1
|
El-Fawal EM, El Naggar AMA, El-Zahhar AA, Alghandi MM, Morshedy AS, El Sayed HA, Mohammed AEME. Biofuel production from waste residuals: comprehensive insights into biomass conversion technologies and engineered biochar applications. RSC Adv 2025; 15:11942-11974. [PMID: 40264955 PMCID: PMC12013611 DOI: 10.1039/d5ra00857c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 04/24/2025] Open
Abstract
Biomass-derived residuals represent a vital renewable energy source, offering sustainable alternatives to mitigate fossil fuel dependency, address climate change, and manage waste. Although biomass generally has a lower calorific value (10-20 MJ kg-1) compared to fossil fuels (40-50 MJ kg-1), its energy recovery potential can be enhanced through advanced conversion technologies such as torrefaction, pyrolysis, and gasification. Additionally, biomass is considered carbon neutral when sourced sustainably, as the CO2 released during combustion is reabsorbed by plants during their regrowth cycle, maintaining a balanced carbon flux in the atmosphere. This review explores the diverse sources of biomass and examines their chemical compositions and inherent properties, emphasizing their transformation into valuable energy carriers and bio-products. It provides a comprehensive analysis of thermochemical, biochemical, and physicochemical conversion technologies, detailing their mechanisms, efficiencies and applications. Special attention is given to biochar, a product of biomass pyrolysis, highlighting its potential in pollution mitigation, carbon sequestration, and as a catalyst in industrial applications. The review delves into synthesis processes of biochar and performance-enhancing modifications, illustrating its significant role in sustainable environmental management. Additionally, the economic and ecological advantages of biomass-derived energy, including reduced greenhouse gas emissions and waste reutilization, are critically evaluated, underscoring its superiority over conventional fossil fuels. Challenges limiting the scalability of biomass energy, such as technology costs, process efficiency, and market dynamics, are addressed, alongside prospective solutions. By consolidating extensive research on biomass conversion technologies and engineered biochar applications, this review serves as a valuable resource for researchers and policymakers. It aims to guide advancements in biomass utilization, fostering a transition toward sustainable energy systems and addressing global energy and environmental challenges.
Collapse
Affiliation(s)
- Esraa M El-Fawal
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | - Ahmed M A El Naggar
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | - Adel A El-Zahhar
- Department of Chemistry, Faculty of Science, King Khalid University Abha 9004 Saudi Arabia
| | - Majed M Alghandi
- Department of Chemistry, Faculty of Science, King Khalid University Abha 9004 Saudi Arabia
| | - Asmaa S Morshedy
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | - Hussien A El Sayed
- Egyptian Petroleum Research Institute (EPRI) 1 Ahmed El-Zomor st. Nasr City Cairo Egypt
| | | |
Collapse
|
2
|
Kaushik Y, Arora P. Investigating the sustainable energy generation potential of an invasive weed: Lantana camara. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:62493-62509. [PMID: 39453581 DOI: 10.1007/s11356-024-35322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024]
Abstract
Lantana camara, one of the world's top ten most invasive species, was initially cultivated for ornamental use. However, it spread uncontrollably across the fallow areas and agricultural lands, threatening approximately 44% of Indian forests. Its invasion disrupts ecosystems by suppressing nearby plant growth through allelopathy and poses toxicity risks to grazing ruminants. It significantly increases forest fire risk by adding large amounts of combustible biomass, particularly dried L. camara. Despite efforts to control it using mechanical, chemical, and biocontrol methods, the results have been largely unsatisfactory, with associated costs estimated at $18,000 per square kilometre. Considering these challenges, recent research explored the potential of L. camara as a bioenergy resource. The L. camara briquettes exhibit a heating value of approximately 20 MJ/kg with a low sulphur (0.5%), nitrogen (1%), and ash content (2%), making them suitable for decentralised energy production. Furthermore, bioethanol production from L. camara hydrolysate has shown promising results, yielding 0.33 g/g with Pichia stipitis and 0.47 g/g with Saccharomyces cerevisiae, which is comparable to other lignocellulosic feedstocks. Additionally, the gasification of L. camara using a downdraft gasifier produced syngas with a lower heating value (LHV) of 6.4 MJ/Nm3. These findings demonstrate that using L. camara for bioenergy production presents a dual solution, addressing the growing demand for renewable energy and managing invasive species. This review aims to critically evaluate the potential and challenges associated with the different energy production pathways for L. camara, highlighting its role in sustainable energy generation.
Collapse
Affiliation(s)
- Yogesh Kaushik
- Hydro and Renewable Energy Department, Indian Institute of Technology Roorkee, Roorkee, India
| | - Pratham Arora
- Hydro and Renewable Energy Department, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
3
|
Ye T, Gou L, Wang Y, Liu N, Dai L, Wang Y. Co-hydrothermal carbonization of pretreated sludge and polyethylene terephthalate for the preparation of low-nitrogen clean solid fuels. RSC Adv 2024; 14:17326-17337. [PMID: 38813125 PMCID: PMC11134525 DOI: 10.1039/d4ra02165g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
In this work, polyethylene terephthalate (PET) and sewage sludge (SS) were co-hydrothermally carbonized to produce low-nitrogen solid fuels. To minimize the effect of nitrogen, this work introduces a co-hydrothermal carbonization method involving alkali (A), ultrasonic cell disruptor (UCC), and sodium dodecyl sulfate (SDS) for both individual and combined pretreatment of SS and PET. Comparative analysis of the products shows that the combined pretreatment with sodium dodecyl sulfate (SDS) and alkali (A) effectively disrupts the SS cell structure, leading to the loosening of stable extracellular polymeric substances (EPS). This condition is conducive to the release and hydrolysis of proteins during hydrothermal carbonization. Moreover, under conditions where PET serves both as an acid producer and a carbon source, and through parameter optimization at a temperature of 240 °C, reaction time of 2 h, PET addition of 20 wt%, and water addition of 0.6 g cm-3, a high-quality, low-nitrogen clean solid fuel was produced (N: 0.51 wt%, C: 19.10 wt%).
Collapse
Affiliation(s)
- Ting Ye
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Le Gou
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Yue Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Nan Liu
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Liyi Dai
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| | - Yuanyuan Wang
- State Key Laboratory of Petroleum Molecular & Process Engineering, East China Normal University No. 500 Dongchuan Road Shanghai 200241 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
4
|
Vallejo F, Yánez-Sevilla D, Díaz-Robles LA, Cubillos F, Espinoza-Pérez A, Espinoza-Pérez L, Pino-Cortés E, Cereceda-Balic F. Insights into hydrothermal treatment of biomass blends: Assessing energy yield and ash content for biofuel enhancement. PLoS One 2024; 19:e0304054. [PMID: 38776338 PMCID: PMC11111091 DOI: 10.1371/journal.pone.0304054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
This study explores the Hydrothermal Carbonization (HTC) treatment of lignocellulosic biomass blends, delving into the influence of several key parameters: temperature, additive nature and dosage, residence time, and biomass composition. Rapeseeds, Pinus radiata sawdust, oat husks, and pressed olive served as the studied biomasses. One hundred twenty-eight experiments were conducted to assess the effects on mass yield (MY), energy yield (EY), higher heating value (HHV), and final ash content (ASH) by a Factorial Experimental Design. The derived model equations demonstrated a robust fit to the experimental data, averaging an R2 exceeding 0.94, affirming their predictive accuracy. The observed energy yield ranged between 65% and 80%, notably with sawdust and olive blends securing EY levels surpassing 70%, while rapeseed blends exhibited the highest HHV at 25 MJ/kg. Temperature emerged as the most influential factor, resulting in an 11% decrease in MY and a substantial 2.20 MJ/kg increase in HHV. Contrastingly, blend composition and additive presence significantly impacted ASH and EY, with all blends exhibiting increased ASH in the presence of additives. Higher initial hemicellulose and aqueous extractive content in raw biomass correlated proportionally with heightened HHV.
Collapse
Affiliation(s)
- Fidel Vallejo
- Industrial Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Diana Yánez-Sevilla
- Agroindustrial Engineering, National University of Chimborazo, Riobamba, Ecuador
| | - Luis Alonso Díaz-Robles
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Francisco Cubillos
- Chemical Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Andrea Espinoza-Pérez
- Program for the Development of Sustainable Production Systems (PDSPS), Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
- Industrial Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Lorena Espinoza-Pérez
- Program for the Development of Sustainable Production Systems (PDSPS), Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
- Industrial Engineering Department, Faculty of Engineering, University of Santiago of Chile, Estación Central, Santiago, Chile
| | - Ernesto Pino-Cortés
- Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Francisco Cereceda-Balic
- Centre for Environmental Technologies, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
5
|
Lenertz M, Li Q, Armstrong Z, Scheiwiller A, Ni G, Wang J, Feng L, MacRae A, Yang Z. Magnetic Multienzyme@Metal-Organic Material for Sustainable Biodegradation of Insoluble Biomass. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11617-11626. [PMID: 38410049 DOI: 10.1021/acsami.4c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Biodegradation of insoluble biomass such as cellulose via carbohydrase enzymes is an effective approach to break down plant cell walls and extract valuable materials therein. Yet, the high cost and poor reusability of enzymes are practical concerns. We recently proved that immobilizing multiple digestive enzymes on metal-organic materials (MOMs) allows enzymes to be reused via gravimetric separation, improving the cost efficiency of cereal biomass degradation [ACS Appl. Mater. Interfaces 2021, 13, 36, 43085-43093]. However, this strategy cannot be adapted for enzymes whose substrates or products are insoluble (e.g., cellulose crystals). Recently, we described an alternative approach based on magnetic metal-organic frameworks (MOFs) using model enzymes/substrates [ACS Appl. Mater. Interfaces 2020, 12, 37, 41794-41801]. Here, we aim to prove the effectiveness of combining these two strategies in cellulose degradation. We immobilized multiple carbohydrase enzymes that cooperate in cellulose degradation via cocrystallization with Ca2+, a carboxylate ligand (BDC) in the absence and presence of magnetic nanoparticles (MNPs). We then compared the separation efficiency and enzyme reusability of the resultant multienzyme@Ca-BDC and multienzyme@MNP-Ca-BDC composites via gravimetric and magnetic separation, respectively, and found that, although both composites were effective in cellulose degradation in the first round, the multienzyme@MNP-Ca-BDC composites displayed significantly enhanced reusability. This work provides the first experimental demonstration of using magnetic solid supports to immobilize multiple carbohydrase enzymes simultaneously and degrade cellulose and promotes green/sustainable chemistry in three ways: (1) reusing the enzymes saves energy/sources to prepare them, (2) the synthetic conditions are "green" without generating unwanted wastes, and (3) using our composites to degrade cellulose is the first step of extracting valuable materials from sustainable biomasses such as plants whose growth does not rely on nonregeneratable resources.
Collapse
Affiliation(s)
- Mary Lenertz
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Allison Scheiwiller
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Gigi Ni
- Department of Chemistry and Chemical Biology, Harvard University, Boston, Massachusetts 02138, United States
| | - Jien Wang
- California State University, San Marcos, San Marcos, California 92096, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
6
|
Hasan Z, Lateef M. Transforming food waste into animal feeds: an in-depth overview of conversion technologies and environmental benefits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17951-17963. [PMID: 37847367 DOI: 10.1007/s11356-023-30152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Food waste is a global concern, with significant quantities of edible food being discarded every day. However, innovative conversion technologies have emerged to effectively transform this waste into valuable animal feed. This review paper provides a comprehensive examination of the conversion technologies used to transform food waste into animal feed, along with an analysis of the environmental benefits associated with these processes. The paper delves into various conversion methods such as anaerobic digestion, insect-based conversion, and microbial fermentation along with exploring their mechanisms and suitability for converting food waste into valuable animal feed resources. Additionally, the environmental benefits, including waste reduction, greenhouse gas emission reduction, and resource conservation, are discussed in detail. The review highlights the potential of these technologies to address the pressing issue of food waste while contributing to a more sustainable and resource-efficient food system. The findings of this review emphasize the importance of adopting and further developing these conversion technologies as a means to mitigate environmental impacts, promote circular economy principles, and enhance the overall sustainability of the food and agriculture sector.
Collapse
Affiliation(s)
- Ziaul Hasan
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India.
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India.
| | - Muneera Lateef
- Department of Agricultural Genetic Engineering, Niğde Ömer Halisdemir University, Nigde, Turkey
| |
Collapse
|
7
|
Edo-Alcón N, Gallardo A, Colomer-Mendoza F, Lobo A. Efficiency of biological and mechanical-biological treatment plants for MSW: The case of Spain. Heliyon 2024; 10:e26353. [PMID: 38404851 PMCID: PMC10884472 DOI: 10.1016/j.heliyon.2024.e26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Biological and mechanical biological treatment plants combine mechanical and biological treatments to recover the greatest possible amount of materials from municipal solid waste (MSW) and biostabilize the organic fraction to be landfilled or applied in land. These plants handle a high percentage of the MSW generated in Europe. This work presents an exhaustive analysis of the existing plants in Spain which evaluates their typology as well as their performance. In Spain, 137 plants, which receive 13 Mt/year of waste, provide the country with total coverage. Twenty-two types of plants have been identified and grouped into six categories. There are four categories that receive mixed MSW: 1) sorting plants; 2) recovery and composting plants; 3) biodrying and recovery plants; and 4) recovery, biomethanation and composting plants and two that receive separately collected biowaste: 5) composting plants, and 6) biomethanation and composting plants. In plants that receive mixed waste, around 5% of the total input is recovered as recyclable materials (662,182 t/year), of which 29% corresponds to plastics, 27% to metals, and 27% to paper and cardboard. In addition, biostabilized material and/or biogas, and rejects (45-77% of the input) are obtained. In the biowaste plants, high-quality compost (more than 105,000 t/year), a higher biogas yield (43.60 Nm3/t·year) and a lower proportion of rejects (around 29%) are obtained.
Collapse
Affiliation(s)
- N. Edo-Alcón
- Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, Avda. Vicent Sos Baynat, 12071, Castelló de la Plana, Spain
| | - A. Gallardo
- Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, Avda. Vicent Sos Baynat, 12071, Castelló de la Plana, Spain
| | - F.J. Colomer-Mendoza
- Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, Avda. Vicent Sos Baynat, 12071, Castelló de la Plana, Spain
| | - A. Lobo
- Grupo de Ingeniería Ambiental, Departamento de Ciencias y Técnicas del Agua y del Medio Ambiente, Universidad de Cantabria, Avda. de los Castros, 39005 Santander, Spain
| |
Collapse
|
8
|
Robinson JS, Leinweber P. Effects of pyrolysis and incineration on the phosphorus fertiliser potential of bio-waste- and plant-based materials. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 172:358-367. [PMID: 37952467 DOI: 10.1016/j.wasman.2023.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 11/14/2023]
Abstract
Land application of biomass materials and their products of thermal treatment (biochars and ashes) can offset the unsustainable use of soluble P fertilisers. However, few evaluations of P fertiliser potential have systematically addressed diverse biomass types with contrasting P contents. This paper evaluates the relative P fertiliser potential of four P-rich biowastes (animal bone, poultry manure, pig slurry, and a municipal sewage sludge) and three low-P, plant-based materials (reeds [Phragmites australis L.], rice husks [Oryza sativa L.] and cocoa prunings [Theobroma cacao L.]) and their biochars and ashes. We utilised three complementary approaches: P extractability in single solvents (2% formic and citric acids, and 1 M neutral ammonium citrate); sequential chemical P fractionation, and P dissolution/desorption kinetics. In most cases, pyrolysis and incineration of the P-rich biowastes increased P extractability (% TP) in the single solvents, whilst decreasing water-soluble P. For pig slurry, for example, pyrolysis reduced water-soluble P 20-fold, with corresponding increases observed not only in the solvent-extractable P but also in the pool of potentially plant available, NaHCO3-Pi fraction (e.g., 17 to 35% TP). These complementary datasets were also evident for the low-P feedstocks and thermal products; e.g., pyrolysis increased the NaHCO3-Pi fraction in reed feedstock from 6 to 15% TP. For all biomass feedstocks, biochars and ashes, pseudo-second order P-release kinetics provided the best fit with the experimental data. The data demonstrate scope for using pyrolysis to upgrade the P fertiliser value of a wide range of biomass materials whilst reducing their environmental impact.
Collapse
Affiliation(s)
- James Stephen Robinson
- Department of Geography and Environmental Science, University of Reading, Reading RG6 6AB, UK.
| | - Peter Leinweber
- Soil Science, Faculty for Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig Weg 6, 18059 Rostock, Germany.
| |
Collapse
|
9
|
Shrivastava P, Palamanit A, Kumar A. Isoconversional thermal decomposition reaction kinetics of oil palm trunk and rubberwood sawdust for thermochemical conversion processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-28998-5. [PMID: 37556055 DOI: 10.1007/s11356-023-28998-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Biomass as a raw material has profound implications for thermal conversion processes. It is important to study the relationship between kinetic modeling to depict significant importance in thermal processing by estimating volatile yield and reaction performance during biomass decomposition. This work aimed to determine the thermal decomposition reaction kinetics of non-woody (oil palm trunk (OPT)) and woody (rubberwood sawdust (RWS)) biomass. Devolatilization of biomass is determined by the thermogravimetric analysis (TGA) at three different heating rates (10, 20, and 30 °C/min) using nitrogen as inert gas. The kinetic analysis used isoconversion models of Friedman, Ozawa-Flynn-Wall (OFW), and Kissinger-Akahira-Sunose (KAS). The activation energy varied from 218.4 to 303.8 kJ/mol (Friedman), 235.9 to 299.1 kJ/mol (OFW), and 235.8 to 298.9 kJ/mol (KAS) for OPT; and 199.7 to 228.1 kJ/mol (Friedman), 210.6 to 225.6 kJ/mol (OFW), and 210.7 to 225.2 kJ/mol (KAS) for RWS. The kinetic analysis indicated that RWS and OPT had diverse reaction kinetics, which depend on the reaction rate and order of the reaction. Experimental and theoretical conversion data agreed reasonably well, indicating that these results can be used for future OPT and RWS process modeling. Consistency of results is validated using GC-MS equipped with a pyrolyzer.
Collapse
Affiliation(s)
- Pranshu Shrivastava
- Department of Mechanical and Mechatronics Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Arkom Palamanit
- Biomass Energy and Sustainable Technologies (BEST) Research Center, Energy Technology Program, Department of Interdisciplinary Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
| | - Anil Kumar
- Department of Mechanical Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
- Centre for Energy and Environment, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| |
Collapse
|
10
|
Ashoor S, Khang TU, Lee YH, Hyung JS, Choi SY, Lim SE, Lee J, Park SJ, Na JG. Bioupgrading of the aqueous phase of pyrolysis oil from lignocellulosic biomass: a platform for renewable chemicals and fuels from the whole fraction of biomass. BIORESOUR BIOPROCESS 2023; 10:34. [PMID: 38647900 PMCID: PMC10992256 DOI: 10.1186/s40643-023-00654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 04/25/2024] Open
Abstract
Pyrolysis, a thermal decomposition without oxygen, is a promising technology for transportable liquids from whole fractions of lignocellulosic biomass. However, due to the hydrophilic products of pyrolysis, the liquid oils have undesirable physicochemical characteristics, thus requiring an additional upgrading process. Biological upgrading methods could address the drawbacks of pyrolysis by utilizing various hydrophilic compounds as carbon sources under mild conditions with low carbon footprints. Versatile chemicals, such as lipids, ethanol, and organic acids, could be produced through microbial assimilation of anhydrous sugars, organic acids, aldehydes, and phenolics in the hydrophilic fractions. The presence of various toxic compounds and the complex composition of the aqueous phase are the main challenges. In this review, the potential of bioconversion routes for upgrading the aqueous phase of pyrolysis oil is investigated with critical challenges and perspectives.
Collapse
Affiliation(s)
- Selim Ashoor
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Hadayek Shoubra, Cairo, 11241, Egypt
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Tae Uk Khang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Young Hoon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Ji Sung Hyung
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Seo Young Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Sang Eun Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
11
|
Fan S, Cui L, Li H, Guang M, Liu H, Qiu T, Zhang Y. Value-added biochar production from microwave pyrolysis of peanut shell. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2023. [DOI: 10.1515/ijcre-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Abstract
In order to seek efficient resource utilization, the carbonization of agricultural and forestry wastes through microwave pyrolysis technology is an important research hotspot to develop value-added products. The main objective is to produce value-added biochar through microwave pyrolysis of peanut shell in this study. The product yields, functional groups, and biochar HHVs caused by pyrolysis temperature (400, 450, 500, 550, and 600 °C), microwave power (350, 450, 550, 650, and 750 W), and residence time (10, 20, 30, 40, and 50 min) were investigated, and the energy recovery efficiencies were evaluated. It was obtained that the biochar yield declined monotonously within the range of 45.3–86.0 wt% with the enhancement of pyrolysis temperature, microwave power, or residence time. The pyrolysis temperature of 400 °C, microwave power of 350 W, and residence time of 10 min generated the maximum biochar yield (86.0 wt%). The value-added biochar was obtained with high HHV (20.15–31.02 MJ/kg) and abundant oxygen-contained functional groups (C–O bonds and C=O bonds). The maximum energy recovery efficiency during the whole process reached 97.96%. The results indicated that the peanut shell could reach high biochar yield through microwave pyrolysis, and potentially be transformed into value-added products with high energy recovery efficiency.
Collapse
Affiliation(s)
- Sichen Fan
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Longfei Cui
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Hui Li
- School of Thermal Engineering , Shandong Jianzhu University , Jinan 250101 , China
| | - Mengmeng Guang
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Hui Liu
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Tianhao Qiu
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | - Yaning Zhang
- School of Energy Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
12
|
Müller C, Scapini T, Rempel A, Abaide ER, Camargo AF, Nazari MT, Tadioto V, Bonatto C, Tres MV, Zabot GL, Colla LM, Treichel H, Alves SL. Challenges and opportunities for third-generation ethanol production: A critical review. ENGINEERING MICROBIOLOGY 2023; 3:100056. [PMID: 39628516 PMCID: PMC11610999 DOI: 10.1016/j.engmic.2022.100056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 12/06/2024]
Abstract
In recent decades, third-generation (3G) biofuels have become a more attractive method of fuel production, as algae cultivation does not infringe on resources needed for food production. Additionally, algae can adapt to different environments, has high photosynthetic efficiency (CO2 fixation), and has a high potential for carbohydrate accumulation. The prevalence of algae worldwide demonstrates its ability to adapt to different environments and climates, proving its biodiversity and versatility. Algae can be grown in wastewater, seawater, and even sewage, thus ensuring a lower water footprint and greater energy efficiency during algal biomass production. Because of this, the optimization of 3G ethanol production appears to be an excellent alternative to mitigate environmental impacts and increase energy and food security. This critical review presents (i) the stages of cultivation and processing of micro and macroalgae; (ii) the selection of yeasts (through engineering and/or bioprospecting) to produce ethanol from these biomasses; (iii) the potential of seawater-based facilities to reduce water footprint; and (iv) the mass and energy balances of 3G ethanol production in the world energy matrix. This article is, above all, a brainstorm on the environmental viability of algae bioethanol.
Collapse
Affiliation(s)
- Caroline Müller
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Alan Rempel
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Ederson Rossi Abaide
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Aline Frumi Camargo
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Mateus Torres Nazari
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| | - Charline Bonatto
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering, Federal University of Santa Maria, 1040, Sete de Setembro st., Cachoeira do Sul, RS, Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering, Federal University of Santa Maria, 1040, Sete de Setembro st., Cachoeira do Sul, RS, Brazil
| | - Luciane Maria Colla
- Graduate Program in Civil and Environmental Engineering, University of Passo Fundo, BR 285, Passo Fundo, RS, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocess, Environmental Science and Technology, Federal University of Fronteira Sul, Campus Erechim, RS 135, 200, Erechim, RS, Brazil
| | - Sérgio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, SC 484, Km 2, Chapecó, SC, Brazil
| |
Collapse
|
13
|
Puițel AC, Suditu GD, Drăgoi EN, Danu M, Ailiesei GL, Balan CD, Chicet DL, Nechita MT. Optimization of Alkaline Extraction of Xylan-Based Hemicelluloses from Wheat Straws: Effects of Microwave, Ultrasound, and Freeze-Thaw Cycles. Polymers (Basel) 2023; 15:polym15041038. [PMID: 36850320 PMCID: PMC9963123 DOI: 10.3390/polym15041038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
The alkaline extraction of hemicelluloses from a mixture of three varieties of wheat straw (containing 40.1% cellulose, 20.23% xylan, and 26.2% hemicellulose) was analyzed considering the following complementary pre-treatments: freeze-thaw cycles, microwaves, and ultrasounds. The two cycles freeze-thaw approach was selected based on simplicity and energy savings for further analysis and optimization. Experiments planned with Design Expert were performed. The regression model determined through the response surface methodology based on the severity factor (defined as a function of time and temperature) and alkali concentration as variables was then used to optimize the process in a multi-objective case considering the possibility of further use for pulping. To show the properties and chemical structure of the separated hemicelluloses, several analytical methods were used: high-performance chromatography (HPLC), Fourier-transformed infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H-NMR), thermogravimetry and derivative thermogravimetry analysis (TG, DTG), and scanning electron microscopy (SEM). The verified experimental optimization result indicated the possibility of obtaining hemicelluloses material containing 3.40% glucan, 85.51% xylan, and 7.89% arabinan. The association of hot alkaline extraction with two freeze-thaw cycles allows the partial preservation of the hemicellulose polymeric structure.
Collapse
Affiliation(s)
- Adrian Cătălin Puițel
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Gabriel Dan Suditu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Elena Niculina Drăgoi
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Maricel Danu
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Gabriela-Liliana Ailiesei
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iași, Romania
| | - Cătălin Dumitrel Balan
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
| | - Daniela-Lucia Chicet
- Faculty of Materials Science and Engineering, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 41, 700050 Iaşi, Romania
| | - Mircea Teodor Nechita
- “Cristofor Simionescu” Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University, Bd. Prof. Dimitrie Mangeron, No. 73, 700050 Iaşi, Romania
- Correspondence:
| |
Collapse
|
14
|
Kumar TTA, Ramesh SKT. Thermal decomposition kinetics of Prosopis juliflora charcoal briquette using thermogravimetric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16626-16641. [PMID: 36190626 DOI: 10.1007/s11356-022-23399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
In the current study, the energy potential of Prosopis juliflora charcoal briquette sample was assessed using thermogravimetric analysis at heating rates 10 °C/min, 15 °C/min, and 20 °C/min under nitrogen atmosphere. The thermogravimetric study showed that the thermal devolatilization of the briquette sample occurred in four principal stages. The major degradation of the sample occurred in the fourth stage indicating that the significant mass loss occurred due to the fixed carbon that was abundant in the briquette sample. The activation energy was determined by employing five different model-free methods. The average activation energy attained for the briquette sample by Kissinger-Akahira-Sunose method, Flynn-Wall-Ozawa method, Tang method, Starink method, and Friedman method was 83.55 kJ/mol, 91.60 kJ/mol, 79.91 kJ/mol, 80.06 kJ/mol, and 96.74 kJ/mol, respectively. The frequency factor obtained in the study ranged between 1.42 × 103 and 6.23 × 107 min-1. The contracting sphere model was found to be closely related to the reaction model obtained for charcoal briquettes. The lower activation energy and frequency factor indicated rapid thermal degradation of the charcoal briquettes. The estimated thermodynamic parameters indicated that the thermal degradation process was endothermic in nature.
Collapse
|
15
|
Saravanakumar A, Vijayakumar P, Hoang AT, Kwon EE, Chen WH. Thermochemical conversion of large-size woody biomass for carbon neutrality: Principles, applications, and issues. BIORESOURCE TECHNOLOGY 2023; 370:128562. [PMID: 36587772 DOI: 10.1016/j.biortech.2022.128562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Large-size woody biomass is a valuable renewable resource to replace fossil fuels in biorefinery processes. The preprocessing of wood chips and briquettes is challenging to manage, especially in an industrial setting, as it generates a significant amount of dust and noise and occasionally causes unexpected accidents. As a result, a substantial amount of resources, energy, labor, and space are needed. The thermochemical conversion behavior of large-size woody biomass was studied to reduce energy consumption for chipping. Large-size wood was 1.5 m in length, 0.1 m in breadth, and stacked 90 cm in height. This strategy has many benefits, including increased effectiveness and reduced CO2 emissions. The target of this paper presents the thermochemical process, and large-size wood was chosen because it provides high-quality product gas while reducing the preprocessing fuel cost. This review examines the benefits of thermochemical conversion technologies for assessing the likelihood of carbon neutrality.
Collapse
Affiliation(s)
- Ayyadurai Saravanakumar
- Centre for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India
| | - Pradeshwaran Vijayakumar
- Centre for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India; Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Chengalpattu District, Tamil Nadu, India
| | - Anh Tuan Hoang
- Institute of Engineering, HUTECH University, Ho Chi Minh City, Viet Nam
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan.
| |
Collapse
|
16
|
Vuppaladadiyam AK, Vuppaladadiyam SSV, Sahoo A, Murugavelh S, Anthony E, Bhaskar T, Zheng Y, Zhao M, Duan H, Zhao Y, Antunes E, Sarmah AK, Leu SY. Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159155. [PMID: 36206897 DOI: 10.1016/j.scitotenv.2022.159155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Over the years, the transformation of biomass into a plethora of renewable value-added products has been identified as a promising strategy to fulfil high energy demands, lower greenhouse gas emissions, and exploit under-utilized resources. Techno-economic analysis (TEA) and life-cycle assessment (LCA) are essential to scale up this process while lowering the conversion cost. In this study, trade-offs are made between economic, environmental, and technical indicators produced from these methodologies to better evaluate the commercialization potential of biomass pyrolysis. This research emphasizes the necessity of combining LCA and TEA variables to assess the performance of the early-stage technology and associated constraints. The important findings based on the LCA analysis imply that most of the studies reported in literature focussed on the global warming potentials (GWP) under environmental category by considering greenhouse gases (GHGs) as evaluation parameter, neglecting many other important environmental indices. In addition, the upstream and downstream processes play an important role in understanding the life cycle impacts of a biomass based biorefinery. Under upstream conditions, the use of a specific type of feedstock may influence the LCA conclusions and technical priority. Under downstream conditions, the product utilization as fuels in different energy backgrounds is crucial to the overall impact potentials of the pyrolysis systems. In view of the TEA analysis, investigations towards maximizing the yield of valuable co-products would play an important role in the commercialization of pyrolysis process. However, comprehensive research to compare the conventional, advanced, and emerging approaches of biomass pyrolysis from the economic perspective is currently not available in the literature.
Collapse
Affiliation(s)
- Arun Krishna Vuppaladadiyam
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong; College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | | | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, VIT, Vellore, Tamil Nadu 632014, India
| | - Edward Anthony
- Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | - Thallada Bhaskar
- Thermo-Catalytic Processes Area (TPA), Material Resource Efficiency Division (MRED), CSIR-Indian Institute of Petroleum (IIP), Dehradun 248005, India
| | - Ying Zheng
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing 100084, China; Research Center of Biogas Centralized Utilization, Beijing 100084, China
| | - Huabo Duan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yan Zhao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Elsa Antunes
- College of Science & Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
17
|
Qasim M, Clarkson AN, Hinkley SFR. Green Synthesis of Carbon Nanoparticles (CNPs) from Biomass for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24021023. [PMID: 36674532 PMCID: PMC9863453 DOI: 10.3390/ijms24021023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
In this review, we summarize recent work on the "green synthesis" of carbon nanoparticles (CNPs) and their application with a focus on biomedical applications. Recent developments in the green synthesis of carbon nanoparticles, from renewable precursors and their application for environmental, energy-storage and medicinal applications are discussed. CNPs, especially carbon nanotubes (CNTs), carbon quantum dots (CQDs) and graphene, have demonstrated utility as high-density energy storage media, environmental remediation materials and in biomedical applications. Conventional fabrication of CNPs can entail the use of toxic catalysts; therefore, we discuss low-toxicity manufacturing as well as sustainable and environmentally friendly methodology with a focus on utilizing readily available biomass as the precursor for generating CNPs.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9054, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| | - Simon F. R. Hinkley
- Ferrier Research Institute, Victoria University of Wellington, Wellington 5012, New Zealand
- Correspondence: (A.N.C.); (S.F.R.H.); Tel.: +64-3-279-7326 (A.N.C.); +64-4-463-0052 (S.F.R.H)
| |
Collapse
|
18
|
Renewable Power and Heat for the Decarbonisation of Energy-Intensive Industries. Processes (Basel) 2022. [DOI: 10.3390/pr11010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The present review provides a catalogue of relevant renewable energy (RE) technologies currently available (regarding the 2030 scope) and to be available in the transition towards 2050 for the decarbonisation of Energy Intensive Industries (EIIs). RE solutions have been classified into technologies based on the use of renewable electricity and those used to produce heat for multiple industrial processes. Electrification will be key thanks to the gradual decrease in renewable power prices and the conversion of natural-gas-dependent processes. Industrial processes that are not eligible for electrification will still need a form of renewable heat. Among them, the following have been identified: concentrating solar power, heat pumps, and geothermal energy. These can supply a broad range of needed temperatures. Biomass will be a key element not only in the decarbonisation of conventional combustion systems but also as a biofuel feedstock. Biomethane and green hydrogen are considered essential. Biomethane can allow a straightforward transition from fossil-based natural gas to renewable gas. Green hydrogen production technologies will be required to increase their maturity and availability in Europe (EU). EIIs’ decarbonisation will occur through the progressive use of an energy mix that allows EU industrial sectors to remain competitive on a global scale. Each industrial sector will require specific renewable energy solutions, especially the top greenhouse gas-emitting industries. This analysis has also been conceived as a starting point for discussions with potential decision makers to facilitate a more rapid transition of EIIs to full decarbonisation.
Collapse
|
19
|
Velasco Calderón J, Arora JS, Mushrif SH. Mechanistic Investigation into the Formation of Humins in Acid-Catalyzed Biomass Reactions. ACS OMEGA 2022; 7:44786-44795. [PMID: 36530267 PMCID: PMC9753539 DOI: 10.1021/acsomega.2c04783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/25/2022] [Indexed: 05/27/2023]
Abstract
Humins are carbonaceous, polymeric byproducts formed during the acid-catalyzed condensed phase transformation of biomass-derived moieties and are responsible for significant carbon loss and catalyst deactivation. There exists very limited knowledge about their formation chemistry and composition. Infrared spectra of humins formed during the dehydration of glucose/fructose to 5-HMF show that the furan ring and the hydroxy methyl group of 5-HMF are present in humins, but the carbonyl group is not. Based on this, aldol addition and condensation between 5-HMF and other derived species are proposed as the main reactions that initiate humin formation. Hence, in this work, density functional theory (DFT)-based calculations are performed to compute the reaction pathways, activation barriers, and reaction free energies associated with all elementary reaction steps in the 5HMF-initiated, acid-catalyzed reactions leading to humin formation. The humin formation is initiated with the rehydration of HMF to form 2,5-dioxo-6-hydroxy-hexanal or DHH (key promoter of humin formation), followed by its keto-enol tautomerization and aldol addition and condensation with HMF. The rate-determining step in this pathway is the aldol-addition reaction between the DHH-derived enols with 5-HMF. Within the implicit solvation approximation, the formation of the 5-HMF-DHH dimer is slightly endergonic, whereas the 5-HMF rehydration leading to DHH is thermodynamically downhill. This mechanistic understanding of initiation reactions for humins could pave the way to screen and design solvent and catalyst systems to deter their formation.
Collapse
Affiliation(s)
- José
Carlos Velasco Calderón
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 St NW, Edmonton, Alberta T6G 1H9, Canada
| | - Jyotsna S. Arora
- School
of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Samir H. Mushrif
- Department
of Chemical and Materials Engineering, University
of Alberta, 9211-116 St NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
20
|
Suriapparao DV, Tanneru HK, Reddy BR. A review on the role of susceptors in the recovery of valuable renewable carbon products from microwave-assisted pyrolysis of lignocellulosic and algal biomasses: Prospects and challenges. ENVIRONMENTAL RESEARCH 2022; 215:114378. [PMID: 36150436 DOI: 10.1016/j.envres.2022.114378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Sustainable bio-economics can be achieved by the processing of renewable biomass resources. Hence, this review article presents a detailed analysis of the effect of susceptors on microwave-assisted pyrolysis (MAP) of biomass. Biomass is categorized as lignocellulosic and algal biomass based on available sources. Selected seminal works reporting the MAP of pure biomasses are reviewed thoroughly. Focus is given to understanding the role of the susceptor used for pyrolysis on the characteristics of products produced. The goal is to curate the literature and report variation in the product characteristics for the combinations of the biomass and susceptor. The review explores the factors such as the susceptor to feed-stock ratio and its implications on the product compositions. The process parameters including microwave power, reaction temperature, heating rate, feedstock composition, and product formation are discussed in detail. A repository of such information would enable researchers to glance through the closest possible susceptors they should use for a chosen biomass of their interest for better oil yields. Further, a list of potential applications of MAP products of biomasses, along with the susceptor used, are reported. To this end, this review presents the possible opportunities and challenges for tapping valuable carbon resources from the MAP of biomass for sustainable energy needs.
Collapse
Affiliation(s)
- Dadi V Suriapparao
- Department of Chemical Engineering, Pandit Deendayal Energy University, Gandhinagar, 382426, India.
| | - Hemanth Kumar Tanneru
- Department of Chemical Engineering, Indian Institute of Petroleum and Energy Visakhapatnam, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Busigari Rajasekhar Reddy
- Department of Fuel, Mineral and Metallurgical Engineering, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad, 826004, India
| |
Collapse
|
21
|
Yoon Kim S, Wang M, Nguyen-Phu H, Hwi Jeong D, Woo Shin E. Investigating the influence of Ni-CexZr1-XO2 interaction on oxygen vacancy and catalytic behavior of Ni/CexZr1-XO2 catalysts for ethanol steam reforming. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Tamelová B, Malaťák J, Velebil J, Gendek A, Aniszewska M. Impact of Torrefaction on Fuel Properties of Aspiration Cleaning Residues. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6949. [PMID: 36234290 PMCID: PMC9571558 DOI: 10.3390/ma15196949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
To maximise the use of biomass for energy purposes, there are various options for converting biomass to biofuels through thermochemical conversion processes, one of which is torrefaction. Higher utilisation of waste from the aspiration cleaning of grains, such as wheat or maize, could be one of the means through which the dependence on fossil fuels could be reduced in the spirit of a circular economy. In this study, the effect of torrefaction on fuel properties of agricultural residues was investigated. The tested materials were waste by-products from the aspiration cleaning of maize grains and waste from wheat. The materials were treated by torrefaction under a nitrogen atmosphere (225 °C, 250 °C, and 275 °C), over a residence time of 30 min. During the treatment, weight loss was monitored as a function of time. Proximate and elemental composition, as well as calorific values, were analysed before and after torrefaction. Torrefaction has a positive effect on the properties of the fuels in the samples studied, as shown by the results. The carbon content increased the most between temperatures of 250 °C and 275 °C, i.e., by 11.7% wt. in waste from maize. The oxygen content in the maize waste samples decreased by 38.99% wt. after torrefaction, and in wheat waste, it decreased by 37.20% wt. compared to the original. The net calorific value increased with increasing temperatures of process and reached a value of 23.56 MJ·kg-1 at a peak temperature of 275 °C in by-products from maize. To express the influence of the treatments on combustion behaviour, stoichiometric combustion calculations were performed. Differences of up to 20% in stoichiometric combustion parameters were found between the two types of waste. A similar case was found for fuel consumption, where a difference of 19% was achieved for torrefaction at a temperature of 275 °C, which fundamentally differentiated these fuels.
Collapse
Affiliation(s)
- Barbora Tamelová
- Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Jan Malaťák
- Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Jan Velebil
- Department of Technological Equipment of Buildings, Faculty of Engineering, Czech University of Life Sciences Prague, Kamýcká 129, 165 21 Prague, Czech Republic
| | - Arkadiusz Gendek
- Department of Biosystems Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
| | - Monika Aniszewska
- Department of Biosystems Engineering, Institute of Mechanical Engineering, Warsaw University of Life Sciences, Nowoursynowska 164, 02-787 Warsaw, Poland
| |
Collapse
|
23
|
Ma C, Zhang F, Liu H, Wang H, Hu J. Thermogravimetric pyrolysis kinetics study of tobacco stem via multicomponent kinetic modeling, Asym2sig deconvolution and combined kinetics. BIORESOURCE TECHNOLOGY 2022; 360:127539. [PMID: 35777640 DOI: 10.1016/j.biortech.2022.127539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Tobacco stems (TS) are tobacco residues produced, whereby the assessment of the pyrolysis kinetics of TS is critical to realize high-value utilization of agricultural residues. Firstly, a thermogravimetric analyzer was employed to perform the non-isothermal pyrolysis of TS at various heating rates. Then, the deconvolution function by Asym2sig showed that the pyrolysis of TS can be accurately modeled for three parallel decomposition fractions. Furthermore, the pyrolysis product was analyzed using fourier transform infrared spectrometer (FTIR). The results showed that the average activation energy evaluated by the isoconversion methods exhibited the highest average activation energy of 191.762 kJ·mol-1 for lignin (LG), followed by 189.268 kJ·mol-1 for cellulose (CL) and then 176.357 kJ·mol-1 for hemicellulose (HC). Based on the experimental results, the pre-exponential factors and reaction models for HC, CL and LG were also calculated and developed separately. From thermodynamic standpoint, raw materials for bioenergy generation can be derived from TS.
Collapse
Affiliation(s)
- Chaowei Ma
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Fengxia Zhang
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; Kunming Metallurgy College, 650033 Kunming, PR China
| | - Huili Liu
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Hua Wang
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China
| | - Jianhang Hu
- Engineering Research Center of the Ministry of Education for Metallurgical Energy Conservation and Emission Reduction, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan Province, PR China.
| |
Collapse
|
24
|
Vijay V, Kapoor R, Singh P, Hiloidhari M, Ghosh P. Sustainable utilization of biomass resources for decentralized energy generation and climate change mitigation: A regional case study in India. ENVIRONMENTAL RESEARCH 2022; 212:113257. [PMID: 35398315 DOI: 10.1016/j.envres.2022.113257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 03/23/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Clean energy transition via utilizing biomass resources has been projected as an important climate change mitigation strategy. A vital characteristic of biomass is its localized nature; therefore, bioenergy utilization should follow decentralized planning. Agrarian countries like India can take benefit of its large agricultural biomass waste pool to produce clean renewable energy. However, prior knowledge of spatio-temporal distribution, competing uses, and biomass characteristics are necessary for successful bioenergy planning. This paper assesses biomass resource and its power generation potential at different agro-climatic zone levels in the state of Rajasthan, India considering crop residue biomass (25 different crop residues from 14 crops) and livestock manure (from cattle, buffalo, and poultry). Uncertainties associated with the availability of biomass and the power generation potential are assessed for each agro-climatic zone under different scenarios. Greenhouse gases (GHGs) emissions from biomass-based power generations are also estimated and compared with biomass-equivalent coal power plants. It is observed that the annual biomass power potential of Rajasthan is 3056 MW (2496 MW from crop residues and 560 MW from livestock manure). Scenario analysis suggests that the potential varies from 2445 to 6045 MW under different biomass availability and power plant operating conditions. Annual GHGs emissions due to biomass power generation is 5053 kt CO2eq. Replacing coal-based power with biomass power would result in annual GHGs savings of 11412 kt CO2eq. The paper also discusses various carriers and barriers viz. logistics, institutional, financial and technical in setting up decentralized bioenergy plants. Outcomes of the present study are expected to assist renewable energy planners in India.
Collapse
Affiliation(s)
- Vandit Vijay
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India; Climate Institute, Delft University of Technology, Delft, Netherlands.
| | - Rimika Kapoor
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Priyanka Singh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Moonmoon Hiloidhari
- Interdisciplinary Programme (IDP) in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India; School of Ecology and Environment Studies, Nalanda University, Rajgir, 803116, Bihar, India
| | - Pooja Ghosh
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
25
|
Glucose conversion into hydroxymethylfurfural via ionic liquid-based processes. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
26
|
Lin X, Jiang K, Liu X, Han D, Zhang Q. Review on development of ionic liquids in lignocellulosic biomass refining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
27
|
A Scoping Review on Environmental, Economic, and Social Impacts of the Gasification Processes. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent years, computer-based simulations have been used to enhance production processes, and sustainable industrial strategies are increasingly being considered in the manufacturing industry. In order to evaluate the performance of a gasification process, the Life Cycle Thinking (LCT) technique gathers relevant impact assessment tools to offer quantitative indications across different domains. Following the PRISMA guidelines, the present paper undertakes a scoping review of gasification processes’ environmental, economic, and social impacts to reveal how LCT approaches coping with sustainability. This report categorizes the examined studies on the gasification process (from 2017 to 2022) through the lens of LCT, discussing the challenges and opportunities. These studies have investigated a variety of biomass feedstock, assessment strategies and tools, geographical span, bioproducts, and databases. The results show that among LCT approaches, by far, the highest interest belonged to life cycle assessment (LCA), followed by life cycle cost (LCC). Only a few studies have addressed exergetic life cycle assessment (ELCA), life cycle energy assessment (LCEA), social impact assessment (SIA), consequential life cycle assessment (CLCA), and water footprint (WLCA). SimaPro® (PRé Consultants, Netherlands), GaBi® (sphere, USA), and OpenLCA (GreenDelta, Germany) demonstrated the greatest contribution. Uncertainty analysis (Monte Carlo approach and sensitivity analysis) was conducted in almost half of the investigations. Most importantly, the results confirm that it is challenging or impossible to compare the environmental impacts of the gasification process with other alternatives since the results may differ based on the methodology, criteria, or presumptions. While gasification performed well in mitigating negative environmental consequences, it is not always the greatest solution compared to other technologies.
Collapse
|
28
|
Nur Diyana AF, Khalina A, Sali MS, Lee CH, Aisyah HA, Norizan MN, Ayu RS. Characterization of lignocellulosic S. persica fibre and its composites: a review. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
As the demand for renewable, cost-effective, and environmentally acceptable materials in a variety of applications has developed, natural fibres have become more popular as reinforcement in composite materials. Salvadora persica L. is the most common traditional source of chewing stick (miswak) advised by Prophet Muhammad. It is also known as Arak in Arabic and Peelu in Urdu. A lot of research has been done in the last few years to investigate if its traditional applications in dental care are still valid. For this review, a variety of databases (Science Direct, PubMed, Wiley Online Library, and Google Scholar), books and primary sources were examined, surveyed, and analysed. Miswak fibre qualities and attributes were addressed in this review study to evaluate if the fibre may be used as an alternative to natural fibre reinforcing in composites. The history and uses of the miswak tree, as well as the structure of the miswak tree, are presented first, followed by a discussion of fibre characterization, with a focus on fibre structure and composition. Finally, the effect of miswak on the physical, mechanical, and thermal properties of composites is discussed. Miswak fibre and its composites present considerable challenges and potential as a reinforcement or filler alternative in a variety of applications, including dentistry.
Collapse
Affiliation(s)
- Ahmad Fazil Nur Diyana
- Laboratory of Bio composite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
| | - Abdan Khalina
- Laboratory of Bio composite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
- Department of Agriculture and Biotechnological Engineering , Universiti Putra Malaysia , Sedang 43400 , Selangor , Serdang , Malaysia
| | - Mohd Sapuan Sali
- Department of Mechanical Engineering , Universiti Putra Malaysia , 43400 , Selangor , Serdang , Malaysia
| | - Ching Hao Lee
- Laboratory of Bio composite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
| | - Humaira Alias Aisyah
- Laboratory of Bio composite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
| | - Mohd Nurazzi Norizan
- Laboratory of Bio composite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
| | - Rafiqah Shafi Ayu
- Laboratory of Bio composite Technology , Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia , 43400 Serdang , Selangor , Malaysia
| |
Collapse
|
29
|
Akinbomi JG, Patinvoh RJ, Taherzadeh MJ. Current challenges of high-solid anaerobic digestion and possible measures for its effective applications: a review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:52. [PMID: 35585613 PMCID: PMC9118646 DOI: 10.1186/s13068-022-02151-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/05/2022] [Indexed: 11/10/2022]
Abstract
The attention that high solids anaerobic digestion process (HS-AD) has received over the years, as a waste management and energy recovery process when compared to low solids anaerobic digestion process, can be attributed to its associated benefits including water conservation and smaller digester foot print. However, high solid content of the feedstock involved in the digestion process poses a barrier to the process stability and performance if it is not well managed. In this review, various limitations to effective performance of the HS-AD process, as well as, the possible measures highlighted in various research studies were garnered to serve as a guide for effective industrial application of this technology. A proposed design concept for overcoming substrate and product inhibition thereby improving methane yield and process stability was recommended for optimum performance of the HS-AD process.
Collapse
Affiliation(s)
- Julius G. Akinbomi
- Department of Chemical Engineering, Faculty of Engineering, Lagos State University, Lagos, 100268 Nigeria
| | - Regina J. Patinvoh
- Department of Chemical Engineering, Faculty of Engineering, Lagos State University, Lagos, 100268 Nigeria
| | | |
Collapse
|
30
|
Khan MU, Usman M, Ashraf MA, Dutta N, Luo G, Zhang S. A review of recent advancements in pretreatment techniques of lignocellulosic materials for biogas production: Opportunities and Limitations. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100263] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
31
|
Comprehensive Assessment of Various Lignocellulosic Biomasses for Energy Recovery in a Hybrid Energy System. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
Ghesti GF, Silveira EA, Guimarães MG, Evaristo RBW, Costa M. Towards a sustainable waste-to-energy pathway to pequi biomass residues: Biochar, syngas, and biodiesel analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 143:144-156. [PMID: 35255448 DOI: 10.1016/j.wasman.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The waste-to-energy (WTE) valorization pathway of Caryocar brasiliense (pequi) seeds was investigated via pyrolysis, gasification, and transesterification to understand its potential as biochar, syngas, and biodiesel. First, the pyrolysis (300-700 °C) was conducted in N2 atmosphere for pequi seeds (PS) and pequi seeds without its extractives (PSWE), characterizing its biochar properties. The PSWE was then gasified at 1000 °C under O2/N2, O2/CO2/N2 and O2/H2O/N2 atmospheres to evaluate the characteristics of the producer gas. The PS extractives were then transesterified and characterized for biodiesel production. Finally, a multiple-criteria decision analysis assessed the PS products' potential within the thermochemical routes. The results evidenced better biochar (up to 22.29% HHV enhancement, higher mass and energy yield, up to 75.9 and 85.5% reduction of O/C and H/C, respectively, and enriched N content) via PSWE pyrolysis than PS considering biofuel application and optimistic perceptions for soil amendment. This indicates that the preceding extraction of vegetal fat from PS strengthens the WTE by including further processing of extracted oil. The produced syngas under O2/H2O/N2 gasification atmosphere showed better applicability as a biofuel (16.37 MJ·kg-1 lower heating value, 107.33% cold gas efficiency, and 113.55% carbon conversion efficiency) with up to 24% higher success rate. The transesterification of the extractives revealed its potential (98% conversion rate) for use as feedstock for in situ power generation, or blended for biodiesel production. The results provide insights into the circular economy in agro-extractivist communities that may support Brazil's small and medium agro-food industries with their energy demands.
Collapse
Affiliation(s)
- Grace F Ghesti
- Laboratory of Brewing Bioprocesses and Catalysis to Renewable Energy, Chemistry Institute, University of Brasilia, Brasilia, DF 70910-900, Brazil.
| | - Edgar A Silveira
- Mechanical Engineering Department, University of Brasília, Brasília, DF 70910-900, Brazil.
| | - Munique G Guimarães
- Laboratory of Brewing Bioprocesses and Catalysis to Renewable Energy, Chemistry Institute, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - Rafael B W Evaristo
- Laboratory of Brewing Bioprocesses and Catalysis to Renewable Energy, Chemistry Institute, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | - M Costa
- IDMEC, Mechanical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
33
|
A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic. SUSTAINABILITY 2022. [DOI: 10.3390/su14073868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review examines the use of residual biomass as a renewable resource for energy generation in the Dominican Republic. The odology includes a thorough examination of scientific publications in recent years about logistics operations. The use of mathematical models can be beneficial for the selection of areas with a high number of residual biomass and processing centers; for the design of feedstock allocation; for the planning and selection of the mode of transport; and for the optimization of the supply chain, logistics, cost estimation, availability of resources, energy efficiency, economic performance, and environmental impact assessment. It is also essential to consider the exhaustive analysis of the most viable technological solutions among the conversion processes, in order to guarantee the minimum emissions of polluting or greenhouse gases. In addition, this document provides a critical review of the most relevant challenges that are currently facing logistics linked to the assessment of biomass in the Dominican Republic, with a straightforward approach to the complementarity and integration of non-manageable renewable energy sources.
Collapse
|
34
|
Techno-Economic Analysis of Intermediate Pyrolysis with Solar Drying: A Chilean Case Study. ENERGIES 2022. [DOI: 10.3390/en15062272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Intermediate pyrolysis can be used to obtain high-quality biofuels from low-value residues such as sewage sludge or digestate. A major obstacle is the high water content of sludgy biomass, which requires an energy-intensive and expensive drying step before pyrolysis. Solar greenhouse drying is an efficient and sustainable alternative to a thermally heated belt dryer. In this study, a techno-economic assessment of intermediate pyrolysis with solar drying is carried out. Marketable products of the process are bio-oil, a substitute for diesel or heating oil, and bio-char with various possible applications. Chile is chosen as the setting of the study as its 4000 km long extension from north to south gives the opportunity to evaluate different locations and levels of solar irradiation. It is found that solar drying results in higher capital investment, but lower fuel costs. Depending on the location and solar irradiation, solar drying can reduce costs by 5–34% compared to belt drying. The break-even price of bio-char is estimated at 300–380 EUR/ton after accounting for the revenue from the liquid bio-oil.
Collapse
|
35
|
Calorific Characteristics of Larch (Larix decidua) and Oak (Quercus robur) Pellets Realized from Native and Torrefied Sawdust. FORESTS 2022. [DOI: 10.3390/f13020361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This research aimed to evaluate the calorific characteristics of two biomasses from larch and oak sawdust in the form of native or torrefied pellets. Some calorific features of these two kinds of biomasses, such as ash content, higher and lower calorific values, calorific density and many others were highlighted, allowing for a comparison between oak and larch torrefied/not torrefied pellets. Installations and methods used for the process of torrefaction and for highlighting some of the calorific features were also evaluated. As a result of experiments, it was demonstrated that the larch and oak pellets were different in terms of density, but that after thermal treatment, the calorific values of both increased considerably. The investigations evidenced some increases in calorific value, up to 15.8%, for both the larch and oak sawdust/pellets. One of the main conclusions of this research was that, even though the role of biomass has diminished considerably in the last few decades, its role as a sustainable fuel remains relevant. Its use will become more widespread when the world’s population understands that fossil fuels are depletable and that they must be replaced by renewable fuels such as biomass.
Collapse
|
36
|
Wang X, Li C, Lam CH, Subramanian K, Qin ZH, Mou JH, Jin M, Chopra SS, Singh V, Ok YS, Yan J, Li HY, Lin CSK. Emerging waste valorisation techniques to moderate the hazardous impacts, and their path towards sustainability. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127023. [PMID: 34482075 DOI: 10.1016/j.jhazmat.2021.127023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/12/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
Due to the recent boom in urbanisation, economy, and global population, the amount of waste generated worldwide has increased tremendously. The World Bank estimates that global waste generation is expected to increase 70% by 2050. Disposal of waste is already a major concern as it poses risks to the environment, human health, and economy. To tackle this issue and maximise potential environmental, economic, and social benefits, waste valorisation - a value-adding process for waste materials - has emerged as a sustainable and efficient strategy. The major objective of waste valorisation is to transit to a circular economy and maximally alleviate hazardous impacts of waste. This review conducts bibliometric analysis to construct a co-occurrence network of research themes related to management of five major waste streams (i.e., food, agricultural, textile, plastics, and electronics). Modern valorisation technologies and their efficiencies are highlighted. Moreover, insights into improvement of waste valorisation technologies are presented in terms of sustainable environmental, social, and economic performances. This review summarises highlighting factors that impede widespread adoption of waste valorisation, such as technology lock-in, optimisation for local conditions, unfavourable regulations, and low investments, with the aim of devising solutions that explore practical, feasible, and sustainable means of waste valorisation.
Collapse
Affiliation(s)
- Xiang Wang
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Energy and Environment, City University of Hong Kong, China
| | - Chong Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Chun Ho Lam
- School of Energy and Environment, City University of Hong Kong, China
| | | | - Zi-Hao Qin
- School of Energy and Environment, City University of Hong Kong, China
| | - Jin-Hua Mou
- School of Energy and Environment, City University of Hong Kong, China
| | - Mushan Jin
- School of Energy and Environment, City University of Hong Kong, China
| | | | - Vijay Singh
- Integrated Bioprocessing Research Laboratory, University of Illinois at Urbana, Champaign, 338, AESB, 1304 West Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Yong Sik Ok
- Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, South Korea
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hong-Ye Li
- Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, China.
| |
Collapse
|
37
|
Zhao J, Liu C, Hou T, Lei Z, Yuan T, Shimizu K, Zhang Z. Conversion of biomass waste to solid fuel via hydrothermal co-carbonization of distillers grains and sewage sludge. BIORESOURCE TECHNOLOGY 2022; 345:126545. [PMID: 34902485 DOI: 10.1016/j.biortech.2021.126545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
A synergistic process was proposed to prepare hydrochar by hydrothermal co-carbonization (HTcoC) of waste distillers grains with sewage sludge, focusing on hydrochar properties and combustion behavior under different mixing ratios. Results show that the co-hydrochar from HTcoC exhibited excellent synergistic characteristics with relatively high synergistic coefficients (0.1-1.2% for hydrochar yield, 4.8-8.0% for higher heating value (HHV), 8.0-12.6% for organic retention, and 2.2-4.0% for carbon retention, respectively), partially evidenced by FTIR data. And the co-hydrochar showed a higher fuel ratio of 0.09-0.13 with the fixed carbon increased to 8.3-10.0 at an remarkably enhanced coalification degree. Moreover, thermal analysis showed that the co-hydrochar exhibited improved combustion efficiency and a more stable flame. As a result, the HTcoC process with 13.0-22.5% increase in biofuel recovery rate and 25.6-47.7% increase in net energy gain may provide an effective approach for the conversion of both biomass wastes into clean biofuel.
Collapse
Affiliation(s)
- Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chang Liu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
38
|
Kinetic modeling of biomass gasification in the reduction zone using various gasification agents. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Tamoor M, Samak NA, Jia Y, Mushtaq MU, Sher H, Bibi M, Xing J. Potential Use of Microbial Enzymes for the Conversion of Plastic Waste Into Value-Added Products: A Viable Solution. Front Microbiol 2021; 12:777727. [PMID: 34917057 PMCID: PMC8670383 DOI: 10.3389/fmicb.2021.777727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/04/2021] [Indexed: 01/24/2023] Open
Abstract
The widespread use of commercial polymers composed of a mixture of polylactic acid and polyethene terephthalate (PLA-PET) in bottles and other packaging materials has caused a massive environmental crisis. The valorization of these contaminants via cost-effective technologies is urgently needed to achieve a circular economy. The enzymatic hydrolysis of PLA-PET contaminants plays a vital role in environmentally friendly strategies for plastic waste recycling and degradation. In this review, the potential roles of microbial enzymes for solving this critical problem are highlighted. Various enzymes involved in PLA-PET recycling and bioconversion, such as PETase and MHETase produced by Ideonella sakaiensis; esterases produced by Bacillus and Nocardia; lipases produced by Thermomyces lanuginosus, Candida antarctica, Triticum aestivum, and Burkholderia spp.; and leaf-branch compost cutinases are critically discussed. Strategies for the utilization of PLA-PET's carbon content as C1 building blocks were investigated for the production of new plastic monomers and different value-added products, such as cyclic acetals, 1,3-propanediol, and vanillin. The bioconversion of PET-PLA degradation monomers to polyhydroxyalkanoate biopolymers by Pseudomonas and Halomonas strains was addressed in detail. Different solutions to the production of biodegradable plastics from food waste, agricultural residues, and polyhydroxybutyrate (PHB)-accumulating bacteria were discussed. Fuel oil production via PLA-PET thermal pyrolysis and possible hybrid integration techniques for the incorporation of thermostable plastic degradation enzymes for the conversion into fuel oil is explained in detail.
Collapse
Affiliation(s)
- Muhammad Tamoor
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Nadia A. Samak
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Biofilm Centre, Aquatic Microbiology Department, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Yunpu Jia
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Umar Mushtaq
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Hassan Sher
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Maryam Bibi
- Department of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt, Pakistan
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- College of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, China
| |
Collapse
|
40
|
Sustainable Materials from Fish Industry Waste for Electrochemical Energy Systems. ENERGIES 2021. [DOI: 10.3390/en14237928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fish industry waste is attracting growing interest for the production of environmentally friendly materials for several different applications, due to the potential for reduced environmental impact and increased socioeconomic benefits. Recently, the application of fish industry waste for the synthesis of value-added materials and energy storage systems represents a feasible route to strengthen the overall sustainability of energy storage product lines. This review focused on an in-depth outlook on the advances in fish byproduct-derived materials for energy storage devices, including lithium-ion batteries (LIBs), sodium-ion (NIBs) batteries, lithium-sulfur batteries (LSBs), supercapacitors and protein batteries. For each of these, the latest applications were presented together with approaches to improve the electrochemical performance of the obtained materials. By analyzing the recent literature on this topic, this review aimed to contribute to further advances in the sustainability of energy storage devices.
Collapse
|
41
|
Kassongo J, Shahsavari E, Ball AS. Dynamic Effect of Operational Regulation on the Mesophilic BioMethanation of Grape Marc. Molecules 2021; 26:molecules26216692. [PMID: 34771101 PMCID: PMC8588447 DOI: 10.3390/molecules26216692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 01/04/2023] Open
Abstract
Wine production annually generates an estimated 11 million metric tonnes of grape marc (GM) worldwide. The diversion of this organic waste away from landfill and towards its use in the generation of renewable energy has been investigated. This study aimed to evaluate the effectiveness of operational parameters relating to the treatment regime and inoculum source in the extraction of methane from GM under unmixed anaerobic conditions at 35 °C. The study entailed the recirculation of a previously acclimated sludge (120 days) as downstream inoculum, an increased loading volume (1.3 kg) and a low substrate-to-inoculum ratio (10:3 SIR). The results showed that an incorporation of accessible operational controls can effectively enhance cumulative methane yield (0.145 m3 CH4 kg−1 VS), corresponding to higher amounts of digestible organics converted. The calculated average volumetric methane productivity equalled 0.8802 L CH4 LWork−1 d−1 over 33.6 days whilst moderate pollutant removal (43.50% COD removal efficiency) was achieved. Molecular analyses identified Firmicutes and Bacteroidetes phyla as core organisms for hydrolytic and fermentative stages in trophic relationships with terminal electron acceptors from the methane-producing Methanosarcina genus. Economic projections established that the cost-effective operational enhancements were sustainable for valorisation from grape marc by existing wineries and distilleries.
Collapse
|
42
|
Benti NE, Gurmesa GS, Argaw T, Aneseyee AB, Gunta S, Kassahun GB, Aga GS, Asfaw AA. The current status, challenges and prospects of using biomass energy in Ethiopia. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:209. [PMID: 34702314 PMCID: PMC8549167 DOI: 10.1186/s13068-021-02060-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/18/2021] [Indexed: 05/30/2023]
Abstract
Despite enormous challenges in accessing sustainable energy supplies and advanced energy technologies, Ethiopia has one of the world's fastest growing economies. The development of renewable energy technology and the building of a green legacy in the country are being prioritized. The total installed capacity for electricity generation in Ethiopia is 4324.3 MW as on October, 2018. Renewable energy accounts for 96.5% of total generation; however, despite the county's enormous biomass energy potential, only 0.58% of power is generated using biomass. Ethiopia has surplus woody biomass, crop residue and animal dung resources which comprise about 141.8 million metric tons of biomass availability per year. At present the exploited potential is about 71.9 million metric tons per year. This review paper provides an in-depth assessment of Ethiopia's biomass energy availability, potential, challenges, and prospects. The findings show that, despite Ethiopia's vast biomass resource potential, the current use of modern energy from biomass is still limited. As a result, this study supports the use of biomass-based alternative energy sources without having a negative impact on the socioeconomic system or jeopardizing food security or the environment. This finding also shows the challenges, opportunities and possible solutions to tackle the problem to expand alternative energy sources. The most effective techniques for producing and utilizing alternate energy sources were also explored. Moreover, some perspectives are given based on the challenges of using efficient energy production and sustainable uses of biomass energy in Ethiopia as it could be also implemented in other developing countries. We believe that the information in this review will shed light on the current and future prospects of biomass energy deployment in Ethiopia.
Collapse
Affiliation(s)
- Natei Ermias Benti
- Department of Physics, College of Natural and Computational Sciences, Wolaita Sodo University, P.O. Box 138, Wolaita Sodo, Ethiopia.
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia.
| | - Gamachis Sakata Gurmesa
- Department of Physics, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
- Department of Physics, College of Natural and Computational Sciences, Mettu University, P. O. Box 382, Mettu, Ethiopia
| | - Tegenu Argaw
- Department of Physics, Collage of Natural and Computational Sciences, Wollo University, Dessie, Ethiopia
| | - Abreham Berta Aneseyee
- Department of Natural Resource Management, College of Agriculture and Natural Resource Management, Wolkite University, P. O. Box 07, Wolkite, Ethiopia
| | - Solomon Gunta
- Department of Physics, College of Natural and Computational Sciences, Wolaita Sodo University, P.O. Box 138, Wolaita Sodo, Ethiopia
| | - Gashaw Beyene Kassahun
- Department of Physics, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
- Applied Physics Program, Adama Science and Technology University, P. O. Box 188, Adama, Ethiopia
| | - Genene Shiferaw Aga
- Department of Physics, College of Natural and Computational Sciences, Addis Ababa University, P. O. Box 1176, Addis Ababa, Ethiopia
- Department of Physics, College of Natural and Computational Sciences, Debre Birhan University, P. O. Box 445, Debre Birhan, Ethiopia
| | - Ashenafi Abebe Asfaw
- Department of Physics, College of Natural and Computational Sciences, Wolaita Sodo University, P.O. Box 138, Wolaita Sodo, Ethiopia.
| |
Collapse
|
43
|
Mandal S, Sharma RK, Bhattacharya TK, Tanna H, Haydary J. Charring of pine needles using a portable drum reactor. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01893-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Biomass-Based Chemical Looping Gasification: Overview and Recent Developments. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11157069] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Biomass has emerged as one of the most promising renewable energy sources that can replace fossil fuels. Many researchers have carried out intensive research work on biomass gasification to evaluate its performance and feasibility to produce high-quality syngas. However, the process remains the problem of tar formation and low efficiency. Recently, novel approaches were developed for biomass utilization. Chemical looping gasification is considered a suitable pathway to produce valuable products from biomass among biomass conversion processes. This review paper provides a significant body of knowledge on the recent developments of the biomass-based chemical looping gasification process. The effects of process parameters have been discussed to provide important insights into the development of novel technology based on chemical looping. The state-of-the-art experimental and simulation/modeling studies and their fundamental assumptions are described in detail. In conclusion, the review paper highlights current research trends, identifying research gaps and opportunities for future applications of biomass-based chemical looping gasification process. The study aims to assist in understanding biomass-based chemical looping gasification and its development through recent research.
Collapse
|
45
|
Perspectives on Bioenergy Feedstock Development in Pakistan: Challenges and Opportunities. SUSTAINABILITY 2021. [DOI: 10.3390/su13158438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pakistan faces challenges in both food and energy security. Indeed, extensive literature suggests that food and energy security are interdependent. While acknowledging that food security is still a primary concern for Pakistan, energy security is also a major issue. It is crucial to develop sustainable energy sources for energy production. Among sustainable sources, biomass is a promising source that can be effectively used for environmentally friendly energy production. This article addresses the energy issues and potential solutions using crop residues, non-edible energy crops, and animal and municipal solid wastes in Pakistan. The current research challenges, relevant industries, opportunities, and the future share of energy production derived from renewable and sustainable sources are emphasized with a focus on the potential of biomass energy. This article shows that Pakistan has considerable potential to develop bioenergy crops on marginal lands without compromising food security, with considerable greenhouse gas (GHG) benefits. Pakistan has vast biomass resources, including crop residues, animal waste, municipal solid waste, and forest residues, which collectively produce 230 billion tons of biomass annually. There are about 72 million bovines (cows and buffaloes), 81 million tons per year of crop biomass, and about 785 million birds in poultry farms across the country. Land that is currently non-productive could be used for energy crops, and this has the potential to produce 2500–3000 MW of energy. The utilization of waste cooking oil and fats is the most economically feasible option for obtaining biodiesel due to its easy and almost free availability in Pakistan. Systematic management is needed to collect this huge quantity of waste cooking oil and efficiently convert it to biodiesel. Similarly, molasses may be a promising source for bioethanol production. Furthermore, this study suggests that Pakistan’s energy policies need to be amended to ensure that the energy supply meets the demand. In the future, massive energy projects on biomass-based bioenergy need to be implemented in Pakistan. To achieve its bioenergy potential, Pakistan needs to develop incentive-based bioenergy technologies. Moreover, this objective can only be achieved in the country by initiating R&D projects to promote advanced biomass conversion technologies, such as biogas plants and combustion systems.
Collapse
|
46
|
Ambaye TG, Vaccari M, Bonilla-Petriciolet A, Prasad S, van Hullebusch ED, Rtimi S. Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 290:112627. [PMID: 33991767 DOI: 10.1016/j.jenvman.2021.112627] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 05/08/2023]
Abstract
Due to increasing anthropogenic activities, especially industry and transport, the fossil fuel demand and consumption have increased proportionally, causing serious environmental issues. This attracted researchers and scientists to develop new alternative energy sources. Therefore, this review covers the biofuel production potential and challenges related to various feedstocks and advances in process technologies. It has been concluded that the biofuels such as biodiesel, ethanol, bio-oil, syngas, Fischer-Tropsch H2, and methane produced from crop plant residues, micro- and macroalgae and other biomass wastes using thermo-bio-chemical processes are an eco-friendly route for an energy source. Biofuels production and their uses in industries and transportation considerably minimize fossil fuel dependence. Literature analysis showed that biofuels generated from energy crops and microalgae could be the most efficient and attractive process. Recent progress in the field of biofuels using genetic engineering has larger perspectives in commercial-scale production. However, its large-scale production is still challenging; hence, to resolve this problem, it is essential to convert biomass in biofuels by developing novel technology to increase biofuel production to fulfil the current and future energy demand.
Collapse
Affiliation(s)
- Teklit Gebregiorgis Ambaye
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy; Mekelle University, Department of Chemistry, Mekelle, Ethiopia.
| | - Mentore Vaccari
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123, Brescia, Italy
| | | | - Shiv Prasad
- Centre for Environment Science &Climate Resilient Agriculture (CESCRA) Indian Agricultural Research Institute New Delhi, 110012, India
| | | | - Sami Rtimi
- Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
47
|
Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over niobium incorporated MCM-41 catalyst. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111682] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
48
|
Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges. ENERGIES 2021. [DOI: 10.3390/en14102962] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrothermal carbonization (HTC) is considered as an efficient and constantly expanding eco-friendly methodology for thermochemical processing of high moisture waste biomass into solid biofuels and valuable carbonaceous materials. However, during HTC, a considerable amount of organics, initially present in the feedstock, are found in the process water (PW). PW recirculation is attracting an increasing interest in the hydrothermal process field as it offers the potential to increase the carbon recovery yield while increasing hydrochar energy density. PW recirculation can be considered as a viable method for the valorization and reuse of the HTC aqueous phase, both by reducing the amount of additional water used for the process and maximizing energy recovery from the HTC liquid residual fraction. In this work, the effects of PW recirculation, for different starting waste biomasses, on the properties of hydrochars and liquid phase products are reviewed. The mechanism of production and evolution of hydrochar during recirculation steps are discussed, highlighting the possible pathways which could enhance energy and carbon recovery. Challenges of PW recirculation are presented and research opportunities proposed, showing how PW recirculation could increase the economic viability of the process while contributing in mitigating environmental impacts.
Collapse
|
49
|
Castro JDS, Assemany PP, Carneiro ACDO, Ferreira J, de Jesus Júnior MM, Rodrigues FDÁ, Calijuri ML. Hydrothermal carbonization of microalgae biomass produced in agro-industrial effluent: Products, characterization and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144480. [PMID: 33453536 DOI: 10.1016/j.scitotenv.2020.144480] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Hydrothermal carbonization is a thermochemical treatment whose objective is to convert carbohydrate components of a given biomass into carbon-rich material in an aqueous medium. Biomass of wastewater grown microalgae is among the various potential biomasses for this route. However, operational parameters of hydrothermal carbonization for different types of biomass are still being investigated. In general, larger temperature ranges (180-260 °C) are applied to woody biomasses, which have fibrous and/or ligneous structures and, therefore, are more thermally stable than algae biomass. This study presents the hydrothermal carbonization of microalgae biomass cultivated in an agro-industrial effluent. For this purpose, a Parr reactor was operated at different temperatures (130, 150 and 170 °C) and retention times (10, 30 and 50 min). Results showed improvements in the properties of the hydrochar, mainly energy yield and carbon concentration, after the thermochemical treatment. Energy recovery was improved, as well as hydrophobicity of the carbonized material. It was observed that in the retention time of 10 min, the increase in temperature provided an increase of 7.53% in the yield of solids. On the other hand, in the retention times of 30 and 50 min, when the temperature was increased, the solid yield decreased 6.70% and 0.92%, respectively. Thus, the highest yield of solids (77.72%) and energy (78.21%) was obtained at the temperature of 170 °C and retention time of 10 min. There was a high ash content in the raw biomass (32.99%) and an increase of approximately 3% in the carbonized material, regardless of the applied treatment. With the exception of potassium and sodium, the other macro and micronutrients were concentrated in the hydrochar after thermochemical treatment, indicating the potential of the material for agriculture application, in addition to energy use. Results showed that the retention time was the most significant operational parameter of the process.
Collapse
Affiliation(s)
- Jackeline de Siqueira Castro
- Department of Civil Engineering, Federal University of Viçosa, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil.
| | - Paula Peixoto Assemany
- Department of Environmental Engineering, Federal University of Lavras (Universidade Federal de Lavras), Campus Universitário, Lavras, Minas Gerais 37200-900, Brazil
| | - Angélica Cássia de Oliveira Carneiro
- Department of Forest Engineering, Federal University of Viçosa, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Jéssica Ferreira
- Department of Civil Engineering, Federal University of Viçosa, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Maurino Magno de Jesus Júnior
- Department of Chemical Engineering, Federal University of Viçosa, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Fábio de Ávila Rodrigues
- Department of Chemical Engineering, Federal University of Viçosa, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Campus da Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|
50
|
Simulation of a Downdraft Gasifier for Production of Syngas from Different Biomass Feedstocks. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the evaluation of gasification processes, estimating the composition of the fuel gas for different conditions is fundamental to identify the best operating conditions. In this way, modeling and simulation of gasification provide an analysis of the process performance, allowing for resource and time savings in pilot-scale process operation, as it predicts the behavior and analyzes the effects of different variables on the process. Thus, the focus of this work was the modeling and simulation of biomass gasification processes using the UniSim Design chemical process software, in order to satisfactorily reproduce the operation behavior of a downdraft gasifier. The study was performed for two residual biomasses (forest and agricultural) in order to predict the produced syngas composition. The reactors simulated gasification by minimizing the free energy of Gibbs. The main operating parameters considered were the equivalence ratio (ER), steam to biomass ratio (SBR), and gasification temperature (independent variables). In the simulations, a sensitivity analysis was carried out, where the effects of these parameters on the composition of syngas, flow of syngas, and heating value (dependent variables) were studied, in order to maximize these three variables in the process with the choice of the best parameters of operation. The model is able to predict the performance of the gasifier and it is qualified to analyze the behavior of the independent parameters in the gasification results. With a temperature between 850 and 950 °C, SBR up to 0.2, and ER between 0.3 and 0.5, the best operating conditions are obtained for maximizing the composition of the syngas in CO and H2.
Collapse
|