1
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Brix KV, Baken S, Poland CA, Blust R, Pope LJ, Tyler CR. Challenges and Recommendations in Assessing Potential Endocrine-Disrupting Properties of Metals in Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2564-2579. [PMID: 37671843 DOI: 10.1002/etc.5741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
New tools and refined frameworks for identifying and regulating endocrine-disrupting chemicals (EDCs) are being developed as our scientific understanding of how they work advances. Although focus has largely been on organic chemicals, the potential for metals to act as EDCs in aquatic systems is receiving increasing attention. Metal interactions with the endocrine system are complicated because some metals are essential to physiological systems, including the endocrine system, and nonessential metals can have similar physiochemical attributes that allow substitution into or interference with these systems. Consequently, elevated metal exposure could potentially cause endocrine disruption (ED) but can also cause indirect effects on the endocrine system via multiple pathways or elicit physiologically appropriate compensatory endocrine-mediated responses (endocrine modulation). These latter two effects can be confused with, but are clearly not, ED. In the present study, we provide several case studies that exemplify the challenges encountered in evaluating the endocrine-disrupting (ED) potential of metals, followed by recommendations on how to meet them. Given that metals have multiple modes of action (MOAs), we recommend that assessments use metal-specific adverse outcome pathway networks to ensure that accurate causal links are made between MOAs and effects on the endocrine system. We recommend more focus on establishing molecular initiating events for chronic metal toxicity because these are poorly understood and would reduce uncertainty regarding the potential for metals to be EDCs. Finally, more generalized MOAs such as oxidative stress could be involved in metal interactions with the endocrine system, and we suggest it may be experimentally efficient to evaluate these MOAs when ED is inferred. These experiments, however, must provide explicit linkage to the ED endpoints of interest. Environ Toxicol Chem 2023;42:2564-2579. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kevin V Brix
- EcoTox, Miami, Florida, USA
- Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, Florida, USA
| | - Stijn Baken
- International Copper Association, Brussels, Belgium
| | - Craig A Poland
- Regulatory Compliance Limited, Loanhead, United Kingdom
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Ronny Blust
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | - Charles R Tyler
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Zheng JL, Zhu QL, Hu XC, Parsons D, Lawson R, Hogstrand C. Transgenerational effects of zinc in zebrafish following early life stage exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154443. [PMID: 35278549 DOI: 10.1016/j.scitotenv.2022.154443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Although toxic effects of zinc (Zn) have been well established in the different developmental stages in fish, long-lasting effects of Zn exposure during embryonic development have not been explored. Exposure to an environmentally relevant Zn concentration of 10 μM (650 μg/L) during the first five days after fertilization did not affect survival, body weight, malformations or overall hatching success of F0 and F1 larvae. Zn exposure did, however, result in delayed hatching in both the F0 and F1 generations and caused significant changes in homeostasis of Zn and selenium (Se) in F0 and F1 fish. This was especially pronounced when F1 embryos from Zn-exposed parents were treated with 30 μM (2000 μg/L) Zn. In the F0 generation, skewed sex ratio towards males and changes in homeostasis of Zn, Se and manganese (Mn) in the brain, gill, liver and gonad of adult fish were also observed. These changes were associated with altered expression of Zn- and Mn-regulatory genes and sex differentiation genes in F0 and F1 fish. The present study suggests that fish may carry memory from embryo-larval Zn exposure into adulthood and further to the next generation. The present study shows that ecotoxicological risk of an exposure to Zn during embryo-larval development may persist long after recovery and may also manifest in the F1 generation.
Collapse
Affiliation(s)
- Jia-Lang Zheng
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Qing-Ling Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, PR China; King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Xiu-Chuan Hu
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Douglas Parsons
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Rebecca Lawson
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK
| | - Christer Hogstrand
- King's College London, Faculty of Life Sciences and Medicine, Department of Nutritional Sciences, Metal Metabolism Group, London, UK.
| |
Collapse
|
4
|
Frøbert AM, Brohus M, Toews JNC, Round P, Fröbert O, Hammond GL, Overgaard MT. Characterization and comparison of recombinant full-length ursine and human sex hormone-binding globulin. FEBS Open Bio 2021; 12:362-378. [PMID: 34855305 PMCID: PMC8804615 DOI: 10.1002/2211-5463.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
Sex hormone‐binding globulin (SHBG) regulates the bioavailability of sex steroid hormones in the blood. Levels of SHBG increase markedly in brown bears (Ursus arctos) during hibernation, suggesting that a key regulatory role of this protein is to quench sex steroid bioavailability in hibernation physiology. To enable characterization of ursine SHBG and a cross species comparison, we established an insect cell‐based expression system for recombinant full‐length ursine and human SHBG. Compared with human SHBG, we observed markedly lower secretion levels of ursine SHBG, resulting in a 10‐fold difference in purified protein yield. Both human and ursine recombinant SHBG appeared as dimeric proteins in solution, with a single unfolding temperature of ~ 58 °C. The thermal stability of ursine and human SHBG increased 5.4 and 9.5 °C, respectively, in the presence of dihydrotestosterone (DHT), suggesting a difference in affinity. The dissociation constants for [3H]DHT were determined to 0.21 ± 0.04 nm for human and 1.32 ± 0.10 nm for ursine SHBG, confirming a lower affinity of ursine SHBG. A similarly reduced affinity, determined from competitive steroid binding, was observed for most steroids. Overall, we found that ursine SHBG had similar characteristics to human SHBG, specifically, being a homodimeric glycoprotein capable of binding steroids with high affinity. Therefore, ursine SHBG likely has similar biological functions to those known for human SHBG. The determined properties of ursine SHBG will contribute to elucidating its potential regulatory role in hibernation physiology.
Collapse
Affiliation(s)
- Anne Mette Frøbert
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Denmark
| | - Julia N C Toews
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Phillip Round
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Sweden.,Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark
| | - Geoffrey L Hammond
- Department of Cellular & Physiological Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Faculty of Engineering and Science, Aalborg University, Denmark
| |
Collapse
|
5
|
Zhang B, Jin Z, Sun L, Zheng Y, Jiang J, Feng C, Wang Y. Expression and correlation of sex hormone-binding globulin and insulin signal transduction and glucose transporter proteins in gestational diabetes mellitus placental tissue. Diabetes Res Clin Pract 2016; 119:106-17. [PMID: 27497146 DOI: 10.1016/j.diabres.2016.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/30/2016] [Accepted: 07/16/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The aim of the present study was to investigate the probable pathogenesis of gestational diabetes mellitus (GDM) by analyzing the correlation between sex hormone-binding globulin (SHBG) secreted by the placenta during pregnancy and insulin signaling components and glucose transporter proteins (GLUTs) in the placental tissue. DESIGN AND METHODS Placental tissue was collected from full-term and non-obese [body mass index <25kg/m(2)] pregnant women; 10 diagnosed with GDM and 10 with normal pregnancy. We used real-time polymerase chain reaction (PCR), immunohistochemistry and western blotting to detect expression of protein and mRNA of SHBG and insulin signaling components and GLUTs in placental tissue. RESULTS In the placental tissue of non-obese women, there was a decrease in expression of SHBG protein and mRNA, with a concurrent decrease in expression of GLUT-4 protein and mRNA in women with GDM compared with normal controls. There was a decrease in GLUT-3 and insulin receptor substrate (IRS)-1 protein expression and lower IRS-2 mRNA expression was also observed in GDM placental tissue. Linear correlation analyses showed a positive correlation between SHBG and IRS-2 mRNA (P=0.038, R(2)=0.2178, y=0.249x+1.4208); positive correlation between SHBG and phosphatidylinositol 3-kinase (PI3K) p85α mRNA (P=0.035, R(2)=0.224, y=0.3506x+0.7433); positive correlation between SHBG and GLUT-4 mRNA (P=0.000, R(2)=0.5174, y=1.3822+1.7811x); positive correlation between IRS-2 and GLUT-4 mRNA (P=0.002, R(2)=0.4064, y=-0.8272+2.9592x); negative correlation between IRS-1 and PI3K p85α mRNA (P=0.005, R(2)=0.366, y=2.4492-0.1929x); negative correlation between IRS-1 and GLUT-3 mRNA (P=0.027, R(2)=0.243, y=0.9254-0.0714x); and positive correlation between IRS-2 and GLUT-1 mRNA (P=0.004, R(2)=0.3794, y=0.0225+0.6298x). CONCLUSION The results confirm that defective receptors for insulin signal transduction and GLUT proteins are present in GDM placental tissue. Decreasing expression of SHBG may participate in regulation of insulin signaling, leading to a concomitant decrease in expression of relevant insulin signaling components in placental tissue, implying insulin resistance and eventual development of GDM.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Zhen Jin
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China.
| | - Lei Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Yang Zheng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Jiexuan Jiang
- Department of Obstetrics and Gynecology, Qingdao Women and Children's Hospital, No. 217, Liao Yang West Road, Shi Bei District, Qingdao 266000, China
| | - Chong Feng
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| | - Yue Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, China
| |
Collapse
|
6
|
Johnson N, Walker K, Gibson LJ, Orr N, Folkerd E, Haynes B, Palles C, Coupland B, Schoemaker M, Jones M, Broderick P, Sawyer E, Kerin M, Tomlinson IP, Zvelebil M, Chilcott-Burns S, Tomczyk K, Simpson G, Williamson J, Hillier SG, Ross G, Houlston RS, Swerdlow A, Ashworth A, Dowsett M, Peto J, dos Santos Silva I, Fletcher O. CYP3A Variation, Premenopausal Estrone Levels, and Breast Cancer Risk. J Natl Cancer Inst 2012; 104:657-669. [DOI: 10.1093/jnci/djs156] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
7
|
Abstract
Prostate cancer represents a major health problem in men worldwide. Androgens are required for the growth and maintenance of the prostate. Androgens act by binding to the androgen receptor (AR), a nuclear receptor transcription factor present in the prostate tissues. Most prostate tumors also retain their androgen dependence; therefore, androgen ablation is usually the preferred initial therapeutic approach for the treatment of advanced prostate cancer patients. This review summarizes the current information regarding the role of androgens in prostate cancer.
Collapse
Affiliation(s)
- Sujit Basu
- Department of Pathology, Ohio State University, Columbus, OH 43210 USA
| | - Donald J. Tindall
- Departments of Urology and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905 USA
| |
Collapse
|
8
|
Yamamoto K, Koh E, Matsui F, Sugimoto K, Sin HS, Maeda Y, Namiki M. Measurement-specific bioavailable testosterone using concanavalin A precipitation: Comparison of calculated and assayed bioavailable testosterone. Int J Urol 2009; 16:894-901. [DOI: 10.1111/j.1442-2042.2009.02379.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
In silico identification of anthropogenic chemicals as ligands of zebrafish sex hormone binding globulin. Toxicol Appl Pharmacol 2008; 234:47-57. [PMID: 18725242 DOI: 10.1016/j.taap.2008.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/27/2008] [Accepted: 07/07/2008] [Indexed: 11/23/2022]
Abstract
Anthropogenic compounds with the capacity to interact with the steroid-binding site of sex hormone binding globulin (SHBG) pose health risks to humans and other vertebrates including fish. Building on studies of human SHBG, we have applied in silico drug discovery methods to identify potential binders for SHBG in zebrafish (Danio rerio) as a model aquatic organism. Computational methods, including; homology modeling, molecular dynamics simulations, virtual screening, and 3D QSAR analysis, successfully identified 6 non-steroidal substances from the ZINC chemical database that bind to zebrafish SHBG (zfSHBG) with low-micromolar to nanomolar affinities, as determined by a competitive ligand-binding assay. We also screened 80,000 commercial substances listed by the European Chemicals Bureau and Environment Canada, and 6 non-steroidal hits from this in silico screen were tested experimentally for zfSHBG binding. All 6 of these compounds displaced the [(3)H]5alpha-dihydrotestosterone used as labeled ligand in the zfSHBG screening assay when tested at a 33 microM concentration, and 3 of them (hexestrol, 4-tert-octylcatechol, and dihydrobenzo(a)pyren-7(8H)-one) bind to zfSHBG in the micromolar range. The study demonstrates the feasibility of large-scale in silico screening of anthropogenic compounds that may disrupt or highjack functionally important protein:ligand interactions. Such studies could increase the awareness of hazards posed by existing commercial chemicals at relatively low cost.
Collapse
|
10
|
Cherkasov A, Ban F, Santos-Filho O, Thorsteinson N, Fallahi M, Hammond GL. An Updated Steroid Benchmark Set and Its Application in the Discovery of Novel Nanomolar Ligands of Sex Hormone-Binding Globulin. J Med Chem 2008; 51:2047-56. [DOI: 10.1021/jm7011485] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Artem Cherkasov
- Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, and Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia
| | - Fuqiang Ban
- Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, and Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia
| | - Osvaldo Santos-Filho
- Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, and Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia
| | - Nels Thorsteinson
- Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, and Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia
| | - Magid Fallahi
- Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, and Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia
| | - Geoffrey L. Hammond
- Prostate Centre at the Vancouver General Hospital, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, and Department of Obstetrics and Gynecology, University of British Columbia, Child & Family Research Institute, Vancouver, British Columbia
| |
Collapse
|
11
|
Cherkasov A, Ban F, Li Y, Fallahi M, Hammond GL. Progressive Docking: A Hybrid QSAR/Docking Approach for Accelerating In Silico High Throughput Screening. J Med Chem 2006; 49:7466-78. [PMID: 17149875 DOI: 10.1021/jm060961+] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A combination of protein-ligand docking and ligand-based QSAR approaches has been elaborated, aiming to speed-up the process of virtual screening. In particular, this approach utilizes docking scores generated for already processed compounds to build predictive QSAR models that, in turn, assess hypothetical target binding affinities for yet undocked entries. The "progressive docking" has been tested on drug-like substances from the NCI database that have been docked into several unrelated targets, including human sex hormone binding globulin (SHBG), carbonic anhydrase, corticosteroid-binding globulin, SARS 3C-like protease, and HIV1 reverse transcriptase. We demonstrate that progressive docking can reduce the amount of computations 1.2- to 2.6-fold (when compared to traditional docking), while maintaining 80-99% hit recovery rates. This progressive-docking procedure, therefore, substantially accelerates high throughput screening, especially when using high accuracy (slower) docking approaches and large-sized datasets, and has allowed us to identify several novel potent nonsteroidal SHBG ligands.
Collapse
Affiliation(s)
- Artem Cherkasov
- Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V5Z 3J5.
| | | | | | | | | |
Collapse
|
12
|
de Ronde W, van der Schouw YT, Pols HAP, Gooren LJG, Muller M, Grobbee DE, de Jong FH. Calculation of bioavailable and free testosterone in men: a comparison of 5 published algorithms. Clin Chem 2006; 52:1777-84. [PMID: 16793931 DOI: 10.1373/clinchem.2005.063354] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Estimation of serum concentrations of free testosterone (FT) and bioavailable testosterone (bioT) by calculation is an inexpensive and uncomplicated method. We compared results obtained with 5 different algorithms. METHODS We used 5 different published algorithms [described by Sodergard et al. (bioTS and FTS), Vermeulen et al. (bioTV and FTV), Emadi-Konjin et al. (bioTE), Morris et al. (bioTM), and Ly et al. (FTL)] to estimate bioT and FT concentrations in samples obtained from 399 independently living men (ages 40-80 years) participating in a cross-sectional, single-center study. RESULTS Mean bioT was highest for bioTS (10.4 nmol/L) and lowest for bioT(E) (3.87 nmol/L). Mean FT was highest for FTS (0.41 nmol/L), followed by FTV (0.35 nmol/L), and FTL (0.29 nmol/L). For bioT concentrations, the Pearson correlation coefficient was highest for the association between bioTS and bioTV (r = 0.98) and lowest between bioTM and bioTE (r = 0.66). FTL was significantly associated with both FTS (r = 0.96) and FTV (r = 0.88). The Pearson correlation coefficient for the association between FTL and bioTM almost reached 1.0. Bland-Altman analysis showed large differences between the results of different algorithms. BioTM, bioTE, bioTV, and FTL were all significantly associated with sex hormone binding globulin (SHBG) concentrations. CONCLUSION Algorithms to calculate FT and bioT must be revalidated in the local setting, otherwise over- or underestimation of FT and bioT concentrations can occur. Additionally, confounding of the results by SHBG concentrations may be introduced.
Collapse
Affiliation(s)
- Willem de Ronde
- Department of Endocrinology, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Prostate cancer is a significant cause of morbidity and mortality worldwide. Normal prostate tissue is regulated by androgens, which activate the androgen receptor, a nuclear receptor transcription factor. Most prostate tumors retain androgen dependence, therefore, current therapies for advanced prostate cancer either reduce androgen levels or prevent binding to the androgen receptor. Despite this regimen, prostate cancer invariably progresses to a fatal, androgen-refractory state. Although these relapsed tumors are androgen independent, they are still dependent on the androgen receptor for their growth and survival. The focus of this review will be to highlight our current understanding of the mechanisms of androgen receptor activation in androgen-refractory prostate cancer. How these mechanisms of androgen receptor activation could be targeted in this advanced stage of the disease is also discussed.
Collapse
Affiliation(s)
- Scott M Dehm
- Mayo Clinic College of Medicine, 200 First Street, SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
14
|
Cherkasov A, Shi Z, Li Y, Jones SJM, Fallahi M, Hammond GL. ‘Inductive' Charges on Atoms in Proteins: Comparative Docking with the Extended Steroid Benchmark Set and Discovery of a Novel SHBG Ligand. J Chem Inf Model 2005; 45:1842-53. [PMID: 16309292 DOI: 10.1021/ci0498158] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have developed a novel iterative approach for calculation of partial charges in proteins within the framework of the 'molecular capacitance' model. The method operates by an effective 'inductive' electronegativity scale derived from a number of the conventional charge systems including CHARMM, AMBER, MMFF, OPLS, and PEOE among others. Our novel 'inductive' electronegativity equalization procedure allows rapid and conformation sensitive computation of adequate partial charges in proteins. Accuracy of the 'inductive' values was confirmed by their correlation with DFT-computed partial charges in common amino acids. A comparative docking study with an extended steroid data set not only illustrated the adequacy of 'inductive' protein charges but also demonstrated their superior performance compared to several conventional protein charging systems. Subsequent docking with 'inductive' charges resulted in identification of five potential leads as human Sex Hormone Binding Globulin (SHBG) ligands from a commercial library of natural compounds. When the selected substances were evaluated for their ability to bind SHBG in vitro, three of them displaced testosterone from the SHBG steroid-binding site, and with one compound this was achieved at micromolar concentrations.
Collapse
Affiliation(s)
- Artem Cherkasov
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, 2733 Heather Street, Vancouver, British Columbia V5Z 3J5, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Cherkasov A, Shi Z, Fallahi M, Hammond GL. Successful in Silico Discovery of Novel Nonsteroidal Ligands for Human Sex Hormone Binding Globulin. J Med Chem 2005; 48:3203-13. [PMID: 15857126 DOI: 10.1021/jm049087f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using "in silico" drug design methodologies, we have discovered several nonsteroidal compounds of natural origin that bind to human sex hormone binding globulin (SHBG) with affinity constants of 0.1 x 10(6) to 1.2 x 10(6) M(-1). The computational solutions we developed involved pharmacophore-aided database search, virtual protein-ligand docking, and structure-activity modeling with "inductive" QSAR descriptors. By screening 23 836 natural substance structures, we identified 29 potential SHBG ligands, and eight of these bound the protein in vitro. These nonsteroidal ligands belong to four classes of molecular scaffolds with several available substitution positions that could allow chemical modification to enhance SHBG-binding activity. Interestingly, one of these compounds is structurally similar to a dicyclohexane derivative that binds to rat SHBG and causes azospermia when administered to male rats. Taken together, the in silico strategy we have developed will aid in the discovery of nonsteroidal ligands of SHBG with novel pharmacological properties.
Collapse
Affiliation(s)
- Artem Cherkasov
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Heather Pavilion, 2733, Heather Street, Vancouver, British Columbia V5Z 3J5, Canada.
| | | | | | | |
Collapse
|
16
|
Ng KM, So MT, Lee WM. Expression of rabbit sex hormone-binding globulin during pregnancy and prenatal development and identification of a novel isoform. Endocrinology 2005; 146:1965-72. [PMID: 15625245 DOI: 10.1210/en.2004-1173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
SHBG is a homodimeric plasma glycoprotein. It functions as a carrier for sex steroids in blood and regulates their access to target cells. In human and rabbit, SHBG is a single-copy gene comprised of eight exons and is expressed primarily in the liver and testis. In the present study, the ontogeny of rabbit SHBG (rbSHBG) gene expression was examined in both fetus and mothers. Trace amounts of rbSHBG mRNA were detected in fetal liver from d 11 to d 29 gestation. These levels increased dramatically at d 30 and remained high until parturition (d 33). In contrast, high levels of rbSHBG mRNA were detected in the maternal liver early during pregnancy, with maximal levels being attained by d 22 and declining markedly thereafter. A rbSHBG transcript lacking the exon 4 sequences was consistently expressed along with the rbSHBG mRNA. When expressed as a glutathione-S-transferase-fusion protein, this alternatively spliced rbSHBG transcript resulted in a product with almost no steroid binding activity, unlike the full-length rbSHBG-glutathione-S-transferase fusion protein, which bound 5alpha-dihydrotestosterone. Antibody specific to the novel rbSHBG isoform lacking the exon 4-encoding domain was raised, and a single immunoreactive protein of 33-35 kDa was detected by Western blot analysis in both fetal and maternal liver, and this indicates that the rbSHBG transcripts lacking exon 4 sequences are translated in vivo. An RT-PCR analysis further revealed that this alternatively spliced SHBG transcript is present in human HepG2 cells as well as human and mouse testes, indicating that exon 4 splicing in SHBG transcription is conserved among mammalian species. To our knowledge, this is the first report of the identification of a SHBG exon 4 splice variant that is translated. Because the SHBG isoform it encodes lacks appreciable steroid-binding activity, it may function beyond that of the widely accepted role of SHBG as a steroid-transport protein.
Collapse
Affiliation(s)
- Kwong-Man Ng
- Department of Zoology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | |
Collapse
|
17
|
Ly LP, Handelsman DJ. Empirical estimation of free testosterone from testosterone and sex hormone-binding globulin immunoassays. Eur J Endocrinol 2005; 152:471-8. [PMID: 15757865 DOI: 10.1530/eje.1.01844] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The growing interest in measuring blood free testosterone (FT) is constrained by the unsuitability of the laborious reference methods for wider adoption in routine diagnostic laboratories. Various alternative derived testosterone measures have been proposed to estimate FT from either additional assay steps or calculations using total testosterone (TT) and sex hormone-binding globulin (SHBG) measured in the same sample. However, none have been critically validated in large numbers of blood samples. METHODS We analyzed a large dataset comprising over 4000 consecutive blood samples in which FT as well as TT and SHBG were measured. Dividing the dataset into samples with blood TT above and below 5 nM, using a bootstrap regression modeling approach guided by Akaike Information Criterion for model selection to balance parsimony against reduction of residual error, empirical equations were developed for FT in terms of TT and SHBG. RESULTS Comparison between the empirical FT equations with the laboratory FT measurements as well as three widely used calculated FT methods showed the empirical FT formulae had superior fidelity with laboratory measurements while previous FT formulae overestimated and deviated systematically from the laboratory FT values. CONCLUSION We conclude that these simple, assumption-free empirical FT equations can estimate accurately blood FT from TT and SHBG measured in the same samples with the present assay methods and have suitable properties for wider application to evaluate the clinical utility of blood FT measurements.
Collapse
Affiliation(s)
- Lam P Ly
- Department of Andrology, Concord Hospital and ANZAC Research Institute, University of Sydney, Sydney NSW 2139, Australia
| | | |
Collapse
|
18
|
Norman AW, Mizwicki MT, Norman DPG. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 2004; 3:27-41. [PMID: 14708019 DOI: 10.1038/nrd1283] [Citation(s) in RCA: 376] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anthony W Norman
- Department of Biochemistry, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|