1
|
Epigenetic Marks, DNA Damage Markers, or Both? The Impact of Desiccation and Accelerated Aging on Nucleobase Modifications in Plant Genomic DNA. Cells 2022; 11:cells11111748. [PMID: 35681443 PMCID: PMC9179523 DOI: 10.3390/cells11111748] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
Modifications of DNA nucleobases are present in all forms of life. The purpose of these modifications in eukaryotic cells, however, is not always clear. Although the role of 5-methylcytosine (m5C) in epigenetic regulation and the maintenance of stability in plant genomes is becoming better understood, knowledge pertaining to the origin and function of oxidized nucleobases is still scarce. The formation of 5-hydroxymetylcytosine (hm5C) in plant genomes is especially debatable. DNA modifications, functioning as regulatory factors or serving as DNA injury markers, may have an effect on DNA structure and the interaction of genomic DNA with proteins. Thus, these modifications can influence plant development and adaptation to environmental stress. Here, for the first time, the changes in DNA global levels of m5C, hm5C, and 8-oxo-7,8-dihydroguanine (8-oxoG) measured by ELISA have been documented in recalcitrant embryonic axes subjected to desiccation and accelerated aging. We demonstrated that tissue desiccation induces a similar trend in changes in the global level of hm5C and 8-oxoG, which may suggest that they both originate from the activity of reactive oxygen species (ROS). Our study supports the premise that m5C can serve as a marker of plant tissue viability whereas oxidized nucleobases, although indicating a cellular redox state, cannot.
Collapse
|
2
|
Lee C, Kim J. Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 2022; 23:192. [PMID: 35527780 PMCID: PMC9073582 DOI: 10.3892/ol.2022.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor-initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell-specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
3
|
Plitta-Michalak BP, Ramos AA, Pupel P, Michalak M. Oxidative damage and DNA repair in desiccated recalcitrant embryonic axes of Acer pseudoplatanus L. BMC PLANT BIOLOGY 2022; 22:40. [PMID: 35045819 PMCID: PMC8767751 DOI: 10.1186/s12870-021-03419-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (٠OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.
Collapse
Affiliation(s)
- Beata P. Plitta-Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Alice A. Ramos
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto (U. Porto), Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Center for Marine and Environmental Research (CIIMAR), University of Porto (U. Porto), Avenida General Norton de Matos, 4450-208 Matosinhos, Portugal
| | - Piotr Pupel
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Michalak
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A/103, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Dey D, Hasan MM, Biswas P, Papadakos SP, Rayan RA, Tasnim S, Bilal M, Islam MJ, Arshe FA, Arshad EM, Farzana M, Rahaman TI, Baral SK, Paul P, Bibi S, Rahman MA, Kim B. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol 2022; 12:899009. [PMID: 35719997 PMCID: PMC9198638 DOI: 10.3389/fonc.2022.899009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sabiha Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Efat Muhammad Arshad
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Maisha Farzana
- College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Priyanka Paul
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md. Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|
5
|
Tolouee M, Hendriks KDW, Lie FF, Gartzke LP, Goris M, Hoogstra-Berends F, Bergink S, Henning RH. Cooling of Cells and Organs Confers Extensive DNA Strand Breaks Through Oxidative Stress and ATP Depletion. Cell Transplant 2022; 31:9636897221108705. [PMID: 35808831 PMCID: PMC9272479 DOI: 10.1177/09636897221108705] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cooling at 4°C is routinely used to lower metabolism and preserve cell and tissue integrity in laboratory and clinical settings, including organ transplantation. However, cooling and rewarming produce cell damage, attributed primarily to a burst of reactive oxygen species (ROS) upon rewarming. While DNA represents a highly vulnerable target of ROS, it is unknown whether cooling and/or rewarming produces DNA damage. Here, we show that cooling alone suffices to produce extensive DNA damage in cultured primary cells and cell lines, including double-strand breaks (DSBs), as shown by comet assay and pulsed-field gel electrophoresis. Cooling-induced DSB formation is time- and temperature-dependent and coincides with an excess production of ROS, rather than a decrease in ATP levels. Immunohistochemistry confirmed that DNA damage activates the DNA damage response marked by the formation of nuclear foci of proteins involved in DSB repair, γ-H2Ax, and 53BP1. Subsequent rewarming for 24 h fails to recover ATP levels and only marginally lowers DSB amounts and nuclear foci. Precluding ROS formation by dopamine and the hydroxychromanol, Sul-121, dose-dependently reduces DSBs. Finally, a standard clinical kidney transplant procedure, using cold static storage in UW preservation solution up to 24 h in porcine kidney, lowered ATP, increased ROS, and produced increasing amounts of DSBs with recruitment of 53BP1. Given that DNA repair is erroneous by nature, cooling-inflicted DNA damage may affect cell survival, proliferation, and genomic stability, significantly impacting cellular and organ function, with relevance in stem cell and transplantation procedures.
Collapse
Affiliation(s)
- Marziyeh Tolouee
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Koen D W Hendriks
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fia Fia Lie
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Pharmacology, Medical Faculty, Universitas Tarumanagara, Jakarta, Indonesia
| | - Lucas P Gartzke
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maaike Goris
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Femke Hoogstra-Berends
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems (BSCS), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robert H Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
6
|
Jamsen JA, Sassa A, Perera L, Shock DD, Beard WA, Wilson SH. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair. Nat Commun 2021; 12:5055. [PMID: 34417448 PMCID: PMC8379156 DOI: 10.1038/s41467-021-24486-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
Reactive oxygen species (ROS) oxidize cellular nucleotide pools and cause double strand breaks (DSBs). Non-homologous end-joining (NHEJ) attaches broken chromosomal ends together in mammalian cells. Ribonucleotide insertion by DNA polymerase (pol) μ prepares breaks for end-joining and this is required for successful NHEJ in vivo. We previously showed that pol μ lacks discrimination against oxidized dGTP (8-oxo-dGTP), that can lead to mutagenesis, cancer, aging and human disease. Here we reveal the structural basis for proficient oxidized ribonucleotide (8-oxo-rGTP) incorporation during DSB repair by pol μ. Time-lapse crystallography snapshots of structural intermediates during nucleotide insertion along with computational simulations reveal substrate, metal and side chain dynamics, that allow oxidized ribonucleotides to escape polymerase discrimination checkpoints. Abundant nucleotide pools, combined with inefficient sanitization and repair, implicate pol μ mediated oxidized ribonucleotide insertion as an emerging source of widespread persistent mutagenesis and genomic instability.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| | - Akira Sassa
- Laboratory of Chromatin Metabolism and Epigenetics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA.
| |
Collapse
|
7
|
Shelke S, Das B. Radio-adaptive response and correlation of non-homologous end joining repair gene polymorphisms [XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T)] in human peripheral blood mononuclear cells exposed to gamma radiation. Genes Environ 2021; 43:9. [PMID: 33685509 PMCID: PMC7938547 DOI: 10.1186/s41021-021-00176-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Radio-adaptive response (RAR) is transient phenomena, where cells conditioned with a small dose (priming) of ionizing radiation shows significantly reduced DNA damage with a subsequent high challenging dose. The role of DNA double strand break repair gene polymorphism in RAR is not known. In the present study attempt was made to find out the influence of NHEJ repair gene polymorphisms [a VNTR; XRCC5 (3R/2R/1R/0R); two single nucleotide polymorphisms (SNPs); XRCC6 (C/G) and XRCC7 (G/T)] with DNA damage, repair and mRNA expression in human PBMCs in dose and adaptive response studies. Genomic DNA extracted from venous blood samples of 20 random healthy donors (16 adaptive and 4 non-adaptive) and genotyping of NHEJ repair genes was carried out using PCR amplified length polymorphism. RESULTS The dose response study revealed significant positive correlation of genotypes at XRRC5 (3R/2R/1R/0R), XRCC6(C/G) and XRCC7 (G/T) with DNA damage. Donors having genotypes with 2R allele at XRCC5 showed significant positive correlation with mRNA expression level (0R/2R: r = 0.846, P = 0.034; 1R/2R: r = 0.698, P = 0.0001 and 2R/2R: r = 0.831, P = 0.0001) for dose response. Genotypes C/C and C/G of XRCC6 showed a significant positive correlation (P = 0.0001), whereas, genotype T/T of XRCC7 showed significant negative correlation (r = - 0.376, P = 0.041) with mRNA expression. CONCLUSION Interestingly, adaptive donors having C/G genotype of XRCC6 showed significantly higher (P < 0.05) mRNA expression level in primed cells suggesting their role in RAR. In addition, NHEJ repair gene polymorphisms play crucial role with radio-sensitivity and RAR in human PBMCs.
Collapse
Affiliation(s)
- Shridevi Shelke
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - Birajalaxmi Das
- Low Level Radiation Research Section, Radiation Biology & Health Sciences Division, Bio-Sciences Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India.
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, 400094, India.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) are defined by their ability to self-renew and differentiate to replenish all blood lineages throughout adult life. Under homeostasis, the majority of HSCs are quiescent, and few stem cells are cycling to sustain hematopoiesis. However, HSCs can be induced to proliferate and differentiate in response to stress signals produced during infection, inflammation, chemotherapy, radiation, bone marrow transplantation, and aging. Recent evidence suggests that acute and chronic stress impact the number and function of HSCs including their ability to repopulate and produce mature cells. This review will focus on how chronic stress affects HSC biology and methods to mitigate HSC loss during chronic hematopoietic stress. RECENT FINDINGS Quiescent HSCs exit dormancy, divide, and differentiate to maintain steady-state hematopoiesis. Under conditions of acute stress including infection or blood loss some HSCs are pushed into division by cytokines and proinflammatory stimuli to differentiate and provide needed myeloid and erythroid cells to protect and reconstitute the host; after which, hematopoiesis returns to steady-state with minimal loss of HSC function. However, under conditions of chronic stress including serial bone marrow transplantation (BMT), chronic inflammation, and genotoxic stress (chemotherapy) and aging, HSCs are continuously induced to proliferate and undergo accelerated exhaustion. Recent evidence demonstrates that ablation of inhibitor of DNA binding 1 (Id1) gene can protect HSCs from exhaustion during chronic proliferative stress by promoting HSC quiescence. SUMMARY Increasing our understanding of the molecular processes that protect HSCs from chronic proliferative stress could lead to therapeutic opportunities to prevent accelerated HSC exhaustion during physiological stress, genotoxic stress, BMT, and aging.
Collapse
|
9
|
Wang YQ, Yang YS, Chen J, Liu MH, Chen GQ, Huang Y. FAM122A maintains DNA stability possibly through the regulation of topoisomerase IIα expression. Exp Cell Res 2020; 396:112242. [PMID: 32866497 DOI: 10.1016/j.yexcr.2020.112242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022]
Abstract
FAM122A is a housekeeping gene and highly conserved in mammals. More recently, we have demonstrated that FAM122A is essential for maintaining the growth of hepatocellular carcinoma cells, in which we unexpectedly found that FAM122A deletion increases γH2AX protein level, suggesting that FAM122A may participate in the regulation of DNA homeostasis or stability. In this study, we continued to investigate the potential role of FAM122A in DNA damage and/or repair. We found that CRISPR/Cas9-mediated FAM122A deletion enhances endogenous DNA damages in cancer cells but not in normal cells, demonstrating a significant increase in γH2AX protein and foci formation of γH2AX and 53BP1, as well as DNA breaks by comet assay. Further, we found that FAM122A deletion greatly increases TOP2α protein level, and significantly and specifically enhances TOP2 poisons (etoposide and doxorubicin)-induced DNA damage effects in cancer cells. Moreover, FAM122A is found to be interacted with TOP2α, instead of TOP2β. However, FAM122A knockout doesn't affect the intracellular ROS levels and the process of DNA repair after removal of etoposide with short-term stimulation, suggesting that FAM122A deletion-enhanced DNA damage does not result from endogenous overproduction of ROS and/or impairment of DNA repair ability. Collectively, our study provides the first demonstration that FAM122A is critical for maintaining DNA stability probably by modulating TOP2α protein, and FAM122A deletion combined with TOP2-targeted drugs may represent a potential novel chemotherapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Yin-Qi Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Sheng Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Man-Hua Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, and Chinese Academy of Medical Sciences Research Unit, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
10
|
Johra FT, Bepari AK, Bristy AT, Reza HM. A Mechanistic Review of β-Carotene, Lutein, and Zeaxanthin in Eye Health and Disease. Antioxidants (Basel) 2020; 9:E1046. [PMID: 33114699 PMCID: PMC7692753 DOI: 10.3390/antiox9111046] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022] Open
Abstract
Carotenoids are natural lipid-soluble antioxidants abundantly found as colorful pigments in fruits and vegetables. At least 600 carotenoids occur naturally, although about 20 of them, including β-carotene, α-carotene, lycopene, lutein, zeaxanthin, meso-zeaxanthin, and cryptoxanthin, are detectable in the human blood. They have distinct physiological and pathophysiological functions ranging from fetal development to adult homeostasis. β-carotene is a precursor of vitamin A that essentially functions in many biological processes including vision. The human macula lutea and eye lens are rich in lutein, zeaxanthin, and meso-zeaxanthin, collectively known as macular xanthophylls, which help maintain eye health and prevent ophthalmic diseases. Ocular carotenoids absorb light from the visible region (400-500 nm wavelength), enabling them to protect the retina and lens from potential photochemical damage induced by light exposure. These natural antioxidants also aid in quenching free radicals produced by complex physiological reactions and, consequently, protect the eye from oxidative stress, apoptosis, mitochondrial dysfunction, and inflammation. This review discusses the protective mechanisms of macular xanthophylls in preventing eye diseases such as cataract, age-related macular degeneration, and diabetic retinopathy. Moreover, some preclinical animal studies and some clinical trials are discussed briefly to understand carotenoid safety and efficacy.
Collapse
Affiliation(s)
| | | | | | - Hasan Mahmud Reza
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Bashundhara R/A, Dhaka 1229, Bangladesh; (F.T.J.); (A.K.B.); (A.T.B.)
| |
Collapse
|
11
|
Sánchez-Morán I, Rodríguez C, Lapresa R, Agulla J, Sobrino T, Castillo J, Bolaños JP, Almeida A. Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. SCIENCE ADVANCES 2020; 6:6/41/eabc5702. [PMID: 33028529 PMCID: PMC7541066 DOI: 10.1126/sciadv.abc5702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/18/2020] [Indexed: 05/07/2023]
Abstract
Failure of neurons to efficiently repair DNA double-strand breaks (DSBs) contributes to cerebral damage after stroke. However, the molecular machinery that regulates DNA repair in this neurological disorder is unknown. Here, we found that DSBs in oxygen/glucose-deprived (OGD) neurons spatiotemporally correlated with the up-regulation of WRAP53 (WD40-encoding p53-antisense RNA), which translocated to the nucleus to activate the DSB repair response. Mechanistically, OGD triggered a burst in reactive oxygen species that induced both DSBs and translocation of WRAP53 to the nucleus to promote DNA repair, a pathway that was confirmed in an in vivo mouse model of stroke. Noticeably, nuclear translocation of WRAP53 occurred faster in OGD neurons expressing the Wrap53 human nonsynonymous single-nucleotide polymorphism (SNP) rs2287499 (c.202C>G). Patients carrying this SNP showed less infarct volume and better functional outcome after stroke. These results indicate that WRAP53 fosters DNA repair and neuronal survival to promote functional recovery after stroke.
Collapse
Affiliation(s)
- Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Jesús Agulla
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| | - Tomás Sobrino
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - José Castillo
- Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
- CIBERFES, Instituto de Salud Carlos III, Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, CSIC, University of Salamanca, Calle Zacarías González 2, 37007 Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Calle Zacarías González 2, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Aikawa A, Kozako T, Uchida Y, Yoshimitsu M, Ishitsuka K, Ohsugi T, Honda SI. Cell death induced by dorsomorphin in adult T-cell leukemia/lymphoma is AMPK-independent. FEBS J 2020; 287:4005-4015. [PMID: 32027454 DOI: 10.1111/febs.15239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Adult T-cell leukemia/lymphoma (ATL) is an aggressive T-cell neoplasm with poor prognosis that develops after chronic infection with human T-cell leukemia virus type 1 (HTLV-1). Although AMP-activated protein kinase (AMPK) is a critical cellular energy sensor, it has recently become clear that AMPK can act as a tumor regulator. Here, we assessed the expression of AMPK in primary ATL cells and the effects of dorsomorphin, an AMPK inhibitor, on primary ATL cells and HTLV-1-infected T-cell lines. AMPK expression in acute and chronic ATL patients was significantly higher than in asymptomatic HTLV-1 carriers and healthy donors. Dorsomorphin induced apoptosis in peripheral blood mononuclear cells from ATL patients. Dorsomorphin also induced dose- and time-dependent apoptosis in HTLV-1-infected T-cell lines. Dorsomorphin increased the production of intracellular reactive oxygen species (ROS) and induced ataxia telangiectasia-mutated Ser1981 phosphorylation and p53 accumulation. These results indicated that dorsomorphin induces apoptosis via ROS-mediated DNA damage in HTLV-1-infected T-cell lines. Furthermore, dorsomorphin suppressed the growth of human ATL tumor xenografts in NOD/SCID mice. Together, these data suggest that AMPK could be a candidate therapeutic target for ATL and that dorsomorphin could be a therapeutic agent for ATL.
Collapse
Affiliation(s)
- Akiyoshi Aikawa
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | - Tomohiro Kozako
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| | - Yuichiro Uchida
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan
| | - Makoto Yoshimitsu
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan.,Department of Hematology and Immunology, Kagoshima University Hospital, Japan
| | - Kenji Ishitsuka
- Division of Hematology and Immunology, Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University, Japan.,Department of Hematology and Immunology, Kagoshima University Hospital, Japan
| | - Takeo Ohsugi
- Department of Hematology and Immunology, Rakuno Gakuen University, Hokkaido, Japan
| | - Shin-Ichiro Honda
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, Japan
| |
Collapse
|
13
|
Weissman JL, Fagan WF, Johnson PLF. Linking high GC content to the repair of double strand breaks in prokaryotic genomes. PLoS Genet 2019; 15:e1008493. [PMID: 31703064 PMCID: PMC6867656 DOI: 10.1371/journal.pgen.1008493] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 11/20/2019] [Accepted: 10/25/2019] [Indexed: 01/21/2023] Open
Abstract
Genomic GC content varies widely among microbes for reasons unknown. While mutation bias partially explains this variation, prokaryotes near-universally have a higher GC content than predicted solely by this bias. Debate surrounds the relative importance of the remaining explanations of selection versus biased gene conversion favoring GC alleles. Some environments (e.g. soils) are associated with a high genomic GC content of their inhabitants, which implies that either high GC content is a selective adaptation to particular habitats, or that certain habitats favor increased rates of gene conversion. Here, we report a novel association between the presence of the non-homologous end joining DNA double-strand break repair pathway and GC content; this observation suggests that DNA damage may be a fundamental driver of GC content, leading in part to the many environmental patterns observed to-date. We discuss potential mechanisms accounting for the observed association, and provide preliminary evidence that sites experiencing higher rates of double-strand breaks are under selection for increased GC content relative to the genomic background. The overall nucleotide composition of an organism’s genome varies greatly between species. Previous work has identified certain environmental factors (e.g., oxygen availability) associated with the relative number of GC bases as opposed to AT bases in the genomes of species. Many of these environments that are associated with high GC content are also associated with relatively high rates of DNA damage. We show that organisms possessing the non-homologous end-joining DNA repair pathway, which is one mechanism to repair DNA double-strand breaks, have an elevated GC content relative to expectation. We also show that certain sites on the genome that are particularly susceptible to double strand breaks have an elevated GC content. This leads us to suggest that an important underlying driver of variability in nucleotide composition across environments is the rate of DNA damage (specifically double-strand breaks) to which an organism living in each environment is exposed.
Collapse
Affiliation(s)
- JL Weissman
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
| | - William F. Fagan
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
| | - Philip L. F. Johnson
- Department of Biology, University of Maryland - College Park, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L. γ-H2AX Foci Persistence at Chromosome Break Suggests Slow and Faithful Repair Phases Restoring Chromosome Integrity. Cancers (Basel) 2019; 11:cancers11091397. [PMID: 31546867 PMCID: PMC6770925 DOI: 10.3390/cancers11091397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023] Open
Abstract
Many toxic agents can cause DNA double strand breaks (DSBs), which are in most cases quickly repaired by the cellular machinery. Using ionising radiation, we explored the kinetics of DNA lesion signaling and structural chromosome aberration formation at the intra- and inter-chromosomal level. Using a novel approach, the classic Premature Chromosome Condensation (PCC) was combined with γ-H2AX immunofluorescence staining in order to unravel the kinetics of DNA damage signalisation and chromosome repair. We identified an early mechanism of DNA DSB joining that occurs within the first three hours post-irradiation, when dicentric chromosomes and chromosome exchanges are formed. The slower and significant decrease of ”deleted chromosomes” and 1 acentric telomere fragments observed until 24 h post-irradiation, leads to the conclusion that a second and error-free repair mechanism occurs. In parallel, we revealed remaining signalling of γ-H2AX foci at the site of chromosome fusion long after the chromosome rearrangement formation. Moreover there is important signalling of foci on the site of telomere and sub-telomere sequences suggesting either a different function of γ-H2AX signalling in these regions or an extreme sensibility of the telomere sequences to DNA damage that remains unrepaired 24 h post-irradiation. In conclusion, chromosome repair happens in two steps, including a last and hardly detectable one because of restoration of the chromosome integrity.
Collapse
Affiliation(s)
- Michelle Ricoul
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Tamizh Selvan Gnana Sekaran
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Patricia Brochard
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Cecile Herate
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| | - Laure Sabatier
- PROCyTox, French Alternative Energies and Atomic Energy Commission (CEA), Paris-Saclay University, 92260 Fontenay-aux-Roses, France.
| |
Collapse
|
15
|
de Jonge MM, Ritterhouse LL, de Kroon CD, Vreeswijk MPG, Segal JP, Puranik R, Hollema H, Rookus MA, van Asperen CJ, van Leeuwen FE, Smit VTHBM, Howitt BE, Bosse T. Germline BRCA-Associated Endometrial Carcinoma Is a Distinct Clinicopathologic Entity. Clin Cancer Res 2019; 25:7517-7526. [PMID: 31492746 DOI: 10.1158/1078-0432.ccr-19-0848] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/05/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Whether endometrial carcinoma (EC) should be considered part of the gBRCA1/2-associated hereditary breast and ovarian cancer (HBOC) syndrome is topic of debate. We sought to assess whether ECs occurring in gBRCA carriers are enriched for clinicopathologic and molecular characteristics, thereby supporting a causal relationship. EXPERIMENTAL DESIGN Thirty-eight gBRCA carriers that developed EC were selected from the nationwide cohort study on hereditary breast and ovarian cancer in the Netherlands (HEBON), and these were supplemented with four institutional cases. Tumor tissue was retrieved via PALGA (Dutch Pathology Registry). Nineteen morphologic features were scored and histotype was determined by three expert gynecologic pathologists, blinded for molecular analyses (UCM-OncoPlus Assay including 1213 genes). ECs with LOH of the gBRCA-wild-type allele (gBRCA/LOHpos) were defined "gBRCA-associated," those without LOH (gBRCA/LOHneg) were defined "sporadic." RESULTS LOH could be assessed for 40 ECs (30 gBRCA1, 10 gBRCA2), of which 60% were gBRCA/LOHpos. gBRCA/LOHpos ECs were more frequently of nonendometrioid (58%, P = 0.001) and grade 3 histology (79%, P < 0.001). All but two were in the TP53-mutated TCGA-subgroup (91.7%, P < 0.001). In contrast, gBRCA/LOHneg ECs were mainly grade 1 endometrioid EC (94%) and showed a more heterogeneous distribution of TCGA-molecular subgroups: POLE-mutated (6.3%), MSI-high (25%), NSMP (62.5%), and TP53-mutated (6.3%). CONCLUSIONS We provide novel evidence in favor of EC being part of the gBRCA-associated HBOC-syndrome. gBRCA-associated ECs are enriched for EC subtypes associated with unfavorable clinical outcome. These findings have profound therapeutic consequences as these patients may benefit from treatment strategies such as PARP inhibitors. In addition, it should influence counseling and surveillance of gBRCA carriers.
Collapse
Affiliation(s)
- Marthe M de Jonge
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lauren L Ritterhouse
- Division of Genomic and Molecular Pathology, Department of Pathology, The University of Chicago, Chicago, Illinois
| | - Cornelis D de Kroon
- Department of Gynaecology, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jeremy P Segal
- Division of Genomic and Molecular Pathology, Department of Pathology, The University of Chicago, Chicago, Illinois
| | | | - Harry Hollema
- Department of Pathology, University Medical Center Groningen, Groningen, the Netherlands
| | - Matti A Rookus
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Flora E van Leeuwen
- Department of Epidemiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Vincent T H B M Smit
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Brooke E Howitt
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Tjalling Bosse
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands.
| | | |
Collapse
|
16
|
Weissman JL, Laljani RMR, Fagan WF, Johnson PLF. Visualization and prediction of CRISPR incidence in microbial trait-space to identify drivers of antiviral immune strategy. ISME JOURNAL 2019; 13:2589-2602. [PMID: 31239539 PMCID: PMC6776019 DOI: 10.1038/s41396-019-0411-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/15/2019] [Accepted: 03/24/2019] [Indexed: 01/21/2023]
Abstract
Bacteria and archaea are locked in a near-constant battle with their viral pathogens. Despite previous mechanistic characterization of numerous prokaryotic defense strategies, the underlying ecological drivers of different strategies remain largely unknown and predicting which species will take which strategies remains a challenge. Here, we focus on the CRISPR immune strategy and develop a phylogenetically-corrected machine learning approach to build a predictive model of CRISPR incidence using data on over 100 traits across over 2600 species. We discover a strong but hitherto-unknown negative interaction between CRISPR and aerobicity, which we hypothesize may result from interference between CRISPR-associated proteins and non-homologous end-joining DNA repair due to oxidative stress. Our predictive model also quantitatively confirms previous observations of an association between CRISPR and temperature. Finally, we contrast the environmental associations of different CRISPR system types (I, II, III) and restriction modification systems, all of which act as intracellular immune systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Rohan M R Laljani
- Department of Biology, University of Maryland, College Park, MD, USA
| | - William F Fagan
- Department of Biology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
17
|
Jiménez-Solas T, López-Cadenas F, Aires-Mejía I, Caballero-Berrocal JC, Ortega R, Redondo AM, Sánchez-Guijo F, Muntión S, García-Martín L, Albarrán B, Alonso JM, Del Cañizo C, Hernández-Hernández Á, Díez-Campelo M. Deferasirox reduces oxidative DNA damage in bone marrow cells from myelodysplastic patients and improves their differentiation capacity. Br J Haematol 2019; 187:93-104. [PMID: 31172513 DOI: 10.1111/bjh.16013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Patients with low-risk myelodysplastic syndromes (MDS) usually develop iron overload. This leads to a high level of oxidative stress in the bone marrow (BM) and increases haematopoietic cell dysfunction. Our objective was to analyse whether chelation with deferasirox (DFX) alleviates the consequences of oxidative stress and improves BM cell functionality. We analysed 13 iron-overloaded MDS patients' samples before and 4-10 months after treatment with DFX. Using multiparametric flow cytometry analysis, we measured intracellular reactive oxygen species (ROS), DNA oxidation and double strand breaks. Haematopoietic differentiation capacity was analysed by colony-forming unit (CFU) assays. Compared to healthy donors, MDS showed a higher level of intracellular ROS and DNA oxidative damage in BM cells. DNA oxidative damage decreased following DFX treatment. Furthermore, the clonogenic assays carried out before treatment suggest an impaired haematopoietic differentiation. DFX seems to improve this capacity, as illustrated by a decreased cluster/CFU ratio, which reached values similar to controls. We conclude that BM cells from MDS are subject to higher oxidative stress conditions and show an impaired haematopoietic differentiation. These adverse features seem to be partially rectified after DFX treatment.
Collapse
Affiliation(s)
- Tamara Jiménez-Solas
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Félix López-Cadenas
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Irene Aires-Mejía
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Juan Carlos Caballero-Berrocal
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Rebeca Ortega
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Alba María Redondo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Fermín Sánchez-Guijo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Sandra Muntión
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Luís García-Martín
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Beatriz Albarrán
- Servicio de Hematología, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | - José María Alonso
- Servicio de Hematología, Complejo Asistencial Universitario de Palencia, Palencia, Spain
| | | | - Ángel Hernández-Hernández
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.,Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, Spain
| | - María Díez-Campelo
- Servicio de Hematología, Hospital Universitario de Salamanca, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
18
|
Hu M, Jovanović B, Palić D. In silico prediction of MicroRNA role in regulation of Zebrafish (Danio rerio) responses to nanoparticle exposure. Toxicol In Vitro 2019; 60:187-202. [PMID: 31132477 DOI: 10.1016/j.tiv.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/05/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022]
Abstract
The release of nanoparticles to the environment can affect health of the exposed organisms. MicroRNAs have been suggested as potential toxicology biomarkers, however the information about use of microRNA in aquatic organisms exposed to nanoparticles (NP) is limited. In silico analysis from publicly available gene expression data was performed. Data selection for the analysis was based on reported biological and pathological outcomes of NP induced toxicity in zebrafish. After identifying relevant genes, we constructed six miRNA-mRNA regulatory networks involved in nanoparticle induced toxicological responses in zebrafish. Based on our prediction and selection criteria we selected six miRNAs that overlapped in constructed networks with remarkable prediction score, and were validated by previous mammalian and zebrafish microRNA profiling studies: dre-miR-124, -144, -148, -155, -19a, -223. The results of this in silico analysis indicate that several highly conserved miRNAs likely have a regulatory role of organismal responses to nanoparticles, and can possibly be used as biomarkers of nanotoxicity in studies using zebrafish as model organism One health approaches.
Collapse
Affiliation(s)
- Moyan Hu
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Boris Jovanović
- Department of Natural Resources Ecology and Management, Iowa State University, Ames, IA, USA
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Munich, Germany.
| |
Collapse
|
19
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
20
|
Zhu LS, Wang DQ, Cui K, Liu D, Zhu LQ. Emerging Perspectives on DNA Double-strand Breaks in Neurodegenerative Diseases. Curr Neuropharmacol 2019; 17:1146-1157. [PMID: 31362659 PMCID: PMC7057204 DOI: 10.2174/1570159x17666190726115623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/03/2019] [Accepted: 07/01/2019] [Indexed: 11/22/2022] Open
Abstract
DNA double-strand breaks (DSBs) are common events that were recognized as one of the most toxic lesions in eukaryotic cells. DSBs are widely involved in many physiological processes such as V(D)J recombination, meiotic recombination, DNA replication and transcription. Deregulation of DSBs has been reported in multiple diseases in human beings, such as the neurodegenerative diseases, with which the underlying mechanisms are needed to be illustrated. Here, we reviewed the recent insights into the dysfunction of DSB formation and repair, contributing to the pathogenesis of neurodegenerative disorders including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and ataxia telangiectasia (A-T).
Collapse
Affiliation(s)
| | | | | | | | - Ling-Qiang Zhu
- Address correspondence to this author at the Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China; Tel: 862783692625; Fax: 862783692608; E-mail:
| |
Collapse
|
21
|
Silva GÁF, Nunes RAL, Morale MG, Boccardo E, Aguayo F, Termini L. Oxidative stress: therapeutic approaches for cervical cancer treatment. Clinics (Sao Paulo) 2018; 73:e548s. [PMID: 30540121 PMCID: PMC6257060 DOI: 10.6061/clinics/2018/e548s] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/24/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress results from an imbalance between the generation and elimination of oxidant species. This condition may result in DNA, RNA and protein damage, leading to the accumulation of genetic alterations that can favor malignant transformation. Persistent infection with high-risk human papillomavirus types is associated with inflammatory responses and reactive oxygen species production. In this context, oxidative stress, chronic inflammation and high-risk human papillomavirus can act in a synergistic manner. To counteract the harmful effects of oxidant species, protective molecules, known as antioxidant defenses, are produced by cells to maintain redox homeostasis. In recent years, the use of natural antioxidants as therapeutic strategies for cancer treatment has attracted the attention of the scientific community. This review discusses specific molecules and mechanisms that can act against or together with oxidative stress, presenting alternatives for cervical cancer prevention and treatment.
Collapse
Affiliation(s)
- Gabriela Ávila Fernandes Silva
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Rafaella Almeida Lima Nunes
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Mirian Galliote Morale
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Departamento de Radiologia e Oncologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, BR
| | - Enrique Boccardo
- Laboratorio de Oncovirologia, Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Francisco Aguayo
- Centro Avanzado de Enfermedades Cronicas (ACCDiS), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Oncologia Basico Clinica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lara Termini
- Instituto do Cancer do Estado de Sao Paulo ICESP, Centro de Investigacao Translacional em Oncologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| |
Collapse
|
22
|
UHRF1 depletion sensitizes retinoblastoma cells to chemotherapeutic drugs via downregulation of XRCC4. Cell Death Dis 2018; 9:164. [PMID: 29415984 PMCID: PMC5833858 DOI: 10.1038/s41419-017-0203-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 12/19/2022]
Abstract
UHRF1 (ubiquitin-like with PHD and ring finger domains 1) is highly expressed in various human cancers including retinoblastoma, and associated with tumor-promoting effects such as inhibition of apoptosis and high proliferation. However, the molecular mechanisms underlying tumor-promoting functions of UHRF1 in retinoblastoma still remain elusive. Here, we show that stable knockdown of UHRF1 renders retinoblastoma cells sensitized to conventional chemotherapeutic drugs such as etoposide and camptothecin, resulting in enhanced DNA damage and apoptotic cell death. We found that UHRF1-depleted retinoblastoma cells can recognize DNA damages normally but have markedly low expression of XRCC4 (X-ray repair cross complementing 4) among the components of nonhomologous end-joining (NHEJ) repair complex. Conversely, overexpression of UHRF1 increased the XRCC4 expression and stable knockdown of XRCC4 sensitized retinoblastoma cells to etoposide treatment, suggesting that XRCC4 is a key mediator for the drug sensitivity upon UHRF1 depletion in retinoblastoma cells. Consistent with the findings, chromatin association of DNA ligase IV in response to acute DNA damage was found to be significantly reduced in UHRF1-depleted retinoblastoma cells and functional complementation for XRCC4 in UHRF1-depleted cells attenuated the drug sensitivity, demonstrating that XRCC4 downregulation in UHRF1-depleted cells impaired DNA repair and consequently induced robust apoptosis upon genotoxic drug treatment. In human primary retinoblastoma, high expression of UHRF1 and XRCC4 could be detected, and elevated XRCC4 expression correlated with reduced apoptosis markers, implying that UHRF1-mediated XRCC4 upregulation under pathophysiological conditions triggered by RB1 gene inactivation may confer protection against endogenous DNA damages that arise during retinoblastoma development. Taken together, these results present a new mechanistic insight into how UHRF1 mediates its tumor-promoting functions in retinoblastoma, and also provide a basis for UHRF1 targeting to improve the efficacy of current chemotherapy for retinoblastoma treatment.
Collapse
|
23
|
Sharma V, Collins LB, Chen TH, Herr N, Takeda S, Sun W, Swenberg JA, Nakamura J. Oxidative stress at low levels can induce clustered DNA lesions leading to NHEJ mediated mutations. Oncotarget 2018; 7:25377-90. [PMID: 27015367 PMCID: PMC5041911 DOI: 10.18632/oncotarget.8298] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 03/13/2016] [Indexed: 12/12/2022] Open
Abstract
DNA damage and mutations induced by oxidative stress are associated with various different human pathologies including cancer. The facts that most human tumors are characterized by large genome rearrangements and glutathione depletion in mice results in deletions in DNA suggest that reactive oxygen species (ROS) may cause gene and chromosome mutations through DNA double strand breaks (DSBs). However, the generation of DSBs at low levels of ROS is still controversial. In the present study, we show that H2O2 at biologically-relevant levels causes a marked increase in oxidative clustered DNA lesions (OCDLs) with a significant elevation of replication-independent DSBs. Although it is frequently reported that OCDLs are fingerprint of high-energy IR, our results indicate for the first time that H2O2, even at low levels, can also cause OCDLs leading to DSBs specifically in G1 cells. Furthermore, a reverse genetic approach revealed a significant contribution of the non-homologous end joining (NHEJ) pathway in H2O2-induced DNA repair & mutagenesis. This genomic instability induced by low levels of ROS may be involved in spontaneous mutagenesis and the etiology of a wide variety of human diseases like chronic inflammation-related disorders, carcinogenesis, neuro-degeneration and aging.
Collapse
Affiliation(s)
- Vyom Sharma
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Leonard B Collins
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Ting-Huei Chen
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie Herr
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Wei Sun
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A Swenberg
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Jun Nakamura
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| |
Collapse
|
24
|
Induction of DNA Damages upon Marek's Disease Virus Infection: Implication in Viral Replication and Pathogenesis. J Virol 2017; 91:JVI.01658-17. [PMID: 28978699 DOI: 10.1128/jvi.01658-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 12/23/2022] Open
Abstract
Marek's disease virus (MDV) is a highly contagious alphaherpesvirus that infects chickens and causes a deadly neoplastic disease. We previously demonstrated that MDV infection arrests cells in S phase and that the tegument protein VP22 plays a major role in this process. In addition, expression of VP22 induces double-strand breaks (DSBs) in the cellular DNA, suggesting that DNA damage and the associated cellular response might be favorable for the MDV life cycle. Here, we addressed the role of DNA damage in MDV replication and pathogenesis. We demonstrated that MDV induces DSBs during lytic infection in vitro and in the peripheral blood mononuclear cells of infected animals. Intriguingly, we did not observe DNA damage in latently infected MDV-induced lymphoblastoid cells, while MDV reactivation resulted in the onset of DNA lesions, suggesting that DNA damage and/or the resulting DNA damage response might be required for efficient MDV replication and reactivation. In addition, reactivation was significantly enhanced by the induction of DNA damage using a number of chemicals. Finally, we used recombinant viruses to show that VP22 is required for the induction of DNA damage in vivo and that this likely contributes to viral oncogenesis.IMPORTANCE Marek's disease virus is an oncogenic alphaherpesvirus that causes fatal T-cell lymphomas in chickens. MDV causes substantial losses in the poultry industry and is also used in small-animal models for virus-induced tumor formation. DNA damage not only is implicated in tumor development but also aids in the life cycle of several viruses; however, its role in MDV replication, latency, and reactivation remains elusive. Here, we demonstrate that MDV induces DNA lesions during lytic replication in vitro and in vivo DNA damage was not observed in latently infected cells; however, it was reinitiated during reactivation. Reactivation was significantly enhanced by the induction of DNA damage. Recombinant viruses that lacked the ability to induce DNA damage were defective in their ability to induce tumors, suggesting that DNA damage might also contribute to cellular transformation processes leading to MDV lymphomagenesis.
Collapse
|
25
|
Morris LP, Conley AB, Degtyareva N, Jordan IK, Doetsch PW. Genome-wide map of Apn1 binding sites under oxidative stress in Saccharomyces cerevisiae. Yeast 2017; 34:447-458. [PMID: 28752642 DOI: 10.1002/yea.3247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 12/18/2022] Open
Abstract
The DNA is cells is continuously exposed to reactive oxygen species resulting in toxic and mutagenic DNA damage. Although the repair of oxidative DNA damage occurs primarily through the base excision repair (BER) pathway, the nucleotide excision repair (NER) pathway processes some of the same lesions. In addition, damage tolerance mechanisms, such as recombination and translesion synthesis, enable cells to tolerate oxidative DNA damage, especially when BER and NER capacities are exceeded. Thus, disruption of BER alone or disruption of BER and NER in Saccharomyces cerevisiae leads to increased mutations as well as large-scale genomic rearrangements. Previous studies demonstrated that a particular region of chromosome II is susceptible to chronic oxidative stress-induced chromosomal rearrangements, suggesting the existence of DNA damage and/or DNA repair hotspots. Here we investigated the relationship between oxidative damage and genomic instability utilizing chromatin immunoprecipitation combined with DNA microarray technology to profile DNA repair sites along yeast chromosomes under different oxidative stress conditions. We targeted the major yeast AP endonuclease Apn1 as a representative BER protein. Our results indicate that Apn1 target sequences are enriched for cytosine and guanine nucleotides. We predict that BER protects these sites in the genome because guanines and cytosines are thought to be especially susceptible to oxidative attack, thereby preventing large-scale genome destabilization from chronic accumulation of DNA damage. Information from our studies should provide insight into how regional deployment of oxidative DNA damage management systems along chromosomes protects against large-scale rearrangements. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lydia P Morris
- Program in Genetics and Molecular Biology, Emory University Atlanta, GA, 30322, USA.,Department of Biochemistry, Emory University Atlanta, GA, 30322, USA.,WebbWrites, LLC, Durham, NC, USA
| | - Andrew B Conley
- School of Biology, Georgia Institute of Technology Atlanta, GA, 30332, USA.,Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - I King Jordan
- School of Biology, Georgia Institute of Technology Atlanta, GA, 30332, USA
| | - Paul W Doetsch
- Program in Genetics and Molecular Biology, Emory University Atlanta, GA, 30322, USA.,Department of Biochemistry, Emory University Atlanta, GA, 30322, USA.,Department of Hematology and Medical Oncology, Emory University Atlanta, GA, 30322, USA.,Winship Cancer Institute, Emory University Atlanta, GA, 30322, USA
| |
Collapse
|
26
|
Genome Stability by DNA Polymerase β in Neural Progenitors Contributes to Neuronal Differentiation in Cortical Development. J Neurosci 2017; 37:8444-8458. [PMID: 28765330 DOI: 10.1523/jneurosci.0665-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/06/2017] [Accepted: 07/27/2017] [Indexed: 01/21/2023] Open
Abstract
DNA repair is crucial for genome stability in the developing cortex, as somatic de novo mutations cause neurological disorders. However, how DNA repair contributes to neuronal development is largely unknown. To address this issue, we studied the spatiotemporal roles of DNA polymerase β (Polβ), a key enzyme in DNA base excision repair pathway, in the developing cortex using distinct forebrain-specific conditional knock-out mice, Emx1-Cre/Polβ fl/fl and Nex-Cre/Polβ fl/fl mice. Polβ expression was absent in both neural progenitors and postmitotic neurons in Emx1-Cre/Polβ fl/fl mice, whereas only postmitotic neurons lacked Polβ expression in Nex-Cre/Polβ fl/fl mice. We found that DNA double-strand breaks (DSBs) were frequently detected during replication in cortical progenitors of Emx1-Cre/Polβ fl/fl mice. Increased DSBs remained in postmitotic cells, which resulted in p53-mediated neuronal apoptosis. This neuronal apoptosis caused thinning of the cortical plate, although laminar structure was normal. In addition, accumulated DSBs also affected growth of corticofugal axons but not commissural axons. These phenotypes were not observed in Nex-Cre/Polβ fl/fl mice. Moreover, cultured Polβ-deficient neural progenitors exhibited higher sensitivity to the base-damaging agent methylmethanesulfonate, resulting in enhanced DSB formation. Similar damage was found by vitamin C treatment, which induces TET1-mediated DNA demethylation via 5-hydroxymethylcytosine. Together, genome stability mediated by Polβ-dependent base excision repair is crucial for the competence of neural progenitors, thereby contributing to neuronal differentiation in cortical development.SIGNIFICANCE STATEMENT DNA repair is crucial for development of the nervous system. However, how DNA polymerase β (Polβ)-dependent DNA base excision repair pathway contributes to the process is still unknown. We found that loss of Polβ in cortical progenitors rather than postmitotic neurons led to catastrophic DNA double-strand breaks (DSBs) during replication and p53-mediated neuronal apoptosis, which resulted in thinning of the cortical plate. The DSBs also affected corticofugal axon growth in surviving neurons. Moreover, induction of base damage and DNA demethylation intermediates in the genome increased DSBs in cultured Polβ-deficient neural progenitors. Thus, genome stability by Polβ-dependent base excision repair in neural progenitors is required for the viability and differentiation of daughter neurons in the developing nervous system.
Collapse
|
27
|
Lee YJ, Bae JH, Kim SA, Kim SH, Woo KM, Nam HS, Cho MK, Lee SH. Cariporide Enhances the DNA Damage and Apoptosis in Acid-tolerable Malignant Mesothelioma H-2452 Cells. Mol Cells 2017; 40:567-576. [PMID: 28835017 PMCID: PMC5582303 DOI: 10.14348/molcells.2017.0059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/03/2017] [Accepted: 07/09/2017] [Indexed: 12/24/2022] Open
Abstract
The Na+/H+ exchanger is responsible for maintaining the acidic tumor microenvironment through its promotion of the reabsorption of extracellular Na+ and the extrusion of intracellular H+. The resultant increase in the extracellular acidity contributes to the chemoresistance of malignant tumors. In this study, the chemosensitizing effects of cariporide, a potent Na+/H+-exchange inhibitor, were evaluated in human malignant mesothelioma H-2452 cells preadapted with lactic acid. A higher basal level of phosphorylated (p)-AKT protein was found in the acid-tolerable H-2452AcT cells compared with their parental acid-sensitive H-2452 cells. When introduced in H-2452AcT cells with a concentration that shows only a slight toxicity in H-2452 cells, cariporide exhibited growth-suppressive and apoptosis-promoting activities, as demonstrated by an increase in the cells with pyknotic and fragmented nuclei, annexin V-PE(+) staining, a sub-G0/G1 peak, and a G2/M phase-transition delay in the cell cycle. Preceding these changes, a cariporide-induced p-AKT down-regulation, a p53 up-regulation, an ROS accumulation, and the depolarization of the mitochondrial-membrane potential were observed. A pretreatment with the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 markedly augmented the DNA damage caused by the cariporide, as indicated by a much greater extent of comet tails and a tail moment with increased levels of the p-histone H2A.X, p-ATMSer1981, p-ATRSer428, p-CHK1Ser345, and p-CHK2Thr68, as well as a series of pro-apoptotic events. The data suggest that an inhibition of the PI3K/AKT signaling is necessary to enhance the cytotoxicity toward the acid-tolerable H-2452AcT cells, and it underlines the significance of proton-pump targeting as a potential therapeutic strategy to overcome the acidic-microenvironment-associated chemotherapeutic resistance.
Collapse
Affiliation(s)
- Yoon-Jin Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151,
Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Jin-Ho Bae
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Soo-A Kim
- Department of Physical Medicine and Rehabilitation, Cheonan Hospital, Cheonan 31151,
Korea
| | - Sung-Ho Kim
- Department of Chemistry, College of Natural Sciences, Soonchunhyang University, Asan 31538,
Korea
| | - Kee-Min Woo
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151,
Korea
| | - Hae-Seon Nam
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Moon-Kyun Cho
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan 31151,
Korea
| | - Sang-Han Lee
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, 31151,
Korea
| |
Collapse
|
28
|
Tse KH, Herrup K. Re-imagining Alzheimer's disease - the diminishing importance of amyloid and a glimpse of what lies ahead. J Neurochem 2017; 143:432-444. [PMID: 28547865 DOI: 10.1111/jnc.14079] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/13/2017] [Accepted: 05/23/2017] [Indexed: 12/13/2022]
Abstract
Many have criticized the amyloid cascade hypothesis of Alzheimer's disease for its inconsistencies and failures to either accurately predict disease symptoms or guide the development of productive therapies. In addition to criticisms, however, we believe that the field would benefit from having alternative narratives and disease models that can either replace or function alongside of an amyloid-centric view of Alzheimer's. This review is an attempt to meet that need. We offer three experimentally verified amyloid-independent mechanisms, each of which plausibly contributes substantially to the aetiology of Alzheimer's disease: loss of DNA integrity, faulty cell cycle regulation, regression of myelination. We outline the ways in which the failure of each can contribute to AD initiation and progression, and review how, acting alone or in combination with each other, they are sufficient for explaining the full range of AD pathologies. Yet, these three alternatives represent only a few of the many non-amyloid mechanisms that can explain AD pathogenesis. Therefore instead of proposing a single 'alternative hypothesis' to the amyloid cascade theory, sporadic AD is pictured as the result of independent yet intersecting age-related pathologies that afflict the ageing human brain. This article is part of the series "Beyond Amyloid". Cover Image for this issue: doi. 10.1111/jnc.13823.
Collapse
Affiliation(s)
- Kai-Hei Tse
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Karl Herrup
- Division of Life Science and the State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
29
|
Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 2017; 80:50-64. [PMID: 28587975 DOI: 10.1016/j.semcdb.2017.05.023] [Citation(s) in RCA: 1173] [Impact Index Per Article: 167.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/17/2017] [Accepted: 05/29/2017] [Indexed: 12/19/2022]
Abstract
Increased reactive oxygen species (ROS) production has been detected in various cancers and has been shown to have several roles, for example, they can activate pro-tumourigenic signalling, enhance cell survival and proliferation, and drive DNA damage and genetic instability. Counterintuitively ROS can also promote anti-tumourigenic signalling, initiating oxidative stress-induced tumour cell death. Tumour cells express elevated levels of antioxidant proteins to detoxify elevated ROS levels, establish a redox balance, while maintaining pro-tumourigenic signalling and resistance to apoptosis. Tumour cells have an altered redox balance to that of their normal counterparts and this identifies ROS manipulation as a potential target for cancer therapies. This review discusses the generation and sources of ROS within tumour cells, the regulation of ROS by antioxidant defence systems, as well as the effect of elevated ROS production on their signalling targets in cancer. It also provides an insight into how pro- and anti-tumourigenic ROS signalling pathways could be manipulated in the treatment of cancer.
Collapse
Affiliation(s)
- Jennifer N Moloney
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland
| | - Thomas G Cotter
- Tumour Biology Laboratory, School of Biochemistry and Cell Biology, Bioscience Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
30
|
Ghelli Luserna di Rora’ A, Iacobucci I, Martinelli G. The cell cycle checkpoint inhibitors in the treatment of leukemias. J Hematol Oncol 2017; 10:77. [PMID: 28356161 PMCID: PMC5371185 DOI: 10.1186/s13045-017-0443-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 01/25/2023] Open
Abstract
The inhibition of the DNA damage response (DDR) pathway in the treatment of cancers has recently reached an exciting stage with several cell cycle checkpoint inhibitors that are now being tested in several clinical trials in cancer patients. Although the great amount of pre-clinical and clinical data are from the solid tumor experience, only few studies have been done on leukemias using specific cell cycle checkpoint inhibitors. This review aims to summarize the most recent data found on the biological mechanisms of the response to DNA damages highlighting the role of the different elements of the DDR pathway in normal and cancer cells and focusing on the main genetic alteration or aberrant gene expression that has been found on acute and chronic leukemias. This review, for the first time, outlines the most important pre-clinical and clinical data available on the efficacy of cell cycle checkpoint inhibitors in single agent and in combination with different agents normally used for the treatment of acute and chronic leukemias.
Collapse
Affiliation(s)
| | - I. Iacobucci
- Department of Hematology and Medical Sciences “L. and A. Seràgnoli”, Bologna University, Bologna, Italy
- Present: Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - G. Martinelli
- Department of Hematology and Medical Sciences “L. and A. Seràgnoli”, Bologna University, Bologna, Italy
| |
Collapse
|
31
|
Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Med Genomics 2017; 10:18. [PMID: 28340577 PMCID: PMC5423421 DOI: 10.1186/s12920-017-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare mutations, are still not well understood. Methods We performed a bioinformatics study of the p53 pathway function at the gene expression level on our collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry. Results We revealed significant and differential alterations of p53 pathway-related gene expression in most of the AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL, accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation. Conclusions Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Abramowitz
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel.
| | - Tzahi Neuman
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| |
Collapse
|
32
|
Rönn RE, Guibentif C, Saxena S, Woods NB. Reactive Oxygen Species Impair the Function of CD90 + Hematopoietic Progenitors Generated from Human Pluripotent Stem Cells. Stem Cells 2016; 35:197-206. [PMID: 27641910 DOI: 10.1002/stem.2503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 09/01/2016] [Indexed: 01/22/2023]
Abstract
Cell stressors, such as elevated levels of reactive oxygen species (ROS), adversely affect hematopoietic stem cell (HSC) reconstituting ability. However, the effects of ROS have not been evaluated in the context of hematopoietic development from human pluripotent stem cells (hPSCs). Using our previously described in vitro system for efficient derivation of hematopoietic cells from hPSCs, we show that the vast majority of generated hematopoietic cells display supraphysiological levels of ROS compared to fresh cord blood cells. Elevated ROS resulted in DNA damage of the CD34+ hematopoietic fraction and, following functional assays, reduced colony formation and impaired proliferative capacity. Interestingly, all the proliferative potential of the most primitive hematopoietic cells was limited to a small fraction with low ROS levels. We show that elevation of ROS in hPSC-derived hematopoietic cells is contributed by multiple distinct cellular processes. Furthermore, by targeting these molecular processes with 4 unique factors, we could reduce ROS levels significantly, yielding a 22-fold increase in the most primitive CD90+ CD34+ hematopoietic cells with robust growth capacity. We demonstrate that the ROS reducing factors specifically reduced ROS in more primitive hematopoietic fractions, in contrast to endothelial cells that maintained low ROS levels in the cultures. We conclude that high levels of ROS in in vitro differentiation systems of hPSCs is a major determinant in the lack of ability to generate hematopoietic cells with similar proliferation/differentiation potential to in vivo hematopoietic progenitors, and suggest that elevated ROS is a significant barrier to generating hPSC-derived repopulating HSCs. Stem Cells 2017;35:197-206.
Collapse
Affiliation(s)
- Roger E Rönn
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Carolina Guibentif
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shobhit Saxena
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niels-Bjarne Woods
- Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| |
Collapse
|
33
|
Aspirin and NSAID use in association with molecular subtypes of prostate cancer defined by TMPRSS2:ERG fusion status. Prostate Cancer Prostatic Dis 2015; 19:53-6. [PMID: 26503111 DOI: 10.1038/pcan.2015.49] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/25/2015] [Accepted: 09/18/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND The TMPRSS2:ERG (T2E) gene fusion is the most common rearrangement in prostate cancer (PCa). It is unknown if these molecular subtypes have a different etiology. We evaluated aspirin and non-aspirin nonsteroidal anti-inflammatory drugs (NSAIDs) in association with T2E fusion status. METHODS Subjects were from a population-based case-control study of PCa. T2E fusion status for prostatectomy cases (n=346) was determined by fluorescence in situ hybridization. Medication use was determined from questionnaires. Logistic regression, controlling for age, race, PCa family history and PSA screening, was used to evaluate the association of T2E fusion status according to medication use. RESULTS T2E fusion was present in 171 (49%) cases, with younger cases more likely to be fusion positive (P<0.01). Current aspirin use was associated with a 37% risk reduction of T2E-positive tumors (adjusted odds ratio (OR) 0.63, 95% confidence interval 0.43-0.93). Aspirin use was not associated with T2E negative PCa (adjusted OR 0.99, 0.69-1.42). There were no associations between PCa fusion status and use of nonaspirin NSAIDs or acetaminophen. CONCLUSIONS Aspirin was associated with a significant reduction in the relative risk of T2E fusion positive, but not T2E negative, PCa. As inflammation and androgen pathways are implicated in prostate carcinogenesis, additional studies of anti-inflammatory medications in relation to these PCa subtypes are warranted.
Collapse
|
34
|
Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 2015; 129:511-25. [PMID: 25618528 PMCID: PMC4366542 DOI: 10.1007/s00401-015-1382-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder for which no effective treatment is available. Increased insight into the disease mechanism in early stages of pathology is required for the development of a successful therapy. Over the years, numerous studies have shown that cell cycle proteins are expressed in neurons of AD patients. Traditionally, neurons are considered to be post-mitotic, which means that they permanently retract from the cell cycle. The expression of cell cycle proteins in adult neurons of AD patients has therefore been suggested to promote or even instigate pathomechanisms underlying AD. Interestingly, expression of cell cycle proteins is detected in post-mitotic neurons of healthy controls as well, albeit to a lesser extent than in AD patients. This indicates that cell cycle proteins may serve important physiological functions in differentiated neurons. Here, we provide an overview of studies that support a role of cell cycle proteins in DNA repair and neuroplasticity in post-mitotic neurons. Aberrant control of these processes could, in turn, contribute to cell cycle-mediated neurodegeneration. The balance between regenerative and degenerative effects of cell cycle proteins in post-mitotic neurons might change throughout the different stages of AD. In the early stages of AD pathology, cell cycle protein expression may primarily occur to aid in the repair of sublethal double-strand breaks in DNA. With the accumulation of pathology, cell cycle-mediated neuroplasticity and neurodegeneration may become more predominant. Understanding the physiological and pathophysiological role of cell cycle proteins in AD could give us more insight into the neurodegenerative process in AD.
Collapse
|
35
|
Goričar K, Erčulj N, Faganel Kotnik B, Debeljak M, Hovnik T, Jazbec J, Dolžan V. The association of folate pathway and DNA repair polymorphisms with susceptibility to childhood acute lymphoblastic leukemia. Gene 2015; 562:203-9. [PMID: 25746326 DOI: 10.1016/j.gene.2015.02.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/10/2015] [Accepted: 02/26/2015] [Indexed: 01/21/2023]
Abstract
Genetic factors may play an important role in susceptibility to childhood acute lymphoblastic leukemia (ALL). The aim of our study was to evaluate the associations of genetic polymorphisms in folate pathway and DNA repair genes with susceptibility to ALL. In total, 121 children with ALL and 184 unrelated healthy controls of Slovenian origin were genotyped for 14 polymorphisms in seven genes of folate pathway, base excision repair and homologous recombination repair (TYMS, MTHFR, OGG1, XRCC1, NBN, RAD51, and XRCC3). In addition, the exon 6 of NBN was screened for the presence of mutations using denaturing high performance liquid chromatography. Twelve polymorphisms were in Hardy-Weinberg equilibrium in controls and their genotype frequencies were in agreement with those reported in other Caucasian populations. Among the investigated polymorphisms and mutations, NBN Glu185Gln significantly decreased susceptibility to B-cell ALL (p=0.037), while TYMS 3R allele decreased susceptibility to T-cell ALL (p=0.011). Moreover, significantly decreased susceptibility to ALL was observed for MTHFR TA (p=0.030) and RAD51 GTT haplotypes (p=0.016). Susceptibility to ALL increased with the increasing number of risk alleles (ptrend=0.007). We also observed significant influence of hOGG-RAD51 and NBN-RAD51 interactions on susceptibility to ALL. Our results suggest that combination of several polymorphisms in DNA repair and folate pathways may significantly affect susceptibility to childhood ALL.
Collapse
Affiliation(s)
- Katja Goričar
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Pharmacogenetics Laboratory, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | - Nina Erčulj
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Pharmacogenetics Laboratory, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | - Barbara Faganel Kotnik
- University Medical Center, University Children's Hospital, Oncology and Haematology Unit, Bohoričeva 20, Ljubljana, Slovenia.
| | - Maruša Debeljak
- University Medical Center, University Children's Hospital, Center for Medical Genetics, Vrazov trg 1, Ljubljana, Slovenia.
| | - Tinka Hovnik
- University Medical Center, University Children's Hospital, Center for Medical Genetics, Vrazov trg 1, Ljubljana, Slovenia.
| | - Janez Jazbec
- University Medical Center, University Children's Hospital, Oncology and Haematology Unit, Bohoričeva 20, Ljubljana, Slovenia.
| | - Vita Dolžan
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry, Pharmacogenetics Laboratory, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| |
Collapse
|
36
|
Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, Lu XJ, Ledergor G, Kollet O, Lapidot T. Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal 2014; 21:1605-19. [PMID: 24762207 PMCID: PMC4175025 DOI: 10.1089/ars.2014.5941] [Citation(s) in RCA: 232] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
SIGNIFICANCE Blood forming, hematopoietic stem cells (HSCs) mostly reside in the bone marrow in a quiescent, nonmotile state via adhesion interactions with stromal cells and macrophages. Quiescent, proliferating, and differentiating stem cells have different metabolism, and accordingly different amounts of intracellular reactive oxygen species (ROS). Importantly, ROS is not just a byproduct of metabolism, but also plays a role in stem cell state and function. RECENT ADVANCES ROS levels are dynamic and reversibly dictate enhanced cycling and myeloid bias in ROS(high) short-term repopulating stem cells, and ROS(low) quiescent long-term repopulating stem cells. Low levels of ROS, regulated by intrinsic factors such as cell respiration or nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) activity, or extrinsic factors such as stem cell factor or prostaglandin E2 are required for maintaining stem cell self-renewal. High ROS levels, due to stress and inflammation, induce stem cell differentiation and enhanced motility. CRITICAL ISSUES Stem cells need to be protected from high ROS levels to avoid stem cell exhaustion, insufficient host immunity, and leukemic transformation that may occur during chronic inflammation. However, continuous low ROS production will lead to lack of stem cell function and opportunistic infections. Ultimately, balanced ROS levels are crucial for maintaining the small stem cell pool and host immunity, both in homeostasis and during stress situations. FUTURE DIRECTIONS Deciphering the signaling pathway of ROS in HSC will provide a better understanding of ROS roles in switching HSC from quiescence to activation and vice versa, and will also shed light on the possible roles of ROS in leukemia initiation and development.
Collapse
Affiliation(s)
- Aya Ludin
- 1 Department of Immunology, Weizmann Institute of Science , Rehovot, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Woditschka S, Evans L, Duchnowska R, Reed LT, Palmieri D, Qian Y, Badve S, Sledge G, Gril B, Aladjem MI, Fu H, Flores NM, Gökmen-Polar Y, Biernat W, Szutowicz-Zielińska E, Mandat T, Trojanowski T, Och W, Czartoryska-Arlukowicz B, Jassem J, Mitchell JB, Steeg PS. DNA double-strand break repair genes and oxidative damage in brain metastasis of breast cancer. J Natl Cancer Inst 2014; 106:dju145. [PMID: 24948741 DOI: 10.1093/jnci/dju145] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Breast cancer frequently metastasizes to the brain, colonizing a neuro-inflammatory microenvironment. The molecular pathways facilitating this colonization remain poorly understood. METHODS Expression profiling of 23 matched sets of human resected brain metastases and primary breast tumors by two-sided paired t test was performed to identify brain metastasis-specific genes. The implicated DNA repair genes BARD1 and RAD51 were modulated in human (MDA-MB-231-BR) and murine (4T1-BR) brain-tropic breast cancer cell lines by lentiviral transduction of cDNA or short hairpin RNA (shRNA) coding sequences. Their functional contribution to brain metastasis development was evaluated in mouse xenograft models (n = 10 mice per group). RESULTS Human brain metastases overexpressed BARD1 and RAD51 compared with either matched primary tumors (1.74-fold, P < .001; 1.46-fold, P < .001, respectively) or unlinked systemic metastases (1.49-fold, P = .01; 1.44-fold, P = .008, respectively). Overexpression of either gene in MDA-MB-231-BR cells increased brain metastases by threefold to fourfold after intracardiac injections, but not lung metastases upon tail-vein injections. In 4T1-BR cells, shRNA-mediated RAD51 knockdown reduced brain metastases by 2.5-fold without affecting lung metastasis development. In vitro, BARD1- and RAD51-overexpressing cells showed reduced genomic instability but only exhibited growth and colonization phenotypes upon DNA damage induction. Reactive oxygen species were present in tumor cells and elevated in the metastatic neuro-inflammatory microenvironment and could provide an endogenous source of genotoxic stress. Tempol, a brain-permeable oxygen radical scavenger suppressed brain metastasis promotion induced by BARD1 and RAD51 overexpression. CONCLUSIONS BARD1 and RAD51 are frequently overexpressed in brain metastases from breast cancer and may constitute a mechanism to overcome reactive oxygen species-mediated genotoxic stress in the metastatic brain.
Collapse
Affiliation(s)
- Stephan Woditschka
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA.
| | - Lynda Evans
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Renata Duchnowska
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - L Tiffany Reed
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Diane Palmieri
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Yongzhen Qian
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Sunil Badve
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - George Sledge
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Brunilde Gril
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Mirit I Aladjem
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Haiqing Fu
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Natasha M Flores
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Yesim Gökmen-Polar
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Wojciech Biernat
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Ewa Szutowicz-Zielińska
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Tomasz Mandat
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Tomasz Trojanowski
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Waldemar Och
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Bogumiła Czartoryska-Arlukowicz
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Jacek Jassem
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - James B Mitchell
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA
| | - Patricia S Steeg
- Affiliations of authors: Women's Malignancies Branch (SW, LE, TR, DP, BG, NMF, PSS), DNA Replication Group, Laboratory of Molecular Pharmacology (MIA, HF), and Tumor Biology Section, Radiation Biology Branch (JBM), Center for Cancer Research, National Cancer Institute, Bethesda, MD; Department of Oncology, Military Institute of Medicine, Warsaw, Poland (RD); Laboratory Animal Sciences Program, Frederick National Laboratory, Frederick MD (YQ); Departments of Pathology and Laboratory Medicine (SB), and Departments of Medicine (GS, YG-P), Indiana University School of Medicine, Indianapolis, IN; Department of Pathology (WB), and Department of Oncology and Radiotherapy (ES-Z, JJ), Medical University of Gdańsk, Gdańsk, Poland; Department of Neurosurgery, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland (TM); Department of Neurosurgery and Children's Neurosurgery Clinic, Medical University of Lublin, Lublin, Poland (TT); Department of Neurosurgery, Interior Affairs Hospital, Olsztyn, Poland (WO); Department of Clinical Oncology, Białystok Oncology Center, Białystok, Poland (BC-A); Present addresses: Teach for America, Baltimore, MD (LE); National Heart, Lung, and Blood Institute, Bethesda, MD (DP); Cancer Biology Program (NMF), and Department of Oncology (GS), Stanford University, Stanford, CA.
| |
Collapse
|
38
|
L'honoré A, Commère PH, Ouimette JF, Montarras D, Drouin J, Buckingham M. Redox regulation by Pitx2 and Pitx3 is critical for fetal myogenesis. Dev Cell 2014; 29:392-405. [PMID: 24871946 DOI: 10.1016/j.devcel.2014.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 02/21/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
Abstract
During development, major metabolic changes occur as cells become more specialized within a lineage. In the case of skeletal muscle, differentiation is accompanied by a switch from a glycolytic proliferative progenitor state to an oxidative postmitotic differentiated state. Such changes require extensive mitochondrial biogenesis leading to increased reactive oxygen species (ROS) production that needs to be balanced by an antioxidant system. Our analysis of double conditional Pitx2/3 mouse mutants, both in vivo during fetal myogenesis and ex vivo in primary muscle cell cultures, reveals excessive upregulation of ROS levels leading to DNA damage and apoptosis of differentiating cells. This is a consequence of downregulation of Nrf1 and genes for antioxidant enzymes, direct targets of Pitx2/3, leading to decreased expression of antioxidant enzymes, as well as impairment of mitochondrial function. Our analysis identifies Pitx2 and Pitx3 as key regulators of the intracellular redox state preventing DNA damage as cells undergo differentiation.
Collapse
Affiliation(s)
- Aurore L'honoré
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, 28 rue du Dr Roux, 75015 Paris, France.
| | | | - Jean-François Ouimette
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Didier Montarras
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, 28 rue du Dr Roux, 75015 Paris, France
| | - Jacques Drouin
- Laboratory of Molecular Genetics, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Margaret Buckingham
- Department of Developmental and Stem Cell Biology, CNRS URA 2578, 28 rue du Dr Roux, 75015 Paris, France
| |
Collapse
|
39
|
McKinnon PJ. Maintaining genome stability in the nervous system. Nat Neurosci 2013; 16:1523-9. [PMID: 24165679 PMCID: PMC4112580 DOI: 10.1038/nn.3537] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/11/2013] [Indexed: 01/09/2023]
Abstract
Active maintenance of genome stability is a prerequisite for the development and function of the nervous system. The high replication index during neurogenesis and the long life of mature neurons highlight the need for efficient cellular programs to safeguard genetic fidelity. Multiple DNA damage response pathways ensure that replication stress and other types of DNA lesions, such as oxidative damage, do not affect neural homeostasis. Numerous human neurologic syndromes result from defective DNA damage signaling and compromised genome integrity. These syndromes can involve different neuropathology, which highlights the diverse maintenance roles that are required for genome stability in the nervous system. Understanding how DNA damage signaling pathways promote neural development and preserve homeostasis is essential for understanding fundamental brain function.
Collapse
Affiliation(s)
- Peter J. McKinnon
- Department of Genetics, St Jude Children’s Research Hospital, Memphis TN, USA
| |
Collapse
|
40
|
Rodrigues PMG, Grigaravicius P, Remus M, Cavalheiro GR, Gomes AL, Martins MR, Frappart L, Reuss D, McKinnon PJ, von Deimling A, Martins RAP, Frappart PO. Nbn and atm cooperate in a tissue and developmental stage-specific manner to prevent double strand breaks and apoptosis in developing brain and eye. PLoS One 2013; 8:e69209. [PMID: 23935957 PMCID: PMC3728324 DOI: 10.1371/journal.pone.0069209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/06/2013] [Indexed: 01/30/2023] Open
Abstract
Nibrin (NBN or NBS1) and ATM are key factors for DNA Double Strand Break (DSB) signaling and repair. Mutations in NBN or ATM result in Nijmegen Breakage Syndrome and Ataxia telangiectasia. These syndromes share common features such as radiosensitivity, neurological developmental defects and cancer predisposition. However, the functional synergy of Nbn and Atm in different tissues and developmental stages is not yet understood. Here, we show in vivo consequences of conditional inactivation of both genes in neural stem/progenitor cells using Nestin-Cre mice. Genetic inactivation of Atm in the central nervous system of Nbn-deficient mice led to reduced life span and increased DSBs, resulting in increased apoptosis during neural development. Surprisingly, the increase of DSBs and apoptosis was found only in few tissues including cerebellum, ganglionic eminences and lens. In sharp contrast, we showed that apoptosis associated with Nbn deletion was prevented by simultaneous inactivation of Atm in developing retina. Therefore, we propose that Nbn and Atm collaborate to prevent DSB accumulation and apoptosis during development in a tissue- and developmental stage-specific manner.
Collapse
Affiliation(s)
- Paulo M. G. Rodrigues
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulius Grigaravicius
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Remus
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gabriel R. Cavalheiro
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anielle L. Gomes
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R. Martins
- Programa de Pós Graduação em Biofísica, IBCCF, Universidade Federal do Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lucien Frappart
- Leibniz Institute for Age Research – Fritz Lipmann Institute (FLI), Jena, Germany
| | - David Reuss
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Peter J. McKinnon
- Department of Genetics, St.Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Andreas von Deimling
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Rodrigo A. P. Martins
- Programa de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (POF); (RAPM)
| | - Pierre-Olivier Frappart
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail: (POF); (RAPM)
| |
Collapse
|
41
|
Fayyaz S, Farooqi AA. miRNA and TMPRSS2-ERG do not mind their own business in prostate cancer cells. Immunogenetics 2013; 65:315-32. [DOI: 10.1007/s00251-012-0677-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 12/25/2012] [Indexed: 12/19/2022]
|
42
|
Papież MA. The influence of curcumin and (–)-epicatechin on the genotoxicity and myelosuppression induced by etoposide in bone marrow cells of male rats. Drug Chem Toxicol 2012; 36:93-101. [DOI: 10.3109/01480545.2012.726626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Multhoff G, Radons J. Radiation, inflammation, and immune responses in cancer. Front Oncol 2012; 2:58. [PMID: 22675673 PMCID: PMC3366472 DOI: 10.3389/fonc.2012.00058] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/18/2012] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR.
Collapse
Affiliation(s)
- Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München Munich, Germany
| | | |
Collapse
|
44
|
Patel RS, Rachamalla M, Chary NR, Shera FY, Tikoo K, Jena G. Cytarabine induced cerebellar neuronal damage in juvenile rat: Correlating neurobehavioral performance with cellular and genetic alterations. Toxicology 2012; 293:41-52. [DOI: 10.1016/j.tox.2011.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/08/2011] [Accepted: 12/10/2011] [Indexed: 11/25/2022]
|
45
|
Peng D, Jiaxing W, Chunhui H, Weiyi P, Xiaomin W. Study on the cytogenetic changes induced by benzene and hydroquinone in human lymphocytes. Hum Exp Toxicol 2012; 31:322-35. [DOI: 10.1177/0960327111433900] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Benzene (BN) is a prototypical hematotoxicant, genotoxic carcinogen, and ubiquitous environmental pollutant. Although the molecular mechanisms of BN-induced cytotoxicity and genotoxic damage are poorly understood in humans, previous studies suggested that bioactivated BN metabolites are capable of oxidative stress, cell cycle arrest, apoptosis, and DNA damage. The objective of the current study was to investigate the BN-induced cytogenetic changes and underlying mechanisms based on these hypotheses. Peripheral blood lymphocytes (PBLs) might be the targets for BN-induced cytotoxicity and genotoxicity, and therefore DNA damage responses of PBLs after exposure to different concentrations of BN (0.25, 3.5, 50 μmol/L) or BN metabolite, hydroquinone (HQ; 50, 150, 450 μmol/L) were studied in vitro. Microculture tetrazolium assay, flow cytometry, 2′,7′-dichlorodihydrofluorescein-diacetate assay, comet assay, micronuclei assay, and attenuated total reflectance microspectroscope were chosen for this study. Based on the results, we reached the conclusion that different concentrations of BN or HQ significantly inhibited cell growth, induced the arrest of S phase and G2/M phase, and increased late apoptosis in a concentration-dependent manner. Furthermore, evidence was also provided to support the conclusion that BN and HQ induced DNA strand breaks and chromosomal mutations in PBL, which indicated the genotoxicity of BN and HQ. Current evidence has indicated that multiple mechanisms including dysfunction of cell cycle, programmed cell death, oxidative stress, and DNA lesions are likely to contribute to BN-induced cytogenetic changes.
Collapse
Affiliation(s)
- D Peng
- Department of Public Health, School of Basic Medical, Hubei University of Medicine, Shiyan, Hubei, PR China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Jiaxing
- School of Chemical Project, Beijing University of Chemical Technology, Beijing, PR China
| | - H Chunhui
- Department of Clinical Laboratories, the Affiliated Taihe Hospital, Hubei University of Medicine, Hubei Shiyan, PR China
| | - P Weiyi
- Department of Health Statistics and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| | - W Xiaomin
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, PR China
| |
Collapse
|
46
|
Du T, Caragounis A, Parker SJ, Meyerowitz J, La Fontaine S, Kanninen KM, Perreau VM, Crouch PJ, White AR. A potential copper-regulatory role for cytosolic expression of the DNA repair protein XRCC5. Free Radic Biol Med 2011; 51:2060-72. [PMID: 21971347 DOI: 10.1016/j.freeradbiomed.2011.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/29/2011] [Accepted: 09/02/2011] [Indexed: 11/20/2022]
Abstract
Copper (Cu) has a critical role in the generation of oxidative stress during neurodegeneration and cancer. Reactive oxygen species generated through abnormal elevation or deficiency of Cu can lead to lipid, protein, and DNA damage. Oxidation of DNA can induce strand breaks and is associated with altered cell fate including transformation or death. DNA repair is mediated through the action of the multimeric DNA-PK repair complex. The components of this complex are the Ku autoantigens, XRCC5 and XRCC6 (Ku80 and Ku70, respectively). How this repair complex responds to perturbed Cu homeostasis and Cu-mediated oxidative stress has not been investigated. We previously reported that XRCC5 expression is altered in response to cellular Cu levels, with low Cu inhibiting XRCC5 expression and high Cu levels enhancing expression. In this study we further investigated the interaction between XRCC5 and Cu. We report that cytosolic XRCC5 is increased in response to Cu, but not zinc, iron, or nickel, and the level of cytosolic XRCC5 correlates with protection against oxidative damage to DNA. These observations were made in both HeLa cells and fibroblasts. Cytosolic XRCC5 interacted with the Cu chaperone and detoxification protein human Atox1 homologue (HAH), and down regulation of XRCC5 expression using siRNA led to enhanced HAH expression when cells were exposed to Cu. XRCC5 could also be purified from cytosolic extracts using a Cu-loaded column. These findings provide further evidence that cytosolic XRCC5 has a key role in protection against DNA oxidation from Cu, through either direct sequestration or signaling through other Cu-detoxification molecules. Our findings have important implications for the development of therapeutic treatments targeting Cu in neurodegeneration and/or cancer.
Collapse
Affiliation(s)
- Tai Du
- Department of Pathology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cabreiro F, Ackerman D, Doonan R, Araiz C, Back P, Papp D, Braeckman BP, Gems D. Increased life span from overexpression of superoxide dismutase in Caenorhabditis elegans is not caused by decreased oxidative damage. Free Radic Biol Med 2011; 51:1575-82. [PMID: 21839827 PMCID: PMC3202636 DOI: 10.1016/j.freeradbiomed.2011.07.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/30/2011] [Accepted: 07/24/2011] [Indexed: 11/21/2022]
Abstract
The superoxide free radical (O(2)(•-)) has been viewed as a likely major contributor to aging. If this is correct, then superoxide dismutase (SOD), which removes O(2)(•-), should contribute to longevity assurance. In Caenorhabditis elegans, overexpression (OE) of the major cytosolic Cu/Zn-SOD, sod-1, increases life span. But is this increase caused by enhanced antioxidant defense? sod-1 OE did not reduce measures of lipid oxidation or glycation and actually increased levels of protein oxidation. The effect of sod-1 OE on life span was dependent on the DAF-16/FoxO transcription factor (TF) and, partially, on the heat shock TF HSF-1. Similarly, overexpression of sod-2 (major mitochondrial Mn-SOD) resulted in life-span extension that was daf-16 dependent. sod-1 OE increased steady-state hydrogen peroxide (H(2)O(2)) levels in vivo. However, co-overexpression of catalase did not suppress the life-span extension, arguing against H(2)O(2) as a cause of longevity. sod-1 OE increased hsp-4 expression, suggesting increased endoplasmic reticulum (ER) stress. Moreover, longevity was partially suppressed by inactivation of ire-1 and xbp-1, mediators of the ER stress response. This suggests that high levels of SOD-1 protein may challenge protein-folding homeostasis, triggering a daf-16- and hsf-1-dependent stress response that extends life span. These findings imply that SOD overexpression increases C. elegans life span, not by removal of O(2)(•-), but instead by activating longevity-promoting transcription factors.
Collapse
Key Words
- hne, 4-hydroxynonenal
- ampk, amp-dependent kinase
- cml, carboxymethyllysine
- co-oe, co-overexpression
- hsf-1, heat shock factor-1
- iis, insulin/igf-1 signaling
- nac, n-acetylcysteine
- oe, overexpression
- ros, reactive oxygen species
- rnai, rna-mediated interference
- o2•−, superoxide anion
- sod, superoxide dismutase
- aging
- caenorhabditis elegans
- daf-16/foxo
- er stress
- oxidative damage
- superoxide dismutase
- free radicals
Collapse
Affiliation(s)
- Filipe Cabreiro
- Institute of Healthy Ageing and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Daniel Ackerman
- Institute of Healthy Ageing and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Ryan Doonan
- Institute of Healthy Ageing and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Caroline Araiz
- Institute of Healthy Ageing and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Patricia Back
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Diana Papp
- Institute of Healthy Ageing and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Department of Medical Chemistry, Semmelweis University, 1094 Budapest, Hungary
| | - Bart P. Braeckman
- Laboratory for Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - David Gems
- Institute of Healthy Ageing and Research Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
- Corresponding author. Fax: + 44 20 7679 7096.
| |
Collapse
|
48
|
Caldecott KW, Bohr VA, McKinnon PJ. 3rd International Genome Dynamics in Neuroscience Conference: "DNA repair and neurological disease". Mech Ageing Dev 2011; 132:353-4. [PMID: 21820005 DOI: 10.1016/j.mad.2011.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Nambiar M, Raghavan SC. How does DNA break during chromosomal translocations? Nucleic Acids Res 2011; 39:5813-25. [PMID: 21498543 PMCID: PMC3152359 DOI: 10.1093/nar/gkr223] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/25/2011] [Accepted: 03/29/2011] [Indexed: 12/20/2022] Open
Abstract
Chromosomal translocations are one of the most common types of genetic rearrangements and are molecular signatures for many types of cancers. They are considered as primary causes for cancers, especially lymphoma and leukemia. Although many translocations have been reported in the last four decades, the mechanism by which chromosomes break during a translocation remains largely unknown. In this review, we summarize recent advances made in understanding the molecular mechanism of chromosomal translocations.
Collapse
Affiliation(s)
- Mridula Nambiar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
50
|
Raz-Prag D, Galron R, Segev-Amzaleg N, Solomon AS, Shiloh Y, Barzilai A, Frenkel D. A role for vascular deficiency in retinal pathology in a mouse model of ataxia-telangiectasia. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1533-41. [PMID: 21763675 DOI: 10.1016/j.ajpath.2011.05.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/09/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Ataxia-telangiectasia is a multifaceted syndrome caused by null mutations in the ATM gene, which encodes the protein kinase ATM, a key participant in the DNA damage response. Retinal neurons are highly susceptible to DNA damage because they are terminally differentiated and have the highest metabolic activity in the central nervous system. In this study, we characterized the retina in young and aged Atm-deficient mice (Atm(-/-)). At 2 months of age, angiography revealed faint retinal vasculature in Atm(-/-) animals relative to wild-type controls. This finding was accompanied by increased expression of vascular endothelial growth factor protein and mRNA. Fibrinogen, generally absent from wild-type retinal tissue, was evident in Atm(-/-) retinas, whereas mRNA of the tight junction protein occludin was significantly decreased. Immunohistochemistry labeling for occludin in 6-month-old mice showed that this decrease persists in advanced stages of the disease. Concurrently, we noticed vascular leakage in Atm(-/-) retinas. Labeling for glial fibrillary acidic protein demonstrated morphological alterations in glial cells in Atm(-/-) retinas. Electroretinographic examination revealed amplitude aberrations in 2-month-old Atm(-/-) mice, which progressed to significant functional deficits in the older mice. These results suggest that impaired vascularization and astrocyte-endothelial cell interactions in the central nervous system play an important role in the etiology of ataxia-telangiectasia and that vascular abnormalities may underlie or aggravate neurodegeneration.
Collapse
Affiliation(s)
- Dorit Raz-Prag
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|