1
|
Aboalroub AA, Al Azzam KM. Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities. Protein J 2024; 43:639-655. [PMID: 39068633 DOI: 10.1007/s10930-024-10223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Nitric oxide (NO) induces protein posttranslational modification (PTM), known as S-nitrosylation, which has started to gain attention as a critical regulator of thousands of substrate proteins. However, our understanding of the biological consequences of this emerging PTM is incomplete because of the limited number of identified S-nitrosylated proteins (S-NO proteins). Recent advances in detection methods have effectively contributed to broadening the spectrum of discovered S-NO proteins. This article briefly reviews the progress in S-NO protein detection methods and discusses how these methods are involved in characterizing the biological consequences of this PTM. Additionally, we provide insight into S-NO protein-related diseases, focusing on the role of these proteins in mitigating the severity of infectious diseases.
Collapse
Affiliation(s)
- Adam A Aboalroub
- Pharmacological and Diagnostic Research Center (PDRC), Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Khaldun M Al Azzam
- Department of Chemistry, School of Science, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
2
|
Tao W, Moore CE, Zhang S. Redox-Neutral S-nitrosation Mediated by a Dicopper Center. Angew Chem Int Ed Engl 2021; 60:15980-15987. [PMID: 33913605 DOI: 10.1002/anie.202102589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/18/2021] [Indexed: 11/08/2022]
Abstract
A redox-neutral S-nitrosation of thiol has been achieved at a dicopper(I,I) center. Treatment of dicopper (I,I) complex with excess NO. and thiol generates a dicopper (I,I) di-S-nitrosothiol complex [CuI CuI (RSNO)2 ]2+ or dicopper (I,I) mono-S-nitrosothiol complex [CuI CuI (RSNO)]2+ , which readily release RSNO in 88-94 % yield. The S-nitrosation proceeds by a mixed-valence [CuII CuIII (μ-O)(μ-NO)]2+ species, which deprotonates RS-H at the basic μ-O site and nitrosates RS- at the μ-NO site. The [CuII CuIII (μ-O)(μ-NO)]2+ complex is also competent for O-nitrosation of MeOH. A rare [CuII CuII (μ-NO)(OMe)]2+ intermediate was isolated and fully characterized, suggesting the S-nitrosation may proceed through the intermediary of analogous [CuII CuII (μ-NO)(SR)]2+ species. This redox- and proton-neutral S-nitrosation process is the first functional model of ceruloplasmin in mediating S-nitrosation of external thiols, with implications for biological copper sites in the interconversion of NO. /RSNO.
Collapse
Affiliation(s)
- Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Curtis E Moore
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
3
|
Tao W, Moore CE, Zhang S. Redox‐Neutral
S
‐nitrosation Mediated by a Dicopper Center. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenjie Tao
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Curtis E. Moore
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
4
|
Zhu X, Gao Y. 17O NMR spectroscopy-assisted in vitro bioactivity studies of the intermediates formed via Na 2S and RSNO cross-linking reactions. RSC Adv 2020; 10:39617-39626. [PMID: 35515380 PMCID: PMC9057446 DOI: 10.1039/d0ra05054g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/22/2020] [Indexed: 11/22/2022] Open
Abstract
The cross-linking reaction between sulfide and S-nitrosothiol moieties has been intensively investigated and thionitrite/thionitrous acid (SNO−/HSNO) as well as nitrosopersulfide (SSNO−) were reported to be the intermediates that could serve as reservoirs for nitric oxide (NO). However, debate still exists regarding the stability and biological activity of SNO−/HSNO and SSNO−. In order to investigate the chemical properties and biological activity of SNO− and SSNO−, we set out to re-characterize the reaction intermediates using UV-Vis and 15N NMR spectroscopy techniques, as well as a new 17O NMR approach. The effects of SNO− and SSNO− on cellular NO and cGMP levels were assessed via cell culture experiments, and also the effects of SNO− and SSNO− on cell proliferation, migration, and capillary-like structure formation were evaluated with human umbilical vein endothelial cells (HUVEC). Through this work, the characteristic peaks and half-lives of SNO− and SSNO− were elucidated under various preparation conditions. The biological assays demonstrated that SSNO− increased the cellular NO and cGMP levels and also facilitated cell proliferation, migration and stimulated angiogenesis, while in contrast SNO− did not exhibit these effects. By using UV-Vis, 15N NMR and 17O NMR spectroscopy techniques, we characterized the intermediates (SSNO− and SNO−) obtained from RSNO and Na2S cross-linking reaction. We found that SSNO− could serve as NO reservoir in cell culture experiments.![]()
Collapse
Affiliation(s)
- Xingyu Zhu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Yin Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
5
|
S-Nitrosoglutathione exhibits greater stability than S-nitroso-N-acetylpenicillamine under common laboratory conditions: A comparative stability study. Nitric Oxide 2019; 92:18-25. [PMID: 31398487 DOI: 10.1016/j.niox.2019.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/20/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
S-Nitrosothiols (RSNOs) such as S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) are susceptible to decomposition by stimuli including heat, light, and trace metal ions. Using stepwise isothermal thermogravimetric analysis (TGA), we observed that NO-forming homolytic cleavage of the S-N bond occurs at 134.7 ± 0.8 °C in GSNO and 132.8 ± 0.9 °C in SNAP, contrasting with the value of 150 °C that has been previously reported for both RSNOs. Using mass spectrometry (MS), nuclear magnetic resonance (NMR), and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), we analyzed the decomposition products from TGA experiments. The organic product of GSNO decomposition was glutathione disulfide, while SNAP decomposed to form N-acetylpenicillamine disulfide as well as other products, including tri- and tetrasulfides. In addition, we assessed the relative solution stabilities of GSNO and SNAP under common laboratory conditions, which include variable temperature, pH, and light exposure with rigorous exclusion of trace metal ions by chelation. GSNO exhibited greater stability than SNAP over a 7-day period except in one instance. Both RSNOs demonstrated an inverse relationship between solution stability and temperature, with refrigeration considerably extending shelf life. A decrease in pH from 7.4 to 5.0 also enhanced the stability of both RSNOs. A further decrease in pH from 5.0 to 3.0 resulted in decreased stability for both RSNOs, and is notably the only occasion in which SNAP proved more stable than GSNO. After 1 h of exposure to overhead fluorescent lighting, both RSNOs displayed high susceptibility to light-induced decomposition. After 7 h, GSNO and SNAP decomposed 19.3 ± 0.5% and 30 ± 2%, respectively.
Collapse
|
6
|
Lau N, Pluth MD. Reactive sulfur species (RSS): persulfides, polysulfides, potential, and problems. Curr Opin Chem Biol 2019; 49:1-8. [DOI: 10.1016/j.cbpa.2018.08.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
|
7
|
Bignon E, Allega MF, Lucchetta M, Tiberti M, Papaleo E. Computational Structural Biology of S-nitrosylation of Cancer Targets. Front Oncol 2018; 8:272. [PMID: 30155439 PMCID: PMC6102371 DOI: 10.3389/fonc.2018.00272] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) plays an essential role in redox signaling in normal and pathological cellular conditions. In particular, it is well known to react in vivo with cysteines by the so-called S-nitrosylation reaction. S-nitrosylation is a selective and reversible post-translational modification that exerts a myriad of different effects, such as the modulation of protein conformation, activity, stability, and biological interaction networks. We have appreciated, over the last years, the role of S-nitrosylation in normal and disease conditions. In this context, structural and computational studies can help to dissect the complex and multifaceted role of this redox post-translational modification. In this review article, we summarized the current state-of-the-art on the mechanism of S-nitrosylation, along with the structural and computational studies that have helped to unveil its effects and biological roles. We also discussed the need to move new steps forward especially in the direction of employing computational structural biology to address the molecular and atomistic details of S-nitrosylation. Indeed, this redox modification has been so far an underappreciated redox post-translational modification by the computational biochemistry community. In our review, we primarily focus on S-nitrosylated proteins that are attractive cancer targets due to the emerging relevance of this redox modification in a cancer setting.
Collapse
Affiliation(s)
- Emmanuelle Bignon
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Maria Francesca Allega
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marta Lucchetta
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Tiberti
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory Danish Cancer Society Research Center, Copenhagen, Denmark.,Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
Gao Y, Dai Y, Wu G. Solid-State 15N and 17O NMR Studies of S-Nitrosothiols. J Phys Chem B 2017; 121:7311-7317. [DOI: 10.1021/acs.jpcb.7b05685] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yin Gao
- The
College of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Yizhe Dai
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Gang Wu
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| |
Collapse
|
9
|
Spray-dried microparticles of glutathione and S-nitrosoglutathione based on Eudragit® FS 30D polymer. ANNALES PHARMACEUTIQUES FRANÇAISES 2017; 75:95-104. [DOI: 10.1016/j.pharma.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 12/19/2022]
|
10
|
Song Y, Zemlyanov D, Chen X, Nie H, Su Z, Fang K, Yang X, Smith D, Byrn S, Lubach JW. Acid–Base Interactions of Polystyrene Sulfonic Acid in Amorphous Solid Dispersions Using a Combined UV/FTIR/XPS/ssNMR Study. Mol Pharm 2015; 13:483-92. [PMID: 26716395 DOI: 10.1021/acs.molpharmaceut.5b00708] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yang Song
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dmitry Zemlyanov
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xin Chen
- GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Haichen Nie
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ziyang Su
- Center
for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Ke Fang
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xinghao Yang
- College
of Life Sciences, Nanjing Normal University, Nanjing 210046, P. R. China
| | - Daniel Smith
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Stephen Byrn
- Department
of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joseph W. Lubach
- Small Molecule
Pharmaceutical Sciences, Genentech, Inc., South San Francisco, California 94080, United States
| |
Collapse
|
11
|
Gao Y, Toubaei A, Kong X, Wu G. Solving the 170-Year-Old Mystery About Red-Violet and Blue Transient Intermediates in the Gmelin Reaction. Chemistry 2015; 21:17172-7. [PMID: 26412492 DOI: 10.1002/chem.201503353] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Indexed: 11/06/2022]
Abstract
The Gmelin reaction between nitroprusside and sulfides in aqueous solution is known to produce two transient intermediates with distinct colors: an initial red-violet intermediate that subsequently converts into a blue intermediate. In this work, we use a combination of multinuclear ((17) O, (15) N, (13) C) NMR, UV/Vis, IR spectroscopic techniques and quantum chemical computation to show unequivocally that the red-violet intermediate is [Fe(CN)5 N(O)S](4-) and the blue intermediate is [Fe(CN)5 N(O)SS)](4-) . While the formation of [Fe(CN)5 N(O)S](4-) has long been postulated in the literature, this study provides the most direct proof of its structure. In contrast, [Fe(CN)5 N(O)SS)](4-) represents the first example of any metal coordination complex containing a perthionitro ligand. The new reaction pathways found in this study not only provide clues for the mode of action of nitroprusside for its pharmacological activity, but also have broader implications to the biological role of H2 S, potential reactions between H2 S and nitric oxide donor compounds, and the possible biological function of polysulfides.
Collapse
Affiliation(s)
- Yin Gao
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
| | - Abouzar Toubaei
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
| | - Xianqi Kong
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada)
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6 (Canada).
| |
Collapse
|
12
|
Wedmann R, Zahl A, Shubina TE, Dürr M, Heinemann FW, Bugenhagen BEC, Burger P, Ivanovic-Burmazovic I, Filipovic MR. Does perthionitrite (SSNO(-)) account for sustained bioactivity of NO? A (bio)chemical characterization. Inorg Chem 2015; 54:9367-80. [PMID: 26111441 DOI: 10.1021/acs.inorgchem.5b00831] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hydrogen sulfide (H2S) and nitric oxide (NO) are important signaling molecules that regulate several physiological functions. Understanding the chemistry behind their interplay is important for explaining these functions. The reaction of H2S with S-nitrosothiols to form the smallest S-nitrosothiol, thionitrous acid (HSNO), is one example of physiologically relevant cross-talk between H2S and nitrogen species. Perthionitrite (SSNO(-)) has recently been considered as an important biological source of NO that is far more stable and longer living than HSNO. In order to experimentally address this issue here, we prepared SSNO(-) by two different approaches, which lead to two distinct species: SSNO(-) and dithionitric acid [HON(S)S/HSN(O)S]. (H)S2NO species and their reactivity were studied by (15)N NMR, IR, electron paramagnetic resonance and high-resolution electrospray ionization time-of-flight mass spectrometry, as well as by X-ray structure analysis and cyclic voltammetry. The obtained results pointed toward the inherent instability of SSNO(-) in water solutions. SSNO(-) decomposed readily in the presence of light, water, or acid, with concomitant formation of elemental sulfur and HNO. Furthermore, SSNO(-) reacted with H2S to generate HSNO. Computational studies on (H)SSNO provided additional explanations for its instability. Thus, on the basis of our data, it seems to be less probable that SSNO(-) can serve as a signaling molecule and biological source of NO. SSNO(-) salts could, however, be used as fast generators of HNO in water solutions.
Collapse
Affiliation(s)
- Rudolf Wedmann
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Achim Zahl
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Tatyana E Shubina
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Maximilian Dürr
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | | | - Peter Burger
- Department of Chemistry, University of Hamburg , Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Ivana Ivanovic-Burmazovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg , Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
13
|
Gao Y, Mossing B, Wu G. Direct NMR detection of the unstable “red product” from the reaction between nitroprusside and 2-mercaptosuccinic acid. Dalton Trans 2015; 44:20338-43. [DOI: 10.1039/c5dt04029a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First NMR characterization of the unstable “red product” produced from the reaction between nitroprusside and organic thiolates.
Collapse
Affiliation(s)
- Yin Gao
- Department of Chemistry
- Queen's University
- Kingston
- Canada K7L 3N6
| | - Brendan Mossing
- Department of Chemistry
- Queen's University
- Kingston
- Canada K7L 3N6
| | - Gang Wu
- Department of Chemistry
- Queen's University
- Kingston
- Canada K7L 3N6
| |
Collapse
|
14
|
Tan L, Wan A, Li H. Ag2S quantum dots conjugated chitosan nanospheres toward light-triggered nitric oxide release and near-infrared fluorescence imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15032-15042. [PMID: 24224470 DOI: 10.1021/la403028j] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanoscaled light-triggered nitric oxide (NO) delivery vehicles with the ability of near-infrared (NIR) fluorescence imaging was presented, which consisted of chitosan (CS)-based S-nitrosothiols (SNO) and encapsulated silver sulfide quantum dots (Ag2S QDs). CS-SNO compounds that bore NO-storing functional groups were prepared via amino modification of chitosan. Water-soluble Ag2S QDs were synthesized and conjugated with the CS-SNO compounds with the aid of ethylenediaminetetraacetic acid (EDTA). The biocompatible Ag2S-CS-SNO nanospheres, with dimension of ∼117 nm, exhibited bright NIR fluorescence and satisfactory photostability under NIR irradiation. The Ag2S-CS-SNO nanospheres could release NO under irradiation of UV or visible light at physiological pH and temperature yet would hardly release NO if NIR irradiation was applied. Cell imaging was successfully performed, demonstrating that the Ag2S-CS-SNO nanospheres could emit readily observable NIR fluorescence and release NO in living cells. The NIR fluorescence imaging of the Ag2S-CS-SNO nanospheres did not interfere with the light-triggered NO release from them, which would provide new perspectives for the application of multifunctional nanostructured materials in diagnostics and imaging.
Collapse
Affiliation(s)
- Lianjiang Tan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | | | | |
Collapse
|
15
|
Tan L, Wan A, Li H. Conjugating S-nitrosothiols with glutathiose stabilized silver sulfide quantum dots for controlled nitric oxide release and near-infrared fluorescence imaging. ACS APPLIED MATERIALS & INTERFACES 2013; 5:11163-11171. [PMID: 24117248 DOI: 10.1021/am4034153] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Light-controllable nitric oxide (NO) delivery nanoparticles with the capability of near-infrared (NIR) fluorescence imaging were reported. Water-dispersible Ag2S quantum dots (QDs) were synthesized via a one-pot procedure using reduced glutathiose (GSH) as both sulfur source and stabilizer. S-nitrosothiols (RSNOs) were conjugated with the GSH stabilized Ag2S QDs at the amino groups of the GSH, leading to Ag2S-GSH-SNO nanoparticles with dimension of ~5.5 nm. The biocompatible Ag2S-GSH-SNO nanoparticles could release NO under UV or visible irradiation and emit NIR fluorescence under NIR excitation for bioimaging at physiological pH and temperature, yet could hardly release NO when NIR irradiation was applied. In vitro cell imaging and mice imaging experiments demonstrated that the Ag2S-GSH-SNO nanoparticles could emit readily observable NIR fluorescence and release NO in living cells and small animals. The NIR fluorescence imaging of the Ag2S-GSH-SNO nanoparticles would not interfere with the light-triggered NO release from them, as the excitation lights needed for these two functions were in different wavelength regions. This work provides new perspectives for the application of multifunctional nanostructured materials in diagnostics and imaging.
Collapse
Affiliation(s)
- Lianjiang Tan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University , Shanghai, 200240, China
| | | | | |
Collapse
|
16
|
Talipov MR, Timerghazin QK. Protein Control of S-Nitrosothiol Reactivity: Interplay of Antagonistic Resonance Structures. J Phys Chem B 2013; 117:1827-37. [DOI: 10.1021/jp310664z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marat R. Talipov
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin
53201-1881, United States
| | - Qadir K. Timerghazin
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin
53201-1881, United States
| |
Collapse
|
17
|
Bechtold E, King SB. Chemical methods for the direct detection and labeling of S-nitrosothiols. Antioxid Redox Signal 2012; 17:981-91. [PMID: 22356122 PMCID: PMC3411347 DOI: 10.1089/ars.2012.4570] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Posttranslational modification of proteins through phosphorylation, glycosylation, and oxidation adds complexity to the proteome by reversibly altering the structure and function of target proteins in a highly controlled fashion. RECENT ADVANCES The study of reversible cysteine oxidation highlights a role for this oxidative modification in complex signal transduction pathways. Nitric oxide (NO), and its respective metabolites (including reactive nitrogen species), participates in a variety of these cellular redox processes, including the reversible oxidation of cysteine to S-nitrosothiols (RSNOs). RSNOs act as endogenous transporters of NO, but also possess beneficial effects independent of NO-related signaling, which suggests a complex and versatile biological role. In this review, we highlight the importance of RSNOs as a required posttranslational modification and summarize the current methods available for detecting S-nitrosation. CRITICAL ISSUES Given the limitations of these indirect detection methods, the review covers recent developments toward the direct detection of RSNOs by phosphine-based chemical probes. The intrinsic properties that dictate this phosphine/RSNO reactivity are summarized. In general, RSNOs (both small molecule and protein) react with phosphines to yield reactive S-substituted aza-ylides that undergo further reactions leading to stable RSNO-based adducts. FUTURE DIRECTIONS This newly explored chemical reactivity forms the basis of a number of exciting potential chemical methods for protein RSNO detection in biological systems.
Collapse
Affiliation(s)
- Erika Bechtold
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, USA
| | | |
Collapse
|
18
|
Filipovic MR, Miljkovic JL, Nauser T, Royzen M, Klos K, Shubina T, Koppenol WH, Lippard SJ, Ivanović-Burmazović I. Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc 2012; 134:12016-27. [PMID: 22741609 PMCID: PMC3408084 DOI: 10.1021/ja3009693] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Indexed: 01/20/2023]
Abstract
Dihydrogen sulfide recently emerged as a biological signaling molecule with important physiological roles and significant pharmacological potential. Chemically plausible explanations for its mechanisms of action have remained elusive, however. Here, we report that H(2)S reacts with S-nitrosothiols to form thionitrous acid (HSNO), the smallest S-nitrosothiol. These results demonstrate that, at the cellular level, HSNO can be metabolized to afford NO(+), NO, and NO(-) species, all of which have distinct physiological consequences of their own. We further show that HSNO can freely diffuse through membranes, facilitating transnitrosation of proteins such as hemoglobin. The data presented in this study explain some of the physiological effects ascribed to H(2)S, but, more broadly, introduce a new signaling molecule, HSNO, and suggest that it may play a key role in cellular redox regulation.
Collapse
Affiliation(s)
- Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058 Erlangen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Wolak M, Stochel G, van Eldik R. Reactivity of aquacobalamin and reduced cobalamin toward S-nitrosoglutathione and S-nitroso-N-acetylpenicillamine. Inorg Chem 2007; 45:1367-79. [PMID: 16441149 DOI: 10.1021/ic051300q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of aquacobalamin (Cbl(III)H2O, vitamin B12a) and reduced cobalamin (Cbl(II), vitamin B12r) with the nitrosothiols S-nitrosoglutathione (GSNO) and S-nitroso-N-acetylpenicillamine (SNAP) were studied in aqueous solution at pH 7.4. UV-vis and NMR spectroscopic studies and semiquantitative kinetic investigations indicated complex reactivity patterns for the studied reactions. The detailed reaction routes depend on the oxidation state of the cobalt center in cobalamin, as well as on the structure of the nitrosothiol. Reactions of aquacobalamin with GSNO and SNAP involve initial formation of Cbl(III)-RSNO adducts followed by nitrosothiol decomposition via heterolytic S-NO bond cleavage. Formation of Cbl(III)(NO-) as the main cobalamin product indicates that the latter step leads to efficient transfer of the NO- group to the Co(III) center with concomitant oxidation of the nitrosothiol. Considerably faster reactions with Cbl(II) proceed through initial Cbl(II)-RSNO intermediates, which undergo subsequent electron-transfer processes leading to oxidation of the cobalt center and reduction of the nitrosothiol. In the case of GSNO, the overall reaction is fast (k approximately 1.2 x 10(6) M(-1) s(-1)) and leads to formation of glutathionylcobalamin (Cbl(III)SG) and nitrosylcobalamin (Cbl(III)(NO-)) as the final cobalamin products. A mechanism involving the reversible equilibrium Cbl(II) + RSNO <==> Cbl(III)SR + NO is suggested for the reaction on the basis of the obtained kinetic and mechanistic information. The corresponding reaction with SNAP is considerably slower and occurs in two distinct reaction steps, which result in the formation of Cbl(III)(NO-) as the ultimate cobalamin product. The significantly different kinetic and mechanistic features observed for the reaction of GSNO and SNAP illustrate the important influence of the nitrosothiol structure on its reactivity toward metal centers of biomolecules. The potential biological implications of the results are briefly discussed.
Collapse
Affiliation(s)
- Maria Wolak
- Faculty of Chemistry, Jagiellonian University, 30060 Krakow, Poland
| | | | | |
Collapse
|
21
|
Abstract
S-nitrosothiols are biological metabolites of nitric oxide. It has often been suggested that they represent a more stable metabolite of nitric oxide that can either be stored, or transported, although the evidence for this is sparse. There are many unanswered questions concerning how S-nitrosothiols are formed, how they are metabolized and how they elicit biological responses. These questions are highlighted by the fact that the known chemistry of nitric oxide, thiols, and S-nitrosothiols cannot serve to explain their proposed biological activities. This review attempts to highlight the gulf between our chemical understanding of S-nitrosothiols and the proposed biological activities of these compounds with respect to guanylyl cyclase-independent nitric oxide bioactivity and also the control of vascular tone.
Collapse
Affiliation(s)
- Neil Hogg
- Biophysics Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
22
|
Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk AJ. Nitric oxide donors: chemical activities and biological applications. Chem Rev 2002; 102:1091-134. [PMID: 11942788 DOI: 10.1021/cr000040l] [Citation(s) in RCA: 999] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Peng George Wang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | |
Collapse
|