1
|
Wada E, Matsumoto K, Susumu N, Kato M, Hayashi YK. Emerin deficiency does not exacerbate cardiomyopathy in a murine model of Emery-Dreifuss muscular dystrophy caused by an LMNA gene mutation. J Physiol Sci 2025; 73:27. [PMID: 39842964 DOI: 10.1186/s12576-023-00886-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in genes encoding nuclear envelope proteins, is clinically characterized by muscular dystrophy, early joint contracture, and life-threatening cardiac abnormalities. To elucidate the pathophysiological mechanisms underlying striated muscle involvement in EDMD, we previously established a murine model with mutations in Emd and Lmna (Emd-/-/LmnaH222P/H222P; EH), and reported exacerbated skeletal muscle phenotypes and no notable cardiac phenotypes at 12 weeks of age. We predicted that lack of emerin in LmnaH222P/H222P mice causes an earlier onset and more pronounced cardiac dysfunction at later stages. In this study, cardiac abnormalities of EDMD mice were compared at 18 and 30 weeks of age. Contrary to our expectations, physiological and histological analyses indicated that emerin deficiency causes no prominent differences of cardiac involvement in LmnaH222P/H222P mice. These results suggest that emerin does not contribute to cardiomyopathy progression in LmnaH222P/H222P mice.
Collapse
Affiliation(s)
- Eiji Wada
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Kohei Matsumoto
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Nao Susumu
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Megumi Kato
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan
| | - Yukiko K Hayashi
- Department of Pathophysiology, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
2
|
Politano L. Is Cardiac Transplantation Still a Contraindication in Patients with Muscular Dystrophy-Related End-Stage Dilated Cardiomyopathy? A Systematic Review. Int J Mol Sci 2024; 25:5289. [PMID: 38791328 PMCID: PMC11121328 DOI: 10.3390/ijms25105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Inherited muscular diseases (MDs) are genetic degenerative disorders typically caused by mutations in a single gene that affect striated muscle and result in progressive weakness and wasting in affected individuals. Cardiac muscle can also be involved with some variability that depends on the genetic basis of the MD (Muscular Dystrophy) phenotype. Heart involvement can manifest with two main clinical pictures: left ventricular systolic dysfunction with evolution towards dilated cardiomyopathy and refractory heart failure, or the presence of conduction system defects and serious life-threatening ventricular arrhythmias. The two pictures can coexist. In these cases, heart transplantation (HTx) is considered the most appropriate option in patients who are not responders to the optimized standard therapeutic protocols. However, cardiac transplant is still considered a relative contraindication in patients with inherited muscle disorders and end-stage cardiomyopathies. High operative risk related to muscle impairment and potential graft involvement secondary to the underlying myopathy have been the two main reasons implicated in the generalized reluctance to consider cardiac transplant as a viable option. We report an overview of cardiac involvement in MDs and its possible association with the underlying molecular defect, as well as a systematic review of HTx outcomes in patients with MD-related end-stage dilated cardiomyopathy, published so far in the literature.
Collapse
Affiliation(s)
- Luisa Politano
- Cardiomyology and Medical Genetics, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
3
|
Kiessling M, Djalinac N, Voglhuber J, Ljubojevic-Holzer S. Nuclear Calcium in Cardiac (Patho)Physiology: Small Compartment, Big Impact. Biomedicines 2023; 11:biomedicines11030960. [PMID: 36979939 PMCID: PMC10046765 DOI: 10.3390/biomedicines11030960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleus of a cardiomyocyte has been increasingly recognized as a morphologically distinct and partially independent calcium (Ca2+) signaling microdomain, with its own Ca2+-regulatory mechanisms and important effects on cardiac gene expression. In this review, we (1) provide a comprehensive overview of the current state of research on the dynamics and regulation of nuclear Ca2+ signaling in cardiomyocytes, (2) address the role of nuclear Ca2+ in the development and progression of cardiac pathologies, such as heart failure and atrial fibrillation, and (3) discuss novel aspects of experimental methods to investigate nuclear Ca2+ handling and its downstream effects in the heart. Finally, we highlight current challenges and limitations and recommend future directions for addressing key open questions.
Collapse
Affiliation(s)
- Mara Kiessling
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
| | - Nataša Djalinac
- Department of Biology, University of Padua, 35122 Padova, Italy
| | - Julia Voglhuber
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, 8036 Graz, Austria
- BioTechMed Graz, 8010 Graz, Austria
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
4
|
Yunisova G, Ceylaner S, Oflazer P, Deymeer F, Parman YG, Durmus H. Clinical and genetic characteristics of Emery-Dreifuss muscular dystrophy patients from Turkey: 30 years longitudinal follow-up study. Neuromuscul Disord 2022; 32:718-727. [DOI: 10.1016/j.nmd.2022.07.397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
|
5
|
Blaszczyk E, Gröschel J, Schulz-Menger J. Role of CMR Imaging in Diagnostics and Evaluation of Cardiac Involvement in Muscle Dystrophies. Curr Heart Fail Rep 2021; 18:211-224. [PMID: 34319529 PMCID: PMC8342365 DOI: 10.1007/s11897-021-00521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW This review aims to outline the utility of cardiac magnetic resonance (CMR) in patients with different types of muscular dystrophies for the assessment of myocardial involvement, risk stratification and in guiding therapeutic decisions. RECENT FINDINGS In patients suffering from muscular dystrophies (MD), even mild initial dysfunction may lead to severe heart failure over a time course of years. CMR plays an increasing role in the diagnosis and clinical care of these patients, mostly due to its unique capability to precisely characterize subclinical and progressive changes in cardiac geometry, function in order to differentiate myocardial injury it allows the identification of inflammation, focal and diffuse fibrosis as well as fatty infiltration. CMR may provide additional information in addition to the physical examination, laboratory tests, ECG, and echocardiography. Further trials are needed to investigate the potential impact of CMR on the therapeutic decision-making as well as the assessment of long-term prognosis in different forms of muscular dystrophies. In addition to the basic cardiovascular evaluation, CMR can provide a robust, non-invasive technique for the evaluation of subclinical myocardial tissue injury like fat infiltration and focal and diffuse fibrosis. Furthermore, CMR has a unique capability to detect the progression of myocardial tissue damage in patients with a preserved systolic function.
Collapse
Affiliation(s)
- Edyta Blaszczyk
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a joint cooperation between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jan Gröschel
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a joint cooperation between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Jeanette Schulz-Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a joint cooperation between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Department of Cardiology and Nephrology, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
6
|
Ishikawa T, Mishima H, Barc J, Takahashi MP, Hirono K, Terada S, Kowase S, Sato T, Mukai Y, Yui Y, Ohkubo K, Kimoto H, Watanabe H, Hata Y, Aiba T, Ohno S, Chishaki A, Shimizu W, Horie M, Ichida F, Nogami A, Yoshiura KI, Schott JJ, Makita N. Cardiac Emerinopathy: A Nonsyndromic Nuclear Envelopathy With Increased Risk of Thromboembolic Stroke Due to Progressive Atrial Standstill and Left Ventricular Noncompaction. Circ Arrhythm Electrophysiol 2020; 13:e008712. [PMID: 32755394 DOI: 10.1161/circep.120.008712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Mutations in the nuclear envelope genes encoding LMNA and EMD are responsible for Emery-Dreifuss muscular dystrophy. However, LMNA mutations often manifest dilated cardiomyopathy with conduction disturbance without obvious skeletal myopathic complications. On the contrary, the phenotypic spectrums of EMD mutations are less clear. Our aims were to determine the prevalence of nonsyndromic forms of emerinopathy, which may underlie genetically undefined isolated cardiac conduction disturbance, and the etiology of thromboembolic complications associated with EMD mutations. METHODS Targeted exon sequencing was performed in 87 probands with familial sick sinus syndrome (n=36) and a progressive cardiac conduction defect (n=51). RESULTS We identified 3 X-linked recessive EMD mutations (start-loss, splicing, missense) in families with cardiac conduction disease. All 3 probands shared a common clinical phenotype of progressive atrial arrhythmias that ultimately resulted in atrial standstill associated with left ventricular noncompaction (LVNC), but they lacked early contractures and progressive muscle wasting and weakness characteristic of Emery-Dreifuss muscular dystrophy. Because the association of LVNC with EMD has never been reported, we further genetically screened 102 LVNC patients and found a frameshift EMD mutation in a boy with progressive atrial standstill and LVNC without complications of muscular dystrophy. All 6 male EMD mutation carriers of 4 families underwent pacemaker or defibrillator implantation, whereas 2 female carriers were asymptomatic. Notably, a strong family history of stroke observed in these families was probably due to the increased risk of thromboembolism attributable to both atrial standstill and LVNC. CONCLUSIONS Cardiac emerinopathy is a novel nonsyndromic X-linked progressive atrial standstill associated with LVNC and increased risk of thromboembolism.
Collapse
Affiliation(s)
- Taisuke Ishikawa
- Omics Research Center (T.I., N.M.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics (H.M., K.-I.Y.), Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Julien Barc
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, France (J.B., J.-J.S.)
| | - Masanori P Takahashi
- Department of Neurology, Osaka University Graduate School of Medicine, Suita, Japan (M.P.T.)
| | - Keiichi Hirono
- Department of Pediatrics, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Japan (K.H., F.I.)
| | - Shigenori Terada
- Department of Cardiovascular Medicine, Shin-Oyama City Hospital, Japan (S.T.)
| | - Shinya Kowase
- Division of Cardiology, Yokohama Rosai Hospital, Japan (S.K.)
| | - Teruki Sato
- Department of Cardiovascular Medicine, Akita University Graduate School of Medicine, Japan (T.S., H.W.)
| | - Yasushi Mukai
- Department of Cardiovascular Medicine, Kyushu University Hospital, Fukuoka, Japan (Y.M.)
| | - Yoshiaki Yui
- Department of Cardiology, Faculty of Medicine, Tsukuba University, Japan (Y.Y., A.N.)
| | - Kimie Ohkubo
- Department of Cardiovascular Medicine, Nihon University School of Medicine, Tokyo, Japan (K.O.)
| | - Hiroki Kimoto
- Department of Molecular Physiology (H.K.), Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Hiroyuki Watanabe
- Department of Cardiovascular Medicine, Akita University Graduate School of Medicine, Japan (T.S., H.W.)
| | - Yukiko Hata
- Department of Legal Medicine, Graduate School of Medicine, University of Toyama, Japan (Y.H.)
| | - Takeshi Aiba
- Department of Cardiovascular Medicine (T.A.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics (S.O.), National Cerebral and Cardiovascular Center, Suita, Japan
| | - Akiko Chishaki
- Clinical Nursing Laboratory, School of Medicine, Kyushu University, Fukuoka, Japan (A.C.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (W.S.)
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Ohtsu, Japan (M.H.)
| | - Fukiko Ichida
- Department of Pediatrics, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Japan (K.H., F.I.)
| | - Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, Tsukuba University, Japan (Y.Y., A.N.)
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics (H.M., K.-I.Y.), Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Jean-Jacques Schott
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, France (J.B., J.-J.S.)
| | - Naomasa Makita
- Omics Research Center (T.I., N.M.), National Cerebral and Cardiovascular Center, Suita, Japan
| |
Collapse
|
7
|
Brisset M, Ben Yaou R, Carlier RY, Chanut A, Nicolas G, Romero NB, Wahbi K, Decrocq C, Leturcq F, Laforêt P, Malfatti E. X-linked Emery-Dreifuss muscular dystrophy manifesting with adult onset axial weakness, camptocormia, and minimal joint contractures. Neuromuscul Disord 2019; 29:678-683. [PMID: 31474437 DOI: 10.1016/j.nmd.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/14/2019] [Indexed: 11/17/2022]
Abstract
Emery-Dreifuss muscular dystrophy is an early-onset, slowly progressive myopathy characterized by the development of multiple contractures, muscle weakness and cardiac dysfunction. We present here the case of a 65-year-old male patient with a 20 year history of slowly progressive camptocormia, bradycardia and shortness of breath. Examination showed severe spine extensor and neck flexor muscle weakness with slight upper limb proximal weakness. Cardiologic assessment revealed slow atrial fibrillation. Whole body MRI demonstrated adipose substitution of the paravertebral, limb girdle and peroneal muscles as well as the tongue. Emerin immunohistochemistry on patient muscle biopsy revealed the absence of nuclear envelope labeling confirmed by Western Blot. Genetic analysis showed a hemizygous duplication of 5 bases in exon 6 of the EMD, emerin, gene on the X chromosome. This is an unusual presentation of X-linked Emery-Dreifuss muscular dystrophy with adult onset, predominant axial muscles involvement and minimal joint contractures. Diagnosis was prompted by the analysis of emerin on muscle biopsy.
Collapse
Affiliation(s)
- Marion Brisset
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France
| | - Rabah Ben Yaou
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Institut de Myologie, G.H. Pitié-Salpêtrière, F-75013 Paris, France; Université Sorbonne, INSERM U974, Center of Research in Myology, Institut de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France
| | - Robert-Yves Carlier
- APHP, Medical imaging Department, Raymond Poincaré teaching Hospital, GHU GH HUPIFO, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Anaїs Chanut
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Guillaume Nicolas
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Norma B Romero
- APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Institut de Myologie, G.H. Pitié-Salpêtrière, F-75013 Paris, France; Université Sorbonne, INSERM U974, Center of Research in Myology, Institut de Myologie, G.H. Pitié-Salpêtrière Paris F-75013, France; Unité de Morphologie Neuromusculaire, Institut de Myologie, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- APHP, Department of Cardiology, Cochin Hospital, 75015 Paris, France
| | - Camille Decrocq
- Department of Physiology, Foch Hospital, 40 Rue Worth, 92150 Suresnes, France
| | - France Leturcq
- APHP, Laboratoire de Génétique et Biologie moléculaire, HUPC Cochin, Paris, France
| | - Pascal Laforêt
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France
| | - Edoardo Malfatti
- APHP, Department of Neurology, Raymond Poincaré Hospital, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, 104 Bld Raymond Poincaré, 92380 Garches, France; Service de Neurologie, U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR Simone Veil-Santé, Université Versailles-Saint-Quentin-en-Yvelines, Pôle neuro-locomoteur, Hôpital Raymond Poincaré, Paris-Saclay, 104 boulevard Raymond Poincaré, 92380 Garches, France.
| |
Collapse
|
8
|
Lipshultz SE, Law YM, Asante-Korang A, Austin ED, Dipchand AI, Everitt MD, Hsu DT, Lin KY, Price JF, Wilkinson JD, Colan SD. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement From the American Heart Association. Circulation 2019; 140:e9-e68. [PMID: 31132865 DOI: 10.1161/cir.0000000000000682] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this scientific statement from the American Heart Association, experts in the field of cardiomyopathy (heart muscle disease) in children address 2 issues: the most current understanding of the causes of cardiomyopathy in children and the optimal approaches to diagnosis cardiomyopathy in children. Cardiomyopathies result in some of the worst pediatric cardiology outcomes; nearly 40% of children who present with symptomatic cardiomyopathy undergo a heart transplantation or die within the first 2 years after diagnosis. The percentage of children with cardiomyopathy who underwent a heart transplantation has not declined over the past 10 years, and cardiomyopathy remains the leading cause of transplantation for children >1 year of age. Studies from the National Heart, Lung, and Blood Institute-funded Pediatric Cardiomyopathy Registry have shown that causes are established in very few children with cardiomyopathy, yet genetic causes are likely to be present in most. The incidence of pediatric cardiomyopathy is ≈1 per 100 000 children. This is comparable to the incidence of such childhood cancers as lymphoma, Wilms tumor, and neuroblastoma. However, the published research and scientific conferences focused on pediatric cardiomyopathy are sparcer than for those cancers. The aim of the statement is to focus on the diagnosis and classification of cardiomyopathy. We anticipate that this report will help shape the future research priorities in this set of diseases to achieve earlier diagnosis, improved clinical outcomes, and better quality of life for these children and their families.
Collapse
|
9
|
Dharmaraj T, Guan Y, Liu J, Badens C, Gaborit B, Wilson KL. Rare BANF1 Alleles and Relatively Frequent EMD Alleles Including 'Healthy Lipid' Emerin p.D149H in the ExAC Cohort. Front Cell Dev Biol 2019; 7:48. [PMID: 31024910 PMCID: PMC6459885 DOI: 10.3389/fcell.2019.00048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/19/2019] [Indexed: 01/05/2023] Open
Abstract
Emerin (EMD) and barrier to autointegration factor 1 (BANF1) each bind A-type lamins (LMNA) as fundamental components of nuclear lamina structure. Mutations in LMNA, EMD and BANF1 are genetically linked to many tissue-specific disorders including Emery-Dreifuss muscular dystrophy and cardiomyopathy (LMNA, EMD), lipodystrophy, insulin resistance and type 2 diabetes (LMNA) and progeria (LMNA, BANF1). To explore human genetic variation in these genes, we analyzed EMD and BANF1 alleles in the Exome Aggregation Consortium (ExAC) cohort of 60,706 unrelated individuals. We identified 13 rare heterozygous BANF1 missense variants (p.T2S, p.H7Y, p.D9N, p.S22R, p.G25E, p.D55N, p.D57Y, p.L63P, p.N70T, p.K72R, p.R75W, p.R75Q, p.G79R), and one homozygous variant (p.D9H). Several variants are known (p.G25E) or predicted (e.g., p.D9H, p.D9N, p.L63P) to perturb BANF1 and warrant further study. Analysis of EMD revealed two previously identified variants associated with adult-onset cardiomyopathy (p.K37del, p.E35K) and one deemed 'benign' in an Emery-Dreifuss patient (p.D149H). Interestingly p.D149H was the most frequent emerin variant in ExAC, identified in 58 individuals (overall allele frequency 0.06645%), of whom 55 were East Asian (allele frequency 0.8297%). Furthermore, p.D149H associated with four 'healthy' traits: reduced triglycerides (-0.336; p = 0.0368), reduced waist circumference (-0.321; p = 0.0486), reduced cholesterol (-0.572; p = 0.000346) and reduced LDL cholesterol (-0.599; p = 0.000272). These traits are distinct from LMNA-associated metabolic disorders and provide the first insight that emerin influences metabolism. We also identified one novel in-frame deletion (p.F39del) and 62 novel emerin missense variants, many of which were relatively frequent and potentially disruptive including p.N91S and p.S143F (∼0.041% and ∼0.034% of non-Finnish Europeans, respectively), p.G156S (∼0.39% of Africans), p.R204G (∼0.18% of Latinx), p.R207P (∼0.08% of South Asians) and p.R221L (∼0.15% of Latinx). Many novel BANF1 variants are predicted to disrupt dimerization or binding to DNA, histones, emerin or A-type lamins. Many novel emerin variants are predicted to disrupt emerin filament dynamics or binding to BANF1, HDAC3, A-type lamins or other partners. These new human variants provide a foundational resource for future studies to test the molecular mechanisms of BANF1 and emerin function, and to understand the link between emerin variant p.D149H and a 'healthy' lipid profile.
Collapse
Affiliation(s)
- Tejas Dharmaraj
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Youchen Guan
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Julie Liu
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | | | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Silvestri NJ, Ismail H, Zimetbaum P, Raynor EM. Cardiac involvement in the muscular dystrophies. Muscle Nerve 2017; 57:707-715. [DOI: 10.1002/mus.26014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Nicholas J. Silvestri
- Department of Neurology; University at Buffalo Jacobs School of Medicine and Biomedical Sciences; 1010 Main St Buffalo New York 14202 USA
| | - Haisam Ismail
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Peter Zimetbaum
- Department of Cardiology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| | - Elizabeth M. Raynor
- Department of Neurology; Harvard Medical School, Beth Israel Deaconess Medical Center; Boston Massachusetts USA
| |
Collapse
|
11
|
Zhang L, Shen H, Zhao Z, Bing Q, Hu J. Cardiac effects of the c.1583 C→G LMNA mutation in two families with Emery-Dreifuss muscular dystrophy. Mol Med Rep 2015; 12:5065-71. [PMID: 26165385 PMCID: PMC4581790 DOI: 10.3892/mmr.2015.4065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 06/05/2015] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to examine and analyze cardiac involvement in two Emery-Dreifuss muscular dystrophy (EDMD) pedigrees caused by the c.1583 C→G mutation of the lamin A/C gene (LMNA). The clinical and genetic characteristics of members of two families with EDMD were evaluated by performing neurological examinations, skeletal muscle biopsies, cardiac evaluations, including electrocardiography, 24 h Holter, ultrasound cardiography and 99TcM-MIBI-gated myocardiac perfusion imaging, and genomic DNA sequencing. Family history investigations revealed an autosomal dominant transmission pattern of the disease in Family 1 and a sporadic case in Family 2. The three affected patients exhibited typical clinical features of EDMD, including joint contractures, muscle weakness and cardiac involvement. Muscle histopathological investigation revealed dystrophic features. In addition, each affected individual exhibited either cardiac arrhythmia, which was evident as sinus tachycardia, atrial flutter or complete atrioventricular inhibition. Cardiac imaging revealed dilated cardiomyopathy in two of the individuals, one of whom was presented with heart failure. The second patient presented with no significant abnormalities in cardiac structure or function. The three affected individuals exhibited a heterozygous missense mutation in the LMNA gene (c.1583 C→G), which caused a T528R amino acid change in the LMNA protein. In conclusion, the present study identified three patients with EDMD, exhibiting the same dominant LMNA mutation and presenting with a spectrum of severe cardiac abnormalities, including cardiac conduction system defects, cardiomyopathy and heart failure. As LMNA mutations have been associated with at least six clinical disorders, including EDMD, the results of the present study provide additional mutational and functional data, which may assist in further establishing LMNA mutational variation and disease pathogenesis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Cardiovascular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hongrui Shen
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Zhe Zhao
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Qi Bing
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Jing Hu
- Department of Neuromuscular Disorders, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
12
|
Finsterer J, Stöllberger C, Sehnal E, Rehder H, Laccone F. Dilated, arrhythmogenic cardiomyopathy in emery-dreifuss muscular dystrophy due to the emerin splice-site mutation c.449 + 1G>A. Cardiology 2014; 130:48-51. [PMID: 25502304 DOI: 10.1159/000368222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cardiac involvement in X-linked Emery-Dreifuss muscular dystrophy (X-EDMD) usually includes arrhythmias but not dilative cardiomyopathy (dCMP). Here, we report an X-EDMD patient with severe dCMP and life-threatening ventricular arrhythmias associated with other phenotypic features unusual for X-EDMD. CASE REPORT A 46-year-old patient with X-EDMD due to the known splice-site mutation c.449 + 1G>A in the emerin gene experienced palpitations for the first time at the age of 21 years, and a first syncope at the age of 23 years. He was started on phenprocoumon due to atrial fibrillation and systolic dysfunction. At the age of 28 years he received his first pacemaker. Echocardiography at the age of 36 years showed left ventricular dilatation, enlarged atria, myocardial thickening, 28% ejection fraction and diastolic dysfunction. dCMP was suspected. At the age of 38 years, a cardiac resynchronization therapy system was implanted, which was upgraded to an implantable cardioverter defibrillator (ICD) because of ventricular tachycardias (at the age of 42 years). During the following months, the ICD discharged 30 times due to ventricular tachycardias. In May 2013, he required recurrent cardio-pulmonary resuscitation because ventricular fibrillation occurred with no discharge of the ICD. He was listed for heart transplantation. He also had hypothyroidism, liver hemangiomas, thrombopenia, anemia and diverticulosis. CONCLUSIONS X-EDMD may occur along with dCMP. An ICD may be ineffective for ventricular fibrillation in X-EDMD. X-EDMD may be associated with unusual, atypical phenotypic features.
Collapse
|
13
|
Yuan J, Ando M, Higuchi I, Sakiyama Y, Matsuura E, Michizono K, Watanabe O, Nagano S, Inamori Y, Hashiguchi A, Higuchi Y, Yoshimura A, Takashima H. Partial deficiency of emerin caused by a splice site mutation in EMD. Intern Med 2014; 53:1563-8. [PMID: 25030574 DOI: 10.2169/internalmedicine.53.8922] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is caused by mutations in the EMD gene on the X chromosome, which codes for emerin, an inner nuclear membrane protein. Monoclonal antibodies against the N-terminus of emerin protein are used to screen for emerin deficiency in clinical practice. However, these tests may not accurately reflect the disease in some cases. We herein describe the identification of a splice site mutation in the EMD gene in a Japanese patient who suffered from complete atrioventricular conduction block, mild muscle weakness and joint contracture, and a persistently elevated serum creatine kinase level. We used multiple antibodies to confirm the presence of a novel truncating mutation in emerin without the transmembrane region and C-terminus in the skeletal muscle.
Collapse
MESH Headings
- Biopsy
- Chromosomes, Human, X/genetics
- DNA/genetics
- DNA Mutational Analysis
- Diagnosis, Differential
- Humans
- Immunohistochemistry
- Male
- Membrane Proteins/deficiency
- Membrane Proteins/genetics
- Muscle, Skeletal/diagnostic imaging
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Emery-Dreifuss/diagnosis
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Muscular Dystrophy, Emery-Dreifuss/metabolism
- Mutation
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Polymerase Chain Reaction
- Thymopoietins
- Tomography, X-Ray Computed
- Young Adult
Collapse
Affiliation(s)
- Junhui Yuan
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Carboni N, Mateddu A, Marrosu G, Cocco E, Marrosu MG. Genetic and clinical characteristics of skeletal and cardiac muscle in patients with lamin A/C gene mutations. Muscle Nerve 2013; 48:161-70. [PMID: 23450819 DOI: 10.1002/mus.23827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2013] [Indexed: 12/12/2022]
Abstract
Alterations of the lamin A/C (LMNA) gene are associated with different clinical entities, including disorders that affect skeletal and cardiac muscle, peripheral nerves, metabolism, bones, and disorders that cause premature aging. In this article we review the clinical and genetic characteristics of cardiac and skeletal muscle diseases related to alterations in the LMNA gene. There is no single explanation of how LMNA gene alterations may cause these disorders; however, important goals have been achieved in understanding the pathogenic effects of LMNA gene mutations on cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Nicola Carboni
- Department of Public Health, Clinical and Molecular Medicine, Multiple Sclerosis Centre, Via Is Guadazzonis 2, 09100 Cagliari, University of Cagliari, Italy.
| | | | | | | | | |
Collapse
|
15
|
Staab J, Ruppert V, Pankuweit S, Meyer T. Polymorphisms in genes encoding nonsarcomeric proteins and their role in the pathogenesis of dilated cardiomyopathy. Herz 2012. [DOI: 10.1007/s00059-012-3698-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Maladies musculaires en réanimation. Quand les évoquer ? Comment orienter la recherche diagnostique ? MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Clapham KR, Yu TW, Ganesh VS, Barry B, Chan Y, Mei D, Parrini E, Funalot B, Dupuis L, Nezarati MM, du Souich C, van Karnebeek C, Guerrini R, Walsh CA. FLNA genomic rearrangements cause periventricular nodular heterotopia. Neurology 2012; 78:269-78. [PMID: 22238415 DOI: 10.1212/wnl.0b013e31824365e4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify copy number variant (CNV) causes of periventricular nodular heterotopia (PNH) in patients for whom FLNA sequencing is negative. METHODS Screening of 35 patients from 33 pedigrees on an Affymetrix 6.0 microarray led to the identification of one individual bearing a CNV that disrupted FLNA. FLNA-disrupting CNVs were also isolated in 2 other individuals by multiplex ligation probe amplification. These 3 cases were further characterized by high-resolution oligo array comparative genomic hybridization (CGH), and the precise junctional breakpoints of the rearrangements were identified by PCR amplification and sequencing. RESULTS We report 3 cases of PNH caused by nonrecurrent genomic rearrangements that disrupt one copy of FLNA. The first individual carried a 113-kb deletion that removes all but the first exon of FLNA. A second patient harbored a complex rearrangement including a deletion of the 3' end of FLNA accompanied by a partial duplication event. A third patient bore a 39-kb deletion encompassing all of FLNA and the neighboring gene EMD. High-resolution oligo array CGH of the FLNA locus suggests distinct molecular mechanisms for each of these rearrangements, and implicates nearby low copy repeats in their pathogenesis. CONCLUSIONS These results demonstrate that FLNA is prone to pathogenic rearrangements, and highlight the importance of screening for CNVs in individuals with PNH lacking FLNA point mutations.
Collapse
Affiliation(s)
- K R Clapham
- Harvard-MIT Division of Health Sciences and Technology, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Carboni N, Mura M, Mercuri E, Marrosu G, Manzi RC, Cocco E, Nissardi V, Isola F, Mateddu A, Solla E, Maioli MA, Oppo V, Piras R, Marini S, Lai C, Politano L, Marrosu MG. Cardiac and muscle imaging findings in a family with X-linked Emery-Dreifuss muscular dystrophy. Neuromuscul Disord 2011; 22:152-8. [PMID: 21993399 DOI: 10.1016/j.nmd.2011.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/23/2011] [Accepted: 09/01/2011] [Indexed: 10/16/2022]
Abstract
The following is a report on a large family with 5 males affected by the X-linked recessive form of Emery-Dreifuss muscular dystrophy with mutation in the STA gene. A detailed longitudinal cardiological evaluation and muscle imaging studies allowed for the assessment of intrafamilial variability of cardiac and muscle involvement. Long term cardiological follow up in the 5 affected males and in 7 female carriers revealed different degrees of severity, ranging from tachycardia-bradycardia syndrome and variable biatrial and left ventricle dilatation, to an episode of isolated symptomatic sustained ventricular tachycardia requiring a device implantation. Muscle imaging in the affected males showed involvement of the soleus and medial head of gastrocnemius on leg muscles and variable involvement on thigh muscles that have not been previously reported. In some cases, imaging showed clear signs of muscle involvement even when no overt signs of weakness could be detected during clinical examination.
Collapse
Affiliation(s)
- Nicola Carboni
- Neuromuscular Unit, Department of Cardiological and Neurological Sciences, University of Cagliari, Sardinia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ishikawa K, Mimuro M, Tanaka T. Ventricular arrhythmia in X-linked Emery-Dreifuss muscular dystrophy: a lesson from an autopsy case. Intern Med 2011; 50:459-62. [PMID: 21372459 DOI: 10.2169/internalmedicine.50.4598] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) is a distinctive form of muscular dystrophy which is often associated with cardiac abnormalities. Conduction disturbances are frequently observed, and may necessitate pacemaker implantation to prevent sudden death. In this case report, we present an autopsy of a 31-year-old man with X-linked EDMD who developed only minimal skeletal muscle symptoms, and who died from ventricular arrhythmia despite undergoing a previous pacemaker implantation. Ventricular arrhythmias in X-linked EDMD patients are also discussed.
Collapse
MESH Headings
- Adult
- Arrhythmias, Cardiac/etiology
- Atrioventricular Block/etiology
- Autopsy
- Cardiomyopathy, Dilated/etiology
- Cardiomyopathy, Dilated/pathology
- Death, Sudden, Cardiac/etiology
- Humans
- Male
- Muscular Dystrophy, Emery-Dreifuss/complications
- Muscular Dystrophy, Emery-Dreifuss/diagnosis
- Muscular Dystrophy, Emery-Dreifuss/genetics
- Pacemaker, Artificial
- Tachycardia, Ventricular/etiology
- Ventricular Fibrillation/etiology
Collapse
|
20
|
Hermans M, Pinto Y, Merkies I, de Die-Smulders C, Crijns H, Faber C. Hereditary muscular dystrophies and the heart. Neuromuscul Disord 2010; 20:479-92. [DOI: 10.1016/j.nmd.2010.04.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/19/2010] [Accepted: 04/21/2010] [Indexed: 01/16/2023]
|
21
|
Attenuated hypertrophic response to pressure overload in a lamin A/C haploinsufficiency mouse. J Mol Cell Cardiol 2009; 48:1290-7. [PMID: 19913544 DOI: 10.1016/j.yjmcc.2009.10.024] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 10/26/2009] [Indexed: 11/24/2022]
Abstract
Inherited mutations cause approximately 30% of all dilated cardiomyopathy cases, with autosomal dominant mutations in the LMNA gene accounting for more than one third of these. The LMNA gene encodes the nuclear envelope proteins lamins A and C, which provide structural support to the nucleus and also play critical roles in transcriptional regulation. Functional deletion of a single allele is sufficient to trigger dilated cardiomyopathy in humans and mice. However, whereas Lmna(-/-) mice develop severe muscular dystrophy and dilated cardiomyopathy and die by 8 weeks of age, heterozygous Lmna(+/-) mice have a much milder phenotype, with changes in ventricular function and morphology only becoming apparent at 1 year of age. Here, we studied 8- to 20-week-old Lmna(+/-) mice and wild-type littermates in a pressure overload model to examine whether increased mechanical load can accelerate or exacerbate myocardial dysfunction in the heterozygotes. While overall survival was similar between genotypes, Lmna(+/-) animals had a significantly attenuated hypertrophic response to pressure overload as evidenced by reduced ventricular mass and myocyte size. Analysis of pressure overload-induced transcriptional changes suggested that the reduced hypertrophy in the Lmna(+/-) mice was accompanied by impaired activation of the mechanosensitive gene Egr-1. In conclusion, our findings provide further support for a critical role of lamins A and C in regulating the cellular response to mechanical stress in cardiomyocytes and demonstrate that haploinsufficiency of lamins A and C alone is sufficient to alter hypertrophic responses and cardiac function in the face of pressure overload in the heart.
Collapse
|
22
|
Abstract
Myopathies are frequently not confined to the skeletal muscles but also involve other organs or tissues. One of the most frequently affected organ in addition to the skeletal muscle is the heart (cardiac involvement, CI). CI manifests as impulse generation or conduction defects, focal or diffuse myocardial thickening, dilation of the cardiac cavities, relaxation abnormality, hypertrophic, dilated, restrictive cardiomyopathy, apical form of hypertrophic cardiomyopathy, noncompaction, Takotsubo phenomenon, secondary valve insufficiency, intra-cardiac thrombus formation, or heart failure with systolic or diastolic dysfunction. CI occurs in dystrophinopathies, Emery-Dreifuss muscular dystrophy, facioscapulohumeral muscular dystrophy, limb girdle muscular dystrophies, laminopathies, congenital muscular dystrophies, myotonic dystrophies, congenital myopathies, metabolic myopathies, desminopathies, myofibrillar myopathy, Barth syndrome, McLeod syndrome, Senger's syndrome, and Bethlem myopathy. Patients with myopathy should be cardiologically investigated as soon as their neurological diagnosis is established, since supportive cardiac therapy is available, which markedly influences prognosis and outcome of CI in these patients.
Collapse
|
23
|
Fujiita T, Shimizu M, Kaku B, Kanaya H, Horita Y, Uno Y, Yamazaki T, Ohka T, Sakata K, Mabuchi H. Abnormal sympathetic innervation of the heart in a patient with Emery-Dreifuss muscular dystrophy. Ann Nucl Med 2005; 19:411-4. [PMID: 16164199 DOI: 10.1007/bf03027407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A 33-year-old man was admitted for general malaise and vomiting. An electrocardiogram showed a complete atrioventricular block and an echocardiogram showed right atrial dilatation and normal wall motion of left ventricle (LV). Gene analysis showed nonsense mutation in the STA gene, which codes for emerin, and Emery-Dreifuss muscular dystrophy was diagnosed. An endomyocardial biopsy of right ventricle showed mild hypertrophy of myocytes. Myocardial scintigraphic studies with Tc-99m methoxyisobutylisonitrile (MIBI) and I-123-betamethyl-p-iodophenylpentadecanoic acid (BMIPP) scintigrams showed no abnormalities. In contrast, I-123 metaiodobenzylguanidine (MIBG) scintigrams showed a diffuse and severe decrease in accumulation of MIBG in the heart. Six months later, his LV wall motion on echocardiograms developed diffuse hypokinesis. These results suggest that the abnormality on I-123 MIBG myocardial scintigrams may predict LV dysfunction in Emery-Dreifuss muscular dystrophy.
Collapse
Affiliation(s)
- Takashi Fujiita
- Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sakata K, Shimizu M, Ino H, Yamaguchi M, Terai H, Fujino N, Hayashi K, Kaneda T, Inoue M, Oda Y, Fujita T, Kaku B, Kanaya H, Mabuchi H. High incidence of sudden cardiac death with conduction disturbances and atrial cardiomyopathy caused by a nonsense mutation in the STA gene. Circulation 2005; 111:3352-8. [PMID: 15967842 DOI: 10.1161/circulationaha.104.527184] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The STA gene encodes emerin and is one of the genes that is affected in Emery-Dreifuss muscular dystrophy (EDMD). Although it has been reported that EDMD caused by the STA gene mutation is associated with X-linked recessive inheritance, the genotype-phenotype correlations, with special reference to cardiac manifestations, are not well defined. METHODS AND RESULTS We identified 16 carriers (7 male and 9 female) with a nonsense mutation in exon 6 of the STA gene in 2 EDMD families. Pacemakers were required for treatment of bradyarrhythmias in all 7 male carriers and in 2 of the 9 female carriers. In addition, 2 of the 9 female carriers displayed atrial fibrillation. In these 2 families, 3 males without pacemaker implantation, who were not tested genetically, had died suddenly. In these family members, the majority of carriers with the mutation had not been clinically diagnosed as having EDMD before genetic testing because of extremely mild or nonexistent skeletal myopathy. CONCLUSIONS EDMD caused by this mutation is characterized by atypical clinical features and incomplete penetrance of the clinical phenotype and may result in serious cardiac complications, including sudden death. Approaches to preventing possible sudden death in carriers with the STA gene mutation require further study.
Collapse
Affiliation(s)
- Kenji Sakata
- Department of Molecular Genetics of Cardiovascular Disorders, Division of Cardiovascular Medicine,Graduate School of Medical Science, Kanazawa University, Takara-machi, Ishikawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Klingler W, Lehmann-Horn F, Jurkat-Rott K. Complications of anaesthesia in neuromuscular disorders. Neuromuscul Disord 2005; 15:195-206. [PMID: 15725581 DOI: 10.1016/j.nmd.2004.10.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2004] [Revised: 09/27/2004] [Accepted: 10/09/2004] [Indexed: 12/17/2022]
Abstract
The purpose of this review is to alert non-anaesthesiologists to the various complications from which patients with neuromuscular disorders and those susceptible to malignant hyperthermia can suffer during anaesthesia. The patient's outcome correlates with the quality of consultation between anaesthesiologists, surgeons, neurologists and cardiologists. Special precautions must be taken, since many anaesthetics and muscle relaxants can aggravate the clinical features or trigger life-threatening reactions. Complications frequently occur in these patients, although anaesthetic procedures have become safer by the reduced administration of suxamethonium and the use of total intravenous anaesthesia, new volatile anaesthetics and non-depolarising relaxants. This review provides a synopsis of pre-operative anaesthetic considerations and adverse drug effects on skeletal, cardiac and smooth muscle tissue. It describes the pathogenetic aspects of typical complications and introduces anaesthetic procedures for the various neuromuscular disorders, including regional anaesthesia for patients in whom a restriction of respiratory and/or cardiac function is predicted.
Collapse
Affiliation(s)
- Werner Klingler
- Department of Anaesthesiology, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany
| | | | | |
Collapse
|
26
|
Bengtsson L, Wilson KL. Multiple and surprising new functions for emerin, a nuclear membrane protein. Curr Opin Cell Biol 2004; 16:73-9. [PMID: 15037308 DOI: 10.1016/j.ceb.2003.11.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Emerin is an integral protein of the nuclear inner membrane. Emerin is not essential, but its loss of function causes Emery-Dreifuss muscular dystrophy. We summarize significant recent progress in understanding emerin, which was previously known to interact with barrier-to-autointegration factor and lamins. New partners include transcription repressors, an mRNA splicing regulator, a nuclear membrane protein named nesprin, nuclear myosin I and F-actin. These interactors imply multiple roles for emerin in the nucleus, some of which overlap with related LEM-domain proteins.
Collapse
Affiliation(s)
- Luiza Bengtsson
- Department of Cell Biology, WBSB room G-9, Johns Hopkins University School of Medicine, 725 N. Wolfe St, Baltimore, MD 21205, USA
| | | |
Collapse
|
27
|
Abstract
The management of individuals with a neuromuscular disorder is usually focused on the skeletal muscle weakness and resulting complications, such as respiratory failure. Long-term prognosis of a number of neuromuscular conditions is, however, also determined by the type and severity of cardiac involvement. Early recognition and treatment of the cardiovascular complications are part of the task of the multidisciplinary team involved in the care of these patients. Although for several of the common conditions, there is general consensus on the cardiac investigations and treatments, in the rarer disorders, evidence-based recommendations are not available, and suggestions from experts provide an acceptable solution. This review summarizes the recent advances in our understanding of the pathogenesis and phenotypic diversity of cardiac complications associated with pediatric myopathies and provides a rational framework for planning the monitoring and therapeutic intervention in individual conditions.
Collapse
Affiliation(s)
- Francesco Muntoni
- Dubowitz Neuromuscular Unit, Department of Paediatrics, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
28
|
Bushby K, Muntoni F, Bourke JP. 107th ENMC international workshop: the management of cardiac involvement in muscular dystrophy and myotonic dystrophy. 7th-9th June 2002, Naarden, the Netherlands. Neuromuscul Disord 2003; 13:166-72. [PMID: 12565916 DOI: 10.1016/s0960-8966(02)00213-4] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- K Bushby
- Department of Neuromuscular Genetics, Institute of Human Genetics, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | | | | |
Collapse
|
29
|
Kondrashov AS. Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Hum Mutat 2003; 21:12-27. [PMID: 12497628 DOI: 10.1002/humu.10147] [Citation(s) in RCA: 235] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
I estimate per nucleotide rates of spontaneous mutations of different kinds in humans directly from the data on per locus mutation rates and on sequences of de novo nonsense nucleotide substitutions, deletions, insertions, and complex events at eight loci causing autosomal dominant diseases and 12 loci causing X-linked diseases. The results are in good agreement with indirect estimates, obtained by comparison of orthologous human and chimpanzee pseudogenes. The average direct estimate of the combined rate of all mutations is 1.8x10(-8) per nucleotide per generation, and the coefficient of variation of this rate across the 20 loci is 0.53. Single nucleotide substitutions are approximately 25 times more common than all other mutations, deletions are approximately three times more common than insertions, complex mutations are very rare, and CpG context increases substitution rates by an order of magnitude. There is only a moderate tendency for loci with high per locus mutation rates to also have higher per nucleotide substitution rates, and per nucleotide rates of deletions and insertions are statistically independent on the per locus mutation rate. Rates of different kinds of mutations are strongly correlated across loci. Mutational hot spots with per nucleotide rates above 5x10(-7) make only a minor contribution to human mutation. In the next decade, direct measurements will produce a rather precise, quantitative description of human spontaneous mutation at the DNA level.
Collapse
Affiliation(s)
- Alexey S Kondrashov
- National Center for Biotechnology Information, NIH, Bethesda, Maryland 20892, USA.
| |
Collapse
|
30
|
Feng J, Yan JY, Buzin CH, Sommer SS, Towbin JA. Comprehensive mutation scanning of the dystrophin gene in patients with nonsyndromic X-linked dilated cardiomyopathy. J Am Coll Cardiol 2002; 40:1120-4. [PMID: 12354438 DOI: 10.1016/s0735-1097(02)02126-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The goal of this study was to perform comprehensive mutation analysis of the dystrophin gene in patients with X-linked dilated cardiomyopathy (XLCM). BACKGROUND X-linked dilated cardiomyopathy is a familial disease that is characterized by congestive heart failure without clinical signs of skeletal myopathy. Mutations in the dystrophin gene have been associated with the X-linked form of dilated cardiomyopathy. However, the fraction of XLCM with dystrophin mutations and the distribution of those mutations is not clear. Technical difficulties previously limited comprehensive mutation analysis of this very large gene. METHODS The Detection Of Virtually All Mutations-Single Strand Conformation Polymorphism (SSCP) (DOVAM-S), a robotically enhanced multiplexed scanning method that is a highly sensitive modification of SSCP, has successfully detected all of 240 mutations and polymorphisms in three blinded analyses of the factor VIII, factor IX, and ATM genes. Utilizing this method all 79 coding exons and splice junctions for the muscle dystrophin gene, along with six alternative exon 1 sequences, were scanned in eight patients with XLCM. RESULTS This is the first comprehensive scanning of the dystrophin gene in XLCM. Three of eight patients have putative mutations, including two splicing mutations and a missense mutation at a highly conserved amino acid. CONCLUSIONS Mutations within the coding regions and splice junctions in the dystrophin gene only account for some cases of XLCM. Genetic heterogeneity and/or undetected mutations in auxiliary regulatory regions or deep within introns may occur in XLCM.
Collapse
Affiliation(s)
- Jinong Feng
- Department of Molecular Genetics, City of Hope National Medical Center/Beckman Research Institute, Duarte, California 91010-3000, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Nuclear muscular dystrophies are referred to as inherited muscular dystrophies caused by mutations in genes--(STA) or lamina (LMNA)--encoding components of the nuclear envelope. Phenotypically, they present as Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscle dystrophy 1B (LGMD1B), or dilated cardiomyopathy with conduction defects (DCM-CD). Genetically related are the Dunnigan-type of familial partial lipodystrophy (FPLD) and Charcot-Marie-Tooth neuropathy type 2 (CMT2B). Until now, approximately 70 unique STA mutations, leading to X-linked EDMD or DCM-CD, have resulted mostly in a complete lack of emerin. Further 50 mostly missense mutations in LMNA result in autosomal-dominant EDMD, autosomal-recessive EDMD, LGMD1B, DCM-CD, FPLD, or CMT2B. Independent of type or location of the mutations, emerinopathies and laminopathies show wide clinical intrafamilial and interfamilial variability. Although structural abnormalities of nuclei in animal and cell models have been observed, the molecular pathology of the nuclear muscular dystrophies needs still to be elucidated.
Collapse
|
32
|
Fairley EAL, Riddell A, Ellis JA, Kendrick-Jones J. The cell cycle dependent mislocalisation of emerin may contribute to the Emery-Dreifuss muscular dystrophy phenotype. J Cell Sci 2002; 115:341-54. [PMID: 11839786 DOI: 10.1242/jcs.115.2.341] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emerin is the nuclear membrane protein defective in X-linked Emery-Dreifuss muscular dystrophy (X-EDMD). The majority of X-EDMD patients have no detectable emerin. However, there are cases that produce mutant forms of emerin, which can be used to study its function. Our previous studies have shown that the emerin mutants S54F, P183T, P183H, Del95-99, Del236-241 (identified in X-EDMD patients) are targeted to the nuclear membrane but to a lesser extent than wild-type emerin. In this paper, we have studied how the mislocalisation of these mutant emerins may affect nuclear functions associated with the cell cycle using flow cytometry and immunofluorescence microscopy. We have established that cells expressing the emerin mutant Del236-241 (a deletion in the transmembrane domain), which was mainly localised in the cytoplasm, exhibited an aberrant cell cycle length. Thereafter, by examining the intracellular localisation of endogenously expressed lamin A/C and exogenously expressed wild-type and mutant forms of emerin after a number of cell divisions, we determined that the mutant forms of emerin redistributed endogenous lamin A/C. The extent of lamin A/C redistribution correlated with the amount of EGFP-emerin that was mislocalised. The amount of EGFP-emerin mislocalized, in turn, was associated with alterations in the nuclear envelope morphology. The nuclear morphology and redistribution of lamin A/C was most severely affected in the cells expressing the emerin mutant Del236-241.It is believed that emerin is part of a novel nuclear protein complex consisting of the barrier-to-autointegration factor (BAF), the nuclear lamina, nuclear actin and other associated proteins. The data presented here show that lamin A/C localisation is dominantly directed by its interaction with certain emerin mutants and perhaps wild-type emerin as well. These results suggest that emerin links A-type lamins to the nuclear envelope and that the correct localisation of these nuclear proteins is important for maintaining cell cycle timing.
Collapse
|
33
|
Mislow JMK, Kim MS, Davis DB, McNally EM. Myne-1, a spectrin repeat transmembrane protein of the myocyte inner nuclear membrane, interacts with lamin A/C. J Cell Sci 2002; 115:61-70. [PMID: 11801724 DOI: 10.1242/jcs.115.1.61] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the genes encoding the inner nuclear membrane proteins lamin A/C and emerin produce cardiomyopathy and muscular dystrophy in humans and mice. The mechanism by which these broadly expressed gene products result in tissue-specific dysfunction is not known. We have identified a protein of the inner nuclear membrane that is highly expressed in striated and smooth muscle. This protein, myne-1 (myocyte nuclear envelope), is predicted to have seven spectrin repeats, an interrupted LEM domain and a single transmembrane domain at its C-terminus. We found that myne-1 is expressed upon early muscle differentiation in multiple intranuclear foci concomitant with lamin A/C expression. In mature muscle, myne-1 and lamin A/C are perfectly colocalized, although colocalization with emerin is only partial. Moreover, we show that myne-1 and lamin A/C coimmunoprecipitate from differentiated muscle in vitro. The muscle-specific inner nuclear envelope expression of myne-1, along with its interaction with lamin A/C, indicates that this gene is a potential mediator of cardiomyopathy and muscular dystrophy.
Collapse
Affiliation(s)
- John M K Mislow
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
There is a growing body of evidence in favour of the presence of human diseases caused by mutations in genes that encode the nuclear envelope proteins emerin and lamin A/C (lamin A and C are alternatively spliced variants of the same gene). Emerin deficiency results in X-linked Emery-Dreifuss muscular dystrophy (EDMD). Lamin A/C mutations cause the autosomal-dominant form of EDMD, limb-girdle muscular dystrophy with atrioventricular conduction disturbances (type 1B), hypertrophic cardiomyopathy and Dunnigan-type familial partial lipodystrophy. In the targeted mouse model of lamin A gene deficiency, loss of lamin A/C is associated with mislocalization of emerin. Thus, one plausible pathomechanism for EDMD, limb-girdle muscular dystrophy type 1B, hypertrophic cardiomyopathy and familial partial lipodystrophy is the presence of specific abnormalities of the nuclear envelope. Therefore, a group of markedly heterogeneous disorders can be classified as 'nuclear envelopathies'. The present review summarizes recent findings on nuclear envelope proteins and diseases.
Collapse
Affiliation(s)
- A Nagano
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | | |
Collapse
|
36
|
Abstract
X-linked Emery-Dreifuss muscular dystrophy is caused by mutations in emerin, a novel nuclear membrane protein. Other major inherited neuromuscular diseases have now also been shown to involve proteins which localize and function at least partly in the cell nucleus. These include lamin A/C in autosomal dominant Emery-Dreifuss muscular dystrophy, SMN in spinal muscular atrophy, SIX5 in myotonic dystrophy, calpain3 in type 2A limb-girdle muscular dystrophy, PABP2 in oculopharyngeal dystrophy, androgen receptor in spinal and bulbar muscular atrophy and the ataxins in hereditary ataxias. This review compares the molecular basis for these various disorders and considers the role of cell death, including apoptosis, in their pathogenesis.
Collapse
Affiliation(s)
- G E Morris
- MRIC Biochemistry Group, The North East Wales Institute, LL11 2AW, Wrexham, UK.
| |
Collapse
|
37
|
Abstract
Emery-Dreifuss muscular dystrophy (EDMD) was delineated as a separate form of muscular dystrophy nearly 40 years ago, based on the distinctive clinical features of early contractures and humero-peroneal weakness, and cardiac conduction defects. The gene, STA at Xq28, for the commoner X-linked EDMD encodes a 34 kD nuclear membrane protein designated 'emerin', and in almost all cases on immunostaining is absent in muscle, skin fibroblasts, leucocytes and even exfoliative buccal cells, and a mosaic pattern in female carriers. The gene, LMNA at 1q21, for the autosomal dominant Emery-Dreifuss muscular dystrophy encodes other nuclear membrane proteins, lamins A/C. The diagnosis (at present) depends on mutation analysis rather than protein immunohistochemistry. It is still not at all clear how defects in these nuclear membrane proteins are related to the phenotype, even less clear that LMNA mutations can also be associated with familial dilated cardiomyopathy with no weakness, and even familial partial lipodystrophy with diabetes mellitus and coronary heart disease! What began as clinical studies in a relatively rare form of dystrophy has progressed to detailed research into the functions of nuclear membrane proteins particularly in regard to various forms of heart disease.
Collapse
Affiliation(s)
- A E Emery
- Department of Neurology, Royal Devon & Exeter Hospital, EX2 5DW, Exeter, UK
| |
Collapse
|
38
|
Moir RD, Spann TP, Lopez-Soler RI, Yoon M, Goldman AE, Khuon S, Goldman RD. Review: the dynamics of the nuclear lamins during the cell cycle-- relationship between structure and function. J Struct Biol 2000; 129:324-34. [PMID: 10806083 DOI: 10.1006/jsbi.2000.4251] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nuclear lamins are members of the intermediate filament (IF) family of proteins. The lamins have an essential role in maintaining nuclear integrity, as do the other IF family members in the cytoplasm. Also like cytoplasmic IFs, the organization of lamins is dynamic. The lamins are found not only at the nuclear periphery but also in the interior of the nucleus, as distinct nucleoplasmic foci and possibly as a network throughout the nucleus. Nuclear processes such as DNA replication may be organized around these structures. In this review, we discuss changes in the structure and organization of the nuclear lamins during the cell cycle and during cell differentiation. These changes are correlated with changes in nuclear structure and function. For example, the interactions of lamins with chromatin and nuclear envelope components occur very early during nuclear assembly following mitosis. During S-phase, the lamins colocalize with markers of DNA replication, and proper lamin organization must be maintained for replication to proceed. When cells differentiate, the expression pattern of lamin isotypes changes. In addition, changes in lamin organization and expression patterns accompany the nuclear alterations observed in transformed cells. These lamin structures may modulate nuclear function in each of these processes.
Collapse
Affiliation(s)
- R D Moir
- Department of Cell and Molecular Biology, Northwestern University Medical School, 303 East Chicago Avenue, Chicago, Illinois, 60611, USA
| | | | | | | | | | | | | |
Collapse
|