1
|
Özgüldez HÖ, Bulut-Karslioğlu A. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Annu Rev Cell Dev Biol 2024; 40:25-49. [PMID: 38985838 DOI: 10.1146/annurev-cellbio-112122-022528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Life on Earth has been through numerous challenges over eons and, one way or another, has always triumphed. From mass extinctions to more daily plights to find food, unpredictability is everywhere. The adaptability of life-forms to ever-changing environments is the key that confers life's robustness. Adaptability has become synonymous with Darwinian evolution mediated by heritable genetic changes. The extreme gene-centric view, while being of central significance, at times has clouded our appreciation of the cell as a self-regulating entity informed of, and informing, the genetic data. An essential element that powers adaptability is the ability to regulate cell growth. In this review, we provide an extensive overview of growth regulation spanning species, tissues, and regulatory mechanisms. We aim to highlight the commonalities, as well as differences, of these phenomena and their molecular regulators. Finally, we curate open questions and areas for further exploration.
Collapse
Affiliation(s)
- Hatice Özge Özgüldez
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| | - Aydan Bulut-Karslioğlu
- Stem Cell Chromatin Group, Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany;
| |
Collapse
|
2
|
Nagata Y, Tomimori J, Hagiwara T. Anti-apoptotic protein Bcl-2 contributes to the determination of reserve cells during myogenic differentiation of C2C12 cells. In Vitro Cell Dev Biol Anim 2024; 60:760-770. [PMID: 38619740 DOI: 10.1007/s11626-024-00905-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/28/2024] [Indexed: 04/16/2024]
Abstract
Skeletal muscle's regenerative ability is vital for maintaining muscle function, but chronic diseases like Duchenne muscular dystrophy can deplete this capacity. Muscle satellite cells, quiescent in normal situations, are activated during muscle injury, expressing myogenic regulatory factors, and producing myogenic progenitor cells. It was reported that muscle stem cells in primary culture and reserve cells in C2C12 cells express anti-apoptotic protein Bcl-2. Although the role of Bcl-2 expressed in myogenic cells has been thought to be to enhance cell viability, we hypothesized that Bcl-2 may promote the formation of reserve cells. The expression pattern analysis showed the expression of Bcl-2 in undifferentiated mononucleated cells, emphasizing its usefulness as a reserve cell marker and reminding us that cells expressing Bcl-2 have low proliferative potential. Silencing of Bcl-2 by transfection with siRNA decreased cell viability and the number of reserve cells, while overexpression of Bcl-2 not only increases cell viability but also inhibits muscle differentiation and proliferation. These results emphasize dual roles of Bcl-2 in protecting cells from apoptosis and contributing to reserve cell formation by regulating myoblast proliferation and/or differentiation. Overall, the study sheds light on the multifaceted role of Bcl-2 in the maintenance of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Yosuke Nagata
- Department of Bioscience, Faculty of Life Science, Okayama University of Science, 1-1 Ridaicho, Kita-Ku, Okayama-Shi, 700-0005, Japan.
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan.
- Department of Natural Science, Graduate School of Science and Engineering, Okayama University of Science, Okayama, Japan.
| | - Jun Tomimori
- Department of Life Science, Faculty of Science, Okayama University of Science, Okayama, Japan
| | - Tomoharu Hagiwara
- Department of Natural Science, Graduate School of Science and Engineering, Okayama University of Science, Okayama, Japan
| |
Collapse
|
3
|
Cheng C, Zhang S, Gong Y, Wang X, Tang S, Wan J, Ding K, Yuan C, Sun W, Yao LH. Cordycepin inhibits myogenesis via activating the ERK1/2 MAPK signalling pathway in C2C12 cells. Biomed Pharmacother 2023; 165:115163. [PMID: 37453196 DOI: 10.1016/j.biopha.2023.115163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Cordycepin (with a molecular formula of C10H13N5O3), a natural adenosine isolated from Cordyceps militaris, has an important regulatory effect on skeletal muscle remodelling and quality maintenance. The aim of this study was to investigate the effect of cordycepin on myoblast differentiation and explore the underlying molecular mechanisms of this effect. Our results showed that cordycepin inhibited myogenesis by downregulating myogenic differentiation (MyoD) and myogenin (MyoG), preserved undifferentiated reserve cell pools by upregulating myogenic factor 5 (Myf5) and retinoblastoma-like protein p130 (p130), and enhanced energy reserves by decreasing intracellular reactive oxygen species (ROS) and enhancing mitochondrial membrane potential, mitochondrial mass, and ATP content. The effect of cordycepin on myogenesis was associated with increased phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2). PD98059 (a specific inhibitor of p-ERK1/2) attenuated the inhibitory effect of cordycepin on C2C12 differentiation. The present study reveals that cordycepin inhibits myogenesis through ERK1/2 MAPK signalling activation accompanied by an increase in skeletal muscle energy reserves and improving skeletal muscle oxidative stress, which may have implications for its further application for the prevention and treatment of degenerative muscle diseases caused by the depletion of depleted muscle stem cells.
Collapse
Affiliation(s)
- Chunfang Cheng
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shasha Zhang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Yanchun Gong
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Xuanyu Wang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Shan Tang
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Juan Wan
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Kaizhi Ding
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Chunhua Yuan
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Wei Sun
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China
| | - Li-Hua Yao
- School of Sport Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China; School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, PR China.
| |
Collapse
|
4
|
Gala HP, Saha D, Venugopal N, Aloysius A, Purohit G, Dhawan J. A transcriptionally repressed quiescence program is associated with paused RNAPII and is poised for cell cycle reentry. J Cell Sci 2022; 135:275901. [PMID: 35781573 DOI: 10.1242/jcs.259789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
Adult stem cells persist in mammalian tissues by entering a state of reversible quiescence/ G0, associated with low transcription. Using cultured myoblasts and muscle stem cells, we report that in G0, global RNA content and synthesis are substantially repressed, correlating with decreased RNA Polymerase II (RNAPII) expression and activation. Integrating RNAPII occupancy and transcriptome profiling, we identify repressed networks and a role for promoter-proximal RNAPII pausing in G0. Strikingly, RNAPII shows enhanced pausing in G0 on repressed genes encoding regulators of RNA biogenesis (Nucleolin, Rps24, Ctdp1); release of pausing is associated with their increased expression in G1. Knockdown of these transcripts in proliferating cells leads to induction of G0 markers, confirming the importance of their repression in establishment of G0. A targeted screen of RNAPII regulators revealed that knockdown of Aff4 (positive regulator of elongation) unexpectedly enhances expression of G0-stalled genes and hastens S phase; NELF, a regulator of pausing appears to be dispensable. We propose that RNAPII pausing contributes to transcriptional control of a subset of G0-repressed genes to maintain quiescence and impacts the timing of the G0-G1 transition.
Collapse
Affiliation(s)
- Hardik P Gala
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Debarya Saha
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Nisha Venugopal
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - Ajoy Aloysius
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India.,National Center for Biological Sciences, Bangalore, 560065, India
| | - Gunjan Purohit
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India
| | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, Hyderabad, 500007, India.,Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
5
|
Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1462. [PMID: 31407867 PMCID: PMC6916202 DOI: 10.1002/wsbm.1462] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022]
Abstract
Decades of research in skeletal muscle physiology have provided multiscale insights into the structural and functional complexity of this important anatomical tissue, designed to accomplish the task of generating contraction, force and movement. Skeletal muscle can be viewed as a biomechanical device with various interacting components including the autonomic nerves for impulse transmission, vasculature for efficient oxygenation, and embedded regulatory and metabolic machinery for maintaining cellular homeostasis. The "omics" revolution has propelled a new era in muscle research, allowing us to discern minute details of molecular cross-talk required for effective coordination between the myriad interacting components for efficient muscle function. The objective of this review is to provide a systems-level, comprehensive mapping the molecular mechanisms underlying skeletal muscle structure and function, in health and disease. We begin this review with a focus on molecular mechanisms underlying muscle tissue development (myogenesis), with an emphasis on satellite cells and muscle regeneration. We next review the molecular structure and mechanisms underlying the many structural components of the muscle: neuromuscular junction, sarcomere, cytoskeleton, extracellular matrix, and vasculature surrounding muscle. We highlight aberrant molecular mechanisms and their possible clinical or pathophysiological relevance. We particularly emphasize the impact of environmental stressors (inflammation and oxidative stress) in contributing to muscle pathophysiology including atrophy, hypertrophy, and fibrosis. This article is categorized under: Physiology > Mammalian Physiology in Health and Disease Developmental Biology > Developmental Processes in Health and Disease Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of BioengineeringUniversity of CaliforniaSan DiegoCalifornia
| | - Shankar Subramaniam
- Department of Bioengineering, Bioinformatics & Systems BiologyUniversity of CaliforniaSan DiegoCalifornia
- Department of Computer Science and EngineeringUniversity of CaliforniaSan DiegoCalifornia
- Department of Cellular and Molecular Medicine and NanoengineeringUniversity of CaliforniaSan DiegoCalifornia
| |
Collapse
|
6
|
Midkine-a Is Required for Cell Cycle Progression of Müller Glia during Neuronal Regeneration in the Vertebrate Retina. J Neurosci 2019; 40:1232-1247. [PMID: 31882403 PMCID: PMC7002140 DOI: 10.1523/jneurosci.1675-19.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In the retina of zebrafish, Müller glia have the ability to reprogram into stem cells capable of regenerating all classes of retinal neurons and restoring visual function. Understanding the cellular and molecular mechanisms controlling the stem cell properties of Müller glia in zebrafish may provide cues to unlock the regenerative potential in the mammalian nervous system. Midkine is a cytokine/growth factor with multiple roles in neural development, tissue repair, and disease. In midkine-a loss-of-function mutants of both sexes, Müller glia initiate the appropriate reprogramming response to photoreceptor death by increasing expression of stem cell-associated genes, and entering the G1 phase of the cell cycle. However, transition from G1 to S phase is blocked in the absence of Midkine-a, resulting in significantly reduced proliferation and selective failure to regenerate cone photoreceptors. Failing to progress through the cell cycle, Müller glia undergo reactive gliosis, a pathological hallmark in the injured CNS of mammals. Finally, we determined that the Midkine-a receptor, anaplastic lymphoma kinase, is upstream of the HLH regulatory protein, Id2a, and of the retinoblastoma gene, p130, which regulates progression through the cell cycle. These results demonstrate that Midkine-a functions as a core component of the mechanisms that regulate proliferation of stem cells in the injured CNS. SIGNIFICANCE STATEMENT The death of retinal neurons and photoreceptors is a leading cause of vision loss. Regenerating retinal neurons is a therapeutic goal. Zebrafish can regenerate retinal neurons from intrinsic stem cells, Müller glia, and are a powerful model to understand how stem cells might be used therapeutically. Midkine-a, an injury-induced growth factor/cytokine that is expressed by Müller glia following neuronal death, is required for Müller glia to progress through the cell cycle. The absence of Midkine-a suspends proliferation and neuronal regeneration. With cell cycle progression stalled, Müller glia undergo reactive gliosis, a pathological hallmark of the mammalian retina. This work provides a unique insight into mechanisms that control the cell cycle during neuronal regeneration.
Collapse
|
7
|
Pavlidou T, Rosina M, Fuoco C, Gerini G, Gargioli C, Castagnoli L, Cesareni G. Regulation of myoblast differentiation by metabolic perturbations induced by metformin. PLoS One 2017; 12:e0182475. [PMID: 28859084 PMCID: PMC5578649 DOI: 10.1371/journal.pone.0182475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/19/2017] [Indexed: 12/11/2022] Open
Abstract
The metabolic perturbation caused by calorie restriction enhances muscle repair by playing a critical role in regulating satellite cell availability and activity in the muscles of young and old mice. To clarify the underlying mechanisms we asked whether myoblast replication and differentiation are affected by metformin, a calorie restriction-mimicking drug. C2C12, a mouse myoblast cell line, readily differentiate in vitro and fuse to form myotubes. However, when incubated with metformin, C2C12 slow their replication and do not differentiate. Interestingly, lower doses of metformin promote myogenic differentiation. We observe that metformin treatment modulates the expression of cyclins and cyclin inhibitors thereby inducing a cell cycle perturbation that causes a delay in the G2/M transition. The effect of metformin treatment is reversible since after drug withdrawal, myoblasts can re-enter the cell cycle and/or differentiate, depending on culture conditions. Myoblasts cultured under metformin treatment fail to up-regulate MyoD and p21cip1, a key step in cell cycle exit and terminal differentiation. Although the details of the molecular mechanisms underlying the effect of the drug on myoblasts still need to be clarified, we propose that metformin negatively affects myogenic differentiation by inhibiting irreversible exit from the cell cycle through reduction of MyoD and p21cip1 levels.
Collapse
Affiliation(s)
- Theodora Pavlidou
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Marco Rosina
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Claudia Fuoco
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Giulia Gerini
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
| | - Cesare Gargioli
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
- * E-mail: (LC); (GC); (CG)
| | - Luisa Castagnoli
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
- * E-mail: (LC); (GC); (CG)
| | - Gianni Cesareni
- Laboratory of Molecular Genetics, Department of Biology, Tor Vergata University, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
- * E-mail: (LC); (GC); (CG)
| |
Collapse
|
8
|
Rumman M, Dhawan J, Kassem M. Concise Review: Quiescence in Adult Stem Cells: Biological Significance and Relevance to Tissue Regeneration. Stem Cells 2015; 33:2903-12. [DOI: 10.1002/stem.2056] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Mohammad Rumman
- Institute for Stem Cell Biology and Regenerative Medicine (inStem); Bangalore Karnataka India
- Manipal University; Manipal Karnataka India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine (inStem); Bangalore Karnataka India
- CSIR-Center for Cell and Molecular Biology (CCMB); Hyderabad Telangana India
| | - Moustapha Kassem
- Laboratory for Molecular Endocrinology (KMEB), Department of Endocrinology and Metabolism; University Hospital of Odense; Odense Denmark
- Danish Stem Cell Center (DanStem), Panum Institute; University of Copenhagen; Copenhagen Denmark
- Stem cell Unit, Department of Anatomy, College of Medicine; King Saud University; Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Cheedipudi S, Puri D, Saleh A, Gala HP, Rumman M, Pillai MS, Sreenivas P, Arora R, Sellathurai J, Schrøder HD, Mishra RK, Dhawan J. A fine balance: epigenetic control of cellular quiescence by the tumor suppressor PRDM2/RIZ at a bivalent domain in the cyclin a gene. Nucleic Acids Res 2015; 43:6236-56. [PMID: 26040698 PMCID: PMC4513853 DOI: 10.1093/nar/gkv567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 05/19/2015] [Indexed: 12/20/2022] Open
Abstract
Adult stem cell quiescence is critical to ensure regeneration while minimizing tumorigenesis. Epigenetic regulation contributes to cell cycle control and differentiation, but few regulators of the chromatin state in quiescent cells are known. Here we report that the tumor suppressor PRDM2/RIZ, an H3K9 methyltransferase, is enriched in quiescent muscle stem cells invivo and controls reversible quiescence in cultured myoblasts. We find that PRDM2 associates with >4400 promoters in G0 myoblasts, 55% of which are also marked with H3K9me2 and enriched for myogenic, cell cycle and developmental regulators. Knockdown of PRDM2 alters histone methylation at key promoters such as Myogenin and CyclinA2 (CCNA2), and subverts the quiescence program via global de-repression of myogenesis, and hyper-repression of the cell cycle. Further, PRDM2 acts upstream of the repressive PRC2 complex in G0. We identify a novel G0-specific bivalent chromatin domain in the CCNA2 locus. PRDM2 protein interacts with the PRC2 protein EZH2 and regulates its association with the bivalent domain in the CCNA2 gene. Our results suggest that induction of PRDM2 in G0 ensures that two antagonistic programs—myogenesis and the cell cycle—while stalled, are poised for reactivation. Together, these results indicate that epigenetic regulation by PRDM2 preserves key functions of the quiescent state, with implications for stem cell self-renewal.
Collapse
Affiliation(s)
- Sirisha Cheedipudi
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Deepika Puri
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Max Planck Institute of Immunobiology and Epigenetics, Freiburg D-79108, Germany
| | - Amena Saleh
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Hardik P Gala
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Mohammed Rumman
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Manipal University, Manipal 576104 India
| | - Malini S Pillai
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Prethish Sreenivas
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Reety Arora
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India
| | - Jeeva Sellathurai
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Henrik Daa Schrøder
- Institute of Clinical Research, SDU Muscle Research Cluster (SMRC), University of Southern Denmark, Odense 5000 C, Denmark
| | - Rakesh K Mishra
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Sciences, GKVK Post, Bellary Road, Bangalore 560065, India Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| |
Collapse
|
10
|
Abou-Khalil R, Le Grand F, Chazaud B. Human and murine skeletal muscle reserve cells. Methods Mol Biol 2013; 1035:165-77. [PMID: 23959990 DOI: 10.1007/978-1-62703-508-8_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Study of stem cell phenotype and functions requires their proper isolation. Stem cells isolated from skeletal muscle are a useful tool to explore molecular pathways involved in the regulation of myogenesis. Among progenitor cells, a subset of cells, called reserve cells, has been identified, in vitro, in myogenic cell cultures. This subset of cells remains undifferentiated while the main population of progenitor cells commits to terminal myogenic differentiation. When replated, these reserve cells grow as new colonies of progenitors. At the time of differentiation, they reform both differentiated myotubes and undifferentiated reserve cells. Here, we present a protocol to obtain and further isolate reserve cells from both human and murine myogenic cell cultures, together with techniques to analyze their cell cycle status.
Collapse
|
11
|
Koning M, Werker PM, van Luyn MJ, Krenning G, Harmsen MC. A global downregulation of microRNAs occurs in human quiescent satellite cells during myogenesis. Differentiation 2012; 84:314-21. [DOI: 10.1016/j.diff.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 12/11/2022]
|
12
|
Inhibitors of tyrosine phosphatases and apoptosis reprogram lineage-marked differentiated muscle to myogenic progenitor cells. ACTA ACUST UNITED AC 2012; 18:1153-66. [PMID: 21944754 DOI: 10.1016/j.chembiol.2011.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 12/16/2022]
Abstract
Muscle regeneration declines with aging and myopathies, and reprogramming of differentiated muscle cells to their progenitors can serve as a robust source of therapeutic cells. Here, we used the Cre-Lox method to specifically label postmitotic primary multinucleated myotubes and then utilized small molecule inhibitors of tyrosine phosphatases and apoptosis to dedifferentiate these myotubes into proliferating myogenic cells, without gene overexpression. The reprogrammed, fusion competent, muscle precursor cells contributed to muscle regeneration in vitro and in vivo and were unequivocally distinguished from reactivated reserve cells because of the lineage marking method. The small molecule inhibitors downregulated cell cycle inhibitors and chromatin remodeling factors known to promote and maintain the cell fate of myotubes, facilitating cell fate reversal. Our findings enhance understanding of cell-fate determination and create novel therapeutic approaches for improved muscle repair.
Collapse
|
13
|
Koning M, Werker PMN, van Luyn MJA, Harmsen MC. Hypoxia promotes proliferation of human myogenic satellite cells: a potential benefactor in tissue engineering of skeletal muscle. Tissue Eng Part A 2011; 17:1747-58. [PMID: 21438665 DOI: 10.1089/ten.tea.2010.0624] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Facial paralysis is a physically, psychologically, and socially disabling condition. Innovative treatment strategies based on regenerative medicine, in particular tissue engineering of skeletal muscle, are promising for treatment of patients with facial paralysis. The natural source for tissue-engineered muscle would be muscle stem cells, that is, human satellite cells (SC). In vivo, SC respond to hypoxic, ischemic muscle damage by activation, proliferation, differentiation to myotubes, and maturation to muscle fibers, while maintaining their reserve pool of SC. Therefore, our hypothesis is that hypoxia improves proliferation and differentiation of SC. During tissue engineering, a three-dimensional construct, or implanting SC in vivo, SC will encounter hypoxic environments. Thus, we set out to test our hypothesis on SC in vitro. During the first five passages, hypoxically cultured SC proliferated faster than their counterparts under normoxia. Moreover, also at higher passages, a switch from normoxia to hypoxia enhanced proliferation of SC. Hypoxia did not affect the expression of SC markers desmin and NCAM. However, the average surface expression per cell of NCAM was downregulated by hypoxia, and it also downregulated the gene expression of NCAM. The gene expression of the myogenic transcription factors PAX7, MYF5, and MYOD was upregulated by hypoxia. Moreover, gene expression of structural proteins α-sarcomeric actin, and myosins MYL1 and MYL3 was upregulated by hypoxia during differentiation. This indicates that hypoxia promotes a promyogenic shift in SC. Finally, Pax7 expression was not influenced by hypoxia and maintained in a subset of mononucleated cells, whereas these cells were devoid of structural muscle proteins. This suggests that during myogenesis in vitro, at least part of the SC adopt a quiescent, that is, reserve cells, phenotype. In conclusion, tissue engineering under hypoxic conditions would seem favorable in terms of myogenic proliferation, while maintaining the quiescent SC pool.
Collapse
Affiliation(s)
- Merel Koning
- Department of Plastic Surgery, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
14
|
Ciavarra G, Ho AT, Cobrinik D, Zacksenhaus E. Critical role of the Rb family in myoblast survival and fusion. PLoS One 2011; 6:e17682. [PMID: 21423694 PMCID: PMC3053373 DOI: 10.1371/journal.pone.0017682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 02/08/2011] [Indexed: 12/23/2022] Open
Abstract
The tumor suppressor Rb is thought to control cell proliferation, survival and differentiation. We recently showed that differentiating Rb-deficient mouse myoblasts can fuse to form short myotubes that quickly collapse through a mechanism involving autophagy, and that autophagy inhibitors or hypoxia could rescue the defect leading to long, twitching myotubes. Here we determined the contribution of pRb relatives, p107 and p130, to this process. We show that chronic or acute inactivation of Rb plus p107 or p130 increased myoblast cell death and reduced myotube formation relative to Rb loss alone. Treatment with autophagy antagonists or hypoxia extended survival of double-knockout myotubes, which appeared indistinguishable from control fibers. In contrast, triple mutations in Rb, p107 and p130, led to substantial increase in myoblast death and to elongated bi-nuclear myocytes, which seem to derive from nuclear duplication, as opposed to cell fusion. Under hypoxia, some rare, abnormally thin triple knockout myotubes survived and twitched. Thus, mutation of p107 or p130 reduces survival of Rb-deficient myoblasts during differentiation but does not preclude myoblast fusion or necessitate myotube degeneration, whereas combined inactivation of the entire Rb family produces a distinct phenotype, with drastically impaired myoblast fusion and survival.
Collapse
Affiliation(s)
- Giovanni Ciavarra
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T. Ho
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - David Cobrinik
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Cell and Molecular Biology, Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
15
|
Ciemerych MA, Archacka K, Grabowska I, Przewoźniak M. Cell cycle regulation during proliferation and differentiation of mammalian muscle precursor cells. Results Probl Cell Differ 2011; 53:473-527. [PMID: 21630157 DOI: 10.1007/978-3-642-19065-0_20] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Proliferation and differentiation of muscle precursor cells are intensively studied not only in the developing mouse embryo but also using models of skeletal muscle regeneration or analyzing in vitro cultured cells. These analyses allowed to show the universality of the cell cycle regulation and also uncovered tissue-specific interplay between major cell cycle regulators and factors crucial for the myogenic differentiation. Examination of the events accompanying proliferation and differentiation leading to the formation of functional skeletal muscle fibers allows understanding the molecular basis not only of myogenesis but also of skeletal muscle regeneration. This chapter presents the basis of the cell cycle regulation in proliferating and differentiating muscle precursor cells during development and after muscle injury. It focuses at major cell cycle regulators, myogenic factors, and extracellular environment impacting on the skeletal muscle.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Cytology, Institute of Zoology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland.
| | | | | | | |
Collapse
|
16
|
Abstract
The fate of stem cell is regulated by cues received from the surrounding area. Recently, the concept of "stem cell zone"--rather than a predefined niche--introduced the notion of dynamic and permanent interactions between stem cells and their microenvironment. In adult skeletal muscle, satellite cells are considered as the main stem cells responsible for muscle repair and maintenance. They are localized close to vessels regardless their state of activation and differentiation. Moreover, the number of satellite cells is positively correlated to the capillarization of the myofiber. Angiogenesis has been known for a long time to be essential for muscle repair. However, relationships between vessel cells and satellite/myogenic cells that govern myogenic cell expansion, myogenesis, and angiogenesis have been only recently investigated. In this chapter, we discuss the possible existence of a vascular amplifying/differentiating niche, in an attempt to reconciliate several recent observations showing that satellite/myogenic cells interact with various cell types during the time course of muscle regeneration. Indeed, endothelial cells (ECs) stimulate myogenic cell growth and, inversely, differentiating myogenic cells promote angiogenesis. However, stromal cells may also provide some proliferating or differentiating cues to satellite/myogenic cells in this vascular area. Although some molecular effectors have been identified, including growth factors and cytokines, molecular regulations that occur within this vascular amplifying/differentiating niche requires further investigation. At the end of muscle repair, maturation of newly formed vessels takes place. In this context, we discuss the potential quiescence niche of satellite cells and the specific role of periendothelial cells. Indeed, periendothelial cells promote the return to quiescence of a subset of satellite/myogenic cells and maintain their quiescence (through Angiopoietin-1/Tie-2 signaling). We ask to what extent the environment may control the fate choice of satellite/myogenic cells and we also question the "hypoxic niche" in skeletal muscle, such a quiescence niche having being observed in the bone marrow.
Collapse
|
17
|
Liu Y, Chu A, Chakroun I, Islam U, Blais A. Cooperation between myogenic regulatory factors and SIX family transcription factors is important for myoblast differentiation. Nucleic Acids Res 2010; 38:6857-71. [PMID: 20601407 PMCID: PMC2978361 DOI: 10.1093/nar/gkq585] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Precise regulation of gene expression is crucial to myogenesis and is thought to require the cooperation of various transcription factors. On the basis of a bioinformatic analysis of gene regulatory sequences, we hypothesized that myogenic regulatory factors (MRFs), key regulators of skeletal myogenesis, cooperate with members of the SIX family of transcription factors, known to play important roles during embryonic skeletal myogenesis. To this day little is known regarding the exact molecular mechanism by which SIX factors regulate muscle development. We have conducted a functional genomic study of the role played by SIX1 and SIX4 during the differentiation of skeletal myoblasts, a model of adult muscle regeneration. We report that SIX factors cooperate with the members of the MRF family to activate gene expression during myogenic differentiation, and that their function is essential to this process. Our findings also support a model where SIX factors function not only ‘upstream’ of the MRFs during embryogenesis, but also ‘in parallel’ to them during myoblast differentiation. We have identified new essential nodes that depend on SIX factor function, in the myogenesis regulatory network, and have uncovered a novel way by which MRF function is modulated during differentiation.
Collapse
Affiliation(s)
- Yubing Liu
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Faculty of Medicine, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
18
|
Dual loss of rb1 and Trp53 in the adrenal medulla leads to spontaneous pheochromocytoma. Neoplasia 2010; 12:235-43. [PMID: 20234817 DOI: 10.1593/neo.91646] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/23/2009] [Accepted: 12/29/2009] [Indexed: 12/12/2022] Open
Abstract
Using a Cre/loxP system, we have determined the phenotypic consequences attributable to in vivo deletion of both Rb1 and Trp53 in the mouse adrenal medulla. The coablation of these two tumor suppressor genes during embryogenesis did not disrupt adrenal gland development but resulted in the neoplastic transformation of the neural crest-derived adrenal medulla, yielding pheochromocytomas (PCCs) that developed with complete penetrance and were inevitably bilateral. Despite their typically benign status, these PCCs had profound ramifications on mouse vitality, with effected mice having a median survival of only 121 days. Evaluation of these PCCs by both immunohistochemistry and electron microscopy revealed that most Rb1(-/-):Trp53(-/-) chromaffin cells possessed atypical chromagenic vesicles that did not seem capable of appropriately storing synthesized catecholamines. The structural remodeling of the heart in mice harboring Rb1(-/-):Trp53(-/-) PCCs suggests that the mortality of these mice may be attributable to the inappropriate release of catecholamines from the mutated adrenal chromaffin cells. On the basis of the collective data from Rb1 and Trp53 knockout mouse models, it seems that the conversion of Rb1 loss-driven adrenal medulla hyperplasia to PCC can be greatly enhanced by the compound loss of Trp53, whereas the loss of Trp53 alone is generally ineffectual on adrenal chromaffin cell homeostasis. Consequently, the Trp53 tumor suppressor gene is an efficient genetic modifier of Rb1 loss in the development of PCC, and their compound loss in the adrenal medulla has a profound impact on both cellular homeostasis and animal vitality.
Collapse
|
19
|
Chowdhury SR, Muneyuki Y, Takezawa Y, Kino-oka M, Saito A, Sawa Y, Taya M. Growth and differentiation potentials in confluent state of culture of human skeletal muscle myoblasts. J Biosci Bioeng 2010; 109:310-3. [PMID: 20159584 DOI: 10.1016/j.jbiosc.2009.09.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/03/2009] [Accepted: 09/08/2009] [Indexed: 12/11/2022]
Abstract
The transitional behaviors of myoblasts toward differentiation were investigated in the cultures at the low and high seeding densities (respectively, X(0)=1.0x10(3) and 2.0x10(5) cells/cm(2)). In the culture at the low seeding density, an increase in confluence degree accompanied a decrease in growth potential (R(p)), being R(p)=0.85 and 0.11 at t=48 and 672 h, respectively. Myoblasts seeded at the high density resulted in the immediate cessation of growth with keeping the low range of R(p)=0.02-0.09 throughout the culture. The reduction of R(p) led to the generation of three subpopulations of cells in proliferative, quiescent and differentiated states. Close cell contacts in the confluent state of high seeding culture induced cell quiescence to a higher extent with suppressing differentiation.
Collapse
Affiliation(s)
- Shiplu Roy Chowdhury
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Abou-Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B. Autocrine and paracrine angiopoietin 1/Tie-2 signaling promotes muscle satellite cell self-renewal. Cell Stem Cell 2009; 5:298-309. [PMID: 19733541 DOI: 10.1016/j.stem.2009.06.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 05/05/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022]
Abstract
Mechanisms governing muscle satellite cell withdrawal from cell cycle to enter into quiescence remain poorly understood. We studied the role of angiopoietin 1 (Ang1) and its receptor Tie-2 in the regulation of myogenic precursor cell (mpc) fate. In human and mouse, Tie-2 was preferentially expressed by quiescent satellite cells in vivo and reserve cells (RCs) in vitro. Ang1/Tie-2 signaling, through ERK1/2 pathway, decreased mpc proliferation and differentiation, increased the number of cells in G0, increased expression of RC-associated markers (p130, Pax7, Myf-5, M-cadherin), and downregulated expression of differentiation-associated markers. Silencing Tie-2 had opposite effects. Cells located in the satellite cell neighborhood (smooth muscle cells, fibroblasts) upregulated RC-associated markers by secreting Ang1 in vitro. In vivo, Tie-2 blockade and Ang1 overexpression increased the number of cycling and quiescent satellite cells, respectively. We propose that Ang1/Tie-2 signaling regulates mpc self-renewal by controlling the return to quiescence of a subset of satellite cells.
Collapse
|
21
|
Kim HJ, Archer E, Escobedo N, Tapscott SJ, Unguez GA. Inhibition of mammalian muscle differentiation by regeneration blastema extract of Sternopygus macrurus. Dev Dyn 2008; 237:2830-43. [PMID: 18816861 DOI: 10.1002/dvdy.21702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tissue regeneration through stem cell activation and/or cell dedifferentiation is widely distributed across the animal kingdom. By comparison, regeneration in mammals is poor and this may reflect a limited dedifferentiation potential of mature cells. Because mammalian myotubes can dedifferentiate in the presence of newt blastema extract, the present study tested the dedifferentiation induction capability of the blastema from the teleost Sternopygus macrurus (SmBE). Our in vitro data showed that SmBE did not induce cell cycle reentry of myonuclei in myotubes. Instead, SmBE caused myotubes to detach and time-lapse imaging analyses characterized the cellular events before their detachment. Furthermore, SmBE enhanced myoblast proliferation and reversibly inhibited their differentiation. These data suggest the presence of protein factors in SmBE that regulate mammalian muscle physiology and differentiation, but do not support the conservation of a dedifferentiation induction capability by the blastema of S. macrurus.
Collapse
Affiliation(s)
- Hyun-Jung Kim
- Biology Department, New Mexico State University, Las Cruces, New Mexico, USA
| | | | | | | | | |
Collapse
|
22
|
Nishimura T, Nozu K, Kishioka Y, Wakamatsu JI, Hattori A. Decorin expression in quiescent myogenic cells. Biochem Biophys Res Commun 2008; 370:383-7. [DOI: 10.1016/j.bbrc.2008.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/04/2008] [Indexed: 11/25/2022]
|
23
|
Rapizzi E, Donati C, Cencetti F, Nincheri P, Bruni P. Sphingosine 1-phosphate differentially regulates proliferation of C2C12 reserve cells and myoblasts. Mol Cell Biochem 2008; 314:193-9. [PMID: 18454302 DOI: 10.1007/s11010-008-9780-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
The effect of sphingosine 1-phosphate (S1P) on the proliferative response to low serum was examined in two closely related cell populations, such as C2C12 reserve cells and myoblasts. S1P reduced DNA synthesis promoted by serum in myoblasts, whereas it enhanced the mitogenic response to serum in reserve cells. By employing selective S1P receptor agonist and antagonists, the co-mitogenic action of S1P in reserve cells was shown to depend mainly on S1P(1). Real time PCR analysis revealed distinct S1P receptor pattern expression, which however could not account for the differential action of S1P in C2C12 reserve cells and myoblasts, thereby suggesting that the cell-specific responsiveness to S1P may depend on a different functional coupling of S1P(1). This study discloses a unique pleiotropic effect of S1P which stimulates proliferation of muscle resident stem cells, such as reserve cells, and favours the growth arrest of committed progenitors cells, such as myoblasts, required for their subsequent myogenic differentiation.
Collapse
Affiliation(s)
- Elena Rapizzi
- Department of Biochemical Sciences, University of Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
24
|
Reed SA, Ouellette SE, Liu X, Allen RE, Johnson SE. E2F5 and LEK1 translocation to the nucleus is an early event demarcating myoblast quiescence. J Cell Biochem 2008; 101:1394-408. [PMID: 17295207 DOI: 10.1002/jcb.21256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Raf/MEK/ERK signaling in skeletal muscle cells affects several aspects of myogenesis that are correlated with the duration and intensity of the input signal. 23A2RafER(DD) myoblasts directing elevated levels of Raf kinase for 24 h are mitotically inactive. Removal of the stimulus results in cell cycle re-entry and proliferation. Using a proteomic approach, E2F5 and LEK1 were detected in the nuclei of Raf-arrested myoblasts. Disruption of MEK1 activity prevents phosphorylation of ERK1/2 and nuclear translocation of E2F5 and LEK1. The pocket proteins, p107 and p130, remain in the cytoplasm of growth arrested myoblasts irrespective of Raf/ERK activation while pRb translocates to the nucleus. Importantly, both E2F5 and LEK1 are found in the nuclei of non-dividing satellite cells and myonuclei in vivo and in vitro. Our results indicate that Raf-arrested myoblasts may serve as a model system for satellite cell cycle studies and that E2F5 and LEK1 translocation to the nucleus is an important first step during entry into quiescence.
Collapse
Affiliation(s)
- Sarah A Reed
- Department of Animal Sciences, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | |
Collapse
|
25
|
Vandromme M, Chailleux C, Escaffit F, Trouche D. Binding of the Retinoblastoma Protein Is Not the Determinant for Stable Repression of Some E2F-Regulated Promoters in Muscle Cells. Mol Cancer Res 2008; 6:418-25. [DOI: 10.1158/1541-7786.mcr-07-0381] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Fukada SI, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 2007; 25:2448-59. [PMID: 17600112 DOI: 10.1634/stemcells.2007-0019] [Citation(s) in RCA: 342] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skeletal muscle satellite cells play key roles in postnatal muscle growth and regeneration. To study molecular regulation of satellite cells, we directly prepared satellite cells from 8- to 12-week-old C57BL/6 mice and performed genome-wide gene expression analysis. Compared with activated/cycling satellite cells, 507 genes were highly upregulated in quiescent satellite cells. These included negative regulators of cell cycle and myogenic inhibitors. Gene set enrichment analysis revealed that quiescent satellite cells preferentially express the genes involved in cell-cell adhesion, regulation of cell growth, formation of extracellular matrix, copper and iron homeostasis, and lipid transportation. Furthermore, reverse transcription-polymerase chain reaction on differentially expressed genes confirmed that calcitonin receptor (CTR) was exclusively expressed in dormant satellite cells but not in activated satellite cells. In addition, CTR mRNA is hardly detected in nonmyogenic cells. Therefore, we next examined the expression of CTR in vivo. CTR was specifically expressed on quiescent satellite cells, but the expression was not found on activated/proliferating satellite cells during muscle regeneration. CTR-positive cells reappeared at the rim of regenerating myofibers in later stages of muscle regeneration. Calcitonin stimulation delayed the activation of quiescent satellite cells. Our data provide roles of CTR in quiescent satellite cells and a solid scaffold to further dissect molecular regulation of satellite cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- So-ichiro Fukada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Melanoma is the most lethal of human skin cancers and its incidence is increasing worldwide [L.K. Dennis (1999). Arch. Dermatol. 135, 275; C. Garbe et al. (2000). Cancer 89, 1269]. Melanomas often metastasize early during the course of the disease and are then highly intractable to current therapeutic regimens [M.F. Demierre and G. Merlino (2004). Curr. Oncol. Rep. 6, 406]. Consequently, understanding the factors that maintain melanocyte homeostasis and prevent their neoplastic transformation into melanoma is of utmost interest from the perspective of therapeutic interdiction. This review will focus on the role of the pocket proteins (PPs), Rb1 (retinoblastoma protein), retinoblastoma-like 1 (Rbl1 also known as p107) and retinoblastoma-like 2 (Rbl2 also known as p130), in melanocyte homeostasis, with particular emphasis on their functions in the cell cycle and the DNA damage repair response. The potential mechanisms of PP deregulation in melanoma and the possibility of PP-independent pathways to melanoma development will also be considered. Finally, the role of the PP family in ultraviolet radiation (UVR)-induced melanoma and the precise contribution that each PP family member makes to melanocyte homeostasis will be discussed in the context of a number of genetically engineered mouse models.
Collapse
Affiliation(s)
- Ian D Tonks
- Queensland Institute of Medical Research, Herston, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
28
|
Bakay M, Wang Z, Melcon G, Schiltz L, Xuan J, Zhao P, Sartorelli V, Seo J, Pegoraro E, Angelini C, Shneiderman B, Escolar D, Chen YW, Winokur ST, Pachman LM, Fan C, Mandler R, Nevo Y, Gordon E, Zhu Y, Dong Y, Wang Y, Hoffman EP. Nuclear envelope dystrophies show a transcriptional fingerprint suggesting disruption of Rb–MyoD pathways in muscle regeneration. Brain 2006; 129:996-1013. [PMID: 16478798 DOI: 10.1093/brain/awl023] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mutations of lamin A/C (LMNA) cause a wide range of human disorders, including progeria, lipodystrophy, neuropathies and autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD). EDMD is also caused by X-linked recessive loss-of-function mutations of emerin, another component of the inner nuclear lamina that directly interacts with LMNA. One model for disease pathogenesis of LMNA and emerin mutations is cell-specific perturbations of the mRNA transcriptome in terminally differentiated cells. To test this model, we studied 125 human muscle biopsies from 13 diagnostic groups (125 U133A, 125 U133B microarrays), including EDMD patients with LMNA and emerin mutations. A Visual and Statistical Data Analyzer (VISDA) algorithm was used to statistically model cluster hierarchy, resulting in a tree of phenotypic classifications. Validations of the diagnostic tree included permutations of U133A and U133B arrays, and use of two probe set algorithms (MAS5.0 and MBEI). This showed that the two nuclear envelope defects (EDMD LMNA, EDMD emerin) were highly related disorders and were also related to fascioscapulohumeral muscular dystrophy (FSHD). FSHD has recently been hypothesized to involve abnormal interactions of chromatin with the nuclear envelope. To identify disease-specific transcripts for EDMD, we applied a leave-one-out (LOO) cross-validation approach using LMNA patient muscle as a test data set, with reverse transcription-polymerase chain reaction (RT-PCR) validations in both LMNA and emerin patient muscle. A high proportion of top-ranked and validated transcripts were components of the same transcriptional regulatory pathway involving Rb1 and MyoD during muscle regeneration (CRI-1, CREBBP, Nap1L1, ECREBBP/p300), where each was specifically upregulated in EDMD. Using a muscle regeneration time series (27 time points) we develop a transcriptional model for downstream consequences of LMNA and emerin mutations. We propose that key interactions between the nuclear envelope and Rb and MyoD fail in EDMD at the point of myoblast exit from the cell cycle, leading to poorly coordinated phosphorylation and acetylation steps. Our data is consistent with mutations of nuclear lamina components leading to destabilization of the transcriptome in differentiated cells.
Collapse
Affiliation(s)
- Marina Bakay
- Research Center for Genetic Medicine, Children's National Medical Center, Washington DC 20010, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 2006; 281:8242-53. [PMID: 16407300 DOI: 10.1074/jbc.m509436200] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We reported that RAGE (receptor for advanced glycation end products), a multiligand receptor of the immunoglobulin superfamily expressed in myoblasts, when activated by its ligand amphoterin (HMGB1), stimulates rat L6 myoblast differentiation via a Cdc42-Rac-MKK6-p38 mitogen-activated protein kinase pathway, and that RAGE expression in skeletal muscle tissue is developmentally regulated. We show here that inhibition of RAGE function via overexpression of a signaling deficient RAGE mutant (RAGE delta cyto) results in increased myoblast proliferation, migration, and invasiveness, and decreased apoptosis and adhesiveness, whereas myoblasts overexpressing RAGE behave the opposite, compared with mock-transfected myoblasts. These effects are accompanied by a decreased induction of the proliferation inhibitor, p21(Waf1), and increased induction of cyclin D1 and extent of Rb, ERK1/2, and JNK phosphorylation in L6/RAGE delta cyto myoblasts, the opposite occurring in L6/RAGE myoblasts. Neutralization of culture medium amphoterin negates effects of RAGE activation, suggesting that amphoterin is the RAGE ligand involved in RAGE-dependent effects in myoblasts. Finally, mice injected with L6/RAGE delta cyto myoblasts develop tumors as opposed to mice injected with L6/RAGE or L6/mock myoblasts that do not. Thus, the amphoterin/RAGE pair stimulates myoblast differentiation by the combined effect of stimulation of differentiation and inhibition of proliferation, and deregulation of RAGE expression in myoblasts might contribute to their neoplastic transformation.
Collapse
Affiliation(s)
- Francesca Riuzzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Casella Postale 81 Succursale 3, 06122 Perugia, Italy
| | | | | |
Collapse
|
30
|
Kitzmann M, Bonnieu A, Duret C, Vernus B, Barro M, Laoudj-Chenivesse D, Verdi JM, Carnac G. Inhibition of Notch signaling induces myotube hypertrophy by recruiting a subpopulation of reserve cells. J Cell Physiol 2006; 208:538-48. [PMID: 16741964 DOI: 10.1002/jcp.20688] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During muscle differentiation, a population of quiescent undifferentiated myoblasts (reserve cells) emerges among mature muscle cells. However, the molecular mechanisms underlying such cell segregation and the characterization of this subpopulation of myoblasts remain to be determined. Notch is known to control the behavior and fate of murine muscle stem cells. In this study, we examined the role of Notch in myoblast segregation. We showed that inhibition of Notch activity by either overexpressing Numb or by using a pharmacological gamma-secretase inhibitor (DAPT) enhanced differentiation of murine and human myoblasts. This effect was not restricted to in vitro culture systems since DAPT-treated zebrafish embryos also showed increased differentiation. Using C2.7 myoblasts as a model, we showed that inhibition of Notch induced myotube hypertrophy by recruiting reserve cells that do not normally fuse. We further showed that endogenous Notch-signaling components were differentially expressed and activated in reserve cells with respect to Notch 1 and CD34 expression. We identified CD34 negative reserve cells as the subpopulation of myoblasts recruited to fuse into myotubes during differentiation in response to Notch inhibition. Therefore, we showed here that the activation of Notch 1 is important to maintain a subpopulation of CD34 negative reserve cells in an undifferentiated state.
Collapse
Affiliation(s)
- Magali Kitzmann
- Adult stem cells and facioscapulohumeral dystrophy," CNRS FRE2593, 1919 route de Mende, 34293 Montpellier 5, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Dhawan J, Rando TA. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 2005; 15:666-73. [PMID: 16243526 DOI: 10.1016/j.tcb.2005.10.007] [Citation(s) in RCA: 327] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Revised: 08/12/2005] [Accepted: 10/07/2005] [Indexed: 12/13/2022]
Abstract
Satellite cells are the primary stem cells in adult skeletal muscle, and are responsible for postnatal muscle growth, hypertrophy and regeneration. In mature muscle, most satellite cells are in a quiescent state, but they activate and begin proliferating in response to extrinsic signals. Following activation, a subset of satellite cell progeny returns to the quiescent state during the process of self-renewal. Here, we review recent studies of satellite cell biology and focus on the key transitions from the quiescent state to the state of proliferative activation and myogenic lineage progression and back to the quiescent state. The molecular mechanisms of these transitions are considered in the context of the biology of the satellite cell niche, changes with age, and interactions with established pathways of myogenic commitment and differentiation.
Collapse
Affiliation(s)
- Jyotsna Dhawan
- Center for Cellular and Molecular Biology, Uppal Road, Hyderabad-500007, India
| | | |
Collapse
|
32
|
Zhao Z, Gruszczynska-Biegala J, Zolkiewska A. ADP-ribosylation of integrin alpha7 modulates the binding of integrin alpha7beta1 to laminin. Biochem J 2005; 385:309-17. [PMID: 15361073 PMCID: PMC1134699 DOI: 10.1042/bj20040590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extracellular domain of integrin alpha7 is ADP-ribosylated by an arginine-specific ecto-ADP-ribosyltransferase after adding exogenous NAD+ to intact C2C12 skeletal muscle cells. The effect of ADP-ribosylation on the structure or function of integrin alpha7beta1 has not been explored. In the present study, we show that ADP-ribosylation of integrin alpha7 takes place exclusively in differentiated myotubes and that this post-translational modification modulates the affinity of alpha7beta1 dimer for its ligand, laminin. ADP-ribosylation in the 37-kDa 'stalk' region of alpha7 that takes place at micromolar NAD+ concentrations increases the binding of the alpha7beta1 dimer to laminin. Increased in vitro binding of integrin alpha7beta1 to laminin after ADP-ribosylation of the 37-kDa fragment of alpha7 requires the presence of Mn2+ and it is not observed in the presence of Mg2+. In contrast, ADP-ribosylation of the 63-kDa N-terminal region comprising the ligand-binding site of alpha7 that occurs at approx. 100 microM NAD+ inhibits the binding of integrin alpha7beta1 to laminin. Furthermore, incubation of C2C12 myotubes with NAD+ increases the expression of an epitope on integrin beta1 subunit recognized by monoclonal antibody 9EG7. We discuss our results based on the current models of integrin activation. We also hypothesize that ADP-ribosylation may represent a mechanism of regulation of integrin alpha7beta1 function in myofibres in vivo when the continuity of the membrane is compromised and NAD+ is available as a substrate for ecto-ADP-ribosylation.
Collapse
Affiliation(s)
- Zhefeng Zhao
- Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan, KS 66506, U.S.A
| | | | - Anna Zolkiewska
- Department of Biochemistry, Kansas State University, 104 Willard Hall, Manhattan, KS 66506, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Yi H, Gruszczynska-Biegala J, Wood D, Zhao Z, Zolkiewska A. Cooperation of the metalloprotease, disintegrin, and cysteine-rich domains of ADAM12 during inhibition of myogenic differentiation. J Biol Chem 2005; 280:23475-83. [PMID: 15849365 PMCID: PMC2674645 DOI: 10.1074/jbc.m413550200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The extracellular domain of the mature form of ADAM12 consists of the metalloprotease, disintegrin, cysteine-rich, and epidermal growth factor (EGF)-like domains. The disintegrin, cysteine-rich, and EGF-like fragments have been shown previously to support cell adhesion via activated integrins or proteoglycans. In this study, we report that the entire extracellular domain of mouse ADAM12 produced in Drosophila S2 cells supported efficient adhesion and spreading of C2C12 myoblasts even in the absence of exogenous integrin activators. This adhesion was not mediated by beta1 integrins or proteoglycans, was myoblast-specific, and required the presence of both the metalloprotease and disintegrin/cysteine-rich domains of ADAM12. Analysis of the recombinant proteins by far-UV circular dichroism suggested that the secondary structures of the autonomously expressed metalloprotease domain and the disintegrin/cysteine-rich/EGF-like domains differ from the structures present in the intact extracellular domain. Furthermore, the intact extracellular domain (but not the metalloprotease domain or the disintegrin/cysteine-rich/EGF-like fragment alone) decreased the expression of the cell cycle inhibitor p21 and myogenin, two markers of differentiation, and inhibited C2C12 myoblast fusion. Thus, the novel protein-protein interaction reported here involving the extracellular domain of ADAM12 may have important biological consequences during myoblast differentiation.
Collapse
Affiliation(s)
- Haiqing Yi
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | |
Collapse
|
34
|
Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD. An initial blueprint for myogenic differentiation. Genes Dev 2005; 19:553-69. [PMID: 15706034 PMCID: PMC551576 DOI: 10.1101/gad.1281105] [Citation(s) in RCA: 353] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have combined genome-wide transcription factor binding and expression profiling to assemble a regulatory network controlling the myogenic differentiation program in mammalian cells. We identified a cadre of overlapping and distinct targets of the key myogenic regulatory factors (MRFs)--MyoD and myogenin--and Myocyte Enhancer Factor 2 (MEF2). We discovered that MRFs and MEF2 regulate a remarkably extensive array of transcription factor genes that propagate and amplify the signals initiated by MRFs. We found that MRFs play an unexpectedly wide-ranging role in directing the assembly and usage of the neuromuscular junction. Interestingly, these factors also prepare myoblasts to respond to diverse types of stress. Computational analyses identified novel combinations of factors that, depending on the differentiation state, might collaborate with MRFs. Our studies suggest unanticipated biological insights into muscle development and highlight new directions for further studies of genes involved in muscle repair and responses to stress and damage.
Collapse
Affiliation(s)
- Alexandre Blais
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The FoxO transcription factors (FoxO1a, 3a and 4) comprise a small subfamily of the Forkhead transcription factor family. An increasing number of studies has provided genetic evidence showing that Forkhead transcription factors control crucial steps in embryogenesis and are essential for the development of all germ layers and organs (for a recent review, see Ref. ). A recent study by Castrillon et al. has now added a function for FoxO3a in the control of follicular development.
Collapse
Affiliation(s)
- Arjan B Brenkman
- Laboratory of Physiological Chemistry, University Medical Center Utrecht, Stratenum, Universiteitsweg 100, 3584CG Utrecht, The Netherlands
| | | |
Collapse
|
36
|
Cao Y, Zhao Z, Gruszczynska-Biegala J, Zolkiewska A. Role of metalloprotease disintegrin ADAM12 in determination of quiescent reserve cells during myogenic differentiation in vitro. Mol Cell Biol 2003; 23:6725-38. [PMID: 12972593 PMCID: PMC193919 DOI: 10.1128/mcb.23.19.6725-6738.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Skeletal myoblasts grown in vitro and induced to differentiate either form differentiated multinucleated myotubes or give rise to quiescent, undifferentiated "reserve cells" that share several characteristics with muscle satellite cells. The mechanism of determination of reserve cells is poorly understood. We find that the expression level of the metalloprotease disintegrin ADAM12 is much higher in proliferating C2C12 myoblasts and in reserve cells than in myotubes. Inhibition of ADAM12 expression in differentiating C2C12 cultures by small interfering RNA is accompanied by lower expression levels of both quiescence markers (retinoblastoma-related protein p130 and cell cycle inhibitor p27) and differentiation markers (myogenin and integrin alpha7A isoform). Overexpression of ADAM12 in C2C12 cells under conditions that promote cell cycle progression leads to upregulation of p130 and p27, cell cycle arrest, and downregulation of MyoD. Thus, enhanced expression of ADAM12 induces a quiescence-like phenotype and does not stimulate differentiation. We also show that the region extending from the disintegrin to the transmembrane domain of ADAM12 and containing cell adhesion activity as well as the cytoplasmic domain of ADAM12 are required for ADAM12-mediated cell cycle arrest, while the metalloprotease domain is not essential. Our results suggest that ADAM12-mediated adhesion and/or signaling may play a role in determination of the pool of reserve cells during myoblast differentiation.
Collapse
Affiliation(s)
- Yi Cao
- Department of Biochemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | |
Collapse
|
37
|
Sindermann JR, Köbbert C, Bauer F, Skaletz-Rorowski A, Hohage H, Plenz G, Breithardt G, March KL. Vascular ligation response is independent of p107: stressing the role of the related p130. Am J Physiol Heart Circ Physiol 2003; 285:H915-8. [PMID: 12860570 DOI: 10.1152/ajpheart.00056.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have revealed the role of the pRb family members pRb and p130 in the response to vascular injury. We evaluated the arterial injury response in the absence of p107, a protein that shares a high degree of homology with the injury-controlling p130. Carotid artery ligation and perivascular electric injury of the femoral artery were applied to p107 knockout (p107 -/-) mice, and morphometric analysis was performed 3 wk after ligation and electric injury. Arterial vessels of p107 -/- mice were indistinguishable from controls under basal conditions. After carotid artery ligation the p107 -/- mice (n = 7) did not display an enhanced ligation response compared with controls (n = 9), which was studied over a distance of approximately 450 microm proximal and approximately 200 microm distal from the ligation site, with regard to vessel wall area, neointima area, and lumen area. Corresponding with this, morphometric data obtained from the perivascular electric injury of the femoral artery confirmed the lack of enhanced ligation and injury response in the absence of p107. We conclude that the pRb family member p107 is not a key regulator in vascular injury response. These data, in conjunction with previously reported results, indicate that the control of vascular injury response is not a redundant feature of pRb proteins but primarily specific for p130. Further studies on functional domains of p130 and p107 will help to resolve the pathways in vascular injury response.
Collapse
Affiliation(s)
- Jürgen R Sindermann
- Krannert Institute of Cardiology and Indiana Center for Vascular Biology and Medicine, Indiana University Medical Center, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 2002; 277:49831-40. [PMID: 12244043 DOI: 10.1074/jbc.m204291200] [Citation(s) in RCA: 624] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myostatin, a negative regulator of myogenesis, is shown to function by controlling the proliferation of myoblasts. In this study we show that myostatin is an inhibitor of myoblast differentiation and that this inhibition is mediated through Smad 3. In vitro, increasing concentrations of recombinant mature myostatin reversibly blocked the myogenic differentiation of myoblasts, cultured in low serum media. Western and Northern blot analysis indicated that addition of myostatin to the low serum culture media repressed the levels of MyoD, Myf5, myogenin, and p21 leading to the inhibition of myogenic differentiation. The transient transfection of C(2)C(12) myoblasts with MyoD expressing constructs did not rescue myostatin-inhibited myogenic differentiation. Myostatin signaling specifically induced Smad 3 phosphorylation and increased Smad 3.MyoD association, suggesting that Smad 3 may mediate the myostatin signal by interfering with MyoD activity and expression. Consistent with this, the expression of dominant-negative Smad3 rescued the activity of a MyoD promoter-reporter in C(2)C(12) myoblasts treated with myostatin. Taken together, these results suggest that myostatin inhibits MyoD activity and expression via Smad 3 resulting in the failure of the myoblasts to differentiate into myotubes. Thus we propose that myostatin plays a critical role in myogenic differentiation and that the muscular hyperplasia and hypertrophy seen in animals that lack functional myostatin is because of deregulated proliferation and differentiation of myoblasts.
Collapse
Affiliation(s)
- Brett Langley
- Animal Genomics, AgResearch, Private Bag 3123, East Street, Hamilton, New Zealand
| | | | | | | | | | | |
Collapse
|
39
|
Tonini T, Hillson C, Claudio PP. Interview with the retinoblastoma family members: do they help each other? J Cell Physiol 2002; 192:138-50. [PMID: 12115720 DOI: 10.1002/jcp.10117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ultimate destiny of a cell to undergo division, differentiation, survival, and death results from an intricate balance between multiple regulators including oncogenes, tumor suppressor genes, and cell cycle associated proteins. Deregulation of the cell cycle machinery switches the phenotype from a normal cell to a cancerous cell. Fundamental alterations of tumor suppressor genes may result in an unregulated cell cycle with the accumulation of mutations and eventual neoplastic transformation. As such, one may define cancer as a genetic disease of the cell cycle. In this review, we will emphasize our current understanding of how the cell cycle machinery maintains cellular homeostasis by studying the consequences of its deregulation.
Collapse
Affiliation(s)
- Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
40
|
Leshem Y, Halevy O. Phosphorylation of pRb is required for HGF-induced muscle cell proliferation and is p27kip1-dependent. J Cell Physiol 2002; 191:173-82. [PMID: 12064460 DOI: 10.1002/jcp.10089] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hepatocyte growth factor (HGF) plays a crucial role in the differentiation of skeletal muscle cells, where a process in which the retinoblastoma protein (pRb) has been implicated. We addressed the role of pRb in HGF-mediated effects on the proliferation and differentiation of adult skeletal muscle myoblasts. HGF shifted pRb to its hyperphosphorylation forms and increased the transactivation of E2F1, a transcription factor required for S phase entry. A constitutively active pRb mutant blocked HGF-dependent pRb phosphorylation and transactivation of E2F1 and increased cell proliferation. Accordingly, this mutant reversed the inhibitory effects of HGF on the expression of the cyclin-dependent kinase (CDK) inhibitor p27 and myogenic differentiation markers. HGF-mediated pRb phosphorylation was reversed by ectopic expression of p27, but neither the myogenic regulatory factor, MEF2, nor the myogenic inhibitory protein Twist had that effect. These results suggest that in response to HGF signaling, there is a decrease in p27 expression that results in an accumulation of hyperphosphorylated Rb protein, and subsequent progression of myoblasts into the G1 phase of the cell cycle.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Avian Proteins
- Cell Cycle Proteins/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cells, Cultured
- Chickens
- Cyclin-Dependent Kinase Inhibitor p27
- DNA-Binding Proteins
- E2F Transcription Factors
- E2F1 Transcription Factor
- G1 Phase/drug effects
- G1 Phase/physiology
- Hepatocyte Growth Factor/genetics
- Hepatocyte Growth Factor/metabolism
- Hepatocyte Growth Factor/pharmacology
- MEF2 Transcription Factors
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/growth & development
- Muscle, Skeletal/metabolism
- Mutation/drug effects
- Mutation/physiology
- Myogenic Regulatory Factors/drug effects
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Phosphorylation/drug effects
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/genetics
- Retinoblastoma Protein/drug effects
- Retinoblastoma Protein/genetics
- Retinoblastoma Protein/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tumor Suppressor Proteins/metabolism
- Twist-Related Protein 1
Collapse
Affiliation(s)
- Yael Leshem
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
41
|
Kops GJPL, Medema RH, Glassford J, Essers MAG, Dijkers PF, Coffer PJ, Lam EWF, Burgering BMT. Control of cell cycle exit and entry by protein kinase B-regulated forkhead transcription factors. Mol Cell Biol 2002; 22:2025-36. [PMID: 11884591 PMCID: PMC133681 DOI: 10.1128/mcb.22.7.2025-2036.2002] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AFX-like Forkhead transcription factors, which are controlled by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, are involved in regulating cell cycle progression and cell death. Both cell cycle arrest and induction of apoptosis are mediated in part by transcriptional regulation of p27(kip1). Here we show that the Forkheads AFX (FOXO4) and FKHR-L1 (FOXO3a) also directly control transcription of the retinoblastoma-like p130 protein and cause upregulation of p130 protein expression. Detailed analysis of p130 regulation demonstrates that following Forkhead-induced cell cycle arrest, cells enter G(0) and become quiescent. This is shown by a change in phosphorylation of p130 to G(0)-specific forms and increased p130/E2F-4 complex formation. Most importantly, long-term Forkhead activation causes a sustained but reversible inhibition of proliferation without a marked increase in apoptosis. As for the activity of the Forkheads, we also show that protein levels of p130 are controlled by endogenous PI3K/PKB signaling upon cell cycle reentry. Surprisingly, not only nontransformed cells, but also cancer cells such as human colon carcinoma cells, are forced into quiescence by Forkhead activation. We therefore propose that Forkhead inactivation by PKB signaling in quiescent cells is a crucial step in cell cycle reentry and contributes to the processes of transformation and regeneration.
Collapse
Affiliation(s)
- Geert J P L Kops
- Department of Physiological Chemistry, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The destiny of a cell--whether it undergoes division, differentiation or death--results from an intricate balance of many regulators, including oncoproteins, tumor-suppressor proteins and cell-cycle-associated proteins. One of the better-studied tumor suppressors is the retinoblastoma protein, known as pRb or p105. Two recently identified proteins, pRb2/p130 and p107, show structural and functional similarities to pRb, and these proteins and their orthologs make up the retinoblastoma (Rb) family. Members of the family have been found in animals and plants, and a related protein is known in the alga Chlamydomonas. Members of the Rb family are bound and inactivated by viral proteins and, in turn, bind cellular transcription factors and repress their function, and can also form complexes with cyclins and cyclin-dependent kinases and with histone deacetylases. They are found in the nucleus and their subnuclear localization depends on binding to the nuclear matrix. Members of the family form part of a signal-transduction pathway called the Rb pathway, which is important in cell-cycle regulation and have roles in growth suppression, differentiation and apoptosis in different organisms and cell types.
Collapse
Affiliation(s)
- Pier Paolo Claudio
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
- Dipartimento di Scienze Odontostomatologiche e Maxillo-Facciali, Universitá degli studi di Napoli "Federico II", 80130 Napoli, Italy
| | - Tiziana Tonini
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
- Istituto di Anatomia ed Istologia Patologica, Universita degli Studi di Siena, 53100 Siena, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technologies, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
43
|
Lindon C, Albagli O, Pinset C, Montarras D. Cell density-dependent induction of endogenous myogenin (myf4) gene expression by Myf5. Dev Biol 2001; 240:574-84. [PMID: 11784084 DOI: 10.1006/dbio.2001.0435] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription factors Myf5 and MyoD are critical for myoblast determination. Myogenin is a direct transcriptional target of these factors and its expression is associated with commitment to terminal differentiation. Here, we have used myogenic derivatives of human U20S cells expressing Myf5 or MyoD under control of a tetracycline-sensitive promoter to study expression of endogenous myogenin (myf4). We find that Myf5-mediated induction of myogenin shows striking dependence on cell density. At high cell density, Myf5 is a potent inducer of myogenin expression. At low cell density, Myf5 (unlike MyoD) is a poor inducer of myogenin expression, whilst retaining the capacity to direct expression of other muscle-specific genes. The permissive influence of high cell density on myogenin induction by Myf5 is not a consequence of serum depletion or cell cycle arrest, but is mimicked by a disruption adjacent to the basic region of Myf5 (Myf5/mt) which reduces its DNA binding affinity for E-boxes without compromising its ability to transactivate a reporter gene driven by the myogenin promoter. Coculture of cells expressing wild-type Myf5 and Myf5/mt leads to reduced myogenin induction in Myf5/mt cells. We propose that at low cell density Myf5 inhibits induction of myogenin.
Collapse
Affiliation(s)
- C Lindon
- Groupe de Développement Cellulaire, Institut Pasteur, 25 rue du Dr Roux, Paris Cedex 15, 75724, France.
| | | | | | | |
Collapse
|
44
|
Abstract
Embryonic stem cells of the mammalian blastocyst give rise to all the tissue lineages that begin to emerge at gastrulation. They are pluripotent cells and can be propagated in vitro without loss of pluripotency. Many adult tissues harbor cells that do not complete their differentiation program. These cells serve as self-renewing stem cells whose normal fate is to regenerate site-specific tissue, in response to either physiological cell turnover or damage inflicted by injury or disease. Neural, muscle, and bone marrow stem cells possess developmental potency far greater than their normal lineage-restricted fate. The understanding of the biology of stem cells is leading us into an era of regenerative medicine. The growth potential and pluripotency of embryonic stem cells and the developmental plasticity of adult stem cells, particularly those of bone marrow, make them potentially useful for replacing tissues, via transplantation or construction of bioartificial tissues, that either do not regenerate naturally or are damaged beyond their natural capability for regeneration. In addition to these two ways of replacing tissue, a third strategy of regenerative medicine is to stimulate regeneration in vivo from resident stem cells. Before these approaches become clinical reality, however, a number of basic research issues must be resolved, including the revision of our concept of a regeneration-competent cell.
Collapse
Affiliation(s)
- D L Stocum
- Department of Biology and Center for Regenerative Biology and Medicine, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA.
| |
Collapse
|
45
|
Abstract
p107 and p130 were originally identified as targets of the transforming domains of viral oncoproteins encoded by small DNA tumor viruses. Together with pRB, the protein product of the retinoblastoma gene (Rb), p107 and p130 represent a family of closely related proteins that play critical roles in the regulation of cell proliferation. p107, p130, and pRB are transcriptional regulators whose activities are coupled to the cell cycle. Each of these proteins associates with E2F and is directly regulated by phosphorylation by cyclin-dependent kinases. In vivo studies of p107 and p130 function have revealed that their roles overlap extensively with one another and with pRB. In addition, the analysis of mice (and cell lines derived from these animals) deficient in these proteins shows that the individual members of this family harbor distinct functions that, at present, are poorly understood. The characterization of tumor cells continues to emphasize the important and somewhat unique role of pRB in tumor suppression, and the evidence linking the specific inactivation of p107 or p130 to tumor development remains quite limited. In this review we summarize the biochemical and functional properties of p107 and p130, and we compare and contrast these properties to those of pRB.
Collapse
Affiliation(s)
- M Classon
- MGH Cancer Center, Building 149, 13th Street, Charlestown, Massachusetts 02129, USA
| | | |
Collapse
|