1
|
Schampera JN, Schwan C. Septin dynamics and organization in mammalian cells. Curr Opin Cell Biol 2024; 91:102442. [PMID: 39509956 DOI: 10.1016/j.ceb.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Septins are involved in many important cellular processes, and septin dysfunction has been implicated in various pathologies, such as cancer. Like other components of the cytoskeleton -F-actin, microtubules, and intermediate filaments-septins can self-assemble into filaments and higher-order structures. These non-polar filaments are assembled from complex and variable multimeric building blocks. Septins exhibit a distinct preference for interacting with actin and microtubule structures, particularly at the interface with cellular membrane. Although they are crucial for many vital cellular functions and are frequently observed at prominent cellular structures like stress fibers, cilia, and neuronal processes, our understanding of the regulation of septin filament dynamics and the organized assembly of higher-order structures remains limited. However, recent insights into the architecture of septin filaments, the structure of crucial septin domains, and their interactions with other cellular components (F-actin, microtubules, membranes) and regulatory proteins may now pave the way for rapid progress.
Collapse
Affiliation(s)
- Janik N Schampera
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
2
|
Shiraishi T, Sato K. Real-time imaging of intracellular deformation dynamics in vibrated adherent cell cultures. Biotechnol Bioeng 2024; 121:3034-3046. [PMID: 38961714 DOI: 10.1002/bit.28793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024]
Abstract
Mechanical vibration has been shown to regulate cell proliferation and differentiation in vitro and in vivo. However, the mechanism of its cellular mechanotransduction remains unclear. Although the measurement of intracellular deformation dynamics under mechanical vibration could reveal more detailed mechanisms, corroborating experimental evidence is lacking due to technical difficulties. In this study, we aimed to propose a real-time imaging method of intracellular structure deformation dynamics in vibrated adherent cell cultures and investigate whether organelles such as actin filaments connected to a nucleus and the nucleus itself show deformation under horizontal mechanical vibration. The proposed real-time imaging was achieved by conducting vibration isolation and making design improvements to the experimental setup; using a high-speed and high-sensitivity camera with a global shutter; and reducing image blur using a stroboscope technique. Using our system, we successfully produced the first experimental report on the existence of the deformation of organelles connected to a nucleus and the nucleus itself under horizontal mechanical vibration. Furthermore, the intracellular deformation difference between HeLa and MC3T3-E1 cells measured under horizontal mechanical vibration agrees with the prediction of their intracellular structure based on the mechanical vibration theory. These results provide new findings about the cellular mechanotransduction mechanism under mechanical vibration.
Collapse
Affiliation(s)
- Toshihiko Shiraishi
- Division of Artificial Environment and Information, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Katsuya Sato
- Division of Artificial Environment and Information, Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| |
Collapse
|
3
|
Tsilafakis K, Mavroidis M. Are the Head and Tail Domains of Intermediate Filaments Really Unstructured Regions? Genes (Basel) 2024; 15:633. [PMID: 38790262 PMCID: PMC11121635 DOI: 10.3390/genes15050633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Intermediate filaments (IFs) are integral components of the cytoskeleton which provide cells with tissue-specific mechanical properties and are involved in a plethora of cellular processes. Unfortunately, due to their intricate architecture, the 3D structure of the complete molecule of IFs has remained unresolved. Even though most of the rod domain structure has been revealed by means of crystallographic analyses, the flanked head and tail domains are still mostly unknown. Only recently have studies shed light on head or tail domains of IFs, revealing certainsecondary structures and conformational changes during IF assembly. Thus, a deeper understanding of their structure could provide insights into their function.
Collapse
Affiliation(s)
- Konstantinos Tsilafakis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece;
| |
Collapse
|
4
|
Viedma-Poyatos Á, González-Jiménez P, Pajares MA, Pérez-Sala D. Alexander disease GFAP R239C mutant shows increased susceptibility to lipoxidation and elicits mitochondrial dysfunction and oxidative stress. Redox Biol 2022; 55:102415. [PMID: 35933901 PMCID: PMC9364016 DOI: 10.1016/j.redox.2022.102415] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 01/04/2023] Open
Abstract
Alexander disease is a fatal neurological disorder caused by mutations in the intermediate filament protein Glial Fibrillary Acidic Protein (GFAP), which is key for astrocyte homeostasis. These mutations cause GFAP aggregation, astrocyte dysfunction and neurodegeneration. Remarkably, most of the known GFAP mutations imply a change by more nucleophilic amino acids, mainly cysteine or histidine, which are more susceptible to oxidation and lipoxidation. Therefore, we hypothesized that a higher susceptibility of Alexander disease GFAP mutants to oxidative or electrophilic damage, which frequently occurs during neurodegeneration, could contribute to disease pathogenesis. To address this point, we have expressed GFP-GFAP wild type or the harmful Alexander disease GFP-GFAP R239C mutant in astrocytic cells. Interestingly, GFAP R239C appears more oxidized than the wild type under control conditions, as indicated both by its lower cysteine residue accessibility and increased presence of disulfide-bonded oligomers. Moreover, GFP-GFAP R239C undergoes lipoxidation to a higher extent than GFAP wild type upon treatment with the electrophilic mediator 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2). Importantly, GFAP R239C filament organization is altered in untreated cells and is earlier and more severely disrupted than GFAP wild type upon exposure to oxidants (diamide, H2O2) or electrophiles (4-hydroxynonenal, 15d-PGJ2), which exacerbate GFAP R239C aggregation. Furthermore, H2O2 causes reversible alterations in GFAP wild type, but irreversible damage in GFAP R239C expressing cells. Finally, we show that GFAP R239C expression induces a more oxidized cellular status, with decreased free thiol content and increased mitochondrial superoxide generation. In addition, mitochondria show decreased mass, increased colocalization with GFAP and altered morphology. Notably, a GFP-GFAP R239H mutant recapitulates R239C-elicited alterations whereas an R239G mutant induces a milder phenotype. Together, our results outline a deleterious cycle involving altered GFAP R239C organization, mitochondrial dysfunction, oxidative stress, and further GFAP R239C protein damage and network disruption, which could contribute to astrocyte derangement in Alexander disease.
Collapse
Affiliation(s)
- Álvaro Viedma-Poyatos
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - María A Pajares
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040, Madrid, Spain.
| |
Collapse
|
5
|
Serum glial fibrillary acidic protein is a body fluid biomarker: A valuable prognostic for neurological disease – A systematic review. Int Immunopharmacol 2022; 107:108624. [DOI: 10.1016/j.intimp.2022.108624] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022]
|
6
|
Yu B, Kong D, Cheng C, Xiang D, Cao L, Liu Y, He Y. Assembly and recognition of keratins: A structural perspective. Semin Cell Dev Biol 2021; 128:80-89. [PMID: 34654627 DOI: 10.1016/j.semcdb.2021.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/22/2021] [Accepted: 09/29/2021] [Indexed: 12/21/2022]
Abstract
Keratins are one of the major components of cytoskeletal network and assemble into fibrous structures named intermediate filaments (IFs), which are important for maintaining the mechanical properties of cells and tissues. Over the past decades, evidence has shown that the functions of keratins go beyond providing mechanical support for cells, they interact with multiple cellular components and are widely involved in the pathways of cell proliferation, differentiation, motility and death. However, the structural details of keratins and IFs are largely missing and many questions remain regarding the mechanisms of keratin assembly and recognition. Here we briefly review the current structural models and assembly of keratins as well as the interactions of keratins with the binding partners, which may provide a structural view for understanding the mechanisms of keratins in the biological activities and the related diseases.
Collapse
Affiliation(s)
- Bowen Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Dandan Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Cheng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Longxing Cao
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
| | - Yingbin Liu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongning He
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Biliary-Pancreatic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
7
|
Kaus‐Drobek M, Mücke N, Szczepanowski RH, Wedig T, Czarnocki‐Cieciura M, Polakowska M, Herrmann H, Wysłouch‐Cieszyńska A, Dadlez M. Vimentin S-glutathionylation at Cys328 inhibits filament elongation and induces severing of mature filaments in vitro. FEBS J 2020; 287:5304-5322. [PMID: 32255262 PMCID: PMC7818121 DOI: 10.1111/febs.15321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/17/2020] [Accepted: 03/31/2020] [Indexed: 12/26/2022]
Abstract
Vimentin intermediate filaments are a significant component of the cytoskeleton in cells of mesenchymal origin. In vivo, filaments assemble and disassemble and thus participate in the dynamic processes of the cell. Post-translational modifications (PTMs) such as protein phosphorylation regulate the multiphasic association of vimentin from soluble complexes to insoluble filaments and the reverse processes. The thiol side chain of the single vimentin cysteine at position 328 (Cys328) is a direct target of oxidative modifications inside cells. Here, we used atomic force microscopy, electron microscopy and a novel hydrogen-deuterium exchange mass spectrometry (HDex-MS) procedure to investigate the structural consequences of S-nitrosylation and S-glutathionylation of Cys328 for in vitro oligomerisation of human vimentin. Neither modification affects the lateral association of tetramers to unit-length filaments (ULF). However, S-glutathionylation of Cys328 blocks the longitudinal assembly of ULF into extended filaments. S-nitrosylation of Cys328 does not hinder but slows down the elongation. Likewise, S-glutathionylation of preformed vimentin filaments causes their extensive fragmentation to smaller oligomeric species. Chemical reduction of the S-glutathionylated Cys328 thiols induces reassembly of the small fragments into extended filaments. In conclusion, our in vitro results suggest S-glutathionylation as a candidate PTM for an efficient molecular switch in the dynamic rearrangements of vimentin intermediate filaments, observed in vivo, in response to changes in cellular redox status. Finally, we demonstrate that HDex-MS is a powerful method for probing the kinetics of vimentin filament formation and filament disassembly induced by PTMs.
Collapse
Affiliation(s)
- Magdalena Kaus‐Drobek
- Laboratory of Mass SpectrometryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Norbert Mücke
- Biophysics of MacromoleculesGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Chromatin NetworksGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Roman H. Szczepanowski
- Biophysics Core FacilityInternational Institute of Molecular and Cell BiologyWarsawPoland
| | - Tatjana Wedig
- Biophysics of MacromoleculesGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Magdalena Polakowska
- Laboratory of Mass SpectrometryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
| | - Harald Herrmann
- Institute of NeuropathologyUniversity Hospital ErlangenGermany
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | | | - Michał Dadlez
- Laboratory of Mass SpectrometryInstitute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Biology DepartmentInstitute of Genetics and BiotechnologyWarsaw UniversityPoland
| |
Collapse
|
8
|
Ding I, Ostrowska-Podhorodecka Z, Lee W, Liu RS, Carneiro K, Janmey PA, McCulloch CA. Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118739. [DOI: 10.1016/j.bbamcr.2020.118739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/02/2023]
|
9
|
Schepers AV, Lorenz C, Köster S. Tuning intermediate filament mechanics by variation of pH and ion charges. NANOSCALE 2020; 12:15236-15245. [PMID: 32642745 DOI: 10.1039/d0nr02778b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The cytoskeleton is formed by three types of filamentous proteins - microtubules, actin filaments, and intermediate filaments (IFs) - and enables cells to withstand external and internal forces. Vimentin is the most abundant IF protein in humans and assembles into 10 nm diameter filaments with remarkable mechanical properties, such as high extensibility and stability. It is, however, unclear to which extent these properties are influenced by the electrostatic environment. Here, we study the mechanical properties of single vimentin filaments by employing optical trapping combined with microfluidics. Force-strain curves, recorded at varying ion concentrations and pH values, reveal that the mechanical properties of single vimentin IFs are influenced by pH and ion concentration. By combination with Monte Carlo simulations, we relate these altered mechanics to electrostatic interactions of subunits within the filaments. We thus suggest possible mechanisms that allow cells to locally tune their stiffness without remodeling the entire cytoskeleton.
Collapse
Affiliation(s)
- Anna V Schepers
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Charlotta Lorenz
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
10
|
Gouveia M, Zemljič-Jokhadar Š, Vidak M, Stojkovič B, Derganc J, Travasso R, Liovic M. Keratin Dynamics and Spatial Distribution in Wild-Type and K14 R125P Mutant Cells-A Computational Model. Int J Mol Sci 2020; 21:E2596. [PMID: 32283594 PMCID: PMC7177522 DOI: 10.3390/ijms21072596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022] Open
Abstract
Keratins are one of the most abundant proteins in epithelial cells. They form a cytoskeletal filament network whose structural organization seriously conditions its function. Dynamic keratin particles and aggregates are often observed at the periphery of mutant keratinocytes related to the hereditary skin disorder epidermolysis bullosa simplex, which is due to mutations in keratins 5 and 14. To account for their emergence in mutant cells, we extended an existing mathematical model of keratin turnover in wild-type cells and developed a novel 2D phase-field model to predict the keratin distribution inside the cell. This model includes the turnover between soluble, particulate and filamentous keratin forms. We assumed that the mutation causes a slowdown in the assembly of an intermediate keratin phase into filaments, and demonstrated that this change is enough to account for the loss of keratin filaments in the cell's interior and the emergence of keratin particles at its periphery. The developed mathematical model is also particularly tailored to model the spatial distribution of keratins as the cell changes its shape.
Collapse
Affiliation(s)
- Marcos Gouveia
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Špela Zemljič-Jokhadar
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Marko Vidak
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| | - Biljana Stojkovič
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Jure Derganc
- Institute for Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (Š.Z.-J.); (B.S.); (J.D.)
| | - Rui Travasso
- CFisUC, Center for Physics of the University of Coimbra, Department of Physics, University of Coimbra, R Larga, 3004-516 Coimbra, Portugal
| | - Mirjana Liovic
- Medical Center for Molecular Biology, Institute for Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.V.); (M.L.)
| |
Collapse
|
11
|
Javadi A, Söderholm N, Olofsson A, Flärdh K, Sandblad L. Assembly mechanisms of the bacterial cytoskeletal protein FilP. Life Sci Alliance 2019; 2:2/3/e201800290. [PMID: 31243049 PMCID: PMC6599971 DOI: 10.26508/lsa.201800290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 11/29/2022] Open
Abstract
FilP is a coiled-coil protein that self-assembles into striated filaments and meshwork that shares structural and biochemical characteristics with metazoan intermediate filaments. Despite low-sequence homology, the intermediate filament (IF)–like protein FilP from Streptomyces coelicolor displays structural and biochemical similarities to the metazoan nuclear IF lamin. FilP, like IF proteins, is composed of central coiled-coil domains interrupted by short linkers and flanked by head and tail domains. FilP polymerizes into repetitive filament bundles with paracrystalline properties. However, the cations Na+ and K+ are found to induce the formation of a FilP hexagonal meshwork with the same 60-nm repetitive unit as the filaments. Studies of polymerization kinetics, in combination with EM techniques, enabled visualization of the basic building block—a transiently soluble rod-shaped FilP molecule—and its assembly into protofilaments and filament bundles. Cryoelectron tomography provided a 3D view of the FilP bundle structure and an original assembly model of an IF-like protein of prokaryotic origin, thereby enabling a comparison with the assembly of metazoan IF.
Collapse
Affiliation(s)
- Ala Javadi
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| | - Linda Sandblad
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Mücke N, Kämmerer L, Winheim S, Kirmse R, Krieger J, Mildenberger M, Baßler J, Hurt E, Goldmann WH, Aebi U, Toth K, Langowski J, Herrmann H. Assembly Kinetics of Vimentin Tetramers to Unit-Length Filaments: A Stopped-Flow Study. Biophys J 2018; 114:2408-2418. [PMID: 29754715 DOI: 10.1016/j.bpj.2018.04.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/20/2018] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Intermediate filaments (IFs) are principal components of the cytoskeleton, a dynamic integrated system of structural proteins that provides the functional architecture of metazoan cells. They are major contributors to the elasticity of cells and tissues due to their high mechanical stability and intrinsic flexibility. The basic building block for the assembly of IFs is a rod-like, 60-nm-long tetrameric complex made from two antiparallel, half-staggered coiled coils. In low ionic strength, tetramers form stable complexes that rapidly assemble into filaments upon raising the ionic strength. The first assembly products, "frozen" by instantaneous chemical fixation and viewed by electron microscopy, are 60-nm-long "unit-length" filaments (ULFs) that apparently form by lateral in-register association of tetramers. ULFs are the active elements of IF growth, undergoing longitudinal end-to-end annealing with one another and with growing filaments. Originally, we have employed quantitative time-lapse atomic force and electron microscopy to analyze the kinetics of vimentin-filament assembly starting from a few seconds to several hours. To obtain detailed quantitative insight into the productive reactions that drive ULF formation, we now introduce a "stopped-flow" approach in combination with static light-scattering measurements. Thereby, we determine the basic rate constants for lateral assembly of tetramers to ULFs. Processing of the recorded data by a global fitting procedure enables us to describe the hierarchical steps of IF formation. Specifically, we propose that tetramers are consumed within milliseconds to yield octamers that are obligatory intermediates toward ULF formation. Although the interaction of tetramers is diffusion controlled, it is strongly driven by their geometry to mediate effective subunit targeting. Importantly, our model conclusively reflects the previously described occurrence of polymorphic ULF and mature filaments in terms of their number of tetramers per cross section.
Collapse
Affiliation(s)
- Norbert Mücke
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Lara Kämmerer
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Winheim
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Robert Kirmse
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jan Krieger
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Maria Mildenberger
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jochen Baßler
- Biochemistry Center of Heidelberg University, Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, Heidelberg, Germany
| | - Wolfgang H Goldmann
- Department of Physics, Biophysics group, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, Basel, Switzerland
| | - Katalin Toth
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Jörg Langowski
- Division Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, Erlangen, Germany; Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
13
|
Fraser RB, Parry DA. Intermediate filament structure in fully differentiated (oxidised) trichocyte keratin. J Struct Biol 2017; 200:45-53. [DOI: 10.1016/j.jsb.2017.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/04/2017] [Accepted: 09/06/2017] [Indexed: 01/05/2023]
|
14
|
Chen M, Puschmann TB, Marasek P, Inagaki M, Pekna M, Wilhelmsson U, Pekny M. Increased Neuronal Differentiation of Neural Progenitor Cells Derived from Phosphovimentin-Deficient Mice. Mol Neurobiol 2017; 55:5478-5489. [PMID: 28956310 PMCID: PMC5994207 DOI: 10.1007/s12035-017-0759-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/27/2017] [Indexed: 01/06/2023]
Abstract
Vimentin is an intermediate filament (also known as nanofilament) protein expressed in several cell types of the central nervous system, including astrocytes and neural stem/progenitor cells. Mutation of the vimentin serine sites that are phosphorylated during mitosis (VIMSA/SA) leads to cytokinetic failures in fibroblasts and lens epithelial cells, resulting in chromosomal instability and increased expression of cell senescence markers. In this study, we investigated morphology, proliferative capacity, and motility of VIMSA/SA astrocytes, and their effect on the differentiation of neural stem/progenitor cells. VIMSA/SA astrocytes expressed less vimentin and more GFAP but showed a well-developed intermediate filament network, exhibited normal cell morphology, proliferation, and motility in an in vitro wound closing assay. Interestingly, we found a two- to fourfold increased neuronal differentiation of VIMSA/SA neurosphere cells, both in a standard 2D and in Bioactive3D cell culture systems, and determined that this effect was neurosphere cell autonomous and not dependent on cocultured astrocytes. Using BrdU in vivo labeling to assess neural stem/progenitor cell proliferation and differentiation in the hippocampus of adult mice, one of the two major adult neurogenic regions, we found a modest increase (by 8%) in the fraction of newly born and surviving neurons. Thus, mutation of the serine sites phosphorylated in vimentin during mitosis alters intermediate filament protein expression but has no effect on astrocyte morphology or proliferation, and leads to increased neuronal differentiation of neural progenitor cells.
Collapse
Affiliation(s)
- Meng Chen
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Till B Puschmann
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Pavel Marasek
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Masaki Inagaki
- Department of Physiology, Mie University Graduate School of Medicine, Mie, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia.,University of Newcastle, Newcastle, NSW, Australia
| | - Ulrika Wilhelmsson
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Box 440, 40530, Gothenburg, Sweden. .,Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia. .,University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
15
|
Premchandar A, Mücke N, Poznański J, Wedig T, Kaus-Drobek M, Herrmann H, Dadlez M. Structural Dynamics of the Vimentin Coiled-coil Contact Regions Involved in Filament Assembly as Revealed by Hydrogen-Deuterium Exchange. J Biol Chem 2016; 291:24931-24950. [PMID: 27694444 PMCID: PMC5122765 DOI: 10.1074/jbc.m116.748145] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/26/2016] [Indexed: 01/07/2023] Open
Abstract
Intermediate filaments (IF) are major constituents of the cytoskeleton of metazoan cells. They are not only responsible for the mechanical properties but also for various physiological activities in different cells and tissues. The building blocks of IFs are extended coiled-coil-forming proteins exhibiting a characteristic central α-helical domain ("rod"). The fundamental principles of the filament assembly mechanism and the network formation have been widely elucidated for the cytoplasmic IF protein vimentin. Also, a comprehensive structural model for the tetrameric complex of vimentin has been obtained by X-ray crystallography in combination with various biochemical and biophysical techniques. To extend these static data and to investigate the dynamic properties of the full-length proteins in solution during the various assembly steps, we analyzed the patterns of hydrogen-deuterium exchange in vimentin and in four variants carrying point mutations in the IF consensus motifs present at either end of the α-helical rod that cause an assembly arrest at the unit-length filament (ULF) stage. The results yielded unique insights into the structural properties of subdomains within the full-length vimentin, in particular in regions of contact in α-helical and linker segments that stabilize different oligomeric forms such as tetramers, ULFs, and mature filaments. Moreover, hydrogen-deuterium exchange analysis of the point-mutated variants directly demonstrated the active role of the IF consensus motifs in the oligomerization mechanism of tetramers during ULF formation. Ultimately, using molecular dynamics simulation procedures, we provide a structural model for the subdomain-mediated tetramer/tetramer interaction via "cross-coiling" as the first step of the assembly process.
Collapse
Affiliation(s)
- Aiswarya Premchandar
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Jarosław Poznański
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Magdalena Kaus-Drobek
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany, and
- the Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Michał Dadlez
- From the Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106 Warsaw, Poland,
- the Institute of Genetics and Biotechnology, Biology Department, University of Warsaw, Miecznikowa 3, 02-106 Warsaw, Poland
| |
Collapse
|
16
|
Abstract
Proteins of the intermediate filament (IF) supergene family are ubiquitous structural components that comprise, in a cell type-specific manner, the cytoskeleton proper in animal tissues. All IF proteins show a distinctly organized, extended α-helical conformation prone to form two-stranded coiled coils, which are the basic building blocks of these highly flexible, stress-resistant cytoskeletal filaments. IF proteins are highly charged, thus representing versatile polyampholytes with multiple functions. Taking vimentin, keratins, and the nuclear lamins as our prime examples, we present an overview of their molecular and structural parameters. These, in turn, document the ability of IF proteins to form distinct, highly diverse supramolecular assemblies and biomaterials found, for example, at the inner nuclear membrane, throughout the cytoplasm, and in highly complex extracellular appendages, such as hair and nails, of vertebrate organisms. Ultimately, our aim is to set the stage for a more rational understanding of the immediate effects that missense mutations in IF genes have on cellular functions and for their far-reaching impact on the development of the numerous IF diseases caused by them.
Collapse
Affiliation(s)
- Harald Herrmann
- Functional Architecture of the Cell (B065), German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany, and Institute of Neuropathology, University Hospital Erlangen, D-91054 Erlangen, Germany
| | - Ueli Aebi
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
17
|
Lateral association and elongation of vimentin intermediate filament proteins: A time-resolved light-scattering study. Proc Natl Acad Sci U S A 2016; 113:11152-11157. [PMID: 27655889 DOI: 10.1073/pnas.1606372113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Vimentin intermediate filaments (IFs) are part of a family of proteins that constitute one of the three filament systems in the cytoskeleton, a major contributor to cell mechanics. One property that distinguishes IFs from the other cytoskeletal filament types, actin filaments and microtubules, is their highly hierarchical assembly pathway, where a lateral association step is followed by elongation. Here we present an innovative technique to follow the elongation reaction in solution and in situ by time-resolved static and dynamic light scattering, thereby precisely capturing the relevant time and length scales of seconds to minutes and 60-600 nm, respectively. We apply a quantitative model to our data and succeed in consistently describing the entire set of data, including particle mass, radius of gyration, and hydrodynamic radius during longitudinal association.
Collapse
|
18
|
In Vitro Assembly Kinetics of Cytoplasmic Intermediate Filaments: A Correlative Monte Carlo Simulation Study. PLoS One 2016; 11:e0157451. [PMID: 27304995 PMCID: PMC4909217 DOI: 10.1371/journal.pone.0157451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/31/2016] [Indexed: 11/19/2022] Open
Abstract
Intermediate filament (IF) elongation proceeds via full-width "mini-filaments", referred to as "unit-length" filaments (ULFs), which instantaneously form by lateral association of extended coiled-coil complexes after assembly is initiated. In a comparatively much slower process, ULFs longitudinally interact end-to-end with other ULFs to form short filaments, which further anneal with ULFs and with each other to increasingly longer filaments. This assembly concept was derived from time-lapse electron and atomic force microscopy data. We previously have quantitatively verified this concept through the generation of time-dependent filament length-profiles and an analytical model that describes assembly kinetics well for about the first ten minutes. In this time frame, filaments are shorter than one persistence length, i.e. ~1 μm, and thus filaments were treated as stiff rods associating via their ends. However, when filaments grow several μm in length over hours, their flexibility becomes a significant factor for the kinetics of the longitudinal annealing process. Incorporating now additional filament length distributions that we have recorded after extended assembly times by total internal reflection fluorescence microscopy (TIRFM), we developed a Monte Carlo simulation procedure that accurately describes the underlying assembly kinetics for large time scales.
Collapse
|
19
|
Nafeey S, Martin I, Felder T, Walther P, Felder E. Branching of keratin intermediate filaments. J Struct Biol 2016; 194:415-22. [PMID: 27039023 DOI: 10.1016/j.jsb.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022]
Abstract
Keratin intermediate filaments (IFs) are crucial to maintain mechanical stability in epithelial cells. Since little is known about the network architecture that provides this stiffness and especially about branching properties of filaments, we addressed this question with different electron microscopic (EM) methods. Using EM tomography of high pressure frozen keratinocytes, we investigated the course of several filaments in a branching of a filament bundle. Moreover we found several putative bifurcations in individual filaments. To verify our observation we also visualized the keratin network in detergent extracted keratinocytes with scanning EM. Here bifurcations of individual filaments could unambiguously be identified additionally to bundle branchings. Interestingly, identical filament bifurcations were also found in purified keratin 8/18 filaments expressed in Escherichia coli which were reassembled in vitro. This excludes that an accessory protein contributes to the branch formation. Measurements of the filament cross sectional areas showed various ratios between the three bifurcation arms. This demonstrates that intermediate filament furcation is very different from actin furcation where an entire new filament is attached to an existing filament. Instead, the architecture of intermediate filament bifurcations is less predetermined and hence consistent with the general concept of IF formation.
Collapse
Affiliation(s)
- Soufi Nafeey
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Ines Martin
- Institute of Experimental Physics, Ulm University, 89081 Ulm, Germany
| | - Tatiana Felder
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany.
| | - Edward Felder
- Institute of General Physiology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
20
|
Saldanha O, Brennich ME, Burghammer M, Herrmann H, Köster S. The filament forming reactions of vimentin tetramers studied in a serial-inlet microflow device by small angle x-ray scattering. BIOMICROFLUIDICS 2016; 10:024108. [PMID: 27042250 PMCID: PMC4798992 DOI: 10.1063/1.4943916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/02/2016] [Indexed: 05/16/2023]
Abstract
The structural organization of metazoan cells and their shape are established through the coordinated interaction of a composite network consisting of three individual filament systems, collectively termed the cytoskeleton. Specifically, microtubules and actin filaments, which assemble from monomeric globular proteins, provide polar structures that serve motor proteins as tracks. In contrast, intermediate filaments (IFs) assemble from highly charged, extended coiled coils in a hierarchical assembly mechanism of lateral and longitudinal interaction steps into non-polar structures. IF proteins are expressed in a distinctly tissue-specific way and thereby serve to generate the precise plasticity of the respective cells and tissues. Accordingly, in the cell, numerous parameters such as pH and salt concentration are adjusted such that the generation of functional networks is ensured. Here, we transfer the problem for the mesenchymal IF protein vimentin to an in vitro setting and combine small angle x-ray scattering with microfluidics and finite element method simulations. Our approach is adapted to resolve the early assembly steps, which take place in the sub-second to second range. In particular, we reveal the influence of ion species and concentrations on the assembly. By tuning the flow rates and thus concentration profiles, we find a minimal critical salt concentration for the initiation of the assembly. Furthermore, our analysis of the surface sensitive Porod regime in the x-ray data reveals that the formation of first assembly intermediates, so-called unit length filaments, is not a one-step reaction but consists of distinct consecutive lateral association steps followed by radial compaction as well as smoothening of the surface of the full-width filament.
Collapse
Affiliation(s)
- Oliva Saldanha
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| | - Martha E Brennich
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| | | | | | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen , 37077 Göttingen, Germany
| |
Collapse
|
21
|
Premchandar A, Kupniewska A, Tarnowski K, Mücke N, Mauermann M, Kaus-Drobek M, Edelman A, Herrmann H, Dadlez M. Analysis of distinct molecular assembly complexes of keratin K8 and K18 by hydrogen–deuterium exchange. J Struct Biol 2015; 192:426-440. [DOI: 10.1016/j.jsb.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
|
22
|
Zhao J, Liem RKH. α-Internexin and Peripherin: Expression, Assembly, Functions, and Roles in Disease. Methods Enzymol 2015; 568:477-507. [PMID: 26795481 DOI: 10.1016/bs.mie.2015.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
α-Internexin and peripherin are neuronal-specific intermediate filament (IF) proteins. α-Internexin is a type IV IF protein like the neurofilament triplet proteins (NFTPs, which include neurofilament light chain, neurofilament medium chain, and neurofilament high chain) that are generally considered to be the primary components of the neuronal IFs. However, α-internexin is often expressed together with the NFTPs and has been proposed as the fourth subunit of the neurofilaments in the central nervous system. α-Internexin is also expressed earlier in the development than the NFTPs and is a maker for neuronal IF inclusion disease. α-Internexin can self-polymerize in vitro and in transfected cells and it is present in the absence of the NFTP in development and in granule cells in the cerebellum. In contrast, peripherin is a type III IF protein. Like α-internexin, peripherin is specific to the nervous system, but it is expressed predominantly in the peripheral nervous system (PNS). Peripherin can also self-assemble both in vitro and in transfected cells. It is as abundant as the NFTPs in the sciatic nerve and can be considered a fourth subunit of the neurofilaments in the PNS. Peripherin has multiple isoforms that arise from intron retention, cryptic intron receptor site or alternative translation initiation. The functional significance of these isoforms is not clear. Peripherin is a major component found in inclusions of patients with amyotrophic lateral sclerosis (ALS) and peripherin expression is upregulated in ALS patients.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA
| | - Ronald K H Liem
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, USA.
| |
Collapse
|
23
|
Parry DAD. Using Data Mining and Computational Approaches to Study Intermediate Filament Structure and Function. Methods Enzymol 2015; 568:255-76. [PMID: 26795474 DOI: 10.1016/bs.mie.2015.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Experimental and theoretical research aimed at determining the structure and function of the family of intermediate filament proteins has made significant advances over the past 20 years. Much of this has either contributed to or relied on the amino acid sequence databases that are now available online, and the data mining approaches that have been developed to analyze these sequences. As the quality of sequence data is generally high, it follows that it is the design of the computational and graphical methodologies that are of especial importance to researchers who aspire to gain a greater understanding of those sequence features that specify both function and structural hierarchy. However, these techniques are necessarily subject to limitations and it is important that these be recognized. In addition, no single method is likely to be successful in solving a particular problem, and a coordinated approach using a suite of methods is generally required. A final step in the process involves the interpretation of the results obtained and the construction of a working model or hypothesis that suggests further experimentation. While such methods allow meaningful progress to be made it is still important that the data are interpreted correctly and conservatively. New data mining methods are continually being developed, and it can be expected that even greater understanding of the relationship between structure and function will be gleaned from sequence data in the coming years.
Collapse
Affiliation(s)
- David A D Parry
- Institute of Fundamental Sciences and Riddet Institute, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
24
|
Fu J, Guerette PA, Miserez A. Self-Assembly of Recombinant Hagfish Thread Keratins Amenable to a Strain-Induced α-Helix to β-Sheet Transition. Biomacromolecules 2015; 16:2327-39. [PMID: 26102237 DOI: 10.1021/acs.biomac.5b00552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hagfish slime threads are assembled from protein-based bundles of intermediate filaments (IFs) that undergo a strain-induced α-helical coiled-coil to β-sheet transition. Draw processing of native fibers enables the creation of mechanically tuned materials, and under optimized conditions this process results in mechanical properties similar to spider dragline silk. In this study, we develop the foundation for the engineering of biomimetic recombinant hagfish thread keratin (TK)-based materials. The two protein constituents from the hagfish Eptatretus stoutii thread, named EsTKα and EsTKγ, were expressed in Escherichia coli and purified. Individual (rec)EsTKs and mixtures thereof were subjected to stepwise dialysis to evaluate their protein solubility, folding, and self-assembly propensities. Conditions were identified that resulted in the self-assembly of coiled-coil rich IF-like filaments, as determined by circular dichroism (CD) and transmission electron microscopy (TEM). Rheology experiments indicated that the concentrated filaments assembled into gel-like networks exhibiting a rheological response reminiscent to that of IFs. Notably, the self-assembled filaments underwent an α-helical coiled-coil to β-sheet transition when subjected to oscillatory shear, thus mimicking the critical characteristic responsible for mechanical strengthening of native hagfish threads. We propose that our data establish the foundation to create robust and tunable recombinant TK-based materials whose mechanical properties are controlled by a strain-induced α-helical coiled-coil to β-sheet transition.
Collapse
Affiliation(s)
- Jing Fu
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Paul A Guerette
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,‡Energy Research Institute at Nanyang Technological University (ERI@N), 50 Nanyang Drive, Singapore, 637553
| | - Ali Miserez
- †School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798.,§School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive Singapore 637551
| |
Collapse
|
25
|
Yang Z, Wang KKW. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci 2015; 38:364-74. [PMID: 25975510 PMCID: PMC4559283 DOI: 10.1016/j.tins.2015.04.003] [Citation(s) in RCA: 583] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/20/2022]
Abstract
Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) III protein uniquely found in astrocytes in the central nervous system (CNS), non-myelinating Schwann cells in the peripheral nervous system (PNS), and enteric glial cells. GFAP mRNA expression is regulated by several nuclear-receptor hormones, growth factors, and lipopolysaccharides (LPSs). GFAP is also subject to numerous post-translational modifications (PTMs), while GFAP mutations result in protein deposits known as Rosenthal fibers in Alexander disease. GFAP gene activation and protein induction appear to play a critical role in astroglial cell activation (astrogliosis) following CNS injuries and neurodegeneration. Emerging evidence also suggests that, following traumatic brain and spinal cord injuries and stroke, GFAP and its breakdown products are rapidly released into biofluids, making them strong candidate biomarkers for such neurological disorders.
Collapse
Affiliation(s)
- Zhihui Yang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics, and Biomarkers Research, Departments of Psychiatry and Neuroscience, McKnight Brain Institute, L4-100, University of Florida, 1149 South Newell Drive, Gainesville, FL 32611, USA.
| |
Collapse
|
26
|
Block J, Schroeder V, Pawelzyk P, Willenbacher N, Köster S. Physical properties of cytoplasmic intermediate filaments. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:3053-64. [PMID: 25975455 DOI: 10.1016/j.bbamcr.2015.05.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/28/2015] [Accepted: 05/05/2015] [Indexed: 11/29/2022]
Abstract
Intermediate filaments (IFs) constitute a sophisticated filament system in the cytoplasm of eukaryotes. They form bundles and networks with adapted viscoelastic properties and are strongly interconnected with the other filament types, microfilaments and microtubules. IFs are cell type specific and apart from biochemical functions, they act as mechanical entities to provide stability and resilience to cells and tissues. We review the physical properties of these abundant structural proteins including both in vitro studies and cell experiments. IFs are hierarchical structures and their physical properties seem to a large part be encoded in the very specific architecture of the biopolymers. Thus, we begin our review by presenting the assembly mechanism, followed by the mechanical properties of individual filaments, network and structure formation due to electrostatic interactions, and eventually the mechanics of in vitro and cellular networks. This article is part of a Special Issue entitled: Mechanobiology.
Collapse
Affiliation(s)
- Johanna Block
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Viktor Schroeder
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Paul Pawelzyk
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Willenbacher
- Institute of Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sarah Köster
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
27
|
Nöding B, Herrmann H, Köster S. Direct observation of subunit exchange along mature vimentin intermediate filaments. Biophys J 2014; 107:2923-2931. [PMID: 25517157 PMCID: PMC4269786 DOI: 10.1016/j.bpj.2014.09.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/25/2014] [Accepted: 09/09/2014] [Indexed: 01/12/2023] Open
Abstract
Actin filaments, microtubules, and intermediate filaments (IFs) are central elements of the metazoan cytoskeleton. At the molecular level, the assembly mechanism for actin filaments and microtubules is fundamentally different from that of IFs. The former two types of filaments assemble from globular proteins. By contrast, IFs assemble from tetrameric complexes of extended, half-staggered, and antiparallel oriented coiled-coils. These tetramers laterally associate into unit-length filaments; subsequent longitudinal annealing of unit-length filaments yields mature IFs. In vitro, IFs form open structures without a fixed number of tetramers per cross-section along the filament. Therefore, a central question for the structural biology of IFs is whether individual subunits can dissociate from assembled filaments and rebind at other sites. Using the fluorescently labeled IF-protein vimentin for assembly, we directly observe and quantitatively determine subunit exchange events between filaments as well as with soluble vimentin pools. Thereby we demonstrate that the cross-sectional polymorphism of donor and acceptor filaments plays an important role. We propose that in segments of donor filaments with more than the standard 32 molecules per cross-section, subunits are not as tightly bound and are predisposed to be released from the filament.
Collapse
Affiliation(s)
- Bernd Nöding
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August-Universität Göttingen, Göttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany.
| |
Collapse
|
28
|
Fraser RDB, Parry DAD. Reprint of: keratin intermediate filaments: differences in the sequences of the Type I and Type II chains explain the origin of the stability of an enzyme-resistant four-chain fragment. J Struct Biol 2014; 186:481-90. [PMID: 24861529 DOI: 10.1016/j.jsb.2014.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Previous studies have shown that a strong interaction exists between oppositely directed 1B molecular segments in the intermediate filaments of trichocyte keratins. A similar interaction has been identified as having a significant role in the formation of unit-length filaments, a precursor to intermediate filament formation. The present study is concerned with the spatial relationship of these interacting segments and its dependence on differences in the amino acid sequences of the two-chain regions that constitute the 1B molecular segment. It is shown that along a particular line of contact both chain segments possess an elevated concentration of residues with a high propensity for dimer formation. The transition from the reduced to the oxidized state involves a simple axial displacement of one molecular segment relative to the other, with no attendant rotation of either segment. This changes the inter-relationship of the two 1B molecular segments from a loosely packed form to a more compact one. After the slippage eight of the cysteine residues in the dimer are precisely aligned to link up and form the disulfide linkages as observed. The two remaining cysteine residues are located on the outside of the dimer and are presumably involved in inter-dimer bonding. The existence of a unique line of contact requires that two chains in the molecule have different amino acid compositions with the clustering of dimer-favoring residues phased by half the pitch length of the coiled coil.
Collapse
Affiliation(s)
- R D Bruce Fraser
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | - David A D Parry
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand; Riddet Institute, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| |
Collapse
|
29
|
Pawelzyk P, Mücke N, Herrmann H, Willenbacher N. Attractive interactions among intermediate filaments determine network mechanics in vitro. PLoS One 2014; 9:e93194. [PMID: 24690778 PMCID: PMC3972185 DOI: 10.1371/journal.pone.0093194] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 02/28/2014] [Indexed: 01/11/2023] Open
Abstract
Mechanical and structural properties of K8/K18 and vimentin intermediate filament (IF) networks have been investigated using bulk mechanical rheometry and optical microrheology including diffusing wave spectroscopy and multiple particle tracking. A high elastic modulus G0 at low protein concentration c, a weak concentration dependency of G0 (G0∼c0.5±0.1) and pronounced strain stiffening are found for these systems even without external crossbridgers. Strong attractive interactions among filaments are required to maintain these characteristic mechanical features, which have also been reported for various other IF networks. Filament assembly, the persistence length of the filaments and the network mesh size remain essentially unaffected when a nonionic surfactant is added, but strain stiffening is completely suppressed, G0 drops by orders of magnitude and exhibits a scaling G0∼c1.9±0.2 in agreement with microrheological measurements and as expected for entangled networks of semi-flexible polymers. Tailless K8Δ/K18ΔT and various other tailless filament networks do not exhibit strain stiffening, but still show high G0 values. Therefore, two binding sites are proposed to exist in IF networks. A weaker one mediated by hydrophobic amino acid clusters in the central rod prevents stretched filaments between adjacent cross-links from thermal equilibration and thus provides the high G0 values. Another strong one facilitating strain stiffening is located in the tail domain with its high fraction of hydrophobic amino acid sequences. Strain stiffening is less pronounced for vimentin than for K8/K18 due to electrostatic repulsion forces partly compensating the strong attraction at filament contact points.
Collapse
Affiliation(s)
- Paul Pawelzyk
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Norbert Mücke
- Biophysics of Macromolecules, German Cancer Research Center, Heidelberg, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Norbert Willenbacher
- Institute for Mechanical Process Engineering and Mechanics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- * E-mail:
| |
Collapse
|
30
|
Brennich ME, Bauch S, Vainio U, Wedig T, Herrmann H, Köster S. Impact of ion valency on the assembly of vimentin studied by quantitative small angle X-ray scattering. SOFT MATTER 2014; 10:2059-68. [PMID: 24800271 DOI: 10.1039/c3sm52532e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The assembly kinetics of intermediate filament (IF) proteins from tetrameric complexes to single filaments and networks depends on the protein concentration, temperature and the ionic composition of their environment. We systematically investigate how changes in the concentration of monovalent potassium and divalent magnesium ions affect the internal organization of the resulting filaments. Small angle X-ray scattering (SAXS) is very sensitive to changes in the filament cross-section such as diameter or compactness. Our measurements reveal that filaments formed in the presence of magnesium chloride differ distinctly from filaments formed in the presence of potassium chloride. The principle multi-step assembly mechanism from tetramers via unit-length filaments (ULF) to elongated filaments is not changed by the valency of ions. However, the observed differences indicate that the magnesium ions free the head domains of tetramers from unproductive interactions to allow assembly but at the same time mediate strong inter-tetrameric interactions that impede longitudinal annealing of unit-length filaments considerably, thus slowing down filament growth.
Collapse
|
31
|
Keratin intermediate filaments: differences in the sequences of the Type I and Type II chains explain the origin of the stability of an enzyme-resistant four-chain fragment. J Struct Biol 2013; 185:317-26. [PMID: 24384118 DOI: 10.1016/j.jsb.2013.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 11/21/2022]
Abstract
Previous studies have shown that a strong interaction exists between oppositely directed 1B molecular segments in the intermediate filaments of trichocyte keratins. A similar interaction has been identified as having a significant role in the formation of unit-length filaments, a precursor to intermediate filament formation. The present study is concerned with the spatial relationship of these interacting segments and its dependence on differences in the amino acid sequences of the two-chain regions that constitute the 1B molecular segment. It is shown that along a particular line of contact both chain segments possess an elevated concentration of residues with a high propensity for dimer formation. The transition from the reduced to the oxidized state involves a simple axial displacement of one molecular segment relative to the other, with no attendant rotation of either segment. This changes the inter-relationship of the two 1B molecular segments from a loosely packed form to a more compact one. After the slippage eight of the cysteine residues in the dimer are precisely aligned to link up and form the disulfide linkages as observed. The two remaining cysteine residues are located on the outside of the dimer and are presumably involved in inter-dimer bonding. The existence of a unique line of contact requires that two chains in the molecule have different amino acid compositions with the clustering of dimer-favoring residues phased by half the pitch length of the coiled coil.
Collapse
|
32
|
Abstract
We have shown previously that neurofilaments and vimentin filaments expressed in nonneuronal cell lines can lengthen by joining ends in a process known as "end-to-end annealing." To test if this also occurs for neurofilaments in neurons, we transfected cultured rat cortical neurons with fluorescent neurofilament fusion proteins and then used photoconversion or photoactivation strategies to create distinct populations of red and green fluorescent filaments. Within several hours we observed the appearance of chimeric filaments consisting of alternating red and green segments, which is indicative of end-to-end annealing of red and green filaments. However, the appearance of these chimeric filaments was accompanied by a gradual fragmentation of the red and green filament segments, which is indicative of severing. Over time we observed a progressive increase in the number of red-green junctions along the filaments accompanied by a progressive decrease in the average length of the alternating red and green fluorescent segments that comprised those filaments, suggesting a dynamic cycle of severing and end-to-end-annealing. Time-lapse imaging of the axonal transport of chimeric filaments demonstrated that the red and green segments moved together, confirming that they were indeed part of the same filament. Moreover, in several instances, we also were able to capture annealing and severing events live in time-lapse movies. We propose that the length of intermediate filaments in cells is regulated by the opposing actions of severing and end-to-end annealing, and we speculate that this regulatory mechanism may influence neurofilament transport within axons.
Collapse
|
33
|
Structures and interactions in 'bottlebrush' neurofilaments: the role of charged disordered proteins in forming hydrogel networks. Biochem Soc Trans 2013; 40:1027-31. [PMID: 22988859 DOI: 10.1042/bst20120101] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NFs (neurofilaments), the major cytoskeletal constituent of myelinated axons in vertebrates, consist of three different molecular-mass subunit proteins, NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding intrinsically disordered C-terminal side-arms. Liquid crystal gel networks of side-arm-mediated NF assemblies play a key role in the mechanical stability of neuronal processes. Disruptions of the NF network, due to NF overaccumulation or incorrect side-arm interactions, are a hallmark of motor neuron diseases including amyotrophic lateral sclerosis. Using synchrotron small-angle X-ray scattering and various microscopy techniques, we have investigated the role of the peptide charges in the subunit side-arms on the structure and interaction of NFs. Our findings, which delineate the distinct roles of NF-M and NF-H in regulating NF interactions, shed light on possible mechanisms of disruption of optimal mechanical network properties.
Collapse
|
34
|
Miao L, Teng J, Lin J, Liao X, Chen J. 14-3-3 proteins interact with neurofilament protein-L and regulate dynamic assembly of neurofilaments. J Cell Sci 2012; 126:427-36. [PMID: 23230147 DOI: 10.1242/jcs.105817] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurofilament protein-L (NF-L) is the core component of neurofilaments. Recent studies indicate that the NF-L mutations reported in human Charcot-Marie-Tooth (CMT) disease lead to the formation of NF-L aggregates and result in axon degeneration of motor and sensory neurons, which are thought to be the cause of CMT disease type 2E. In the present study, we investigated the dynamic regulation of NF-L assembly and the mechanism of aggregate formation of CMT NF-L mutants. We report that 14-3-3 proteins interact with NF-L in a phosphorylation-dependent manner. Investigation of mutations of phospho-serine sites at the head domain of NF-L revealed that several phosphorylation sites, particularly Ser43 and Ser55, were important for 14-3-3 binding. 14-3-3 overexpression resulted in a significant increase in the dynamic exchange rate of NF-L subunits and induced striking disassembly of neurofilaments. CMT NF-L mutants, particularly those with mutations in the Pro8 and Pro22 sites of the NF-L head domain, led to substantially diminished interaction between 14-3-3 and NF-L, which resulted in the formation of NF-L aggregates and the disruption of the neurofilament co-assembly of NF-L and NF-M. However, aggregate formation in CMT NF-L mutants was downregulated by 14-3-3 overexpression. Taken together, these results suggest the important role of 14-3-3 in the dynamic regulation of NF-L assembly, and in the capacity to prevent the formation of NF-L aggregates. Thus, the 14-3-3 proteins are a possible molecular target for CMT disease therapy.
Collapse
Affiliation(s)
- Linqing Miao
- State Key Laboratory of Bio-membrane and Membrane Bio-engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
35
|
Leitner A, Paust T, Marti O, Walther P, Herrmann H, Beil M. Properties of intermediate filament networks assembled from keratin 8 and 18 in the presence of Mg²+. Biophys J 2012; 103:195-201. [PMID: 22853896 PMCID: PMC3403007 DOI: 10.1016/j.bpj.2012.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 01/10/2023] Open
Abstract
The mechanical properties of epithelial cells are modulated by structural changes in keratin intermediate filament networks. To investigate the relationship between network architecture and viscoelasticity, we assembled keratin filaments from recombinant keratin proteins 8 (K8) and 18 (K18) in the presence of divalent ions (Mg(2+)). We probed the viscoelastic modulus of the network by tracking the movement of microspheres embedded in the network during assembly, and studied the network architecture using scanning electron microscopy. Addition of Mg(2+) at physiological concentrations (<1 mM) resulted in networks whose structure was similar to that of keratin networks in epithelial cells. Moreover, the elastic moduli of networks assembled in vitro were found to be within the same magnitude as those measured in keratin networks of detergent-extracted epithelial cells. These findings suggest that Mg(2+)-induced filament cross-linking represents a valid model for studying the cytoskeletal mechanics of keratin networks.
Collapse
Affiliation(s)
- Anke Leitner
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Tobias Paust
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Othmar Marti
- Institut für Experimentelle Physik, University of Ulm, Ulm, Germany
| | - Paul Walther
- Electron Microscopy Facility, University of Ulm, Ulm, Germany
| | - Harald Herrmann
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Michael Beil
- Department of Medicine I, University of Ulm, Ulm, Germany
| |
Collapse
|
36
|
Wilger DJ, Bettis SE, Materese CK, Minakova M, Papoian GA, Papanikolas JM, Waters ML. Tunable Energy Transfer Rates via Control of Primary, Secondary, and Tertiary Structure of a Coiled Coil Peptide Scaffold. Inorg Chem 2012; 51:11324-38. [DOI: 10.1021/ic300669t] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Dale J. Wilger
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Stephanie E. Bettis
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Christopher K. Materese
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Maria Minakova
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Garegin A. Papoian
- Department of Chemistry and
Biochemistry, University of Maryland, College
Park, Maryland 20742, United States
| | - John M. Papanikolas
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| | - Marcey L. Waters
- Department
of Chemistry, CB
3290, University of North Carolina, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
37
|
Nöding B, Köster S. Intermediate filaments in small configuration spaces. PHYSICAL REVIEW LETTERS 2012; 108:088101. [PMID: 22463576 DOI: 10.1103/physrevlett.108.088101] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Indexed: 05/17/2023]
Abstract
Intermediate filaments play a key role in cell mechanics. Apart from their great importance from a biomedical point of view, they also act as a very suitable micrometer-sized model system for semiflexible polymers. We perform a statistical analysis of the thermal fluctuations of individual filaments confined in microchannels. The small channel width and the resulting deflections at the walls give rise to a reduction of the configuration space by about 2 orders of magnitude. This circumstance enables us to precisely measure the intrinsic persistence length of vimentin intermediate filaments and to show that they behave as ideal wormlike chains; we observe that small fluctuations in perpendicular planes decouple. Furthermore, the inclusion of results for confined actin filaments demonstrates that the Odijk confinement regime is valid over at least 1 order of magnitude in persistence length.
Collapse
Affiliation(s)
- Bernd Nöding
- Institute for X-Ray Physics and Courant Research Centre Nano-Spectroscopy and X-Ray Imaging, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
38
|
Beriault DR, Haddad O, McCuaig JV, Robinson ZJ, Russell D, Lane EB, Fudge DS. The mechanical behavior of mutant K14-R125P keratin bundles and networks in NEB-1 keratinocytes. PLoS One 2012; 7:e31320. [PMID: 22363617 PMCID: PMC3283645 DOI: 10.1371/journal.pone.0031320] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 01/05/2012] [Indexed: 01/27/2023] Open
Abstract
Epidermolysis bullosa simplex (EBS) is an inherited skin-blistering disease that is caused by dominant mutations in the genes for keratin K5 or K14 proteins. While the link between keratin mutations and keratinocyte fragility in EBS patients is clear, the exact biophysical mechanisms underlying cell fragility are not known. In this study, we tested the hypotheses that mutant K14-R125P filaments and/or networks in human keratinocytes are mechanically defective in their response to large-scale deformations. We found that mutant filaments and networks exhibit no obvious defects when subjected to large uniaxial strains and have no negative effects on the ability of human keratinocytes to survive large strains. We also found that the expression of mutant K14-R125P protein has no effect on the morphology of the F-actin or microtubule networks or their responses to large strains. Disassembly of the F-actin network with Latrunculin A unexpectedly led to a marked decrease in stretch-induced necrosis in both WT and mutant cells. Overall, our results contradict the hypotheses that EBS mutant keratin filaments and/or networks are mechanically defective. We suggest that future studies should test the alternative hypothesis that keratinocytes in EBS cells are fragile because they possess a sparser keratin network.
Collapse
Affiliation(s)
| | - Oualid Haddad
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - John V. McCuaig
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | | | - David Russell
- Cancer Research United Kingdom (UK) Cell Structure Research Group, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - E. Birgitte Lane
- Cancer Research United Kingdom (UK) Cell Structure Research Group, College of Life Sciences, University of Dundee, Dundee, Scotland
- Institute of Medical Biology, Singapore, Singapore
| | - Douglas S. Fudge
- Department of Integrative Biology, University of Guelph, Guelph, Canada
- * E-mail:
| |
Collapse
|
39
|
Jia Y, Kuroda M. Flow birefringence property of desmin filaments. Biophysics (Nagoya-shi) 2012; 8:21-25. [PMID: 27857604 PMCID: PMC5070455 DOI: 10.2142/biophysics.8.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/15/2011] [Indexed: 12/01/2022] Open
Abstract
We have investigated the flow birefringence property and assembly process of desmin, a muscle specific intermediate protein. Solution of non-polar desmin filaments showed birefringence when aligned in the sheared flow. The amount of birefringence of desmin filaments was considerably lower when compared with that of F-actin solution. Assembly of desmin from soluble state was followed by the birefringence measurements. At any desmin concentrations examined, the degree of flow birefringence increased rapidly just after the addition of the assembly buffer and reached a saturated level within 30 min. The time to reach half-maximal values of flow birefringence slightly but definitely depended on the initial soluble desmin concentrations. The plotting of the initial velocity of the assembly against the soluble desmin concentrations showed a slope of 1.4. This result suggested that the assembly process detected by flow birefringence measurements followed second-order kinetics, and the process corresponded to the second step of the three stage model for type III intermediate filament assembly proposed by Herrmann and his colleagues; the annealing of unit length filaments into filaments.
Collapse
Affiliation(s)
- You Jia
- Department of Biological Science, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-chou, Matue, Shimane 690-0854, Japan
| | - Masaaki Kuroda
- Department of Biological Science, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-chou, Matue, Shimane 690-0854, Japan
| |
Collapse
|
40
|
Goldman RD, Cleland MM, Murthy SNP, Mahammad S, Kuczmarski ER. Inroads into the structure and function of intermediate filament networks. J Struct Biol 2011; 177:14-23. [PMID: 22120848 DOI: 10.1016/j.jsb.2011.11.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 11/07/2011] [Accepted: 11/09/2011] [Indexed: 12/20/2022]
Abstract
Although intermediate filaments are one of three major cytoskeletal systems of vertebrate cells, they remain the least understood with respect to their structure and function. This is due in part to the fact that they are encoded by a large gene family which is developmentally regulated in a cell and tissue type specific fashion. This article is in honor of Ueli Aebi. It highlights the studies on IF that have been carried out by our laboratory for more than 40 years. Many of our advances in understanding IF are based on conversations with Ueli which have taken place during adventurous and sometimes dangerous hiking and biking trips throughout the world.
Collapse
Affiliation(s)
- Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University's Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | | | |
Collapse
|
41
|
Lichtenstern T, Mücke N, Aebi U, Mauermann M, Herrmann H. Complex formation and kinetics of filament assembly exhibited by the simple epithelial keratins K8 and K18. J Struct Biol 2011; 177:54-62. [PMID: 22085677 DOI: 10.1016/j.jsb.2011.11.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/30/2011] [Accepted: 11/01/2011] [Indexed: 01/27/2023]
Abstract
We have generated human recombinant keratins K8 and K18 and describe conditions to quantitatively follow their assembly into filaments. When renatured individually from 8M urea into a low ionic strength/high pH-buffer, K8 was present in a dimeric to tetrameric form as revealed by analytical ultracentrifugation. In contrast, K18 sedimented as a monomer. When mixed in 8 M urea and renatured together, K8 and K18 exhibited s-value profiles compatible with homogeneous tetrameric complexes. This finding was confirmed by sedimentation equilibrium centrifugation. Subsequently, these tetrameric starter units were subjected to assembly experiments at various protein concentrations. At low values such as 0.0025 g/l, unit-length filaments were abundantly present after 2s of assembly. During the following 5 min, filaments grew rapidly and by measuring the length of individual filaments we were able to generate time-dependent length profiles. These data revealed that keratins K8/K18 assemble several times faster than vimentin and desmin. In addition, we determined the persistence length l(p) of K8/K18 filaments to be in the range of 300 nm. Addition of 1 mM MgCl(2) increases l(p) to 480 nm indicating that magnesium ions affect the interaction of keratin subunits within the filament during assembly to some extent.
Collapse
Affiliation(s)
- Tanja Lichtenstern
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
42
|
Kushner AM, Guan Z. Modulares Design in natürlichen und biomimetischen elastischen Materialien. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006496] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
43
|
Kushner AM, Guan Z. Modular design in natural and biomimetic soft materials. Angew Chem Int Ed Engl 2011; 50:9026-57. [PMID: 21898722 DOI: 10.1002/anie.201006496] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Indexed: 11/09/2022]
Abstract
Under eons of evolutionary and environmental pressure, biological systems have developed strong and lightweight peptide-based polymeric materials by using the 20 naturally occurring amino acids as principal monomeric units. These materials outperform their man-made counterparts in the following ways: 1) multifunctionality/tunability, 2) adaptability/stimuli-responsiveness, 3) synthesis and processing under ambient and aqueous conditions, and 4) recyclability and biodegradability. The universal design strategy that affords these advanced properties involves "bottom-up" synthesis and modular, hierarchical organization both within and across multiple length-scales. The field of "biomimicry"-elucidating and co-opting nature's basic material design principles and molecular building blocks-is rapidly evolving. This Review describes what has been discovered about the structure and molecular mechanisms of natural polymeric materials, as well as the progress towards synthetic "mimics" of these remarkable systems.
Collapse
Affiliation(s)
- Aaron M Kushner
- Department of Chemistry, University of California, Irvine, CA 92697-2025, USA
| | | |
Collapse
|
44
|
Dynamic Failure of a Lamina Meshwork in Cell Nuclei under Extreme Mechanical Deformation. BIONANOSCIENCE 2011. [DOI: 10.1007/s12668-011-0003-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
45
|
Deconstructing the late phase of vimentin assembly by total internal reflection fluorescence microscopy (TIRFM). PLoS One 2011; 6:e19202. [PMID: 21544245 PMCID: PMC3081349 DOI: 10.1371/journal.pone.0019202] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/23/2011] [Indexed: 11/23/2022] Open
Abstract
Quantitative imaging of intermediate filaments (IF) during the advanced phase of the assembly process is technically difficult, since the structures are several µm long and therefore they exceed the field of view of many electron (EM) or atomic force microscopy (AFM) techniques. Thereby quantitative studies become extremely laborious and time-consuming. To overcome these difficulties, we prepared fluorescently labeled vimentin for visualization by total internal reflection fluorescence microscopy (TIRFM). In order to investigate if the labeling influences the assembly properties of the protein, we first determined the association state of unlabeled vimentin mixed with increasing amounts of labeled vimentin under low ionic conditions by analytical ultracentrifugation. We found that bona fide tetrameric complexes were formed even when half of the vimentin was labeled. Moreover, we demonstrate by quantitative atomic force microscopy and electron microscopy that the morphology and the assembly properties of filaments were not affected when the fraction of labeled vimentin was below 10%. Using fast frame rates we observed the rapid deposition of fluorescently labeled IFs on glass supports by TIRFM in real time. By tracing their contours, we have calculated the persistence length of long immobilized vimentin IFs to 1 µm, a value that is identical to those determined for shorter unlabeled vimentin. These results indicate that the structural properties of the filaments were not affected significantly by the dye. Furthermore, in order to analyze the late elongation phase, we mixed long filaments containing either Alexa 488- or Alexa 647-labeled vimentin. The ‘patchy’ structure of the filaments obtained unambiguously showed the elongation of long IFs through direct end-to-end annealing of individual filaments.
Collapse
|
46
|
Abstract
A novel technique to generate three-dimensional Euclidean weavings, composed of close-packed, periodic arrays of one-dimensional fibres, is described. Some of these weavings are shown to dilate by simple shape changes of the constituent fibres (such as fibre straightening). The free volume within a chiral cubic example of a dilatant weaving, the ideal conformation of the G(129) weaving related to the Σ(+) rod packing, expands more than fivefold on filament straightening. This remarkable three-dimensional weaving, therefore, allows an unprecedented variation of packing density without loss of structural rigidity and is an attractive design target for materials. We propose that the G(129) weaving (ideal Σ(+) weaving) is formed by keratin fibres in the outermost layer of mammalian skin, probably templated by a folded membrane.
Collapse
Affiliation(s)
- Myfanwy E Evans
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia.
| | | |
Collapse
|
47
|
Brennich ME, Nolting JF, Dammann C, Nöding B, Bauch S, Herrmann H, Pfohl T, Köster S. Dynamics of intermediate filament assembly followed in micro-flow by small angle X-ray scattering. LAB ON A CHIP 2011; 11:708-716. [PMID: 21212871 DOI: 10.1039/c0lc00319k] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The assembly of intermediate filaments (IFs) is a complex process that can be recapitulated through a series of distinct steps in vitro. The combination of microfluidics and small angle X-ray scattering (SAXS) provides a powerful tool to investigate the kinetics of this process on the relevant timescales. Microfluidic mixers based on the principle of hydrodynamic focusing allow for precise control of the mixing of proteins and smaller reagents like ions. Here, we present a multi-layer device that prevents proteins from adsorbing to the channel walls by engulfing the protein jet with a fluid layer of buffer. To ensure compatibility with SAXS, the device is fabricated from UV-curable adhesive (NOA 81). To demonstrate the successful prevention of contact between the protein jet and the channel walls we measure the distribution of a fluorescent dye in the device by confocal microscopy at various flow speeds and compare the results to finite element method (FEM) simulations. The prevention of contact enables the investigation of the assembly of IFs in flow by gradually increasing the salt concentration in the protein jet. The diffusion of salt into the jet can be determined by FEM simulations. SAXS data are collected at different positions in the jet, corresponding to different salt concentrations, and they reveal distinct differences between the earliest assembly states. We find that the mean square radius of gyration perpendicular to the filament axis increases from 13 nm(2) to 58 nm(2) upon assembly. Thereby we provide dynamic structural data of a complex assembly process that was amenable up to now only by microscopic techniques.
Collapse
Affiliation(s)
- Martha Elisabeth Brennich
- Courant Research Centre Nano-Spectroscopy and X-ray Imaging, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Jin LQ, Zhang G, Pennicooke B, Laramore C, Selzer ME. Multiple neurofilament subunits are present in lamprey CNS. Brain Res 2010; 1370:16-33. [PMID: 21081119 DOI: 10.1016/j.brainres.2010.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/07/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
In mammals, there are three neurofilament (NF) subunits (NF-L, NF-M, and NF-H), but it was thought that only a single NF, NF180, exists in lamprey. However, NF180 lacked the ability to self-assemble, suggesting that like mammalian NFs, lamprey NFs are heteropolymers, and that additional NF subunits may exist. The present study provides evidence for the existence of a lamprey NF-L homolog (L-NFL). Genes encoding two new NF-M isoforms (NF132 and NF95) also have been isolated and characterized. With NF180, this makes three NF-M-like isoforms. In situ hybridization showed that all three newly cloned NFs are expressed in spinal cord neurons and in spinal-projecting neurons of the brainstem. Like NF180, there were no KSP multiphosphorylation repeat motifs in the tail regions of NF132 or NF95. NF95 was highly identical to homologous parts of NF180, sharing 2 common pieces of DNA with it. Northern blots suggested that NF95 may be expressed at very low levels in older larvae. The presence of L-NFL in lamprey CNS may support the hypothesis that as in mammals, NFs in lamprey are obligate heteropolymers, in which NF-L is a required subunit.
Collapse
Affiliation(s)
- Li-Qing Jin
- Shriners Hospitals Pediatric Research Center, Temple University School of Medicine, 3500 N. Broad Street, Philadelphia, PA 19140-5104, USA.
| | | | | | | | | |
Collapse
|
49
|
Hnia K, Tronchère H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 2010; 121:70-85. [PMID: 21135508 DOI: 10.1172/jci44021] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 10/13/2010] [Indexed: 12/27/2022] Open
Abstract
Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and cardiomyopathy. Here, we demonstrate that myotubularin (MTM1), which is mutated in individuals with X-linked centronuclear myopathy (XLCNM; also known as myotubular myopathy), is a desmin-binding protein and provide evidence for direct regulation of desmin by MTM1 in vitro and in vivo. XLCNM-causing mutations in MTM1 disrupted the MTM1-desmin complex, resulting in abnormal IF assembly and architecture in muscle cells and both mouse and human skeletal muscles. Adeno-associated virus-mediated ectopic expression of WT MTM1 in Mtm1-KO muscle reestablished normal desmin expression and localization. In addition, decreased MTM1 expression and XLCNM-causing mutations induced abnormal mitochondrial positioning, shape, dynamics, and function. We therefore conclude that MTM1 is a major regulator of both the desmin cytoskeleton and mitochondria homeostasis, specifically in skeletal muscle. Defects in IF stabilization and mitochondrial dynamics appear as common physiopathological features of centronuclear myopathies and desmin-related myopathies.
Collapse
Affiliation(s)
- Karim Hnia
- Department of Neurobiology and Genetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Y, Mizokami A, Izumi K, Narimoto K, Shima T, Zhang J, Dai J, Keller ET, Namiki M. CTEN/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer. Prostate 2010; 70:48-60. [PMID: 19725034 DOI: 10.1002/pros.21037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Recently, we established paclitaxel-resistant prostate cancer cell lines (PC-3-TxR and DU145-TxR). To determine the mechanisms of paclitaxel resistance in PC-3-TxR cells, we compared the gene expression profiles between PC-3 and PC-3-TxR cells. Our results indicated that expression of the C-terminal tensin like protein (CTEN, tensin 4) gene was down-regulated by 10-fold in PC-3-TxR cells. We investigated the possibility that CTEN overexpression restores paclitaxel sensitivity. METHODS We investigated how knockdown and overexpression of CTEN in androgen-independent cell lines affect paclitaxel sensitivity by colony formation assay and growth inhibition assay. To determine the mechanisms by which CTEN affects paclitaxel sensitivity, we investigated the relationships between CTEN and F-actin or epidermal growth factor receptor (EGFR) in PC-3 cells. We also examined the association between expression of CTEN and grade of prostate cancer by immunohistochemistry using tissue microarray analysis. RESULTS Down-regulation of CTEN, which is located in the cytoskeleton, played an important role in paclitaxel resistance in PC-3-TxR cells. Knockdown of CTEN expression in PC-3 cells induced paclitaxel resistance. Overexpression of CTEN in PC-3-TxR and DU145-TxR cells restored paclitaxel sensitivity. CTEN expression was inversely correlated with F-actin and EGFR expression. Then knockdown of actin and EGFR in PC-3-TxR cells recovered paclitaxel sensitivity, indicating that CTEN down-regulation mediates paclitaxel resistance through elevation of EGFR and actin expression. Moreover, CTEN expression was inversely correlated with Gleason score. CONCLUSIONS These results strongly suggested that CTEN plays an important role in paclitaxel sensitivity and that CTEN expression level may be a prognostic predictive factor for PCa patients.
Collapse
Affiliation(s)
- YouQiang Li
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|