1
|
Melancon K, Pliushcheuskaya P, Meiler J, Künze G. Targeting ion channels with ultra-large library screening for hit discovery. Front Mol Neurosci 2024; 16:1336004. [PMID: 38249296 PMCID: PMC10796734 DOI: 10.3389/fnmol.2023.1336004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Ion channels play a crucial role in a variety of physiological and pathological processes, making them attractive targets for drug development in diseases such as diabetes, epilepsy, hypertension, cancer, and chronic pain. Despite the importance of ion channels in drug discovery, the vastness of chemical space and the complexity of ion channels pose significant challenges for identifying drug candidates. The use of in silico methods in drug discovery has dramatically reduced the time and cost of drug development and has the potential to revolutionize the field of medicine. Recent advances in computer hardware and software have enabled the screening of ultra-large compound libraries. Integration of different methods at various scales and dimensions is becoming an inevitable trend in drug development. In this review, we provide an overview of current state-of-the-art computational chemistry methodologies for ultra-large compound library screening and their application to ion channel drug discovery research. We discuss the advantages and limitations of various in silico techniques, including virtual screening, molecular mechanics/dynamics simulations, and machine learning-based approaches. We also highlight several successful applications of computational chemistry methodologies in ion channel drug discovery and provide insights into future directions and challenges in this field.
Collapse
Affiliation(s)
- Kortney Melancon
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | | | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
| | - Georg Künze
- Medical Faculty, Institute for Drug Discovery, Leipzig University, Leipzig, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| |
Collapse
|
2
|
Zhang J, Ma ZG, Tian Y, Li W, Gao WC, Chang HH. Divergent Synthesis of Fluorinated Alkenes, Allenes, and Enynes via Reaction of 2-Trifluoromethyl-1,3-enynes with Carbon Nucleophiles. J Org Chem 2022; 87:15086-15100. [PMID: 36314871 DOI: 10.1021/acs.joc.2c01580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herein, inorganic base K3PO4 promoted divergent synthesis of CF3-substituted allenes, cyclopentenes, alkynes, and fluorinated enynes via regioselective nucleophilic addition of carbon nucleophiles to 2-trifluoromethyl-1,3-enynes was developed. With the choice of different carbon nucleophiles, various fluorinated compounds could be obtained under K3PO4/DMF reaction system. When malononitriles were used as nucleophiles, CF3-substituted allenes, cyclopentenes, and alkynes could be obtained, respectively. By using 1,3-dicarbonyl compounds as nucleophiles, ring-monofluorinated 4H-pyrans could be prepared, and 1,1-difluoro-1,3-enynes could be furnished with the participation of diethyl malonate. Moreover, these five kinds of fluorinated allenes, alkenes, and enynes are valuable building blocks.
Collapse
Affiliation(s)
- Juan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhi-Guang Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yu Tian
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wei Li
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Hong-Hong Chang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China.,Shanxi Tihondan Pharmaceutical Technology Co. Ltd., Jinzhong 030600, China
| |
Collapse
|
3
|
Shim H, Kim H, Allen JE, Wulff H. Pose Classification Using Three-Dimensional Atomic Structure-Based Neural Networks Applied to Ion Channel-Ligand Docking. J Chem Inf Model 2022; 62:2301-2315. [PMID: 35447030 PMCID: PMC9131459 DOI: 10.1021/acs.jcim.1c01510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Indexed: 12/11/2022]
Abstract
The identification of promising lead compounds showing pharmacological activities toward a biological target is essential in early stage drug discovery. With the recent increase in available small-molecule databases, virtual high-throughput screening using physics-based molecular docking has emerged as an essential tool in assisting fast and cost-efficient lead discovery and optimization. However, the best scored docking poses are often suboptimal, resulting in incorrect screening and chemical property calculation. We address the pose classification problem by leveraging data-driven machine learning approaches to identify correct docking poses from AutoDock Vina and Glide screens. To enable effective classification of docking poses, we present two convolutional neural network approaches: a three-dimensional convolutional neural network (3D-CNN) and an attention-based point cloud network (PCN) trained on the PDBbind refined set. We demonstrate the effectiveness of our proposed classifiers on multiple evaluation data sets including the standard PDBbind CASF-2016 benchmark data set and various compound libraries with structurally different protein targets including an ion channel data set extracted from Protein Data Bank (PDB) and an in-house KCa3.1 inhibitor data set. Our experiments show that excluding false positive docking poses using the proposed classifiers improves virtual high-throughput screening to identify novel molecules against each target protein compared to the initial screen based on the docking scores.
Collapse
Affiliation(s)
- Heesung Shim
- Department
of Pharmacology, University of California, Davis, California 95616, United States
| | - Hyojin Kim
- Center
for Applied Scientific Computing, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Jonathan E. Allen
- Global
Security Computing Applications Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Heike Wulff
- Department
of Pharmacology, University of California, Davis, California 95616, United States
| |
Collapse
|
4
|
C. Malakar C, Singh V, Kumar V, Singh D, Gujjarappa R. Efficient Approach towards the Polysubstituted 4H-Pyran Hybrid Quinolone Derivatives and Subsequent Copper-Catalyzed Hydroxylation of Haloarenes. HETEROCYCLES 2021. [DOI: 10.3987/com-20-14383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Auria-Luna F, Fernández-Moreira V, Marqués-López E, Gimeno MC, Herrera RP. Ultrasound-assisted multicomponent synthesis of 4H-pyrans in water and DNA binding studies. Sci Rep 2020; 10:11594. [PMID: 32665694 PMCID: PMC7360557 DOI: 10.1038/s41598-020-68076-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022] Open
Abstract
A simple approach to synthesize new highly substituted 4H-pyran derivatives is described. Efficient Et3N acts as a readily accessible catalyst of this process performed in pure water and with only a 20 mol% of catalyst loading. The extremely simple operational methodology, short reaction times, clean procedure and excellent product yields render this new approach extremely appealing for the synthesis of 4H-pyrans, as potentially biological scaffolds. Additionally, DNA interaction analysis reveals that 4H-pyran derivatives behave preferably as minor groove binders over major groove or intercalators. Therefore, this is one of the scarce examples where pyrans have resulted to be interesting DNA binders with high binding constants (Kb ranges from 1.53 × 104 M-1 to 2.05 × 106 M-1).
Collapse
Affiliation(s)
- Fernando Auria-Luna
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Vanesa Fernández-Moreira
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Eugenia Marqués-López
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - M Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain
| | - Raquel P Herrera
- Departamento de Química Orgánica, Laboratorio de Organocatálisis Asimétrica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna, Nº12, 50009, Zaragoza, Spain.
| |
Collapse
|
6
|
Liu J, Yang J, Schneider C, Franke R, Jackstell R, Beller M. Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3-Diynes. Angew Chem Int Ed Engl 2020; 59:9032-9040. [PMID: 32052900 PMCID: PMC7317973 DOI: 10.1002/anie.201915386] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 12/15/2022]
Abstract
For the first time, the monoalkoxycarbonylation of easily available 1,3-diynes to give synthetically useful conjugated enynes has been realized. Key to success was the design and utilization of the new ligand 2,2'-bis(tert-butyl(pyridin-2-yl)phosphanyl)-1,1'-binaphthalene (Neolephos), which permits the palladium-catalyzed selective carbonylation under mild conditions, providing a general preparation of functionalized 1,3-enynes in good-to-high yields with excellent chemoselectivities. Synthetic applications that showcase the possibilities of this novel methodology include an efficient one-pot synthesis of 4-aryl-4H-pyrans as well as the rapid construction of various heterocyclic, bicyclic, and polycyclic compounds.
Collapse
Affiliation(s)
- Jiawang Liu
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Ji Yang
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Carolin Schneider
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Robert Franke
- Evonik Performance Materials GmbHPaul-Baumann-Str. 145772MarlGermany
- Lehrstuhl für Theoretische ChemieRuhr-Universität Bochum44780BochumGermany
| | - Ralf Jackstell
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für KatalyseAlbert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
7
|
Liu J, Yang J, Schneider C, Franke R, Jackstell R, Beller M. Tailored Palladium Catalysts for Selective Synthesis of Conjugated Enynes by Monocarbonylation of 1,3‐Diynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiawang Liu
- Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Ji Yang
- Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Carolin Schneider
- Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Robert Franke
- Evonik Performance Materials GmbH Paul-Baumann-Str. 1 45772 Marl Germany
- Lehrstuhl für Theoretische Chemie Ruhr-Universität Bochum 44780 Bochum Germany
| | - Ralf Jackstell
- Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
8
|
Zarei A, Yarie M, Zolfigol MA, Niknam K. Synthesis of a novel bifunctional oxyammonium‐based ionic liquid: Application for the synthesis of pyrano[4,3‐b]pyrans and tetrahydrobenzo[b]pyrans. J CHIN CHEM SOC-TAIP 2019. [DOI: 10.1002/jccs.201800468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Azra Zarei
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of ChemistryBu‐Ali Sina University Hamedan Iran
| | - Khodabakhsh Niknam
- Department of Chemistry, Faculty of SciencesPersian Gulf University Bushehr Iran
| |
Collapse
|
9
|
Brown BM, Shim H, Christophersen P, Wulff H. Pharmacology of Small- and Intermediate-Conductance Calcium-Activated Potassium Channels. Annu Rev Pharmacol Toxicol 2019; 60:219-240. [PMID: 31337271 DOI: 10.1146/annurev-pharmtox-010919-023420] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | - Heesung Shim
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| | | | - Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA;
| |
Collapse
|
10
|
Critical regulation of atherosclerosis by the KCa3.1 channel and the retargeting of this therapeutic target in in-stent neoatherosclerosis. J Mol Med (Berl) 2019; 97:1219-1229. [DOI: 10.1007/s00109-019-01814-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 05/07/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023]
|
11
|
Jin LW, Lucente JD, Nguyen HM, Singh V, Singh L, Chavez M, Bushong T, Wulff H, Maezawa I. Repurposing the KCa3.1 inhibitor senicapoc for Alzheimer's disease. Ann Clin Transl Neurol 2019; 6:723-738. [PMID: 31019997 PMCID: PMC6469250 DOI: 10.1002/acn3.754] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 01/01/2023] Open
Abstract
Objective Microglia play a pivotal role in the initiation and progression of Alzheimer's disease (AD). We here tested the therapeutic hypothesis that the Ca2+‐activated potassium channel KCa3.1 constitutes a potential target for treating AD by reducing neuroinflammation. Methods To determine if KCa3.1 is relevant to AD, we tested if treating cultured microglia or hippocampal slices with Aβ oligomer (AβO) activated KCa3.1 in microglia, and if microglial KCa3.1 was upregulated in 5xFAD mice and in human AD brains. The expression/activity of KCa3.1 was examined by qPCR, Western blotting, immunohistochemistry, and whole‐cell patch‐clamp. To investigate the role of KCa3.1 in AD pathology, we resynthesized senicapoc, a clinically tested KCa3.1 blocker, and determined its pharmacokinetic properties and its effect on microglial activation, Aβ deposition and hippocampal long‐term potentiation (hLTP) in 5xFAD mice. Results We found markedly enhanced microglial KCa3.1 expression/activity in brains of both 5xFAD mice and AD patients. In hippocampal slices, microglial KCa3.1 expression/activity was increased by AβO treatment, and its inhibition diminished the proinflammatory and hLTP‐impairing activities of AβO. Senicapoc exhibited excellent brain penetrance and oral availability, and in 5xFAD mice, reduced neuroinflammation, decreased cerebral amyloid load, and enhanced hippocampal neuronal plasticity. Interpretation Our results prompt us to propose repurposing senicapoc for AD clinical trials, as senicapoc has excellent pharmacological properties and was safe and well‐tolerated in a prior phase‐3 clinical trial for sickle cell anemia. Such repurposing has the potential to expedite the urgently needed new drug discovery for AD.
Collapse
Affiliation(s)
- Lee-Way Jin
- Department of Pathology and Laboratory Medicine University of California Davis Medical Center Sacramento California
| | - Jacopo Di Lucente
- Department of Pathology and Laboratory Medicine University of California Davis Medical Center Sacramento California
| | - Hai M Nguyen
- Department of Pharmacology University of California Davis Davis California
| | - Vikrant Singh
- Department of Pharmacology University of California Davis Davis California
| | - Latika Singh
- Department of Pharmacology University of California Davis Davis California
| | - Monique Chavez
- Department of Pathology and Laboratory Medicine University of California Davis Medical Center Sacramento California
| | - Trevor Bushong
- Department of Pathology and Laboratory Medicine University of California Davis Medical Center Sacramento California
| | - Heike Wulff
- Department of Pharmacology University of California Davis Davis California
| | - Izumi Maezawa
- Department of Pathology and Laboratory Medicine University of California Davis Medical Center Sacramento California
| |
Collapse
|
12
|
Khan MM, Saigal, Khan S. One‐Pot Knoevenagel–Michael–Cyclization Cascade Reaction for the Synthesis of Functionalized Novel 4 H‐pyrans by Using ZnCl 2as a Catalyst. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- M. Musawwer Khan
- Department of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Saigal
- Department of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Sarfaraz Khan
- Department of ChemistryAligarh Muslim University Aligarh 202002 India
| |
Collapse
|
13
|
Ghalehshahi HG, Balalaie S, Sohbati HR, Azizian H, Alavijeh MS. Synthesis, CYP 450 evaluation, and docking simulation of novel 4-aminopyridine and coumarin derivatives. Arch Pharm (Weinheim) 2019; 352:e1800247. [DOI: 10.1002/ardp.201800247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/01/2018] [Accepted: 12/05/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Hajar G. Ghalehshahi
- Peptide Chemistry Research Center; K. N. Toosi University of Technology; Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center; K. N. Toosi University of Technology; Tehran Iran
- Medical Biology Research Center; Kermanshah University of Medical Sciences; Kermanshah Iran
| | - Hamid R. Sohbati
- Faculty of Pharmacy, Department of Medicinal Chemistry; Tehran University of Medical Science; Tehran Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy international Campus; Iran University of Medical Sciences; Tehran Iran
| | | |
Collapse
|
14
|
Hu JL, Sha F, Li Q, Wu XY. Highly enantioselective Michael/cyclization tandem reaction between dimedone and isatylidene malononitriles. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Brown BM, Pressley B, Wulff H. KCa3.1 Channel Modulators as Potential Therapeutic Compounds for Glioblastoma. Curr Neuropharmacol 2018; 16:618-626. [PMID: 28676010 PMCID: PMC5997873 DOI: 10.2174/1570159x15666170630164226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 12/31/2022] Open
Abstract
Background The intermediate-conductance Ca2+-activated K+ channel KCa3.1 is widely expressed in cells of the immune system such as T- and B-lymphocytes, mast cells, macrophages and microglia, but also found in dedifferentiated vascular smooth muscle cells, fibroblasts and many cancer cells including pancreatic, prostate, leukemia and glioblastoma. In all these cell types KCa3.1 plays an important role in cellular activation, migration and proliferation by regulating membrane potential and Ca2+ signaling. Methods and Results KCa3.1 therefore constitutes an attractive therapeutic target for diseases involving excessive proliferation or activation of one more of these cell types and researchers both in academia and in the pharmaceutical industry have developed several potent and selective small molecule inhibitors of KCa3.1. This article will briefly review the available compounds (TRAM-34, senicapoc, NS6180), their binding sites and mechanisms of action, and then discuss the potential usefulness of these compounds for the treatment of brain tumors based on their brain penetration and their efficacy in reducing microglia activation in animal models of ischemic stroke and Alzheimer’s disease. Conclusion Senicapoc, which has previously been in Phase III clinical trials, would be available for repurposing, and could be used to quickly translate findings made with other KCa3.1 blocking tool compounds into clinical trials.
Collapse
Affiliation(s)
- Brandon M Brown
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, United States
| | - Brandon Pressley
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616, United States
| |
Collapse
|
16
|
D'Alessandro G, Limatola C, Catalano M. Functional Roles of the Ca2+-activated K+ Channel, KCa3.1, in Brain Tumors. Curr Neuropharmacol 2018; 16:636-643. [PMID: 28707595 PMCID: PMC5997864 DOI: 10.2174/0929867324666170713103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/22/2017] [Accepted: 07/12/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive and deadly brain tumor, with low disease-free period even after surgery and combined radio and chemotherapies. Among the factors contributing to the devastating effect of this tumor in the brain are the elevated proliferation and invasion rate, and the ability to induce a local immunosuppressive environment. The intermediateconductance Ca2+-activated K+ channel KCa3.1 is expressed in glioblastoma cells and in tumorinfiltrating cells. METHODS We first describe the researches related to the role of KCa3.1 channels in the invasion of brain tumor cells and the regulation of cell cycle. In the second part we review the involvement of KCa3.1 channel in tumor-associated microglia cell behaviour. RESULTS In tumor cells, the functional expression of KCa3.1 channels is important to substain cell invasion and proliferation. In tumor infiltrating cells, KCa3.1 channel activity is required to regulate their activation state. Interfering with KCa3.1 activity can be an adjuvant therapeutic approach in addition to classic chemotherapy and radiotherapy, to counteract tumor growth and prolong patient's survival. CONCLUSION In this mini-review we discuss the evidence of the functional roles of KCa3.1 channels in glioblastoma biology.
Collapse
Affiliation(s)
- Giuseppina D'Alessandro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Myriam Catalano
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
17
|
Dandia A, Bansal S, Sharma R, Parewa V. Water-Triggered Metal-Free Synthesis of PyranopyrazolesviaOne-Pot Oxidation/Michael Addition/Cyclization/Dehydration Sequence. ChemistrySelect 2018. [DOI: 10.1002/slct.201801691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Anshu Dandia
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| | - Sarika Bansal
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| | - Ruchi Sharma
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| | - Vijay Parewa
- Centre of Advanced Studies; Department of Chemistry; University of Rajasthan, Jaipur; India
| |
Collapse
|
18
|
Zhu Y, Wang Z, Zhang J, Yu J, Yan L, Li Y, Chen L, Yan X. An Organocatalytic Synthesis of Chiral Pyrano[2,3-d
]pyrimidines through [3+3] Annulation of 1,3-Dimethyl-barbituric Acid with 2-(1-Alkynyl)-2-alken-1-ones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yali Zhu
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
| | - Zhonghe Wang
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
| | - Jing Zhang
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
| | - Jia Yu
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
| | - Lijuan Yan
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals; 300350 Tianjin P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals; 300350 Tianjin P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology; Tianjin University; Tianjin P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals; 300350 Tianjin P. R. China
| |
Collapse
|
19
|
Wang Z, Zhu Y, Zhang J, Li J, Wu M, Yan X, Li Y, Chen L. Enantioselective synthesis of chiral 4 H -pyran derivatives through [3+3] tandem reaction over a squaramide catalyst. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.tetasy.2017.10.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Reddy TN, Ravinder M, Bikshapathi R, Sujitha P, Kumar CG, Rao VJ. Design, synthesis, and biological evaluation of 4-H pyran derivatives as antimicrobial and anticancer agents. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1982-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Nguyen HM, Singh V, Pressly B, Jenkins DP, Wulff H, Yarov-Yarovoy V. Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore. Mol Pharmacol 2017; 91:392-402. [PMID: 28126850 PMCID: PMC5363711 DOI: 10.1124/mol.116.108068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
The intermediate-conductance Ca2+-activated K+ channel (KCa3.1) constitutes an attractive pharmacological target for immunosuppression, fibroproliferative disorders, atherosclerosis, and stroke. However, there currently is no available crystal structure of this medically relevant channel that could be used for structure-assisted drug design. Using the Rosetta molecular modeling suite we generated a molecular model of the KCa3.1 pore and tested the model by first confirming previously mapped binding sites and visualizing the mechanism of TRAM-34 (1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole), senicapoc (2,2-bis-(4-fluorophenyl)-2-phenylacetamide), and NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) inhibition at the atomistic level. All three compounds block ion conduction directly by fully or partially occupying the site that would normally be occupied by K+ before it enters the selectivity filter. We then challenged the model to predict the receptor sites and mechanisms of action of the dihydropyridine nifedipine and an isosteric 4-phenyl-pyran. Rosetta predicted receptor sites for nifedipine in the fenestration region and for the 4-phenyl-pyran in the pore lumen, which could both be confirmed by site-directed mutagenesis and electrophysiology. While nifedipine is thus not a pore blocker and might be stabilizing the channel in a nonconducting conformation or interfere with gating, the 4-phenyl-pyran was found to be a classical pore blocker that directly inhibits ion conduction similar to the triarylmethanes TRAM-34 and senicapoc. The Rosetta KCa3.1 pore model explains the mechanism of action of several KCa3.1 blockers at the molecular level and could be used for structure-assisted drug design.
Collapse
Affiliation(s)
- Hai M Nguyen
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Vikrant Singh
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Brandon Pressly
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - David Paul Jenkins
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Heike Wulff
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| | - Vladimir Yarov-Yarovoy
- Department of Pharmacology (H.M.N, V.S., B.P., D.P.J., H.W.) and Department of Physiology and Membrane Biology (V. Y.-Y.), School of Medicine, University of California at Davis, Davis, California
| |
Collapse
|
22
|
Staal RGW, Khayrullina T, Zhang H, Davis S, Fallon SM, Cajina M, Nattini ME, Hu A, Zhou H, Poda SB, Zorn S, Chandrasena G, Dale E, Cambpell B, Biilmann Rønn LC, Munro G, Mӧller T. Inhibition of the potassium channel K Ca3.1 by senicapoc reverses tactile allodynia in rats with peripheral nerve injury. Eur J Pharmacol 2016; 795:1-7. [PMID: 27876619 DOI: 10.1016/j.ejphar.2016.11.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/18/2016] [Accepted: 11/18/2016] [Indexed: 01/16/2023]
Abstract
Neuropathic pain is a debilitating, chronic condition with a significant unmet need for effective treatment options. Recent studies have demonstrated that in addition to neurons, non-neuronal cells such as microglia contribute to the initiation and maintenance of allodynia in rodent models of neuropathic pain. The Ca2+- activated K+ channel, KCa3.1 is critical for the activation of immune cells, including the CNS-resident microglia. In order to evaluate the role of KCa3.1 in the maintenance of mechanical allodynia following peripheral nerve injury, we used senicapoc, a stable and highly potent KCa3.1 inhibitor. In primary cultured microglia, senicapoc inhibited microglial nitric oxide and IL-1β release. In vivo, senicapoc showed high CNS penetrance and when administered to rats with peripheral nerve injury, it significantly reversed tactile allodynia similar to the standard of care, gabapentin. In contrast to gabapentin, senicapoc achieved efficacy without any overt impact on locomotor activity. Together, the data demonstrate that the KCa3.1 inhibitor senicapoc is effective at reducing mechanical hypersensitivity in a rodent model of peripheral nerve injury.
Collapse
Affiliation(s)
- Roland G W Staal
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA.
| | - Tanzilya Khayrullina
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| | - Hong Zhang
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| | - Scott Davis
- Psychogenics Inc., 765 Old Saw Mill River Rd #104, Tarrytown, NY 10591, USA
| | - Shaun M Fallon
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| | - Manuel Cajina
- Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA Inc., 215 College Road, Paramus, NJ 07652, USA
| | - Megan E Nattini
- Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA Inc., 215 College Road, Paramus, NJ 07652, USA
| | - Andrew Hu
- Psychogenics Inc., 765 Old Saw Mill River Rd #104, Tarrytown, NY 10591, USA
| | - Hua Zhou
- Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA Inc., 215 College Road, Paramus, NJ 07652, USA
| | - Suresh Babu Poda
- Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA Inc., 215 College Road, Paramus, NJ 07652, USA
| | - Stevin Zorn
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| | - Gamini Chandrasena
- Molecular Pharmacology, Bioanalysis & Operations, Lundbeck Research USA Inc., 215 College Road, Paramus, NJ 07652, USA
| | - Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| | - Brian Cambpell
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| | | | - Gordon Munro
- Neurodegeneration Disease Biology Unit, H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | - Thomas Mӧller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA Inc., 215 College Rd, Paramus, NJ 07652, USA
| |
Collapse
|
23
|
|
24
|
Ngo TTD, Kishi K, Sako M, Shigenobu M, Bournaud C, Toffano M, Guillot R, Baltaze JP, Takizawa S, Sasai H, Vo-Thanh G. Organocatalyzed [4+2] Annulation of All-Carbon Tetrasubstituted Alkenes with Allenoates: Synthesis of Highly Functionalized 2H
- and 4H
-Pyran Derivatives. ChemistrySelect 2016. [DOI: 10.1002/slct.201601204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Thi-Thuy-Duong Ngo
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO. UMR 8182. Laboratoire de Catalyse Moléculaire; Université Paris-Sud, Université Paris Saclay; 91405 Orsay Cedex France
| | - Kenta Kishi
- The Institute of Scientific and Industrial Research (ISIR); Osaka University; Osaka 567-0047 Japan
| | - Makoto Sako
- The Institute of Scientific and Industrial Research (ISIR); Osaka University; Osaka 567-0047 Japan
| | - Masashi Shigenobu
- The Institute of Scientific and Industrial Research (ISIR); Osaka University; Osaka 567-0047 Japan
| | - Chloée Bournaud
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO. UMR 8182. Laboratoire de Catalyse Moléculaire; Université Paris-Sud, Université Paris Saclay; 91405 Orsay Cedex France
| | - Martial Toffano
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO. UMR 8182. Laboratoire de Catalyse Moléculaire; Université Paris-Sud, Université Paris Saclay; 91405 Orsay Cedex France
| | | | | | - Shinobu Takizawa
- The Institute of Scientific and Industrial Research (ISIR); Osaka University; Osaka 567-0047 Japan
| | - Hiroaki Sasai
- The Institute of Scientific and Industrial Research (ISIR); Osaka University; Osaka 567-0047 Japan
| | - Giang Vo-Thanh
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, ICMMO. UMR 8182. Laboratoire de Catalyse Moléculaire; Université Paris-Sud, Université Paris Saclay; 91405 Orsay Cedex France
| |
Collapse
|
25
|
Yue Z, Li W, Liu L, Wang C, Zhang J. Enantioselective Synthesis of 4H-Pyrans Through Organocatalytic Asymmetric Formal [3+3] Cycloadditions of 2-(1-Alkynyl)-2-alken-1-ones with β-Keto Esters. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600591] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhenting Yue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Lu Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Cuihong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; 3663 N. Zhongshan Road Shanghai 200062 People's Republic of China
| |
Collapse
|
26
|
Blomster LV, Strøbaek D, Hougaard C, Klein J, Pinborg LH, Mikkelsen JD, Christophersen P. Quantification of the functional expression of the Ca 2+ -activated K + channel K Ca 3.1 on microglia from adult human neocortical tissue. Glia 2016; 64:2065-2078. [PMID: 27470924 DOI: 10.1002/glia.23040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
The KCa 3.1 channel (KCNN4) is an important modulator of microglia responses in rodents, but no information exists on functional expression on microglia from human adults. We isolated and cultured microglia (max 1% astrocytes, no neurons or oligodendrocytes) from neocortex surgically removed from epilepsy patients and employed electrophysiological whole-cell measurements and selective pharmacological tools to elucidate functional expression of KCa 3.1. The channel expression was demonstrated as a significant increase in the voltage-independent current by NS309, a KCa 3.1/KCa 2 activator, followed by full inhibition upon co-application with NS6180, a highly selective KCa 3.1 inhibitor. A major fraction (79%) of unstimulated human microglia expressed KCa 3.1, and the difference in current between full activation and inhibition (ΔKCa 3.1) was estimated at 292 ± 48 pA at -40 mV (n = 75), which equals at least 585 channels per cell. Serial KCa 3.1 activation/inhibition significantly hyperpolarized/depolarized the membrane potential. The isolated human microglia were potently activated by lipopolysaccharide (LPS) shown as a prominent increase in TNF-α production. However, incubation with LPS neither changed the KCa 3.1 current nor the fraction of KCa 3.1 expressing cells. In contrast, the anti-inflammatory cytokine IL-4 slightly increased the KCa 3.1 current per cell, but as the membrane area also increased, there was no significant change in channel density. A large fraction of the microglia also expressed a voltage-dependent current sensitive to the KCa 1.1 modulators NS1619 and Paxilline and an inward-rectifying current with the characteristics of a Kir channel. The high functional expression of KCa 3.1 in microglia from epilepsy patients accentuates the need for further investigations of its role in neuropathological processes. GLIA 2016;64:2065-2078.
Collapse
Affiliation(s)
- Linda V Blomster
- Saniona A/S, Baltorpvej 154, 2750, Ballerup, Denmark.,Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | | | | - Jessica Klein
- Saniona A/S, Baltorpvej 154, 2750, Ballerup, Denmark
| | - Lars H Pinborg
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Epilepsy Clinic, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Dale E, Staal RGW, Eder C, Möller T. KCa 3.1-a microglial target ready for drug repurposing? Glia 2016; 64:1733-41. [PMID: 27121595 DOI: 10.1002/glia.22992] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 01/25/2023]
Abstract
Over the past decade, glial cells have attracted attention for harboring unexploited targets for drug discovery. Several glial targets have attracted de novo drug discovery programs, as highlighted in this GLIA Special Issue. Drug repurposing, which has the objective of utilizing existing drugs as well as abandoned, failed, or not yet pursued clinical development candidates for new indications, might provide a faster opportunity to bring drugs for glial targets to patients with unmet needs. Here, we review the potential of the intermediate-conductance calcium-activated potassium channels KCa 3.1 as the target for such a repurposing effort. We discuss the data on KCa 3.1 expression on microglia in vitro and in vivo and review the relevant literature on the two KCa 3.1 inhibitors TRAM-34 and Senicapoc. Finally, we provide an outlook of what it might take to harness the potential of KCa 3.1 as a bona fide microglial drug target. GLIA 2016;64:1733-1741.
Collapse
Affiliation(s)
- Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Roland G W Staal
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| | - Claudia Eder
- Institute for Infection and Immunity, St. George's, University of London, United Kingdom
| | - Thomas Möller
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Paramus, New Jersey
| |
Collapse
|
28
|
Yang J, Mao A, Yue Z, Zhu W, Luo X, Zhu C, Xiao Y, Zhang J. A simple base-mediated synthesis of diverse functionalized ring-fluorinated 4H-pyrans via double direct C–F substitutions. Chem Commun (Camb) 2015; 51:8326-9. [DOI: 10.1039/c5cc02073e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple base-mediated synthesis of diverse substituted ring-fluorinated 4H-pyrans (monofluorinated 4H-pyrans) from trifluoromethylated alkenes and 1,3-dicarbonyl compounds was developed.
Collapse
Affiliation(s)
- Jieru Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Ao Mao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Zhenting Yue
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Wenxuan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xuewei Luo
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Chuwei Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Yuanjing Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
29
|
Lashgari N, Mohammadi Ziarani G, Badiei A, Zarezadeh-Mehrizi M. Application of Sulfonic Acid Functionalized SBA-15 as a New Nanoporous Acid Catalyst in the Green One-Pot Synthesis of Spirooxindole-4H-pyrans. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Negar Lashgari
- Department of Chemistry; Alzahra University; P.O. Box 1993891176 Iran
| | | | - Alireza Badiei
- School of Chemistry, College of Science; University of Tehran; P.O. Box 14155-6455 Iran
| | | |
Collapse
|
30
|
Pagadala R, Maddila S, Dasireddy VD, Jonnalagadda SB. Zn-VCO3 hydrotalcite: A highly efficient and reusable heterogeneous catalyst for the Hantzsch dihydropyridine reaction. CATAL COMMUN 2014. [DOI: 10.1016/j.catcom.2013.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Safaei-Ghomi J, Teymuri R, Shahbazi-Alavi H, Ziarati A. SnCl2/nano SiO2: A green and reusable heterogeneous catalyst for the synthesis of polyfunctionalized 4H-pyrans. CHINESE CHEM LETT 2013. [DOI: 10.1016/j.cclet.2013.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Strøbæk D, Brown DT, Jenkins DP, Chen YJ, Coleman N, Ando Y, Chiu P, Jørgensen S, Demnitz J, Wulff H, Christophersen P. NS6180, a new K(Ca) 3.1 channel inhibitor prevents T-cell activation and inflammation in a rat model of inflammatory bowel disease. Br J Pharmacol 2013; 168:432-44. [PMID: 22891655 DOI: 10.1111/j.1476-5381.2012.02143.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/21/2012] [Accepted: 08/07/2012] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE The K(Ca) 3.1 channel is a potential target for therapy of immune disease. We identified a compound from a new chemical class of K(Ca) 3.1 inhibitors and assessed in vitro and in vivo inhibition of immune responses. EXPERIMENTAL APPROACH We characterized the benzothiazinone NS6180 (4-[[3-(trifluoromethyl)phenyl]methyl]-2H-1,4-benzothiazin-3(4H)-one) with respect to potency and molecular site of action on K(Ca) 3.1 channels, selectivity towards other targets, effects on T-cell activation as well as pharmacokinetics and inflammation control in colitis induced by 2,4-dinitrobenzene sulfonic acid, a rat model of inflammatory bowel disease (IBD). KEY RESULTS NS6180 inhibited cloned human K(Ca) 3.1 channels (IC(50) = 9 nM) via T250 and V275, the same amino acid residues conferring sensitivity to triarylmethanes such as like TRAM-34. NS6180 inhibited endogenously expressed K(Ca) 3.1 channels in human, mouse and rat erythrocytes, with similar potencies (15-20 nM). NS6180 suppressed rat and mouse splenocyte proliferation at submicrolar concentrations and potently inhibited IL-2 and IFN-γ production, while exerting smaller effects on IL-4 and TNF-α and no effect on IL-17 production. Antibody staining showed K(Ca) 3.1 channels in healthy colon and strong up-regulation in association with infiltrating immune cells after induction of colitis. Despite poor plasma exposure, NS6180 (3 and 10 mg·kg(-1) b.i.d.) dampened colon inflammation and improved body weight gain as effectively as the standard IBD drug sulfasalazine (300 mg·kg(-1) q.d.). CONCLUSIONS AND IMPLICATIONS NS6180 represents a novel class of K(Ca) 3.1 channel inhibitors which inhibited experimental colitis, suggesting K(Ca) 3.1 channels as targets for pharmacological control of intestinal inflammation.
Collapse
|
33
|
Yadlapalli RK, Chourasia O, Perali RS. A facile one-pot synthesis of 2-thioxo-dihydropyrimidines and polyfunctionalized pyran derivatives as mimics of novel calcium channel modulators. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
|
35
|
Balut CM, Hamilton KL, Devor DC. Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts? ChemMedChem 2012; 7:1741-55. [PMID: 22887933 DOI: 10.1002/cmdc.201200226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/09/2012] [Indexed: 12/22/2022]
Abstract
Ca(2+)-activated K(+) (KCa) channels play a pivotal role in the physiology of a wide variety of tissues and disease states, including vascular endothelia, secretory epithelia, certain cancers, red blood cells (RBC), neurons, and immune cells. Such widespread involvement has generated an intense interest in elucidating the function and regulation of these channels, with the goal of developing pharmacological strategies aimed at selective modulation of KCa channels in various disease states. Herein we give an overview of the molecular and functional properties of these channels and their therapeutic importance. We discuss the achievements made in designing pharmacological tools that control the function of KCa channels by modulating their gating properties. Moreover, this review discusses the recent advances in our understanding of KCa channel assembly and anterograde trafficking toward the plasma membrane, the micro-domains in which these channels are expressed within the cell, and finally the retrograde trafficking routes these channels take following endocytosis. As the regulation of intracellular trafficking by agonists as well as the protein-protein interactions that modify these events continue to be explored, we anticipate this will open new therapeutic avenues for the targeting of these channels based on the pharmacological modulation of KCa channel density at the plasma membrane.
Collapse
Affiliation(s)
- Corina M Balut
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
36
|
Expression and Role of the Intermediate-Conductance Calcium-Activated Potassium Channel KCa3.1 in Glioblastoma. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:421564. [PMID: 22675627 PMCID: PMC3362965 DOI: 10.1155/2012/421564] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/15/2012] [Indexed: 12/29/2022]
Abstract
Glioblastomas are characterized by altered expression of several ion channels that have important consequences in cell functions associated with their aggressiveness, such as cell survival, proliferation, and migration. Data on the altered expression and function of the intermediate-conductance calcium-activated K (KCa3.1) channels in glioblastoma cells have only recently become available. This paper aims to (i) illustrate the main structural, biophysical, pharmacological, and modulatory properties of the KCa3.1 channel, (ii) provide a detailed account of data on the expression of this channel in glioblastoma cells, as compared to normal brain tissue, and (iii) critically discuss its major functional roles. Available data suggest that KCa3.1 channels (i) are highly expressed in glioblastoma cells but only scantly in the normal brain parenchima, (ii) play an important role in the control of glioblastoma cell migration. Altogether, these data suggest KCa3.1 channels as potential candidates for a targeted therapy against this tumor.
Collapse
|
37
|
Elnagdi NMH, Al-Hokbany NS. Organocatalysis in synthesis: L-proline as an enantioselective catalyst in the synthesis of pyrans and thiopyrans. Molecules 2012; 17:4300-12. [PMID: 22491679 PMCID: PMC6268709 DOI: 10.3390/molecules17044300] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022] Open
Abstract
The multicomponent reaction (MCR) of aromatic aldehydes 1 and malononitrile (2) with active methylenes 5a–h in the presence of L-proline produced pyrans and thiopyrans 6a–h stereospecifically and in good yields. Moreover a novel MCR of ethyl propiolate (8) with 1 and 2 in the presence of L-proline to afford (R)-polysubstituted pyran is also reported. X-ray structures, e.e. and optical activity of the synthesized compounds indicated that L-proline as a catalyst is responsible for the observed enantioselectivity in the studied reactions.
Collapse
Affiliation(s)
- Noha M Hilmy Elnagdi
- Women Students-Medical Studies & Sciences Sections, Chemistry Department, College of Science, King Saud University, Riyadh, KSA, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | | |
Collapse
|
38
|
Wulff H, Castle NA. Therapeutic potential of KCa3.1 blockers: recent advances and promising trends. Expert Rev Clin Pharmacol 2012; 3:385-96. [PMID: 22111618 DOI: 10.1586/ecp.10.11] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Ca(2+)-activated K(+) channel K(Ca)3.1 regulates membrane potential and calcium signaling in erythrocytes, activated T and B cells, macrophages, microglia, vascular endothelium, epithelia, and proliferating vascular smooth muscle cells and fibroblasts. K(Ca)3.1 has therefore been suggested as a potential therapeutic target for diseases such as sickle cell anemia, asthma, coronary restenosis after angioplasty, atherosclerosis, kidney fibrosis and autoimmunity, where activation and excessive proliferation of one or more of these cell types is involved in the pathology. This article will review the physiology and pharmacology of K(Ca)3.1 and critically examine the available preclinical and clinical data validating K(Ca)3.1 as a therapeutic target.
Collapse
|
39
|
Optimization of the Selective Monohydrolysis of Diethyl 4-Aryl-4H-pyran-3,5-dicarboxylates. Molecules 2011; 16:3845-54. [PMID: 21552186 PMCID: PMC6263326 DOI: 10.3390/molecules16053845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 12/01/2022] Open
Abstract
A simple, efficient and eco-friendly procedure for the selective monohydrolysis of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates under quaternary ammonium salt catalysis conditions is presented. The catalytic activities of various quaternary ammonium salts were investigated using different molar ratios of NaOH and water-organic solvent mixtures. The results indicate that the combination of 1.0 equivalent of tetraethyl-ammonium bromide (TEAB) with 1.2 equivalents of NaOH in a 10% water-ethanol media at 40 °C displays remarkable selectivity for the monohydrolysis of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates. The utility of this process is demonstrated by the monohydrolysis of a series of 4-aryl-4H-pyran-3,5-dicarboxylate esters to afford the corresponding monoesters in 20–80% yields under the optimized conditions.
Collapse
|
40
|
Hu J, Liu L, Yang S, Liang YM. Phase-transfer-catalyzed cyclization reaction of nucleophilic addition to electron-deficient 1,3-conjugated enynes for the synthesis of functionalized 4H-pyrans. Org Biomol Chem 2011; 9:3375-9. [DOI: 10.1039/c0ob01255f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Antagonism of 4-substituted 1,4-dihydropyridine-3,5-dicarboxylates toward voltage-dependent L-type Ca2+ channels Ca V 1.3 and Ca V 1.2. Bioorg Med Chem 2010; 18:3147-58. [PMID: 20382537 DOI: 10.1016/j.bmc.2010.03.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/24/2022]
Abstract
L-type Ca(2+) channels in mammalian brain neurons have either a Ca(V)1.2 or Ca(V)1.3 pore-forming subunit. Recently, it was shown that Ca(V)1.3 Ca(2+) channels underlie autonomous pacemaking in adult dopaminergic neurons in the substantia nigra pars compacta, and this reliance renders them sensitive to toxins used to create animal models of Parkinson's disease. Antagonism of these channels with the dihydropyridine antihypertensive drug isradipine diminishes the reliance on Ca(2+) and the sensitivity of these neurons to toxins, pointing to a potential neuroprotective strategy. However, for neuroprotection without an antihypertensive side effect, selective Ca(V)1.3 channel antagonists are required. In an attempt to identify potent and selective antagonists of Ca(V)1.3 channels, 124 dihydropyridines (4-substituted-1,4-dihydropyridine-3,5-dicarboxylic diesters) were synthesized. The antagonism of heterologously expressed Ca(V)1.2 and Ca(V)1.3 channels was then tested using electrophysiological approaches and the FLIPR Calcium 4 assay. Despite the large diversity in substitution on the dihydropyridine scaffold, the most Ca(V)1.3 selectivity was only about twofold. These results support a highly similar dihydropyridine binding site at both Ca(V)1.2 and Ca(V)1.3 channels and suggests that other classes of compounds need to be identified for Ca(V)1.3 selectivity.
Collapse
|
42
|
Ni CL, Song XH, Yan H, Song XQ, Zhong RG. Improved synthesis of diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylate under ultrasound irradiation. ULTRASONICS SONOCHEMISTRY 2010; 17:367-369. [PMID: 19875321 DOI: 10.1016/j.ultsonch.2009.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 09/01/2009] [Accepted: 09/21/2009] [Indexed: 05/28/2023]
Abstract
Diethyl 2,6-dimethyl-4-aryl-4H-pyran-3,5-dicarboxylates (1) have been synthesized by the reaction of aryl aldehyde and 1,3-diketone catalyzed by ZnCl(2) under ultrasound irradiation. The effects of changes in the ultrasonic power, temperature, and reaction time are discussed. With the optimized reaction conditions, various aryl aldehydes were used to synthesize 4H-pyrans (1) under the influence of ultrasound irradiation. Compared with the conventional thermal methods, the remarkable advantages of this method are the simple experimental procedure, shorter reaction time and high yield of product.
Collapse
Affiliation(s)
- Cheng-Liang Ni
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, PR China
| | | | | | | | | |
Collapse
|
43
|
Yu X, Cao Z, Zhang J. Organocatalytic hetero [4+2] cycloaddition reactions of 2-(1-alkynyl)-2-alkene-1-ones: metal-free access to highly substituted 4H-pyrans. Org Biomol Chem 2010; 8:5059-61. [DOI: 10.1039/c0ob00334d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Xiao Y, Zhang J. Furans versus 4H-pyrans: catalyst-controlled regiodivergent tandem Michael addition–cyclization reaction of 2-(1-alkynyl)-2-alken-1-ones with 1,3-dicarbonyl compounds. Chem Commun (Camb) 2009:3594-6. [DOI: 10.1039/b905267d] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Nardi A, Demnitz J, Garcia ML, Polosa R. Potassium channels as drug targets for therapeutic intervention in respiratory diseases. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543770802553798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Yu X, Ren H, Xiao Y, Zhang J. Efficient Assembly of Allenes, 1,3-Dienes, and 4H-Pyrans by Catalytic Regioselective Nucleophilic Addition to Electron-Deficient 1,3-Conjugated Enynes. Chemistry 2008; 14:8481-5. [DOI: 10.1002/chem.200801004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Wulff H, Zhorov BS. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem Rev 2008; 108:1744-73. [PMID: 18476673 PMCID: PMC2714671 DOI: 10.1021/cr078234p] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Heike Wulff
- Department of Pharmacology, University of California, Davis, California 95616, USA.
| | | |
Collapse
|
48
|
Cruse G, Duffy SM, Brightling CE, Bradding P. Functional KCa3.1 K+ channels are required for human lung mast cell migration. Thorax 2006; 61:880-5. [PMID: 16809411 PMCID: PMC2104766 DOI: 10.1136/thx.2006.060319] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Mast cell recruitment and activation are critical for the initiation and progression of inflammation and fibrosis. Mast cells infiltrate specific structures in many diseased tissues such as the airway smooth muscle (ASM) in asthma. This microlocalisation of mast cells is likely to be key to disease pathogenesis. Human lung mast cells (HLMC) express the Ca2+ activated K+ channel K(Ca)3.1 which modulates mediator release, and is proposed to facilitate the retraction of the cell body during migration of several cell types. A study was undertaken to test the hypothesis that blockade of K(Ca)3.1 would attenuate HLMC proliferation and migration. METHODS HLMC were isolated and purified from lung material resected for bronchial carcinoma. HLMC proliferation was assessed by cell counts at various time points following drug exposure. HLMC chemotaxis was assayed using standard Transwell chambers (8 microm pore size). Ion currents were measured using the single cell patch clamp technique. RESULTS K(Ca)3.1 blockade with triarylmethane-34 (TRAM-34) did not inhibit HLMC proliferation and clotrimazole had cytotoxic effects. In contrast, HLMC migration towards the chemokine CXCL10, the chemoattractant stem cell factor, and the supernatants from tumour necrosis factor alpha stimulated asthmatic ASM was markedly inhibited with both the non-selective K(Ca)3.1 blocker charybdotoxin and the highly specific K(Ca)3.1 blocker TRAM-34 in a dose dependent manner. Although K(Ca)3.1 blockade inhibits HLMC migration, K(Ca)3.1 is not opened by the chemotactic stimulus, suggesting that it must be involved downstream of the initial receptor-ligand interactions. CONCLUSIONS Since modulation of K(Ca)3.1 can inhibit HLMC chemotaxis to diverse chemoattractants, the use of K(Ca)3.1 blockers such as TRAM-34 could provide new therapeutic strategies for mast cell mediated diseases such as asthma.
Collapse
Affiliation(s)
- G Cruse
- Institute for Lung Health, Department of Infection, Immunity and Inflammation, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK.
| | | | | | | |
Collapse
|
49
|
|
50
|
Urbahns K, Goldmann S, Krüger J, Horváth E, Schuhmacher J, Grosser R, Hinz V, Mauler F. IKCa-channel blockers. Part 2: discovery of cyclohexadienes. Bioorg Med Chem Lett 2005; 15:401-4. [PMID: 15603962 DOI: 10.1016/j.bmcl.2004.10.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/15/2004] [Accepted: 10/21/2004] [Indexed: 11/29/2022]
Abstract
Novel cyclohexadienes have been identified as potent and specific IK(Ca)-channel blockers. In this communication we describe their synthesis as well as their chemical and biological properties. A selected derivative is being enriched in rat brain and reduces the infarct volume, intracranial pressure as well as the water content in a rat subdural hematoma model of traumatic brain injury after iv administration.
Collapse
Affiliation(s)
- Klaus Urbahns
- Institute of Medicinal Chemistry, Pharma Research Center, Bayer Health Care, D-42096 Wuppertal, FRG.
| | | | | | | | | | | | | | | |
Collapse
|