrial membrane. Branching from the traditional respiratory chain at the quinone pool, AOX is responsible for cyanide-resistant respiration in plants and fungi, heat generation in thermogenic plants, and survival of parasites, such as Trypanosoma brucei, in the human host. A recently solved AOX structure provides insight into its active site, thereby facilitating rational phytopathogenic and antiparasitic drug design. Here, we describe expression of recombinant AOX using two different expression systems. Purification protocols for the production of highly pure and stable AOX protein in sufficient quantities to facilitate further kinetic, biophysical, and structural analyses are also described.
Collapse
Affiliation(s)
- Benjamin May
- Department of Biochemistry and Molecular Biology, School of Life Sciences, University of Sussex, John Maynard Smith Building, Falmer, Brighton, BN1 9QG, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Yan AWC, D'Alfonso AJ, Morgan AJ, Putkunz CT, Allen LJ. Fast deterministic ptychographic imaging using X-rays. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:1090-9. [PMID: 24851899 DOI: 10.1017/s1431927614000932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We present a deterministic approach to the ptychographic retrieval of the wave at the exit surface of a specimen of condensed matter illuminated by X-rays. The method is based on the solution of an overdetermined set of linear equations, and is robust to measurement noise. The set of linear equations is efficiently solved using the conjugate gradient least-squares method implemented using fast Fourier transforms. The method is demonstrated using a data set obtained from a gold-chromium nanostructured test object. It is shown that the transmission function retrieved by this linear method is quantitatively comparable with established methods of ptychography, with a large decrease in computational time, and is thus a good candidate for real-time reconstruction.
Collapse
Affiliation(s)
- Ada W C Yan
- School of Physics,University of Melbourne,Parkville,Victoria 3010,Australia
| | - Adrian J D'Alfonso
- School of Physics,University of Melbourne,Parkville,Victoria 3010,Australia
| | - Andrew J Morgan
- School of Physics,University of Melbourne,Parkville,Victoria 3010,Australia
| | - Corey T Putkunz
- School of Physics,University of Melbourne,Parkville,Victoria 3010,Australia
| | - Leslie J Allen
- School of Physics,University of Melbourne,Parkville,Victoria 3010,Australia
| |
Collapse
|
31
|
X-ray structure of a CDP-alcohol phosphatidyltransferase membrane enzyme and insights into its catalytic mechanism. Nat Commun 2014; 5:4169. [PMID: 24942835 DOI: 10.1038/ncomms5169] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 05/19/2014] [Indexed: 11/08/2022] Open
Abstract
Phospholipids have major roles in the structure and function of all cell membranes. Most integral membrane proteins from the large CDP-alcohol phosphatidyltransferase family are involved in phospholipid biosynthesis across the three domains of life. They share a conserved sequence pattern and catalyse the displacement of CMP from a CDP-alcohol by a second alcohol. Here we report the crystal structure of a bifunctional enzyme comprising a cytoplasmic nucleotidyltransferase domain (IPCT) fused with a membrane CDP-alcohol phosphotransferase domain (DIPPS) at 2.65 Å resolution. The bifunctional protein dimerizes through the DIPPS domains, each comprising six transmembrane α-helices. The active site cavity is hydrophilic and widely open to the cytoplasm with a magnesium ion surrounded by four highly conserved aspartate residues from helices TM2 and TM3. We show that magnesium is essential for the enzymatic activity and is involved in catalysis. Substrates docking is validated by mutagenesis studies, and a structure-based catalytic mechanism is proposed.
Collapse
|
32
|
Simakova MN, Simakov NN. Topography prediction of helical transmembrane proteins by a new modification of the sliding window method. BIOMED RESEARCH INTERNATIONAL 2014; 2014:921218. [PMID: 24900999 PMCID: PMC4034515 DOI: 10.1155/2014/921218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 02/05/2023]
Abstract
Protein functions are specified by its three-dimensional structure, which is usually obtained by X-ray crystallography. Due to difficulty of handling membrane proteins experimentally to date the structure has only been determined for a very limited part of membrane proteins (<4%). Nevertheless, investigation of structure and functions of membrane proteins is important for medicine and pharmacology and, therefore, is of significant interest. Methods of computer modeling based on the data on the primary protein structure or the symbolic amino acid sequence have become an actual alternative to the experimental method of X-ray crystallography for investigating the structure of membrane proteins. Here we presented the results of the study of 35 transmembrane proteins, mainly GPCRs, using the novel method of cascade averaging of hydrophobicity function within the limits of a sliding window. The proposed method allowed revealing 139 transmembrane domains out of 140 (or 99.3%) identified by other methods. Also 236 transmembrane domain boundary positions out of 280 (or 84%) were predicted correctly by the proposed method with deviation from the predictions made by other methods that does not exceed the detection error of this method.
Collapse
|
33
|
Ilgü H, Jeckelmann JM, Gachet MS, Boggavarapu R, Ucurum Z, Gertsch J, Fotiadis D. Variation of the detergent-binding capacity and phospholipid content of membrane proteins when purified in different detergents. Biophys J 2014; 106:1660-70. [PMID: 24739165 PMCID: PMC4008799 DOI: 10.1016/j.bpj.2014.02.024] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 02/21/2014] [Accepted: 02/26/2014] [Indexed: 11/24/2022] Open
Abstract
Purified membrane proteins are ternary complexes consisting of protein, lipid, and detergent. Information about the amounts of detergent and endogenous phospholipid molecules bound to purified membrane proteins is largely lacking. In this systematic study, three model membrane proteins of different oligomeric states were purified in nine different detergents at commonly used concentrations and characterized biochemically and biophysically. Detergent-binding capacities and phospholipid contents of the model proteins were determined and compared. The insights on ternary complexes obtained from the experimental results, when put into a general context, are summarized as follows. 1), The amount of detergent and 2) the amount of endogenous phospholipids bound to purified membrane proteins are dependent on the size of the hydrophobic lipid-accessible protein surface areas and the physicochemical properties of the detergents used. 3), The size of the detergent and lipid belt surrounding the hydrophobic lipid-accessible surface of purified membrane proteins can be tuned by the appropriate choice of detergent. 4), The detergents n-nonyl-β-D-glucopyranoside and Cymal-5 have exceptional delipidating effects on ternary complexes. 5), The types of endogenous phospholipids bound to membrane proteins can vary depending on the detergent used for solubilization and purification. 6), Furthermore, we demonstrate that size-exclusion chromatography can be a suitable method for estimating the molecular mass of ternary complexes. The findings presented suggest a strategy to control and tune the numbers of detergent and endogenous phospholipid molecules bound to membrane proteins. These two parameters are potentially important for the successul crystallization of membrane proteins for structure determination by crystallographic approaches.
Collapse
Affiliation(s)
- Hüseyin Ilgü
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Rajendra Boggavarapu
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, and Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Mańko D, Zdziennicka A, Jańczuk B. Thermodynamic properties of adsorption and micellization of n-oktyl-β-D-glucopiranoside. Colloids Surf B Biointerfaces 2013; 114:170-6. [PMID: 24184537 DOI: 10.1016/j.colsurfb.2013.10.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/24/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022]
Abstract
Measurements of the surface tension, density and viscosity of aqueous solutions of n-oktyl-β-D-glucopiranoside (OGP) were made at 293 K. From the obtained results the Gibbs surface excess concentration of OGP at the water-air interface and its critical micelle concentration were determined. The Gibbs surface excess concentration of OGP used in the Gu and Zhu isotherm equation allowed us to determine the Gibbs standard free energy of OGP adsorption at the water-air interface. The Gibbs standard free energy of OGP adsorption was also determined on the basis of the Langmuir, Szyszkowski, Gamboa and Olea equations as well the surface tension of "hydrophobic" part of OGP and "hydrophobic" part-water interface tension. It appeared that there is an agreement between the values of Gibbs standard free energy of OGP adsorption at the water-air interface determined by using all the above mentioned methods. It also proved that standard free energy of OGP micellization determined from CMC is consistent with that obtained on the basis of the free energy of the interactions between the "hydrophobic" part of the OPG through the water phase.
Collapse
Affiliation(s)
- Diana Mańko
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| | - Anna Zdziennicka
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland.
| | - Bronisław Jańczuk
- Department of Interfacial Phenomena, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 3, 20-031 Lublin, Poland
| |
Collapse
|
35
|
Grote M, Engelhard M, Hegemann P. Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:533-45. [PMID: 23994288 DOI: 10.1016/j.bbabio.2013.08.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/20/2013] [Accepted: 08/22/2013] [Indexed: 10/26/2022]
Abstract
We present a historical overview of research on microbial rhodopsins ranging from the 1960s to the present date. Bacteriorhodopsin (BR), the first identified microbial rhodopsin, was discovered in the context of cell and membrane biology and shown to be an outward directed proton transporter. In the 1970s, BR had a big impact on membrane structural research and bioenergetics, that made it to a model for membrane proteins and established it as a probe for the introduction of various biophysical techniques that are widely used today. Halorhodopsin (HR), which supports BR physiologically by transporting negatively charged Cl⁻ into the cell, is researched within the microbial rhodopsin community since the late 1970s. A few years earlier, the observation of phototactic responses in halobacteria initiated research on what are known today as sensory rhodopsins (SR). The discovery of the light-driven ion channel, channelrhodopsin (ChR), serving as photoreceptors for behavioral responses in green alga has complemented inquiries into this photoreceptor family. Comparing the discovery stories, we show that these followed quite different patterns, albeit the objects of research being very similar. The stories of microbial rhodopsins present a comprehensive perspective on what can nowadays be considered one of nature's paradigms for interactions between organisms and light. Moreover, they illustrate the unfolding of this paradigm within the broader conceptual and instrumental framework of the molecular life sciences. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Mathias Grote
- Institut für Philosophie, Literatur-, Wissenschafts- und Technikgeschichte, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Martin Engelhard
- Max Planck Institut für Molekulare Physiologie, Otto Hahn Str. 11, 44227 Dortmund, Germany
| | - Peter Hegemann
- Institute of Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
36
|
Krauss IR, Merlino A, Vergara A, Sica F. An overview of biological macromolecule crystallization. Int J Mol Sci 2013; 14:11643-91. [PMID: 23727935 PMCID: PMC3709751 DOI: 10.3390/ijms140611643] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/08/2013] [Accepted: 05/20/2013] [Indexed: 12/11/2022] Open
Abstract
The elucidation of the three dimensional structure of biological macromolecules has provided an important contribution to our current understanding of many basic mechanisms involved in life processes. This enormous impact largely results from the ability of X-ray crystallography to provide accurate structural details at atomic resolution that are a prerequisite for a deeper insight on the way in which bio-macromolecules interact with each other to build up supramolecular nano-machines capable of performing specialized biological functions. With the advent of high-energy synchrotron sources and the development of sophisticated software to solve X-ray and neutron crystal structures of large molecules, the crystallization step has become even more the bottleneck of a successful structure determination. This review introduces the general aspects of protein crystallization, summarizes conventional and innovative crystallization methods and focuses on the new strategies utilized to improve the success rate of experiments and increase crystal diffraction quality.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Alessandro Vergara
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
| | - Filomena Sica
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cintia, Napoli I-80126, Italy; E-Mails: (I.R.K.); (A.M.); (A.V.)
- Institute of Biostructures and Bioimages, C.N.R, Via Mezzocannone 16, Napoli I-80134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-81-674-479; Fax: +39-81-674-090
| |
Collapse
|
37
|
Stamm M, Staritzbichler R, Khafizov K, Forrest LR. Alignment of helical membrane protein sequences using AlignMe. PLoS One 2013; 8:e57731. [PMID: 23469223 PMCID: PMC3587630 DOI: 10.1371/journal.pone.0057731] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 01/24/2013] [Indexed: 12/20/2022] Open
Abstract
Few sequence alignment methods have been designed specifically for integral membrane proteins, even though these important proteins have distinct evolutionary and structural properties that might affect their alignments. Existing approaches typically consider membrane-related information either by using membrane-specific substitution matrices or by assigning distinct penalties for gap creation in transmembrane and non-transmembrane regions. Here, we ask whether favoring matching of predicted transmembrane segments within a standard dynamic programming algorithm can improve the accuracy of pairwise membrane protein sequence alignments. We tested various strategies using a specifically designed program called AlignMe. An updated set of homologous membrane protein structures, called HOMEP2, was used as a reference for optimizing the gap penalties. The best of the membrane-protein optimized approaches were then tested on an independent reference set of membrane protein sequence alignments from the BAliBASE collection. When secondary structure (S) matching was combined with evolutionary information (using a position-specific substitution matrix (P)), in an approach we called AlignMePS, the resultant pairwise alignments were typically among the most accurate over a broad range of sequence similarities when compared to available methods. Matching transmembrane predictions (T), in addition to evolutionary information, and secondary-structure predictions, in an approach called AlignMePST, generally reduces the accuracy of the alignments of closely-related proteins in the BAliBASE set relative to AlignMePS, but may be useful in cases of extremely distantly related proteins for which sequence information is less informative. The open source AlignMe code is available at https://sourceforge.net/projects/alignme/, and at http://www.forrestlab.org, along with an online server and the HOMEP2 data set.
Collapse
Affiliation(s)
- Marcus Stamm
- Computational Structural Biology Group, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | | | | | | |
Collapse
|
38
|
Barret LA, Polidori A, Bonneté F, Bernard-Savary P, Jungas C. A new high-performance thin layer chromatography-based assay of detergents and surfactants commonly used in membrane protein studies. J Chromatogr A 2013; 1281:135-41. [PMID: 23398993 DOI: 10.1016/j.chroma.2013.01.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
The hydrophobic nature of membrane proteins (MPs) necessitates the use of detergents for their extraction, solubilization and purification. Because the concentration of amphiphiles is crucial in the crystallization process, detergent quantification is essential to routine analysis. Here we describe a quantitative high-performance thin-layer chromatography (HPTLC) method we developed for the detection of small quantities of detergent bound to solubilized MPs. After optimization of aqueous deposit conditions, we show that most detergents widely used in membrane protein crystallography display distinctive mobilities in a mixture of dichloromethane, methanol and acetic acid 32:7.6:0.4 (v/v/v). Migration and derivatization conditions were optimized with n-dodecyl-β-D-maltoside (DDM), the most popular detergent for membrane protein crystallization. A linear calibration curve very well fits our data from 0.1 to 1.6 μg of DDM in water with a limit of detection of 0.05 μg. This limit of detection is the best achieved to date for a routine detergent assay, being not modified by the addition of NaCl, commonly used in protein buffers. With these chromatographic conditions, no prior treatment is required to assess the quantities of detergent bound to purified MPs, thus enabling the quantification of close structure detergents via a single procedure. This HPTLC method, which is fast and requires low sample volume, is fully suitable for routine measurements.
Collapse
Affiliation(s)
- Laurie-Anne Barret
- CEA, IBEB, Lab Bioenerget Cellulaire, Saint-Paul-lez-Durance, F-13108, France
| | | | | | | | | |
Collapse
|
39
|
Supramolecular structure of membrane-associated polypeptides by combining solid-state NMR and molecular dynamics simulations. Biophys J 2012; 103:29-37. [PMID: 22828329 DOI: 10.1016/j.bpj.2012.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 02/02/2023] Open
Abstract
Elemental biological functions such as molecular signal transduction are determined by the dynamic interplay between polypeptides and the membrane environment. Determining such supramolecular arrangements poses a significant challenge for classical structural biology methods. We introduce an iterative approach that combines magic-angle spinning solid-state NMR spectroscopy and atomistic molecular dynamics simulations for the determination of the structure and topology of membrane-bound systems with a resolution and level of accuracy difficult to obtain by either method alone. Our study focuses on the Shaker B ball peptide that is representative for rapid N-type inactivating domains of voltage-gated K(+) channels, associated with negatively charged lipid bilayers.
Collapse
|
40
|
Robertson JWF, Kasianowicz JJ, Banerjee S. Analytical Approaches for Studying Transporters, Channels and Porins. Chem Rev 2012; 112:6227-49. [DOI: 10.1021/cr300317z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Joseph W. F. Robertson
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - John J. Kasianowicz
- Physical Measurement Laboratory,
National Institute of Standards and Technology, Gaithersburg, Maryland
20899, United States
| | - Soojay Banerjee
- National
Institute of Neurological
Disorders and Stroke, Bethesda, Maryland 20824, United States
| |
Collapse
|
41
|
Vijayan RSK, Trivedi N, Roy SN, Bera I, Manoharan P, Payghan PV, Bhattacharyya D, Ghoshal N. Modeling the Closed and Open State Conformations of the GABAA Ion Channel - Plausible Structural Insights for Channel Gating. J Chem Inf Model 2012; 52:2958-69. [DOI: 10.1021/ci300189a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R. S. K. Vijayan
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | - Neha Trivedi
- National Institute of Pharmaceutical Education and Research, Kolkata −700
032, India
| | - Sudipendra Nath Roy
- National Institute of Pharmaceutical Education and Research, Kolkata −700
032, India
| | - Indrani Bera
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | - Prabu Manoharan
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | - Pavan V. Payghan
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| | | | - Nanda Ghoshal
- Structural Biology and Bioinformatics
Division, CSIR - Indian Institute of Chemical Biology, Kolkata −700 032, India
| |
Collapse
|
42
|
Guha S, Perry SL, Pawate AS, Kenis PJ. Fabrication of X-ray compatible microfluidic platforms for protein crystallization. SENSORS AND ACTUATORS. B, CHEMICAL 2012; 174:1-9. [PMID: 23105172 PMCID: PMC3480190 DOI: 10.1016/j.snb.2012.08.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This paper reports a method for fabricating multilayer microfluidic protein crystallization platforms using different materials to achieve X-ray transparency and compatibility with crystallization reagents. To validate this approach, three soluble proteins, lysozyme, thaumatin, and ribonuclease A were crystallized on-chip, followed by on-chip diffraction data collection. We also report a chip with an array of wells for screening different conditions that consume a minimal amount of protein solution as compared to traditional screening methods. A large number of high quality isomorphous protein crystals can be grown in the wells, after which slices of X-ray data can be collected from many crystals still residing within the wells. Complete protein structures can be obtained by merging these slices of data followed by further processing with crystallography software. This approach of using an x-ray transparent chip for screening, crystal growth, and X-ray data collection enables room temperature data collection from many crystals mounted in parallel, which thus eliminates crystal handling and minimizes radiation damage to the crystals.
Collapse
Affiliation(s)
- Sudipto Guha
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| | - Sarah L. Perry
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
- Institute of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ashtamurthy S. Pawate
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| | - Paul J.A. Kenis
- Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana IL, 61801, USA
| |
Collapse
|
43
|
Sagnella SM, Conn CE, Krodkiewska I, Drummond CJ. Nonionic diethanolamide amphiphiles with saturated hydrocarbon chains: Neat crystalline and lyotropic liquid crystalline phase behavior. J Colloid Interface Sci 2012; 385:87-95. [DOI: 10.1016/j.jcis.2012.06.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/25/2012] [Accepted: 06/26/2012] [Indexed: 11/25/2022]
|
44
|
Ghoshal N, Vijayan RSK. Pharmacophore models for GABA(A) modulators: implications in CNS drug discovery. Expert Opin Drug Discov 2012; 5:441-60. [PMID: 22823129 DOI: 10.1517/17460441003789363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD GABA(A) ion channel is a validated drug target, implicated in the pathophysiology of various neurological and psychiatric disorders. Structural investigations on GABA(A) are currently precluded in the absence of experimentally resolved structure. Pharmacophore modeling circumvents such issues and proves to be a powerful and successful method in drug discovery. AREAS COVERED IN THIS REVIEW The present reviews encompass pharmacophoric models available in the literature for the orthosteric GABA and the allosteric benzodiazepine binding site. Success stories from these simplistic pharmacophore models in scaffold hopping and strategic lead optimization have been highlighted. Recent advances in pharmacophore modeling that can leverage CNS drug discovery programs and deliver astounding results have been reviewed. WHAT THE READER WILL GAIN Readers are bound to gain a comprehensive insight on different computational techniques used by different groups to arrive at simple, yet sophisticated pharmacophore models. In the absence of experimentally unresolved active site geometry of GABA(A), these models will provide the reader an opportunity to translate these pharmacophoric features to the microscopic phenomenon of supramolecular ligand interaction. TAKE HOME MESSAGE Pharmacophore modeling has now evolved as a mainstay approach for lead generation and optimization in drug discovery programs. Of late, many advances in pharmacophore perception have emerged. Such advancements should be used to confront activity profiling and early stage risk assessment in a high-throughput fashion. Extending such technologies has the potential not only to reduce time and cost, but also to prevent late stage attrition in drug discovery.
Collapse
Affiliation(s)
- Nanda Ghoshal
- Indian Institute of Chemical Biology (A unit of CSIR), Structural Biology and Bioinformatics Division, 4, Raja S.C. Mullick Road, Kolkata-700032, India +91 33 2473 3491 ext. 854 ; +91 33 2473 5197 ;
| | | |
Collapse
|
45
|
Structure of RPE65 isomerase in a lipidic matrix reveals roles for phospholipids and iron in catalysis. Proc Natl Acad Sci U S A 2012; 109:E2747-56. [PMID: 23012475 DOI: 10.1073/pnas.1212025109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RPE65 is a key metalloenzyme responsible for maintaining visual function in vertebrates. Despite extensive research on this membrane-bound retinoid isomerase, fundamental questions regarding its enzymology remain unanswered. Here, we report the crystal structure of RPE65 in a membrane-like environment. These crystals, obtained from enzymatically active, nondelipidated protein, displayed an unusual packing arrangement wherein RPE65 is embedded in a lipid-detergent sheet. Structural differences between delipidated and nondelipidated RPE65 uncovered key residues involved in substrate uptake and processing. Complementary iron K-edge X-ray absorption spectroscopy data established that RPE65 as isolated contained a divalent iron center and demonstrated the presence of a tightly bound ligand consistent with a coordinated carboxylate group. These results support the hypothesis that the Lewis acidity of iron could be used to promote ester dissociation and generation of a carbocation intermediate required for retinoid isomerization.
Collapse
|
46
|
Huang C, Bhaskaran R, Mohanty S. Eukaryotic N-glycosylation occurs via the membrane-anchored C-terminal domain of the Stt3p subunit of oligosaccharyltransferase. J Biol Chem 2012; 287:32450-8. [PMID: 22865878 DOI: 10.1074/jbc.m112.342253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
N-glycosylation is an essential and highly conserved protein modification. In eukaryotes, it is catalyzed by a multisubunit membrane-associated enzyme, oligosaccharyltransferase (OT). We report the high resolution structure of the C-terminal domain of eukaryotic Stt3p. Unlike its soluble β-sheet-rich prokaryotic counterparts, our model reveals that the C-terminal domain of yeast Stt3p is highly helical and has an overall oblate spheroid-shaped structure containing a membrane-embedded region. Anchoring of this protein segment to the endoplasmic reticulum membrane is likely to bring the membrane-embedded donor substrate closer, thus facilitating glycosylation efficiency. Structural comparison of the region near the WWDYG signature motif revealed that the acceptor substrate-binding site of yeast OT strikingly resembles its prokaryotic counterparts, suggesting a conserved mechanism of N-glycosylation from prokaryotes to eukaryotes. Furthermore, comparison of the NMR and cryo-EM structures of yeast OT revealed that the molecular architecture of this acceptor substrate-recognizing domain has interesting spatial specificity for interactions with other essential OT subunits.
Collapse
Affiliation(s)
- Chengdong Huang
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA
| | | | | |
Collapse
|
47
|
Schlinkmann KM, Hillenbrand M, Rittner A, Künz M, Strohner R, Plückthun A. Maximizing detergent stability and functional expression of a GPCR by exhaustive recombination and evolution. J Mol Biol 2012; 422:414-28. [PMID: 22683350 DOI: 10.1016/j.jmb.2012.05.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/27/2012] [Accepted: 05/30/2012] [Indexed: 10/28/2022]
Abstract
To identify structural features in a G-protein-coupled receptor (GPCR) crucial for biosynthesis, stability in the membrane and stability in detergent micelles, we developed an evolutionary approach using expression in the inner membrane of Escherichia coli. From the analysis of 800,000 sequences of the rat neurotensin receptor 1, in which every amino acid had been varied to all 64 codons, we uncovered several "shift" positions, where the selected population focuses on a residue different from wild type. Here, we employed in vitro DNA recombination and a comprehensive synthetic binary library made by the Slonomics® technology, allowing us to uncover additive and synergistic effects in the structure that maximize both detergent stability and functional expression. We identified variants with >25,000 functional molecules per E. coli cell, a 50-fold increase over wild type, and observed strong coevolution of detergent stability. We arrived at receptor variants highly stable in short-chain detergents, much more so than those found by alanine scanning on the same receptor. These evolved GPCRs continue to be able to signal through the G-protein. We discuss the structural reasons for these improvements achieved through directed evolution.
Collapse
Affiliation(s)
- Karola M Schlinkmann
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
48
|
Symersky J, Pagadala V, Osowski D, Krah A, Meier T, Faraldo-Gómez JD, Mueller DM. Structure of the c(10) ring of the yeast mitochondrial ATP synthase in the open conformation. Nat Struct Mol Biol 2012; 19:485-91, S1. [PMID: 22504883 PMCID: PMC3343227 DOI: 10.1038/nsmb.2284] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/20/2012] [Indexed: 11/09/2022]
Abstract
The proton pore of the F(1)F(o) ATP synthase consists of a ring of c subunits, which rotates, driven by downhill proton diffusion across the membrane. An essential carboxylate side chain in each subunit provides a proton-binding site. In all the structures of c-rings reported to date, these sites are in a closed, ion-locked state. Structures are here presented of the c(10) ring from Saccharomyces cerevisiae determined at pH 8.3, 6.1 and 5.5, at resolutions of 2.0 Å, 2.5 Å and 2.0 Å, respectively. The overall structure of this mitochondrial c-ring is similar to known homologs, except that the essential carboxylate, Glu59, adopts an open extended conformation. Molecular dynamics simulations reveal that opening of the essential carboxylate is a consequence of the amphiphilic nature of the crystallization buffer. We propose that this new structure represents the functionally open form of the c subunit, which facilitates proton loading and release.
Collapse
Affiliation(s)
- Jindrich Symersky
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| | - Vijayakanth Pagadala
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| | - Daniel Osowski
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| | - Alexander Krah
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe University of Frankfurt, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - José D. Faraldo-Gómez
- Theoretical Molecular Biophysics Group, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
- Cluster of Excellence ‘Macromolecular Complexes’, Goethe University of Frankfurt, Max-von-Laue Str. 15, 60438 Frankfurt am Main, Germany
| | - David M. Mueller
- Department of Biochemistry and Molecular Biology, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064
| |
Collapse
|
49
|
Hein KL, Nissen P, Morth JP. Purification, crystallization and preliminary crystallographic studies of a PacL homologue from Listeria monocytogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:424-7. [PMID: 22505411 PMCID: PMC3325811 DOI: 10.1107/s1744309112004046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 01/30/2012] [Indexed: 11/10/2022]
Abstract
Ca(2+)-ATPases are members of a large family of membrane proteins that maintain the selective movement of cations across biological membranes. A putative Listeria monocytogenes Ca(2+)-ATPase (Lmo0818) was crystallized in an unknown functional state. The crystal belonged to space group P2(1)2(1)2(1) and a complete data set was collected to 3.2 Å resolution. The molecular-replacement solution obtained revealed that Lmo0818 is likely to adopt an E2-like state mimicking the phosphorylated intermediate in the functional cycle of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) and a stacked bilayer `type I' packing in the crystal.
Collapse
Affiliation(s)
- Kim Langmach Hein
- Centre for Molecular Medicine Norway, University of Oslo, PO Box 1137 Blindern, 0318 Oslo, Norway.
| | | | | |
Collapse
|
50
|
HU YT, ZHANG CY, MA XL, YIN DC. Progresses on Crystallization Methodology of Membrane Proteins*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|