1
|
Xu J, Xue Y, Bolinger AA, Li J, Zhou M, Chen H, Li H, Zhou J. Therapeutic potential of salicylamide derivatives for combating viral infections. Med Res Rev 2023; 43:897-931. [PMID: 36905090 PMCID: PMC10247541 DOI: 10.1002/med.21940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 11/09/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023]
Abstract
Since time immemorial human beings have constantly been fighting against viral infections. The ongoing and devastating coronavirus disease 2019 pandemic represents one of the most severe and most significant public health emergencies in human history, highlighting an urgent need to develop broad-spectrum antiviral agents. Salicylamide (2-hydroxybenzamide) derivatives, represented by niclosamide and nitazoxanide, inhibit the replication of a broad range of RNA and DNA viruses such as flavivirus, influenza A virus, and coronavirus. Moreover, nitazoxanide was effective in clinical trials against different viral infections including diarrhea caused by rotavirus and norovirus, uncomplicated influenza A and B, hepatitis B, and hepatitis C. In this review, we summarize the broad antiviral activities of salicylamide derivatives, the clinical progress, and the potential targets or mechanisms against different viral infections and highlight their therapeutic potential in combating the circulating and emerging viral infections in the future.
Collapse
Affiliation(s)
- Jimin Xu
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Yu Xue
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew A. Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun Li
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Mingxiang Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Hongmin Li
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
2
|
Chen Z, Cui Q, Caffrey M, Rong L, Du R. Small Molecule Inhibitors of Influenza Virus Entry. Pharmaceuticals (Basel) 2021; 14:ph14060587. [PMID: 34207368 PMCID: PMC8234048 DOI: 10.3390/ph14060587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/16/2022] Open
Abstract
Hemagglutinin (HA) plays a critical role during influenza virus receptor binding and subsequent membrane fusion process, thus HA has become a promising drug target. For the past several decades, we and other researchers have discovered a series of HA inhibitors mainly targeting its fusion machinery. In this review, we summarize the advances in HA-targeted development of small molecule inhibitors. Moreover, we discuss the structural basis and mode of action of these inhibitors, and speculate upon future directions toward more potent inhibitors of membrane fusion and potential anti-influenza drugs.
Collapse
Affiliation(s)
- Zhaoyu Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
| | - Qinghua Cui
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
| | - Michael Caffrey
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| | - Ruikun Du
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Z.C.); (Q.C.)
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266122, China
- Correspondence: (L.R.); (R.D.); Tel.: +1-312-355-0203 (L.R.); +86-0531-89628505 (R.D.)
| |
Collapse
|
3
|
Bhaskaran RP, Nayak KH, Babu BP. Synthesis of functionalized benzo[1,3]dioxin-4-ones from salicylic acid and acetylenic esters and their direct amidation. RSC Adv 2021; 11:24570-24574. [PMID: 35481005 PMCID: PMC9036891 DOI: 10.1039/d1ra05032j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 01/03/2023] Open
Abstract
Direct synthesis of 4H-benzo[d][1,3]dioxin-4-one derivatives from salicylic acids and acetylenic esters (both mono- and disubstituted) has been described. The reaction is mediated by CuI and NaHCO3 in acetonitrile. Room temperature amidation of the synthesized 1,3-benzodioxinones with primary amines readily afforded the corresponding salicylamides in moderate to good yields. An efficient method for the synthesis of the active core 4H-benzo[d][1,3]dioxin-4-one followed by its direct room temperature amidation is reported.![]()
Collapse
Affiliation(s)
- Rasmi P. Bhaskaran
- Department of Chemistry
- National Institute of Technology Karnataka – NITK
- Surathkal 575025
- India
| | - Kalinga H. Nayak
- Department of Chemistry
- National Institute of Technology Karnataka – NITK
- Surathkal 575025
- India
| | - Beneesh P. Babu
- Department of Chemistry
- National Institute of Technology Karnataka – NITK
- Surathkal 575025
- India
| |
Collapse
|
4
|
Zhang W, Chen ST, He QY, Huang LQ, Li X, Lai XP, Zhan SF, Huang HT, Liu XH, Wu J, Li G. Asprellcosides B of Ilex asprella Inhibits Influenza A Virus Infection by Blocking the Hemagglutinin- Mediated Membrane Fusion. Front Microbiol 2019; 9:3325. [PMID: 30728818 PMCID: PMC6351491 DOI: 10.3389/fmicb.2018.03325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/21/2018] [Indexed: 01/26/2023] Open
Abstract
Ilex asprella is routinely used in China as a traditional medicinal herb to treat influenza (Flu). However, its specific antiviral activity and underlying molecular mechanism have not yet been determined. In this study, we sought to determine the antiviral activity and mechanism of Asprellcosides B, an active component extracted from Ilex asprella, and used against the influenza A virus cell culture. We also performed a computer-assisted structural modeling analysis and carried out surface plasmon resonance (SPR) experiments in the hope of determining the viral target of Asprellcosides B. Results from our studies show that Asprellcosides B reduced virus replication by up to 63% with an IC50 of about 9 μM. It also decreased the low pH-induced and virus-mediated hemolysis by 71% in vitro. Molecular docking simulation analysis suggested a possible binding of Asprellcosides B to the hemagglutinin (HA), which was confirmed by a surface plasmon resonance (SPR) assay. Altogether, our findings demonstrate that Asprellcosides B inhibits the influenza A virus, through a specific binding to the HA, resulting in the blockade of the HA-mediated membrane fusion.
Collapse
Affiliation(s)
- Wen Zhang
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Tai Chen
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiu-Yan He
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Quan Huang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiong Li
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao-Ping Lai
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Dongguan, China
| | - Shao-Feng Zhan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Ting Huang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Hong Liu
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianguo Wu
- Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China.,Guangdong Longfan Biological Science and Technology Company, Ltd., Foshan, China
| | - Geng Li
- Laboratory Animal Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Zhao X, Li R, Zhou Y, Xiao M, Ma C, Yang Z, Zeng S, Du Q, Yang C, Jiang H, Hu Y, Wang K, Mok CKP, Sun P, Dong J, Cui W, Wang J, Tu Y, Yang Z, Hu W. Discovery of Highly Potent Pinanamine-Based Inhibitors against Amantadine- and Oseltamivir-Resistant Influenza A Viruses. J Med Chem 2018; 61:5187-5198. [PMID: 29799746 DOI: 10.1021/acs.jmedchem.8b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Influenza pandemic is a constant major threat to public health caused by influenza A viruses (IAVs). IAVs are subcategorized by the surface proteins hemagglutinin (HA) and neuraminidase (NA), in which they are both essential targets for drug discovery. While it is of great concern that NA inhibitor oseltamivir resistant strains are frequently identified from human or avian influenza virus, structural and functional characterization of influenza HA has raised hopes for new antiviral therapies. In this study, we explored a structure-activity relationship (SAR) of pinanamine-based antivirals and discovered a potent inhibitor M090 against amantadine-resistant viruses, including the 2009 H1N1 pandemic strains, and oseltamivir-resistant viruses. Mechanism of action studies, particularly hemolysis inhibition, indicated that M090 targets influenza HA and it occupied a highly conserved pocket of the HA2 domain and inhibited virus-mediated membrane fusion by "locking" the bending state of HA2 during the conformational rearrangement process. This work provides new binding sites within the HA protein and indicates that this pocket may be a promising target for broad-spectrum anti-influenza A drug design and development.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China.,Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Runfeng Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yang Zhou
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Mengjie Xiao
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Chunlong Ma
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhongjin Yang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Shaogao Zeng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Qiuling Du
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Chunguang Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Haiming Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Kefeng Wang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Chris Ka Pun Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China.,HKU-Pasteur Research Pole, School of Public Health, HKU Li Ka Shing Faculty of Medicine , The University of Hong Kong , 5 Sassoon Road , Pokfulam , Hong Kong
| | - Ping Sun
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China
| | - Jianghong Dong
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Wei Cui
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy , The University of Arizona , Tucson , Arizona 85721 , United States.,BIO5 Institute , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Yaoquan Tu
- Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm SE-100 44 , Sweden
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital , Guangzhou Medical University , Guangzhou 510120 , P. R. China
| | - Wenhui Hu
- State Key Laboratory of Respiratory Disease, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou 511436 , P. R. China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou 510530 , P. R. China
| |
Collapse
|
6
|
Leiva R, Barniol-Xicota M, Codony S, Ginex T, Vanderlinden E, Montes M, Caffrey M, Luque FJ, Naesens L, Vázquez S. Aniline-Based Inhibitors of Influenza H1N1 Virus Acting on Hemagglutinin-Mediated Fusion. J Med Chem 2017; 61:98-118. [PMID: 29220568 DOI: 10.1021/acs.jmedchem.7b00908] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two series of easily accessible anilines were identified as inhibitors of influenza A virus subtype H1N1, and extensive chemical synthesis and analysis of the structure-activity relationship were performed. The compounds were shown to interfere with low pH-induced membrane fusion mediated by the H1 and H5 (group 1) hemagglutinin (HA) subtypes. A combination of virus resistance, HA interaction, and molecular dynamics simulation studies elucidated the binding site of these aniline-based influenza fusion inhibitors, which significantly overlaps with the pocket occupied by some H3 HA-specific inhibitors, indicating the high relevance of this cavity for drug design.
Collapse
Affiliation(s)
- Rosana Leiva
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Marta Barniol-Xicota
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Sandra Codony
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Prat de la Riba 171, Santa Coloma de Gramanet E-08921, Spain
| | | | - Marta Montes
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| | - Michael Caffrey
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Prat de la Riba 171, Santa Coloma de Gramanet E-08921, Spain
| | - Lieve Naesens
- Rega Institute for Medical Research, KU Leuven , B-3000 Leuven, Belgium
| | - Santiago Vázquez
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia i Ciències de l'Alimentació, and Institute of Biomedicine (IBUB), Universitat de Barcelona , Av. Joan XXIII, 27-31, Barcelona E-08028, Spain
| |
Collapse
|
7
|
Antanasijevic A, Hafeman NJ, Tundup S, Kingsley C, Mishra RK, Rong L, Manicassamy B, Wardrop D, Caffrey M. Stabilization and Improvement of a Promising Influenza Antiviral: Making a PAIN PAINless. ACS Infect Dis 2016; 2:608-615. [PMID: 27759373 DOI: 10.1021/acsinfecdis.6b00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The viral envelope protein hemagglutinin (HA) plays a critical role in influenza entry and thus is an attractive target for novel therapeutics. The small molecule tert-butylhydroquinone (TBHQ) has previously been shown to bind to HA and inhibit HA-mediated entry with low micromolar potency. However, enthusiasm for the use of TBHQ has diminished due to the compound's antioxidant properties. In this work we show that the antioxidant properties of TBHQ are not responsible for the inhibition of HA-mediated entry. In addition, we have performed a structure-activity relationship (SAR) analysis of TBHQ derivatives. We find that the most promising compound, 3-tert-butyl-4-methoxyphenol, exhibits enhanced potency (IC50 = 0.6 μM), decreased toxicity (CC50 = 340 μM), and increased stability (t1/2 > 48 h). Finally, we have characterized the binding properties of 3-tert-butyl-4-methoxyphenol using NMR and molecular dynamics to guide future efforts for chemical optimization.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Nicholas J Hafeman
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Smanla Tundup
- Department of Microbiology and Immunology, University of Chicago , 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Carolyn Kingsley
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| | - Rama K Mishra
- Center for Molecular Innovation and Drug Discovery, Northwestern University , 2135 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lijun Rong
- Department of Microbiology & Immunology, University of Illinois at Chicago , 835 South Wolcott, Chicago, Illinois 60612, United States
| | - Balaji Manicassamy
- Department of Microbiology and Immunology, University of Chicago , 920 East 58th Street, Chicago, Illinois 60637, United States
| | - Duncan Wardrop
- Department of Chemistry, University of Illinois at Chicago , 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Michael Caffrey
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago , 900 South Ashland Avenue, Chicago, Illinois 60607, United States
| |
Collapse
|
8
|
Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses 2015; 8:v8010006. [PMID: 26712783 PMCID: PMC4728566 DOI: 10.3390/v8010006] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/25/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAVs) cause seasonal pandemics and epidemics with high morbidity and mortality, which calls for effective anti-IAV agents. The glycoprotein hemagglutinin of influenza virus plays a crucial role in the initial stage of virus infection, making it a potential target for anti-influenza therapeutics development. Here we found that quercetin inhibited influenza infection with a wide spectrum of strains, including A/Puerto Rico/8/34 (H1N1), A/FM-1/47/1 (H1N1), and A/Aichi/2/68 (H3N2) with half maximal inhibitory concentration (IC50) of 7.756 ± 1.097, 6.225 ± 0.467, and 2.738 ± 1.931 μg/mL, respectively. Mechanism studies identified that quercetin showed interaction with the HA2 subunit. Moreover, quercetin could inhibit the entry of the H5N1 virus using the pseudovirus-based drug screening system. This study indicates that quercetin showing inhibitory activity in the early stage of influenza infection provides a future therapeutic option to develop effective, safe and affordable natural products for the treatment and prophylaxis of IAV infections.
Collapse
|
9
|
Abstract
Influenza A and B viruses are highly contagious respiratory pathogens with a considerable medical and socioeconomical burden and known pandemic potential. Current influenza vaccines require annual updating and provide only partial protection in some risk groups. Due to the global spread of viruses with resistance to the M2 proton channel inhibitor amantadine or the neuraminidase inhibitor oseltamivir, novel antiviral agents with an original mode of action are urgently needed. We here focus on emerging options to interfere with the influenza virus entry process, which consists of the following steps: attachment of the viral hemagglutinin to the sialylated host cell receptors, endocytosis, M2-mediated uncoating, low pH-induced membrane fusion, and, finally, import of the viral ribonucleoprotein into the nucleus. We review the current functional and structural insights in the viral and cellular components of this entry process, and the diverse antiviral strategies that are being explored. This encompasses small molecule inhibitors as well as macromolecules such as therapeutic antibodies. There is optimism that at least some of these innovative concepts to block influenza virus entry will proceed from the proof of concept to a more advanced stage. Special attention is therefore given to the challenging issues of influenza virus (sub)type-dependent activity or potential drug resistance.
Collapse
Affiliation(s)
| | - Lieve Naesens
- Rega Institute for Medical ResearchKU LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Lin F, Song Q, Gao Y, Cui X. A catalyst-free, facile and efficient approach to cyclic esters: synthesis of 4H-benzo[d][1,3]dioxin-4-ones. RSC Adv 2014. [DOI: 10.1039/c4ra01651c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A metal and additive free base-mediated method for the formation of 4H-benzo[d][1,3]dioxin-4-one and its derivatives, from salicylic acids and dichloromethane, was developed using dichloromethane (DCM) and 1,1-dichloroethane (1,1-DCE) as the C1 source.
Collapse
Affiliation(s)
- Feng Lin
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
- Huaqiao University
| | - Qiuling Song
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
- Huaqiao University
| | - Yuyu Gao
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
- Huaqiao University
| | - Xiuling Cui
- Engineering Research Center of Molecular Medicine
- Ministry of Education
- Key Laboratory of Xiamen Marine and Gene Drugs
- Institutes of Molecular Medicine and School of Biomedical Sciences
- Huaqiao University
| |
Collapse
|
11
|
Antanasijevic A, Cheng H, Wardrop DJ, Rong L, Caffrey M. Inhibition of influenza H7 hemagglutinin-mediated entry. PLoS One 2013; 8:e76363. [PMID: 24194835 PMCID: PMC3806803 DOI: 10.1371/journal.pone.0076363] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/26/2013] [Indexed: 12/20/2022] Open
Abstract
The recent outbreak of H7N9 influenza in China is of high concern to public health. H7 hemagglutinin (HA) plays a critical role in influenza entry and thus HA presents an attractive target for antivirals. Previous studies have suggested that the small molecule tert-butyl hydroquinone (TBHQ) inhibits the entry of influenza H3 HA by binding to the stem loop of HA and stabilizing the neutral pH conformation of HA, thereby disrupting the membrane fusion step. Based on amino acid sequence, structure and immunogenicity, H7 is a related Group 2 HA. In this work we show, using a pseudovirus entry assay, that TBHQ inhibits H7 HA-mediated entry, as well as H3 HA-mediated entry, with an IC50 ~ 6 µM. Using NMR, we show that TBHQ binds to the H7 stem loop region. STD NMR experiments indicate that the aromatic ring of TBHQ makes extensive contact with the H7 HA surface. Limited proteolysis experiments indicate that TBHQ inhibits influenza entry by stabilizing the H7 HA neutral pH conformation. Together, this work suggests that the stem loop region of H7 HA is an attractive target for therapeutic intervention and that TBHQ, which is a widely used food preservative, is a promising lead compound.
Collapse
Affiliation(s)
- Aleksandar Antanasijevic
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Han Cheng
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Duncan J. Wardrop
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lijun Rong
- Department of Microbiology & Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Michael Caffrey
- Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
12
|
Sun L, Tian F, Feng B, Liu Z, Zhang L, Pei J. Computational Identification of a New Binding Site in Influenza Virus Hemagglutinin for Membrane Fusion Inhibitors. Chem Biol Drug Des 2013; 82:267-74. [DOI: 10.1111/cbdd.12156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Lidan Sun
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Feng Tian
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Baosheng Feng
- College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Liangren Zhang
- State Key Laboratory of Natural and Biomimetic Drugs; School of Pharmaceutical Sciences; Peking University; Beijing 100191 China
| | - Jianfeng Pei
- Center for Quantitative Biology; AAIS; Peking University; Beijing 100871 China
| |
Collapse
|
13
|
Du J, Cross TA, Zhou HX. Recent progress in structure-based anti-influenza drug design. Drug Discov Today 2012; 17:1111-20. [PMID: 22704956 DOI: 10.1016/j.drudis.2012.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 01/22/2023]
Abstract
Seasonal and pandemic influenza have caused high morbidity and mortality worldwide. Recent emergence of influenza A H5N1 and H1N1 strains has heightened concern, especially as a result of their drug resistance. The life cycle of influenza viruses has been well studied and nearly all the viral proteins are becoming potential therapeutic targets. In this review, we present an overview of recent progress in structure-based anti-influenza drug design, paying close attention to the increasing role of computation and strategies for overcoming drug resistance.
Collapse
Affiliation(s)
- Juan Du
- Department of Physics, Florida State University, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
14
|
Tang G, Lin X, Qiu Z, Li W, Zhu L, Wang L, Li S, Li H, Lin W, Yang M, Guo T, Chen L, Lee D, Wu JZ, Yang W. Design and synthesis of benzenesulfonamide derivatives as potent anti-influenza hemagglutinin inhibitors. ACS Med Chem Lett 2011; 2:603-7. [PMID: 24900355 DOI: 10.1021/ml2000627] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/07/2011] [Indexed: 11/28/2022] Open
Abstract
Structural optimization of salicylamide-based hemagglutinin (HA) inhibitor 1 resulted in the identification of cis-3-(5-hydroxy-1,3,3-trimethylcyclohexylmethylamino)benzenesulfonamide 28 and its derivatives as potent anti-influenza agents. The lead compound 28 and its 2-chloro analogue 40 can effectively prevent cytopathic effects (CPE) caused by infection of influenza A/Weiss/43 strain (H1N1) with EC50 values of 210 and 86 nM, respectively. Mechanism of action studies indicate that 40 and its analogues inhibit the virus fusion with host endosome membrane by binding to HA and stabilizing the prefusion HA structure. With significantly improved metabolic stability, the reported series represents the first generation of orally bioavailable HA inhibitors that have a good selectivity window and potential for further development as novel anti-influenza agents.
Collapse
Affiliation(s)
- Guozhi Tang
- Roche R&D Center China, Shanghai, 201203, China
| | | | | | - Wentao Li
- Roche R&D Center China, Shanghai, 201203, China
| | - Lei Zhu
- Roche R&D Center China, Shanghai, 201203, China
| | - Lisha Wang
- Roche R&D Center China, Shanghai, 201203, China
| | - Shaohua Li
- WuXi Apptec Co., Ltd., Shanghai, 200131, China
| | - Haodong Li
- WuXi Apptec Co., Ltd., Shanghai, 200131, China
| | - Wenbin Lin
- WuXi Apptec Co., Ltd., Shanghai, 200131, China
| | - Mei Yang
- WuXi Apptec Co., Ltd., Shanghai, 200131, China
| | - Tao Guo
- WuXi Apptec Co., Ltd., Shanghai, 200131, China
| | - Li Chen
- Roche R&D Center China, Shanghai, 201203, China
| | - Daniel Lee
- Roche R&D Center China, Shanghai, 201203, China
| | - Jim Z. Wu
- Roche R&D Center China, Shanghai, 201203, China
| | | |
Collapse
|
15
|
Ge H, Wang YF, Xu J, Gu Q, Liu HB, Xiao PG, Zhou J, Liu Y, Yang Z, Su H. Anti-influenza agents from Traditional Chinese Medicine. Nat Prod Rep 2010; 27:1758-80. [PMID: 20941447 DOI: 10.1039/c0np00005a] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hu Ge
- Research Center for Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, 132 East Circle Road at University City, Guangzhou, 510006, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Tang G, Qiu Z, Lin X, Li W, Zhu L, Li S, Li H, Wang L, Chen L, Wu JZ, Yang W. Discovery of novel 1-phenyl-cycloalkane carbamides as potent and selective influenza fusion inhibitors. Bioorg Med Chem Lett 2010; 20:3507-10. [PMID: 20494579 DOI: 10.1016/j.bmcl.2010.04.141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/28/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
A novel class of HA inhibitors (4a) was identified based on ligand similarity search of known HA inhibitors. Parallel synthesis and further structural modifications resulted in 1-phenyl-cyclopentanecarboxylic acid (4-cyano-phenyl)-methyl-amide 4t as a potent and selective inhibitor to phylogenetic H1 influenza viruses with an EC(50) of 98 nM against H1N1 A/Weiss/43 strain and over 1000-fold selectivity against host MDCK cells.
Collapse
|
17
|
Anti-influenza virus activity and structure-activity relationship of aglycoristocetin derivatives with cyclobutenedione carrying hydrophobic chains. Antiviral Res 2009; 82:89-94. [PMID: 19200809 PMCID: PMC7125606 DOI: 10.1016/j.antiviral.2009.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 12/02/2022]
Abstract
Previous studies have demonstrated that glycopeptide compounds carrying hydrophobic substituents can have favorable pharmacological (i.e. antibacterial and antiviral) properties. We here report on the in vitro anti-influenza virus activity of aglycoristocetin derivatives containing hydrophobic side chain-substituted cyclobutenedione. The lead compound 8e displayed an antivirally effective concentration of 0.4 μM, which was consistent amongst influenza A/H1N1, A/H3N2 and B viruses, and a selectivity index ≥50. Structural analogues derived from aglycovancomycin were found to be inactive. The hydrophobic side chain was shown to be an important determinant of activity. The narrow structure–activity relationship and broad activity against several human influenza viruses suggest a highly conserved interaction site, which is presumably related to the influenza virus entry process. Compound 8e proved to be inactive against several unrelated RNA and DNA viruses, except for varicella-zoster virus, against which a favorable activity was noted.
Collapse
|
18
|
A versatile method for the hydrolysis of gem-dibromomethylarenes bearing carboxylate or boronate group into aldehydes. Tetrahedron 2008. [DOI: 10.1016/j.tet.2007.11.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Abstract
Annual epidemics of influenza virus infection are responsible for considerable morbidity and mortality, and pandemics are much more devastating. Considerable knowledge of viral infectivity and replication has been acquired, but many details still have to be elucidated and the virus remains a challenging target for drug design and development. This review provides an overview of the antiviral drugs targeting the influenza viral replicative cycle. Included are a brief description of their chemical syntheses and biological activities. For other reviews, see References1-9.
Collapse
Affiliation(s)
- Irene M. Lagoja
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Department of Microbiology and Immunology, Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|
20
|
|
21
|
Yu KL, Torri AF, Luo G, Cianci C, Grant-Young K, Danetz S, Tiley L, Krystal M, Meanwell NA. Structure-activity relationships for a series of thiobenzamide influenza fusion inhibitors derived from 1,3,3-trimethyl-5-hydroxy-cyclohexylmethylamine. Bioorg Med Chem Lett 2002; 12:3379-82. [PMID: 12419365 DOI: 10.1016/s0960-894x(02)00761-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The anti-influenza activity of a series of thiobenzamide fusion inhibitors derived from 1,3,3-trimethyl-5-hydroxy-cyclohexylmethylamine is profiled. Axial disposition of the thioamide moiety is essential for potent influenza inhibitory activity.
Collapse
Affiliation(s)
- Kuo Long Yu
- Department of Chemistry, The Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, CT 06492, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dolle RE. Comprehensive survey of combinatorial library synthesis: 2001. JOURNAL OF COMBINATORIAL CHEMISTRY 2002; 4:369-418. [PMID: 12217012 DOI: 10.1021/cc020039v] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Roland E Dolle
- Department of Chemistry, Adolor Corporation, 371 Phoenixville Pike, Malvern, PA 19355, USA.
| |
Collapse
|
23
|
Edwards P. Combinatorial chemistry. Drug Discov Today 2002. [DOI: 10.1016/s1359-6446(02)02269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|