1
|
Hansen MK. Perceiving affordances and the problem of visually indiscernible kinds. Front Psychol 2024; 15:1388852. [PMID: 39295750 PMCID: PMC11409843 DOI: 10.3389/fpsyg.2024.1388852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/16/2024] [Indexed: 09/21/2024] Open
Abstract
In this study, I defend the claim that we can perceptually experience what objects afford when we engage with objects belonging to natural or artificial categorical high-level kinds. Experiencing affordances perceptually positions us to act in specific ways. The main aim of this study was to argue that this view has explanatory advantages over alternative views. An increasingly popular view within the philosophy of perception, most famously defended by Susanna Siegel, claims that we sometimes visually experience natural and artificial objects as belonging to categorical high-level kinds. When visually experiencing a lemon, one does not only experience its low-level properties such as shape and color, sometimes one also experiences the object as a lemon. A challenge arises when attempting to explain what happens when one experiences an object that is experientially indistinguishable from another object, yet these objects belong to different high-level categorical kinds. For instance, if someone perceptually experiences a lemon as a lemon, her experience can be considered as accurately representing or presenting a lemon. However, if the subject perceptually experiences a lemon-shaped soap bar, which cannot be discriminated from a real lemon by sight alone, the experience is deemed inaccurate because there is no real lemon present. The problem is that such a judgment seems counterintuitive; unlike with hallucinations and illusions, there seems to be nothing wrong with how the object appears. Therefore, it is difficult to understand how the mistake could be a perceptual mistake. I will first present arguments supporting the claim that when we visually encounter objects such as lemons, we sometimes also perceive the affordances of these objects-what they provide or offer us. I will further argue that this perspective on affordances offers a more compelling explanation than other alternative accounts when it comes to our perception of visually indistinguishable objects that nonetheless belong to categorically distinct high-level kinds.
Collapse
|
2
|
Robles CM, Anderson B, Dukelow SP, Striemer CL. Assessment and recovery of visually guided reaching deficits following cerebellar stroke. Neuropsychologia 2023; 188:108662. [PMID: 37598808 DOI: 10.1016/j.neuropsychologia.2023.108662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
The cerebellum is known to play an important role in the coordination and timing of limb movements. The present study focused on how reach kinematics are affected by cerebellar lesions to quantify both the presence of motor impairment, and recovery of motor function over time. In the current study, 12 patients with isolated cerebellar stroke completed clinical measures of cognitive and motor function, as well as a visually guided reaching (VGR) task using the Kinarm exoskeleton at baseline (∼2 weeks), as well as 6, 12, and 24-weeks post-stroke. During the VGR task, patients made unassisted reaches with visual feedback from a central 'start' position to one of eight targets arranged in a circle. At baseline, 6/12 patients were impaired across several parameters of the VGR task compared to a Kinarm normative sample (n = 307), revealing deficits in both feed-forward and feedback control. The only clinical measures that consistently demonstrated impairment were the Purdue Pegboard Task (PPT; 9/12 patients) and the Montreal Cognitive Assessment (6/11 patients). Overall, patients who were impaired at baseline showed significant recovery by the 24-week follow-up for both VGR and the PPT. A lesion overlap analysis indicated that the regions most commonly damaged in 5/12 patients (42% overlap) were lobule IX and Crus II of the right cerebellum. A lesion subtraction analysis comparing patients who were impaired (n = 6) vs. unimpaired (n = 6) on the VGR task at baseline showed that the region most commonly damaged in impaired patients was lobule VIII of the right cerebellum (40% overlap). Our results lend further support to the notion that the cerebellum is involved in both feedforward and feedback control during reaching, and that cerebellar patients tend to recover relatively quickly overall. In addition, we argue that future research should study the effects of cerebellar damage on visuomotor control from a perception-action theoretical framework to better understand how the cerebellum works with the dorsal stream to control visually guided action.
Collapse
Affiliation(s)
- Chella M Robles
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - Britt Anderson
- Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Christopher L Striemer
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Ouerfelli-Ethier J, Fournet R, Khan AZ, Pisella L. Spatial bias in anti-saccade endpoints following bilateral dorsal posterior parietal lesions. Eur J Neurosci 2023; 58:3488-3502. [PMID: 37501610 DOI: 10.1111/ejn.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Anti-saccades are eye movements in which the saccade is executed in the opposite direction of a visual target and are often hypometric. Because the visual target and saccade goal are decoupled, it has been suggested that competition between the two locations occurs and needs to be resolved. It has been hypothesized that the hypometria of anti-saccades reflects this spatial competition by revealing a bias towards the visual target. To confirm that this hypometria is not simply due to reduced gain, we tested 10 healthy subjects on three different anti-saccade spatial configuration tasks: 90° away across hemifields, 90° away within the same hemifield and 180° away (classic, diagonally opposite). Specifically, we examined whether saccade endpoints showed evidence for the visual target location's interference with anti-saccade programming and execution processes. Among other neural substrates involved in anti-saccades production, the dorsal posterior parietal cortex (PPC) has been implicated in the spatial inhibition of contralateral visual target. To gain insight into the neural processes involved in spatial competition during anti-saccades, we also tested one patient with a bilateral dorsal PPC lesion. In all spatial configurations, we observed that anti-saccade endpoints demonstrated a spatial bias towards the visual target for all participants, likely due to an incomplete inhibition of the visual target location. This spatial bias was exacerbated in our patient, which suggests that the dorsal PPC contributes to the amalgamation of the two competing spatial representations.
Collapse
Affiliation(s)
- Julie Ouerfelli-Ethier
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Trajectoires, France
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Romain Fournet
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Aarlenne Z Khan
- School of Optometry, University of Montreal, Montreal, Quebec, Canada
| | - Laure Pisella
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL, Trajectoires, France
| |
Collapse
|
4
|
Sartin S, Ranzini M, Scarpazza C, Monaco S. Cortical areas involved in grasping and reaching actions with and without visual information: An ALE meta-analysis of neuroimaging studies. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 4:100070. [PMID: 36632448 PMCID: PMC9826890 DOI: 10.1016/j.crneur.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/23/2022] [Accepted: 12/18/2022] [Indexed: 12/31/2022] Open
Abstract
The functional specialization of the ventral stream in Perception and the dorsal stream in Action is the cornerstone of the leading model proposed by Goodale and Milner in 1992. This model is based on neuropsychological evidence and has been a matter of debate for almost three decades, during which the dual-visual stream hypothesis has received much attention, including support and criticism. The advent of functional magnetic resonance imaging (fMRI) has allowed investigating the brain areas involved in Perception and Action, and provided useful data on the functional specialization of the two streams. Research on this topic has been quite prolific, yet no meta-analysis so far has explored the spatial convergence in the involvement of the two streams in Action. The present meta-analysis (N = 53 fMRI and PET studies) was designed to reveal the specific neural activations associated with Action (i.e., grasping and reaching movements), and the extent to which visual information affects the involvement of the two streams during motor control. Our results provide a comprehensive view of the consistent and spatially convergent neural correlates of Action based on neuroimaging studies conducted over the past two decades. In particular, occipital-temporal areas showed higher activation likelihood in the Vision compared to the No vision condition, but no difference between reach and grasp actions. Frontal-parietal areas were consistently involved in both reach and grasp actions regardless of visual availability. We discuss our results in light of the well-established dual-visual stream model and frame these findings in the context of recent discoveries obtained with advanced fMRI methods, such as multivoxel pattern analysis.
Collapse
Affiliation(s)
- Samantha Sartin
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy
| | | | - Cristina Scarpazza
- Department of General Psychology, University of Padua, Italy,IRCCS San Camillo Hospital, Venice, Italy
| | - Simona Monaco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Italy,Corresponding author. CIMeC - Center for Mind/Brain Sciences, University of Trento, Via delle Regole 101, 38123, Trento, Italy.
| |
Collapse
|
5
|
Kozuch B. Conscious vision guides motor action—rarely. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2044461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Benjamin Kozuch
- Philosophy Department, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
6
|
Eye-hand coordination: memory-guided grasping during obstacle avoidance. Exp Brain Res 2021; 240:453-466. [PMID: 34787684 DOI: 10.1007/s00221-021-06271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
When reaching to grasp previously seen, now out-of-view objects, we rely on stored perceptual representations to guide our actions, likely encoded by the ventral visual stream. So-called memory-guided actions are numerous in daily life, for instance, as we reach to grasp a coffee cup hidden behind our morning newspaper. Little research has examined obstacle avoidance during memory-guided grasping, though it is possible obstacles with increased perceptual salience will provoke exacerbated avoidance maneuvers, like exaggerated deviations in eye and hand position away from obtrusive obstacles. We examined the obstacle avoidance strategies adopted as subjects reached to grasp a 3D target object under visually-guided (closed loop or open loop with full vision prior to movement onset) and memory-guided (short- or long-delay) conditions. On any given trial, subjects reached between a pair of flanker obstacles to grasp a target object. The positions and widths of the obstacles were manipulated, though their inner edges remained a constant distance apart. While reach and grasp behavior was consistent with the obstacle avoidance literature, in that reach, grasp, and gaze positions were biased away from obstacles most obtrusive to the reaching hand, our results reveal distinctive avoidance approaches undertaken depend on the availability of visual feedback. Contrary to expectation, we found subjects reaching to grasp after a long delay in the absence of visual feedback failed to modify their final fixation and grasp positions to accommodate the different positions of obstacles, demonstrating a more moderate, rather than exaggerative, obstacle avoidance strategy.
Collapse
|
7
|
Whitwell RL, Striemer CL, Cant JS, Enns JT. The Ties that Bind: Agnosia, Neglect and Selective Attention to Visual Scale. Curr Neurol Neurosci Rep 2021; 21:54. [PMID: 34586544 DOI: 10.1007/s11910-021-01139-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW Historical and contemporary treatments of visual agnosia and neglect regard these disorders as largely unrelated. It is thought that damage to different neural processes leads directly to one or the other condition, yet apperceptive variants of agnosia and object-centered variants of neglect share remarkably similar deficits in the quality of conscious experience. Here we argue for a closer association between "apperceptive" variants of visual agnosia and "object-centered" variants of visual neglect. We introduce a theoretical framework for understanding these conditions based on "scale attention", which refers to selecting boundary and surface information at different levels of the structural hierarchy in the visual array. RECENT FINDINGS We review work on visual agnosia, the cortical structures and cortico-cortical pathways that underlie visual perception, visuospatial neglect and object-centered neglect, and attention to scale. We highlight direct and indirect pathways involved in these disorders and in attention to scale. The direct pathway involves the posterior vertical segments of the superior longitudinal fasciculus that are positioned to link the established dorsal and ventral attentional centers in the parietal cortex with structures in the inferior occipitotemporal cortex associated with visual apperceptive agnosia. The connections in the right hemisphere appear to be more important for visual conscious experience, whereas those in the left hemisphere appear to be more strongly associated with the planning and execution of visually guided grasps directed at multi-part objects such as tools. In the latter case, semantic and functional information must drive the selection of the appropriate hand posture and grasp points on the object. This view is supported by studies of grasping in patients with agnosia and in patients with neglect that show that the selection of grasp points when picking up a tool involves both scale attention and semantic contributions from inferotemporal cortex. The indirect pathways, which include the inferior fronto-occipital and horizontal components of the superior longitudinal fasciculi, involve the frontal lobe, working memory and the "multiple demands" network, which can shape the content of visual awareness through the maintenance of goal- and task-based abstractions and their influence on scale attention. Recent studies of human cortico-cortical pathways necessitate revisions to long-standing theoretical views on visual perception, visually guided action and their integrations. We highlight findings from a broad sample of seemingly disparate areas of research to support the proposal that attention to scale is necessary for typical conscious visual experience and for goal-directed actions that depend on functional and semantic information. Furthermore, we suggest that vertical pathways between the parietal and occipitotemporal cortex, along with indirect pathways that involve the premotor and prefrontal cortex, facilitate the operations of scale attention.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, University of British Columbia, Vancouver, Canada.
| | | | - Jonathan S Cant
- Department of Psychology, University of Toronto Scarborough, Toronto, Canada
| | - James T Enns
- Department of Psychology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Carther-Krone TA, Senanayake SA, Marotta JJ. The influence of the Sander parallelogram illusion and early, middle and late vision on goal-directed reaching and grasping. Exp Brain Res 2020; 238:2993-3003. [PMID: 33095294 DOI: 10.1007/s00221-020-05960-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/13/2020] [Indexed: 10/23/2022]
Abstract
Vision is one of the most robust sensory inputs used for the execution of goal-directed actions. Despite a history of extensive visuomotor research, how individuals process visual context for the execution of movements continues to be debated. This experiment examines how early, middle and late visuomotor control is impacted by illusory characteristics in a reaching and grasping task. Participants either manually estimated or reached out and picked up a three-dimensional target bar resting on a two-dimensional picture of the Sander parallelogram illusion. Participants performed their grasps within a predefined time movement window based on their own average grasp time, allowing for the manipulation of visual feedback. On some trials, vision was only available before the response cue (an auditory tone), while on others vision was occluded until the response cue, becoming available for either the full, early, middle or late portions of the movement. While results showed that the effect of the illusion was stronger on manual estimations than on grasping, maximum grip apertures in the occluded vision and early vision grasping conditions were also consistent to a lesser extent with the illusion. The late vision condition showed longer movement time, wrist deceleration period, time to maximum grip aperture and lower maximum velocity. These findings indicate that visual context affects visuomotor control distinctly depending on when vision is available, and supports the notion that human vision is comprised of two functionally and anatomically distinct systems.
Collapse
Affiliation(s)
- Tiffany A Carther-Krone
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Shannon A Senanayake
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jonathan J Marotta
- Perception and Action Lab, Department of Psychology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
9
|
Singh S, Mandziak A, Barr K, Blackwell AA, Mohajerani MH, Wallace DG, Whishaw IQ. Human string-pulling with and without a string: movement, sensory control, and memory. Exp Brain Res 2019; 237:3431-3447. [DOI: 10.1007/s00221-019-05684-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023]
|
10
|
Shea N, Frith CD. The Global Workspace Needs Metacognition. Trends Cogn Sci 2019; 23:560-571. [DOI: 10.1016/j.tics.2019.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 12/20/2022]
|
11
|
Revol P, Collette S, Boulot Z, Foncelle A, Niki C, Thura D, Imai A, Jacquin-Courtois S, Cabanac M, Osiurak F, Rossetti Y. Thirst for Intention? Grasping a Glass Is a Thirst-Controlled Action. Front Psychol 2019; 10:1248. [PMID: 31214073 PMCID: PMC6558183 DOI: 10.3389/fpsyg.2019.01248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 11/30/2022] Open
Abstract
Every day and every hour, we feel we perform numerous voluntary actions, i.e., actions under the control of our will. Individual’s ability to initiate goal-directed movement is classically described as a hierarchical motor organization, from an intentional module, mostly considered as a black box, to muscular activity supporting action execution. The general focus is usually set on the triggering of action by intention, which is assumed to be the only entry to the action cascade, rather than on the preceding formation of intentions. If intentions play a key role in the specification of movement kinematic parameters, it remains largely unknown whether unconscious cognitive processes may also affect action preparation and unfolding. Recently, a seemingly irrelevant variable, thirst, was shown to modulate a simple arbitrary action such as key-pressing. Thirsty individuals were shown to produce stronger motor inhibition in no-go trials when a glass of water was present. In the present experiment, we intended to explore whether motor inhibition operates not only upstream from the action cascade but may also affect the unfolding of reaching movements, i.e., at a lower-level control. Thirsty vs. non-thirsty control subjects were asked to reach and grasp green (go trial) or red glasses (no-go trial) filled with either water or transparent gel wax with a central candlewick. Thirsty subjects were faster to initiate actions toward the water glasses. They also exhibited an earlier maximal grip aperture and a global reduction of movement time which was mostly explained by a shortening of deceleration time. The deceleration phase was correlated with individual’s thirst rating. In addition, no-go trial toward a glass of water tended to inhibit the next movement toward a glass filled with gel wax. Thus, our results show that an unintentional influence of an internal state can reorganize voluntary action structure not only at the decision-making level but also at the level of motor control. Although subjects explicitly paid more attention and were more cautious to glasses filled with water, they reported no explicit sensation of an increased urge to grasp it, further suggesting that these effects are controlled by covert mechanisms.
Collapse
Affiliation(s)
- Patrice Revol
- Plate-forme "Mouvement et Handicap," Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France.,Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| | - Sarah Collette
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| | - Zoe Boulot
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| | - Alexandre Foncelle
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| | - Chiharu Niki
- Tokyo Women's Medical University, Shinjuku, Japan
| | - David Thura
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| | - Akila Imai
- Department of Psychology, Faculty of Arts, Shinshu University, Nagano, Japan
| | - Sophie Jacquin-Courtois
- Plate-forme "Mouvement et Handicap," Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France.,Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| | - Michel Cabanac
- Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs, Université de Lyon, Bron, France.,Institut Universitaire de France, Paris, France
| | - Yves Rossetti
- Plate-forme "Mouvement et Handicap," Hôpital Henry-Gabrielle, Hospices Civils de Lyon, Saint-Genis-Laval, France.,Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, Université Lyon 1, Bron, France
| |
Collapse
|
12
|
Ganel T, Goodale MA. Still holding after all these years: An action-perception dissociation in patient DF. Neuropsychologia 2019; 128:249-254. [DOI: 10.1016/j.neuropsychologia.2017.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/17/2017] [Indexed: 10/18/2022]
|
13
|
Baumard J, Etcharry-Bouyx F, Chauviré V, Boussard D, Lesourd M, Remigereau C, Rossetti Y, Osiurak F, Le Gall D. Effect of object substitution, spontaneous compensation and repetitive training on reaching movements in a patient with optic ataxia. Neuropsychol Rehabil 2019; 30:1786-1813. [PMID: 31030640 DOI: 10.1080/09602011.2019.1607397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We report the case of M.B. who demonstrated severe optic ataxia with the right hand following stroke in the left hemisphere. The clinical picture may shed light on both the pathological characteristics of reaching and grasping actions, and potential rehabilitation strategies for optic ataxia. First, M.B. demonstrated a dissociation between severely impaired reaching and relatively spared grasping and tool use skills and knowledge, which confirms that grasping may be more intermingled with non-motoric cognitive mechanisms than reaching. Besides, M.B.'s reaching performance was sensitive to movement repetition. We observed a substitution effect: Reaching time decreased if M.B. repeatedly reached toward the same object but increased when object identity changed. This may imply that not only object localization but also object identity, is integrated into movement programming in reach-to-grasp tasks. Second, studying M.B.'s spontaneous compensation strategies ascertained that the mere repetition of reaching movements had a positive effect, to the point M.B. almost recovered to normal level after an intensive one-day repetitive training session. This case study seems to provide one of the first examples of optic ataxia rehabilitation. Reaching skills can be trained by repetitive training even two years post-stroke and despite the presence of visuo-imitative apraxia.
Collapse
Affiliation(s)
| | - Frédérique Etcharry-Bouyx
- Laboratory of Psychology LPPL (EA 4638), University of Angers, Angers, France.,Department of Neurology, University Hospital of Angers, Angers, France
| | - Valérie Chauviré
- Laboratory of Psychology LPPL (EA 4638), University of Angers, Angers, France.,Department of Neurology, University Hospital of Angers, Angers, France
| | - Delphine Boussard
- Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| | - Mathieu Lesourd
- Laboratory for the Study of Cognitive Mechanisms (EA 3082), University of Lyon, Lyon, France
| | - Chrystelle Remigereau
- Laboratory for the Study of Cognitive Mechanisms (EA 3082), University of Lyon, Lyon, France
| | | | - François Osiurak
- Laboratory for the Study of Cognitive Mechanisms (EA 3082), University of Lyon, Lyon, France.,French Universitary Institute, Paris, France
| | - Didier Le Gall
- Laboratory of Psychology LPPL (EA 4638), University of Angers, Angers, France.,Neuropsychological Unit, Department of Neurology, University Hospital of Angers, Angers, France
| |
Collapse
|
14
|
The Uznadze illusion reveals similar effects of relative size on perception and action. Exp Brain Res 2019; 237:953-965. [DOI: 10.1007/s00221-019-05480-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/19/2019] [Indexed: 11/25/2022]
|
15
|
Chabanat E, Jacquin-Courtois S, Havé L, Kihoulou C, Tilikete C, Mauguière F, Rheims S, Rossetti Y. Can you guess the colour of this moving object? A dissociation between colour and motion in blindsight. Neuropsychologia 2018; 128:204-208. [PMID: 30102905 DOI: 10.1016/j.neuropsychologia.2018.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/01/2018] [Accepted: 08/08/2018] [Indexed: 10/28/2022]
Abstract
Blindsight has been primarily and extensively studied by Lawrence Weiskrantz. Residual visual abilities following a hemispheric lesion leading to homonymous hemianopia encompass a variety of visual-perceptual and visuo-motor functions. Attention blindsight produces the more salient subjective experiences, especially for motion (Riddoch phenomenon). Action blindsight illustrates visuo-motor abilities despite the patients' feeling that they produce random movements. Perception blindsight seems to be the weakest residual function observed in blindsight, e.g. for wavelength sensitivity. Discriminating motion produced by isoluminant colours does not give rise to blindsight for motion but the outcome of the reciprocal test is not known. Here we tested whether moving stimuli could give rise to colour discrimination in a patient with homonymous hemianopia. It was found that even though the patient exhibited nearly perfect performances for motion direction discrimination his colour discrimination for the same moving stimulus remained at chance level. It is concluded that easily discriminated moving stimuli do not give rise to colour discrimination and implications for the 3 levels of blindsight taxonomy are discussed.
Collapse
Affiliation(s)
- E Chabanat
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, France.
| | - S Jacquin-Courtois
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, France; Service de rééducation neurologique, Pavillon Bourret, Hôpital Henry-Gabrielle, Hospices Civils de Lyon, 20, route de Vourles, Saint-Genis-Laval, France; Plate-forme 'Mouvement et Handicap', Hôpital Henry-Gabrielle et Hôpital Neurologique Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 20, route de Vourles, Saint-Genis-Laval, France.
| | - L Havé
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, France.
| | - C Kihoulou
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, France
| | - C Tilikete
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, France; Service de Neuro-Cognition et Neuro-Ophtalmologie, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 59 boulevard Pinel, 69677 Bron Cedex, France.
| | - F Mauguière
- Université de Lyon, Université Claude Bernard Lyon 1, France; Département de Neurologie Fonctionnelle et Epileptologie, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; Inserm UMR-S 1028, CNRS UMR 5292, NeuroPain, Centre de Recherche en Neurosciences de Lyon, France.
| | - S Rheims
- Université de Lyon, Université Claude Bernard Lyon 1, France; Département de Neurologie Fonctionnelle et Epileptologie, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, France; Inserm UMR-S 1028, CNRS UMR 5292, TIGER, Centre de Recherche en Neurosciences de Lyon, France.
| | - Y Rossetti
- Inserm UMR-S 1028, CNRS UMR 5292, ImpAct, Centre de Recherche en Neurosciences de Lyon, France; Université de Lyon, Université Claude Bernard Lyon 1, France; Service de rééducation neurologique, Pavillon Bourret, Hôpital Henry-Gabrielle, Hospices Civils de Lyon, 20, route de Vourles, Saint-Genis-Laval, France; Plate-forme 'Mouvement et Handicap', Hôpital Henry-Gabrielle et Hôpital Neurologique Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 20, route de Vourles, Saint-Genis-Laval, France.
| |
Collapse
|
16
|
Geers L, Pesenti M, Andres M. Visual illusions modify object size estimates for prospective action judgements. Neuropsychologia 2018; 117:211-221. [PMID: 29883576 DOI: 10.1016/j.neuropsychologia.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/16/2018] [Accepted: 06/04/2018] [Indexed: 11/18/2022]
Abstract
How does the eye guide the hand in an ever-changing world? The perception-action model posits that visually-guided actions rely on object size estimates that are computed from an egocentric perspective independently of the visual context. Accordingly, adjusting grip aperture to object size should be resistant to illusions emerging from the contrast between a target and surrounding elements. However, experimental studies gave discrepant results that have remained difficult to explain so far. Visual and proprioceptive information of the acting hand are potential sources of ambiguity in previous studies because the on-line corrections they allow may contribute to masking the illusory effect. To overcome this problem, we investigated the effect on prospective action judgements of the Ebbinghaus illusion, a visual illusion in which the perceived size of a central circle varies according to the size of surrounding circles. Participants had to decide whether they thought they would be able to grasp the central circle of an Ebbinghaus display between their index finger and thumb, without moving their hands. A control group had to judge the size of the central circle relative to a standard. Experiment 1 showed that the illusion affected perceptual and grasping judgements similarly. We further investigated the interaction between visual illusions and grip aperture representation by examining the effect of concurrent motor tasks on grasping judgements. We showed that participants underestimated their ability to grasp the circle when they were squeezing a ball between their index finger and thumb (Experiment 2), whereas they overestimated their ability when their fingers were spread apart (Experiment 3). The illusion also affected the grasping judgement task and modulated the interference of the squeezing movement, with the illusion of largeness enhancing the underestimation of one's grasping ability observed in Experiment 2. We conclude that visual context and body posture both influence action anticipation, and that perception and action support each other.
Collapse
Affiliation(s)
- Laurie Geers
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium.
| | - Mauro Pesenti
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium.
| | - Michael Andres
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium; Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium.
| |
Collapse
|
17
|
Kuntz JR, Karl JM, Doan JB, Whishaw IQ. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action–perception theory. Exp Brain Res 2018; 236:1091-1103. [DOI: 10.1007/s00221-018-5196-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
|
18
|
Huchon L, Badet L, Roy AC, Finos L, Gazarian A, Revol P, Bernardon L, Rossetti Y, Morelon E, Rode G, Farnè A. Grasping objects by former amputees: The visuo-motor control of allografted hands. Restor Neurol Neurosci 2018; 34:615-33. [PMID: 26890093 DOI: 10.3233/rnn-150502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Hand allograft has recently emerged as a therapeutic option for upper limb amputees. Functional neuroimaging studies have progressively revealed sensorimotor cortices plasticity following both amputation and transplantation. The purpose of our study was to assess and characterize the functional recovery of the visuo-motor control of prehension in bilateral hand transplanted patients. METHODS Using kinematics recordings, we characterized the performance of prehension with or without visual feed-back for object of different position and size, in five bilateral hand allograft recipients and age-matched control subjects. Both hands were assessed, separately. RESULTS Despite an overall slower execution, allografted patients succeeded in grasping for more than 90% of the trials. They exhibited a preserved hand grip scaling according to object size, and preserved prehension performances when tested without visual feedback. These findings highlight the allograft recipients' abilities to produce an effective motor program, and a good proprioceptive-dependent online control. Nevertheless, the maximum grip aperture was reduced and delayed, the coupling between Transport and Grasp components was altered, and the final phase of the movement was lengthened. CONCLUSION Hand allotransplantation can offer recipients a good recovery of the visuo-motor control of prehension, with slight impairments likely attributable to peripheral neuro-orthopedic limitations.
Collapse
Affiliation(s)
- Laure Huchon
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Lionel Badet
- Claude Bernard Lyon 1 University, Lyon, France.,Transplantation Surgery Department, Edouart Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | | | - Livio Finos
- Department of Statistical Sciences, University of Padova, Padova, Italy
| | - Aram Gazarian
- Orthopaedic Surgery Department, Clinique du Parc Lyon, Lyon, France
| | - Patrice Revol
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | | | - Yves Rossetti
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Emmanuel Morelon
- Claude Bernard Lyon 1 University, Lyon, France.,Nephrology and Immunology Department, Edouart Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Gilles Rode
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Physical and Rehabilitation Medicine Department, Mouvement Handicap, Henry Gabrielle Hospital, Hospices Civils de Lyon, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Alessandro Farnè
- ImpAct Team, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| |
Collapse
|
19
|
Two visual pathways – Where have they taken us and where will they lead in future? Cortex 2018; 98:283-292. [DOI: 10.1016/j.cortex.2017.12.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 01/05/2023]
|
20
|
Schenk T, Hesse C. Do we have distinct systems for immediate and delayed actions? A selective review on the role of visual memory in action. Cortex 2018; 98:228-248. [DOI: 10.1016/j.cortex.2017.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/01/2017] [Accepted: 05/11/2017] [Indexed: 10/19/2022]
|
21
|
Abstract
This chapter reviews clinical and scientific approaches to optic ataxia. This double historic track allows us to address important issues such as the link between Bálint syndrome and optic ataxia, the alleged double dissociation between optic ataxia and visual agnosia, and the use of optic ataxia to argue for a specific vision-for-action occipitoposterior parietal stream. Clinical cases are described and reveal that perceptual deficits have been long shown to accompany ataxia. Importantly, the term ataxia appears to be misleading as patients exhibit a combination of visual and nonvisual perceptual, attentional, and visuomotor guidance deficits, which are confirmed by experimental approaches. Three major features of optic ataxia are described. The first is a spatial feature whereby the deficits exhibited by patients appear to be specific to peripheral vision, akin to the field effect. Visuomotor field examination allows us to quantify this deficit and reveals that it consists of a highly reliable retinocentric hypometria. The third is a temporal feature whereby these deficits are exacerbated under temporal constraints, i.e., when attending to dynamic stimuli. These two aspects combine in a situation where patients have to quickly respond to a target presented in peripheral vision that is experimentally displaced upon movement onset. In addition to the field effect, a hand effect can be described in conditions where the hand is not visible. Spatial and temporal aspects as well as field and hand effects may rely on several posterior parietal modules that remain to be precisely identified both anatomically and functionally. It is concluded that optic ataxia is not a visuomotor deficit and there is no dissociation between perception and action capacities in optic ataxia, hence a fortiori no double dissociation between optic ataxia and visual agnosia. Future directions for understanding the basic pathophysiology of optic ataxia are proposed.
Collapse
Affiliation(s)
- Yves Rossetti
- Integrative Multisensory Perception Action Cognition Team, Lyon Neuroscience Research Centre, Lyon, France.
| | - Laure Pisella
- Integrative Multisensory Perception Action Cognition Team, Lyon Neuroscience Research Centre, Lyon, France
| |
Collapse
|
22
|
Ariani G, Oosterhof NN, Lingnau A. Time-resolved decoding of planned delayed and immediate prehension movements. Cortex 2017; 99:330-345. [PMID: 29334647 DOI: 10.1016/j.cortex.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/20/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023]
Abstract
Different contexts require us either to react immediately, or to delay (or suppress) a planned movement. Previous studies that aimed at decoding movement plans typically dissociated movement preparation and execution by means of delayed-movement paradigms. Here we asked whether these results can be generalized to the planning and execution of immediate movements. To directly compare delayed, non-delayed, and suppressed reaching and grasping movements, we used a slow event-related functional magnetic resonance imaging (fMRI) design. To examine how neural representations evolved throughout movement planning, execution, and suppression, we performed time-resolved multivariate pattern analysis (MVPA). During the planning phase, we were able to decode upcoming reaching and grasping movements in contralateral parietal and premotor areas. During the execution phase, we were able to decode movements in a widespread bilateral network of motor, premotor, and somatosensory areas. Moreover, we obtained significant decoding across delayed and non-delayed movement plans in contralateral primary motor cortex. Our results demonstrate the feasibility of time-resolved MVPA and provide new insights into the dynamics of the prehension network, suggesting early neural representations of movement plans in the primary motor cortex that are shared between delayed and non-delayed contexts.
Collapse
Affiliation(s)
- Giacomo Ariani
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy.
| | | | - Angelika Lingnau
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Italy; Department of Psychology & Cognitive Science, University of Trento, Italy; Department of Psychology, Royal Holloway University of London, United Kingdom
| |
Collapse
|
23
|
Comparing the effect of temporal delay on the availability of egocentric and allocentric information in visual search. Behav Brain Res 2017; 331:38-46. [PMID: 28526516 DOI: 10.1016/j.bbr.2017.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/05/2017] [Accepted: 05/06/2017] [Indexed: 11/22/2022]
Abstract
Frames of reference play a central role in perceiving an object's location and reaching to pick that object up. It is thought that the ventral stream, believed to subserve vision for perception, utilises allocentric coding, while the dorsal stream, argued to be responsible for vision for action, primarily uses an egocentric reference frame. We have previously shown that egocentric representations can survive a delay; however, it is possible that in comparison to allocentric information, egocentric information decays more rapidly. Here we directly compare the effect of delay on the availability of egocentric and allocentric representations. We used spatial priming in visual search and repeated the location of the target relative to either a landmark in the search array (allocentric condition) or the observer's body (egocentric condition). Three inter-trial intervals created minimum delays between two consecutive trials of 2, 4, or 8seconds. In both conditions, search times to primed locations were faster than search times to un-primed locations. In the egocentric condition the effects were driven by a reduction in search times when egocentric information was repeated, an effect that was observed at all three delays. In the allocentric condition while search times did not change when the allocentric information was repeated, search times to un-primed target locations became slower. We conclude that egocentric representations are not as transient as previously thought but instead this information is still available, and can influence behaviour, after lengthy periods of delay. We also discuss the possible origins of the differences between allocentric and egocentric priming effects.
Collapse
|
24
|
Independent Causal Contributions of Alpha- and Beta-Band Oscillations during Movement Selection. J Neurosci 2017; 36:8726-33. [PMID: 27535917 DOI: 10.1523/jneurosci.0868-16.2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED To select a movement, specific neuronal populations controlling particular features of that movement need to be activated, whereas other populations are downregulated. The selective (dis)inhibition of cortical sensorimotor populations is governed by rhythmic neural activity in the alpha (8-12 Hz) and beta (15-25 Hz) frequency range. However, it is unclear whether and how these rhythms contribute independently to motor behavior. Building on a recent dissociation of the sensorimotor alpha- and beta-band rhythms, we test the hypothesis that the beta-band rhythm governs the disinhibition of task-relevant neuronal populations, whereas the alpha-band rhythm suppresses neurons that may interfere with task performance. Cortical alpha- and beta-band rhythms were manipulated with transcranial alternating current stimulation (tACS) while human participants selected how to grasp an object. Stimulation was applied at either 10 or 20 Hz and was imposed on the sensorimotor cortex contralaterally or ipsilaterally to the grasping hand. In line with task-induced changes in endogenous spectral power, the effect of the tACS intervention depended on the frequency and site of stimulation. Whereas tACS stimulation generally increased movement selection times, 10 Hz stimulation led to relatively faster selection times when applied to the hemisphere ipsilateral to the grasping hand, compared with other stimulation conditions. These effects occurred selectively when multiple movements were considered. These observations functionally differentiate the causal contribution of alpha- and beta-band oscillations to movement selection. The findings suggest that sensorimotor beta-band rhythms disinhibit task-relevant populations, whereas alpha-band rhythms inhibit neuronal populations that could interfere with movement selection. SIGNIFICANCE STATEMENT This study shows dissociable effects of 10 Hz and 20 Hz tACS on the duration of movement selection. These observations have two elements of general relevance. First, the finding that alpha- and beta-band oscillations contribute independently to movement selection provides insight in how oscillations orchestrate motor behavior, which is key to understand movement selection deficits in neurodegenerative disorders. Second, the findings highlight the potential of 10 Hz stimulation as a neurophysiologically grounded intervention to enhance human performance. In particular, this intervention can potentially be exploited to boost rehabilitation after neural damage by targeting the unaffected hemisphere.
Collapse
|
25
|
Rise and fall of the two visual systems theory. Ann Phys Rehabil Med 2017; 60:130-140. [DOI: 10.1016/j.rehab.2017.02.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
|
26
|
Optic ataxia in Bálint-Holmes syndrome. Ann Phys Rehabil Med 2017; 60:148-154. [DOI: 10.1016/j.rehab.2016.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/05/2015] [Indexed: 11/23/2022]
|
27
|
What is an affordance? 40 years later. Neurosci Biobehav Rev 2017; 77:403-417. [DOI: 10.1016/j.neubiorev.2017.04.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 04/12/2017] [Accepted: 04/15/2017] [Indexed: 11/20/2022]
|
28
|
The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping. Brain Cogn 2017; 114:29-39. [DOI: 10.1016/j.bandc.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 03/01/2017] [Accepted: 03/14/2017] [Indexed: 11/18/2022]
|
29
|
Brogaard B, Gatzia DE. Unconscious Imagination and the Mental Imagery Debate. Front Psychol 2017; 8:799. [PMID: 28588527 PMCID: PMC5440590 DOI: 10.3389/fpsyg.2017.00799] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/02/2017] [Indexed: 11/13/2022] Open
Abstract
Traditionally, philosophers have appealed to the phenomenological similarity between visual experience and visual imagery to support the hypothesis that there is significant overlap between the perceptual and imaginative domains. The current evidence, however, is inconclusive: while evidence from transcranial brain stimulation seems to support this conclusion, neurophysiological evidence from brain lesion studies (e.g., from patients with brain lesions resulting in a loss of mental imagery but not a corresponding loss of perception and vice versa) indicates that there are functional and anatomical dissociations between mental imagery and perception. Assuming that the mental imagery and perception do not overlap, at least, to the extent traditionally assumed, then the question arises as to what exactly mental imagery is and whether it parallels perception by proceeding via several functionally distinct mechanisms. In this review, we argue that even though there may not be a shared mechanism underlying vision for perception and conscious imagery, there is an overlap between the mechanisms underlying vision for action and unconscious visual imagery. On the basis of these findings, we propose a modification of Kosslyn's model of imagery that accommodates unconscious imagination and explore possible explanations of the quasi-pictorial phenomenology of conscious visual imagery in light of the fact that its underlying neural substrates and mechanisms typically are distinct from those of visual experience.
Collapse
Affiliation(s)
- Berit Brogaard
- The Brogaard Lab for Multisensory Research, University of Miami, MiamiFL, United States.,Department of Philosophy, University of OsloOslo, Norway
| | - Dimitria Electra Gatzia
- Department of Philosophy, University of Akron Wayne College, AkronOH, United States.,Centre for Philosophical Psychology, University of AntwerpAntwerp, Belgium
| |
Collapse
|
30
|
Affordance processing in segregated parieto-frontal dorsal stream sub-pathways. Neurosci Biobehav Rev 2016; 69:89-112. [DOI: 10.1016/j.neubiorev.2016.07.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 05/29/2016] [Accepted: 07/07/2016] [Indexed: 02/04/2023]
|
31
|
Copley-Mills J, Connolly JD, Cavina-Pratesi C. Gender differences in non-standard mapping tasks: A kinematic study using pantomimed reach-to-grasp actions. Cortex 2016; 82:244-254. [PMID: 27410715 DOI: 10.1016/j.cortex.2016.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 03/05/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022]
Abstract
Comparison between real and pantomimed actions is used in neuroscience to dissociate stimulus-driven (real) as compared to internally driven (pantomimed) visuomotor transformations, with the goal of testing models of vision (Milner & Goodale, 1995) and diagnosing neuropsychological deficits (apraxia syndrome). Real actions refer to an overt movement directed toward a visible target whereas pantomimed actions refer to an overt movement directed either toward an object that is no longer available. Although similar, real and pantomimed actions differ in their kinematic parameters and in their neural substrates. Pantomimed-reach-to-grasp-actions show reduced reaching velocities, higher wrist movements, and reduced grip apertures. In addition, seminal neuropsychological studies and recent neuroimaging findings confirmed that real and pantomimed actions are underpinned by separate brain networks. Although previous literature suggests differences in the praxis system between males and females, no research to date has investigated whether or not gender differences exist in the context of real versus pantomimed reach-to-grasp actions. We asked ten male and ten female participants to perform real and pantomimed reach-to-grasp actions toward objects of different sizes, either with or without visual feedback. During pantomimed actions participants were required to pick up an imaginary object slightly offset relative to the location of the real one (which was in turn the target of the real reach-to-grasp actions). Results demonstrate a significant difference between the kinematic parameters recorded in male and female participants performing pantomimed, but not real reach-to-grasp tasks, depending on the availability of visual feedback. With no feedback both males and females showed smaller grip aperture, slower movement velocity and lower reach height. Crucially, these same differences were abolished when visual feedback was available in male, but not in female participants. Our results suggest that male and female participants should be evaluated separately in the clinical environment and in future research in the field.
Collapse
|
32
|
The functional subdivision of the visual brain: Is there a real illusion effect on action? A multi-lab replication study. Cortex 2016; 79:130-52. [DOI: 10.1016/j.cortex.2016.03.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/10/2016] [Accepted: 03/14/2016] [Indexed: 11/24/2022]
|
33
|
The Extrastriate Body Area Computes Desired Goal States during Action Planning. eNeuro 2016; 3:eN-NWR-0020-16. [PMID: 27066535 PMCID: PMC4821904 DOI: 10.1523/eneuro.0020-16.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/03/2016] [Accepted: 03/17/2016] [Indexed: 11/21/2022] Open
Abstract
How do object perception and action interact at a neural level? Here we test the hypothesis that perceptual features, processed by the ventral visuoperceptual stream, are used as priors by the dorsal visuomotor stream to specify goal-directed grasping actions. We present three main findings, which were obtained by combining time-resolved transcranial magnetic stimulation and kinematic tracking of grasp-and-rotate object manipulations, in a group of healthy human participants (N = 22). First, the extrastriate body area (EBA), in the ventral stream, provides an initial structure to motor plans, based on current and desired states of a grasped object and of the grasping hand. Second, the contributions of EBA are earlier in time than those of a caudal intraparietal region known to specify the action plan. Third, the contributions of EBA are particularly important when desired and current object configurations differ, and multiple courses of actions are possible. These findings specify the temporal and functional characteristics for a mechanism that integrates perceptual processing with motor planning.
Collapse
|
34
|
Cornelsen S, Rennig J, Himmelbach M. Memory-guided reaching in a patient with visual hemiagnosia. Cortex 2016; 79:32-41. [PMID: 27085893 DOI: 10.1016/j.cortex.2016.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/15/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
The two-visual-systems hypothesis (TVSH) postulates that memory-guided movements rely on intact functions of the ventral stream. Its particular importance for memory-guided actions was initially inferred from behavioral dissociations in the well-known patient DF. Despite of rather accurate reaching and grasping movements to visible targets, she demonstrated grossly impaired memory-guided grasping as much as impaired memory-guided reaching. These dissociations were later complemented by apparently reversed dissociations in patients with dorsal damage and optic ataxia. However, grasping studies in DF and optic ataxia patients differed with respect to the retinotopic position of target objects, questioning the interpretation of the respective findings as a double dissociation. In contrast, the findings for reaching errors in both types of patients came from similar peripheral target presentations. However, new data on brain structural changes and visuomotor deficits in DF also questioned the validity of a double dissociation in reaching. A severe visuospatial short-term memory deficit in DF further questioned the specificity of her memory-guided reaching deficit. Therefore, we compared movement accuracy in visually-guided and memory-guided reaching in a new patient who suffered a confined unilateral damage to the ventral visual system due to stroke. Our results indeed support previous descriptions of memory-guided movements' inaccuracies in DF. Furthermore, our data suggest that recently discovered optic-ataxia like misreaching in DF is most likely caused by her parieto-occipital and not by her ventral stream damage. Finally, multiple visuospatial memory measurements in HWS suggest that inaccuracies in memory-guided reaching tasks in patients with ventral damage cannot be explained by visuospatial short-term memory or perceptual deficits, but by a specific deficit in visuomotor processing.
Collapse
Affiliation(s)
- Sonja Cornelsen
- Center for Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Eberhard Karls University, Tuebingen, Germany; IMPRS for Cognitive and Systems Neuroscience, Tuebingen, Germany.
| | - Johannes Rennig
- Center for Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Eberhard Karls University, Tuebingen, Germany; Knowledge Media Research Center, Neurocognition Lab, IWM-KMRC, Tübingen, Germany
| | - Marc Himmelbach
- Center for Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, Eberhard Karls University, Tuebingen, Germany; Centre for Integrative Neuroscience, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
35
|
Marangon M, Kubiak A, Króliczak G. Haptically Guided Grasping. fMRI Shows Right-Hemisphere Parietal Stimulus Encoding, and Bilateral Dorso-Ventral Parietal Gradients of Object- and Action-Related Processing during Grasp Execution. Front Hum Neurosci 2016; 9:691. [PMID: 26779002 PMCID: PMC4700263 DOI: 10.3389/fnhum.2015.00691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
The neural bases of haptically-guided grasp planning and execution are largely unknown, especially for stimuli having no visual representations. Therefore, we used functional magnetic resonance imaging (fMRI) to monitor brain activity during haptic exploration of novel 3D complex objects, subsequent grasp planning, and the execution of the pre-planned grasps. Haptic object exploration, involving extraction of shape, orientation, and length of the to-be-grasped targets, was associated with the fronto-parietal, temporo-occipital, and insular cortex activity. Yet, only the anterior divisions of the posterior parietal cortex (PPC) of the right hemisphere were significantly more engaged in exploration of complex objects (vs. simple control disks). None of these regions were re-recruited during the planning phase. Even more surprisingly, the left-hemisphere intraparietal, temporal, and occipital areas that were significantly invoked for grasp planning did not show sensitivity to object features. Finally, grasp execution, involving the re-recruitment of the critical right-hemisphere PPC clusters, was also significantly associated with two kinds of bilateral parieto-frontal processes. The first represents transformations of grasp-relevant target features and is linked to the dorso-dorsal (lateral and medial) parieto-frontal networks. The second monitors grasp kinematics and belongs to the ventro-dorsal networks. Indeed, signal modulations associated with these distinct functions follow dorso-ventral gradients, with left aIPS showing significant sensitivity to both target features and the characteristics of the required grasp. Thus, our results from the haptic domain are consistent with the notion that the parietal processing for action guidance reflects primarily transformations from object-related to effector-related coding, and these mechanisms are rather independent of sensory input modality.
Collapse
Affiliation(s)
- Mattia Marangon
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Agnieszka Kubiak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| | - Gregory Króliczak
- Action and Cognition Laboratory, Department of Social Sciences, Institute of Psychology, Adam Mickiewicz University in Poznań Poznań, Poland
| |
Collapse
|
36
|
Abstract
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
37
|
van Polanen V, Davare M. Interactions between dorsal and ventral streams for controlling skilled grasp. Neuropsychologia 2015; 79:186-91. [PMID: 26169317 PMCID: PMC4678292 DOI: 10.1016/j.neuropsychologia.2015.07.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/12/2015] [Accepted: 07/09/2015] [Indexed: 11/12/2022]
Abstract
The two visual systems hypothesis suggests processing of visual information into two distinct routes in the brain: a dorsal stream for the control of actions and a ventral stream for the identification of objects. Recently, increasing evidence has shown that the dorsal and ventral streams are not strictly independent, but do interact with each other. In this paper, we argue that the interactions between dorsal and ventral streams are important for controlling complex object-oriented hand movements, especially skilled grasp. Anatomical studies have reported the existence of direct connections between dorsal and ventral stream areas. These physiological interconnections appear to be gradually more active as the precision demands of the grasp become higher. It is hypothesised that the dorsal stream needs to retrieve detailed information about object identity, stored in ventral stream areas, when the object properties require complex fine-tuning of the grasp. In turn, the ventral stream might receive up to date grasp-related information from dorsal stream areas to refine the object internal representation. Future research will provide direct evidence for which specific areas of the two streams interact, the timing of their interactions and in which behavioural context they occur. The dorsal and ventral streams are both involved in skilled grasping movements. Ventral areas feed dorsal areas with information about object identity. Grasps of increased complexity require gradually higher recruitment of ventral areas. Dorsal stream inputs could fine tune object representations stored in ventral areas.
Collapse
Affiliation(s)
- Vonne van Polanen
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium.
| | - Marco Davare
- Motor Control Laboratory, Movement Control and Neuroplasticity Research Group, Biomedical Sciences Group, Department of Kinesiology, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium; Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, United Kingdom.
| |
Collapse
|
38
|
Whitwell RL, Ganel T, Byrne CM, Goodale MA. Real-time vision, tactile cues, and visual form agnosia: removing haptic feedback from a "natural" grasping task induces pantomime-like grasps. Front Hum Neurosci 2015; 9:216. [PMID: 25999834 PMCID: PMC4422037 DOI: 10.3389/fnhum.2015.00216] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/02/2015] [Indexed: 11/13/2022] Open
Abstract
Investigators study the kinematics of grasping movements (prehension) under a variety of conditions to probe visuomotor function in normal and brain-damaged individuals. “Natural” prehensile acts are directed at the goal object and are executed using real-time vision. Typically, they also entail the use of tactile, proprioceptive, and kinesthetic sources of haptic feedback about the object (“haptics-based object information”) once contact with the object has been made. Natural and simulated (pantomimed) forms of prehension are thought to recruit different cortical structures: patient DF, who has visual form agnosia following bilateral damage to her temporal-occipital cortex, loses her ability to scale her grasp aperture to the size of targets (“grip scaling”) when her prehensile movements are based on a memory of a target previewed 2 s before the cue to respond or when her grasps are directed towards a visible virtual target but she is denied haptics-based information about the target. In the first of two experiments, we show that when DF performs real-time pantomimed grasps towards a 7.5 cm displaced imagined copy of a visible object such that her fingers make contact with the surface of the table, her grip scaling is in fact quite normal. This finding suggests that real-time vision and terminal tactile feedback are sufficient to preserve DF’s grip scaling slopes. In the second experiment, we examined an “unnatural” grasping task variant in which a tangible target (along with any proxy such as the surface of the table) is denied (i.e., no terminal tactile feedback). To do this, we used a mirror-apparatus to present virtual targets with and without a spatially coincident copy for the participants to grasp. We compared the grasp kinematics from trials with and without terminal tactile feedback to a real-time-pantomimed grasping task (one without tactile feedback) in which participants visualized a copy of the visible target as instructed in our laboratory in the past. Compared to natural grasps, removing tactile feedback increased RT, slowed the velocity of the reach, reduced in-flight grip aperture, increased the slopes relating grip aperture to target width, and reduced the final grip aperture (FGA). All of these effects were also observed in the real time-pantomime grasping task. These effects seem to be independent of those that arise from using the mirror in general as we also compared grasps directed towards virtual targets to those directed at real ones viewed directly through a pane of glass. These comparisons showed that the grasps directed at virtual targets increased grip aperture, slowed the velocity of the reach, and reduced the slopes relating grip aperture to the widths of the target. Thus, using the mirror has real consequences on grasp kinematics, reflecting the importance of task-relevant sources of online visual information for the programming and updating of natural prehensile movements. Taken together, these results provide compelling support for the view that removing terminal tactile feedback, even when the grasps are target-directed, induces a switch from real-time visual control towards one that depends more on visual perception and cognitive supervision. Providing terminal tactile feedback and real-time visual information can evidently keep the dorsal visuomotor system operating normally for prehensile acts.
Collapse
Affiliation(s)
- Robert L Whitwell
- Graduate Program in Neuroscience, The University of Western Ontario London, ON, Canada ; Department of Psychology, The University of Western Ontario London, ON, Canada ; The Brain and Mind Institute, The University of Western Ontario London, ON, Canada
| | - Tzvi Ganel
- Department of Psychology, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Caitlin M Byrne
- Department of Psychology, The University of Western Ontario London, ON, Canada
| | - Melvyn A Goodale
- Department of Psychology, The University of Western Ontario London, ON, Canada ; The Brain and Mind Institute, The University of Western Ontario London, ON, Canada ; Department of Physiology and Pharmacology, The University of Western Ontario London, ON, Canada
| |
Collapse
|
39
|
Ambron E, Lingnau A, Lunardelli A, Pesavento V, Rumiati RI. The effect of goals and vision on movements: A case study of optic ataxia and limb apraxia. Brain Cogn 2015; 95:77-89. [DOI: 10.1016/j.bandc.2015.01.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 10/23/2022]
|
40
|
Hesse C, Schenk T. Delayed action does not always require the ventral stream: A study on a patient with visual form agnosia. Cortex 2014; 54:77-91. [DOI: 10.1016/j.cortex.2014.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/14/2013] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
41
|
Binkofski F, Buxbaum LJ. Two action systems in the human brain. BRAIN AND LANGUAGE 2013; 127:222-229. [PMID: 22889467 PMCID: PMC4311762 DOI: 10.1016/j.bandl.2012.07.007] [Citation(s) in RCA: 266] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/02/2012] [Accepted: 07/15/2012] [Indexed: 05/31/2023]
Abstract
The distinction between dorsal and ventral visual processing streams, first proposed by Ungerleider and Mishkin (1982) and later refined by Milner and Goodale (1995) has been elaborated substantially in recent years, spurred by two developments. The first was proposed in large part by Rizzolatti and Matelli (2003) and is a more detailed description of the multiple neural circuits connecting the frontal, temporal, and parietal cortices. Secondly, there are a number of behavioral observations that the classic "two visual systems" hypothesis is unable to accommodate without additional assumptions. The notion that the Dorsal stream is specialized for "where" or "how" actions and the Ventral stream for "What" knowledge cannot account for two prominent disorders of action, limb apraxia and optic ataxia, that represent a double dissociation in terms of the types of actions that are preserved and impaired. A growing body of evidence, instead, suggests that there are at least two distinct Dorsal routes in the human brain, referred to as the "Grasp" and "Use" systems. Both of these may be differentiated from the Ventral route in terms of neuroanatomic localization, representational specificity, and time course of information processing.
Collapse
Affiliation(s)
- Ferdinand Binkofski
- Division for Clinical and Cognitive Neurosciences, RWTH Aachen University, Pauwelsstrasse 11, 52074 Aachen, Germany.
| | | |
Collapse
|
42
|
Human fMRI reveals that delayed action re-recruits visual perception. PLoS One 2013; 8:e73629. [PMID: 24040007 PMCID: PMC3765269 DOI: 10.1371/journal.pone.0073629] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 07/22/2013] [Indexed: 11/29/2022] Open
Abstract
Behavioral and neuropsychological research suggests that delayed actions rely on different neural substrates than immediate actions; however, the specific brain areas implicated in the two types of actions remain unknown. We used functional magnetic resonance imaging (fMRI) to measure human brain activation during delayed grasping and reaching. Specifically, we examined activation during visual stimulation and action execution separated by a 18-s delay interval in which subjects had to remember an intended action toward the remembered object. The long delay interval enabled us to unambiguously distinguish visual, memory-related, and action responses. Most strikingly, we observed reactivation of the lateral occipital complex (LOC), a ventral-stream area implicated in visual object recognition, and early visual cortex (EVC) at the time of action. Importantly this reactivation was observed even though participants remained in complete darkness with no visual stimulation at the time of the action. Moreover, within EVC, higher activation was observed for grasping than reaching during both vision and action execution. Areas in the dorsal visual stream were activated during action execution as expected and, for some, also during vision. Several areas, including the anterior intraparietal sulcus (aIPS), dorsal premotor cortex (PMd), primary motor cortex (M1) and the supplementary motor area (SMA), showed sustained activation during the delay phase. We propose that during delayed actions, dorsal-stream areas plan and maintain coarse action goals; however, at the time of execution, motor programming requires re-recruitment of detailed visual information about the object through reactivation of (1) ventral-stream areas involved in object perception and (2) early visual areas that contain richly detailed visual representations, particularly for grasping.
Collapse
|
43
|
Borchers S, Müller L, Synofzik M, Himmelbach M. Guidelines and quality measures for the diagnosis of optic ataxia. Front Hum Neurosci 2013; 7:324. [PMID: 23847498 PMCID: PMC3698451 DOI: 10.3389/fnhum.2013.00324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022] Open
Abstract
Since the first description of a systematic mis-reaching by Bálint in 1909, a reasonable number of patients showing a similar phenomenology, later termed optic ataxia (OA), has been described. However, there is surprising inconsistency regarding the behavioral measures that are used to detect OA in experimental and clinical reports, if the respective measures are reported at all. A typical screening method that was presumably used by most researchers and clinicians, reaching for a target object in the peripheral visual space, has never been evaluated. We developed a set of instructions and evaluation criteria for the scoring of a semi-standardized version of this reaching task. We tested 36 healthy participants, a group of 52 acute and chronic stroke patients, and 24 patients suffering from cerebellar ataxia. We found a high interrater reliability and a moderate test-retest reliability comparable to other clinical instruments in the stroke sample. The calculation of cut-off thresholds based on healthy control and cerebellar patient data showed an unexpected high number of false positives in these samples due to individual outliers that made a considerable number of errors in peripheral reaching. This study provides first empirical data from large control and patient groups for a screening procedure that seems to be widely used but rarely explicitly reported and prepares the grounds for its use as a standard tool for the description of patients who are included in single case or group studies addressing optic ataxia similar to the use of neglect, extinction, or apraxia screening tools.
Collapse
Affiliation(s)
- Svenja Borchers
- Division of Neuropsychology, Department of Cognitive Neurology, Centre for Neurology, Hertie-Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Germany
| | | | | | | |
Collapse
|
44
|
Whitwell RL, Goodale MA. Grasping without vision: time normalizing grip aperture profiles yields spurious grip scaling to target size. Neuropsychologia 2013; 51:1878-87. [PMID: 23796704 DOI: 10.1016/j.neuropsychologia.2013.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 10/26/2022]
Abstract
The analysis of normalized movement trajectories is a popular and informative technique used in investigations of visuomotor control during goal-directed acts like reaching and grasping. This technique typically involves standardizing measures against the amplitude of some other variable - most typically time. Here, we show that this normalizing technique can lead to some surprising results. In the first of two experiments, we asked participants to grasp target objects without ever seeing them from trial to trial. In the second experiment, participants were given a brief preview of the target and were then cued 3s later to pick it up while vision was prevented. Critically, on some trials during the delay period and unbeknownst to the participants, the previewed target was swapped for a new unseen one. The results of both experiments show that time-normalized measures of grip aperture during the closing phase of the movement appear to be scaled to target size well before the fingers make contact with the target - even though participants had no idea what the size of the target was that they were grasping. In contrast, a classical measure of anticipatory grip scaling, maximum grip aperture, did not show scaling to target size. As we demonstrate, however, in both experiments, movement time was longer for the larger target than the smaller ones. Thus, the comparisons of time-normalized grip aperture, particularly during the closing phase of the movements, were made across different points in real time. Taken together, the results of these experiments highlight a need for caution when investigators interpret differences in time-normalized dependent measures - particularly when the effect of interest is correlated with the dependent measure and a third variable (e.g., movement time) that is used to standardize the dependent measure.
Collapse
Affiliation(s)
- Robert L Whitwell
- Department of Psychology, The Brain and Mind Institute, The University of Western Ontario, London, ON, Canada
| | | |
Collapse
|
45
|
Meek BP, Shelton P, Marotta JJ. Posterior cortical atrophy: visuomotor deficits in reaching and grasping. Front Hum Neurosci 2013; 7:294. [PMID: 23801956 PMCID: PMC3689034 DOI: 10.3389/fnhum.2013.00294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022] Open
Abstract
Posterior Cortical Atrophy (PCA) is a rare clinical syndrome characterized by the predominance of higher-order visual disturbances such as optic ataxia, a characteristic of Balint's syndrome. Deficits result from progressive neurodegeneration of occipito-temporal and occipito-parietal cortices. The current study sought to explore the visuomotor functioning of four individuals with PCA by testing their ability to reach out and grasp real objects under various viewing conditions. Experiment 1 had participants reach out and grasp simple, rectangular blocks under visually- and memory-guided conditions. Experiment 2 explored participants' abilities to accurately reach for objects located in their visual periphery. This investigation revealed that PCA patients demonstrate many of the same deficits that have been previously reported in other individuals with optic ataxia, such as “magnetic misreaching”—a pathological reaching bias toward the point of visual fixation when grasping peripheral targets. Unlike many other individuals with optic ataxia, however, the patients in the current study also show symptoms indicative of damage to the more perceptual stream of visual processing, including abolished grip scaling during memory-guided grasping and deficits in face and object identification. These investigations are the first to perform a quantitative analysis of the visuomotor deficits exhibited by patients with PCA. Critically, this study helps characterize common symptoms of PCA, a vital first step for generating effective diagnostic criteria and therapeutic strategies for this understudied neurodegenerative disorder.
Collapse
Affiliation(s)
- Benjamin P Meek
- Perception and Action Laboratory, Department of Psychology, University of Manitoba Winnipeg, MB, Canada
| | | | | |
Collapse
|
46
|
Verhagen L, Dijkerman HC, Medendorp WP, Toni I. Hierarchical organization of parietofrontal circuits during goal-directed action. J Neurosci 2013; 33:6492-503. [PMID: 23575847 PMCID: PMC6619073 DOI: 10.1523/jneurosci.3928-12.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/21/2022] Open
Abstract
Two parietofrontal networks share the control of goal-directed movements: a dorsomedial circuit that includes the superior parieto-occipital sulcus (sPOS) and a dorsolateral circuit comprising the anterior intraparietal sulcus (aIPS). These circuits are thought to independently control either reach and grip components (a functional dissociation), or planning and execution phases of grasping movements (a temporal dissociation). However, recent evidence of functional and temporal overlap between these circuits has undermined those models. Here, we test an alternative model that subsumes previous accounts: the dorsolateral and dorsomedial circuits operate at different hierarchical levels, resulting in functional and temporal dependencies between their computations. We asked human participants to grasp a visually presented object, manipulating movement complexity by varying object slant. We used concurrent single-pulse transcranial magnetic stimulation and electroencephalography (TMS-EEG) to probe and record neurophysiological activity in the two circuits. Changes in alpha-band oscillations (8-12 Hz) characterized the effects of task manipulations and TMS interferences over aIPS and sPOS. Increasing the complexity of the grasping movement was accompanied by alpha-suppression over dorsomedial parietofrontal regions, including sPOS, during both planning and execution stages. TMS interference over either aIPS or sPOS disrupted this index of dorsomedial computations; early when aIPS was perturbed, later when sPOS was perturbed, indicating that the dorsomedial circuit is temporally dependent on aIPS. TMS over sPOS enhanced alpha-suppression in inferior parietal cortex, indicating that the dorsolateral circuit can compensate for a transient sPOS perturbation. These findings suggest that both circuits specify the same grasping parameters, with dorsomedial computations depending on dorsolateral contributions.
Collapse
Affiliation(s)
- Lennart Verhagen
- Donders Institute for Brain, Cognition, and Behavior, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Fukui T, Inui T. How vision affects kinematic properties of pantomimed prehension movements. Front Psychol 2013; 4:44. [PMID: 23404470 PMCID: PMC3566380 DOI: 10.3389/fpsyg.2013.00044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 01/20/2013] [Indexed: 11/13/2022] Open
Abstract
When performing the reach-to-grasp movement, fingers open wider than the size of a target object and then stop opening. The recorded peak grip aperture (PGA) is significantly larger when this action is performed without vision during the movement than with vision, presumably due to an error margin that is retained in order to avoid collision with the object. People can also pretend this action based on an internal target representation (i.e., pantomimed prehension), and previous studies have shown that kinematic differences exist between natural and pantomimed prehension. These differences are regarded as a reflection of variations in information processing in the brain through the dorsal and ventral streams. Pantomimed action is thought to be mediated by the ventral stream. This implies that visual information during the movement, which is essential to the dorsal stream, has little effect on the kinematic properties of pantomimed prehension. We investigated whether an online view of the external world affects pantomimed grasping, and more specifically, whether the dorsal stream is involved in its execution. Participants gazed at a target object and were then subjected to a 3-s visual occlusion, during which time the experimenter removed the object. The participants were then required to pretend to make a reach-to-grasp action toward the location where the object had been presented. Two visual conditions (full vision and no vision) were imposed during the pantomimed action by manipulating shutter goggles. The PGA showed significant differences between the two visual conditions, whereas no significant difference was noted for terminal grip aperture, which was recorded at the movement end. This suggests the involvement of the dorsal stream in pantomimed action and implies that pantomimed prehension is a good probe for revealing the mechanism of interaction between the ventral and dorsal streams, which is also linked to embodied cognition.
Collapse
Affiliation(s)
- Takao Fukui
- Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University Kyoto, Japan
| | | |
Collapse
|
48
|
Prime SL, Marotta JJ. Gaze strategies during visually-guided versus memory-guided grasping. Exp Brain Res 2012; 225:291-305. [PMID: 23239197 DOI: 10.1007/s00221-012-3358-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 11/22/2012] [Indexed: 11/28/2022]
Abstract
Vision plays a crucial role in guiding motor actions. But sometimes we cannot use vision and must rely on our memory to guide action-e.g. remembering where we placed our eyeglasses on the bedside table when reaching for them with the lights off. Recent studies show subjects look towards the index finger grasp position during visually-guided precision grasping. But, where do people look during memory-guided grasping? Here, we explored the gaze behaviour of subjects as they grasped a centrally placed symmetrical block under open- and closed-loop conditions. In Experiment 1, subjects performed grasps in either a visually-guided task or memory-guided task. The results show that during visually-guided grasping, gaze was first directed towards the index finger's grasp point on the block, suggesting gaze targets future grasp points during the planning of the grasp. Gaze during memory-guided grasping was aimed closer to the blocks' centre of mass from block presentation to the completion of the grasp. In Experiment 2, subjects performed an 'immediate grasping' task in which vision of the block was removed immediately at the onset of the reach. Similar to the visually-guided results from Experiment 1, gaze was primarily directed towards the index finger location. These results support the 2-stream theory of vision in that motor planning with visual feedback at the onset of the movement is driven primarily by real-time visuomotor computations of the dorsal stream, whereas grasping remembered objects without visual feedback is driven primarily by the perceptual memory representations mediated by the ventral stream.
Collapse
Affiliation(s)
- Steven L Prime
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
| | | |
Collapse
|
49
|
Mahon BZ, Caramazza A. The orchestration of the sensory-motor systems: Clues from Neuropsychology. Cogn Neuropsychol 2012; 22:480-94. [PMID: 21038262 DOI: 10.1080/02643290442000446] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Research over the last several decades has led to clear and empirically tractable proposals about the representation of conceptual knowledge in the brain. Here we argue that there are already sufficient data from neuropsychology to strongly constrain extant hypotheses about the representation of conceptual knowledge. One constraint imposed by these neuropsychological data is that recognition of actions and understanding of objects do not necessarily depend on the ability to produce object-associated actions. This conclusion compels a reconsideration of the role played by motor planning and/or execution processes in action and object recognition and understanding.
Collapse
|
50
|
De Wit MM, Van der Kamp J, Masters RSW. Distinct task-independent visual thresholds for egocentric and allocentric information pick up. Conscious Cogn 2012; 21:1410-8. [PMID: 22868214 DOI: 10.1016/j.concog.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/06/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
Abstract
The dominant view of the ventral and dorsal visual systems is that they subserve perception and action. De Wit, Van der Kamp, and Masters (2011) suggested that a more fundamental distinction might exist between the nature of information exploited by the systems. The present study distinguished between these accounts by asking participants to perform delayed matching (perception), pointing (action) and perceptual judgment responses to masked Müller-Lyer stimuli of varying length. Matching and pointing responses of participants who could not perceptually judge stimulus length at brief durations remained sensitive to veridical stimulus length (egocentric information), but not the illusion (allocentric, context-dependent information), which was effective at long durations. Distinct thresholds for egocentric and allocentric information pick up were thus evident irrespective of whether perception (matching) or action (pointing) responses were required. It was concluded that the dorsal and ventral systems may be delineated fundamentally by fast egocentric- and slower allocentric information pick up, respectively.
Collapse
Affiliation(s)
- Matthieu M De Wit
- Institute of Human Performance, University of Hong Kong, Pokfulam, Hong Kong.
| | | | | |
Collapse
|