1
|
Bartolutti C, Kim AJ, Brar GA. UPR deficiency in budding yeast reveals a trade-off between ER folding capacity and maintenance of euploidy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624941. [PMID: 39605714 PMCID: PMC11601577 DOI: 10.1101/2024.11.22.624941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Unfolded Protein Response (UPR) was discovered in budding yeast as a mechanism that allows cells to adapt to ER stress. While the Ire1 branch of this pathway is highly conserved, it is not thought to be important for cellular homeostasis in the absence of stress. Surprisingly, we found that removal of UPR activity led to pervasive aneuploidy in budding yeast cells, suggesting selective pressure resulting from UPR-deficiency. Aneuploid UPR-deficient cells grew better than euploid cells, but exhibited heightened general proteostatic stress, a hallmark of aneuploidy in wild-type cells. Modulation of key genes involved in ER proteostasis that were encoded on aneuploid chromosomes, could phenocopy the effects of aneuploidy, indicating that the reason cells require UPR activity to maintain euploidy is to counteract protein folding stress in the ER. In support of this model, aneuploidy in UPR-deficient cells can be prevented by expression of a UPR-independent general ER chaperone. Overall, our results indicate an unexpected role for the UPR in basal cell growth that is sufficiently important for cells to accept the costly trade-off of aneuploidy in the absence of UPR activity.
Collapse
|
2
|
Yu M, Zhou X, Chen D, Jiao Y, Han G, Tao F. HacA, a key transcription factor for the unfolded protein response, is required for fungal development, aflatoxin biosynthesis and pathogenicity of Aspergillus flavus. Int J Food Microbiol 2024; 417:110693. [PMID: 38653122 DOI: 10.1016/j.ijfoodmicro.2024.110693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Aspergillus flavus is a fungus notorious for contaminating food and feed with aflatoxins. As a saprophytic fungus, it secretes large amounts of enzymes to access nutrients, making endoplasmic reticulum (ER) homeostasis important for protein folding and secretion. The role of HacA, a key transcription factor in the unfolded protein response pathway, remains poorly understood in A. flavus. In this study, the hacA gene in A. flavus was knockout. Results showed that the absence of hacA led to a decreased pathogenicity of the strain, as it failed to colonize intact maize kernels. This may be due to retarded vegetable growth, especially the abnormal development of swollen tips and shorter hyphal septa. Deletion of hacA also hindered conidiogenesis and sclerotial development. Notably, the mutant strain failed to produce aflatoxin B1. Moreover, compared to the wild type, the mutant strain showed increased sensitivity to ER stress inducer such as Dithiothreitol (DTT), and heat stress. It also displayed heightened sensitivity to other environmental stresses, including cell wall, osmotic, and pH stresses. Further transcriptomic analysis revealed the involvement of the hacA in numerous biological processes, including filamentous growth, asexual reproduction, mycotoxin biosynthetic process, signal transduction, budding cell apical bud growth, invasive filamentous growth, response to stimulus, and so on. Taken together, HacA plays a vital role in fungal development, pathogenicity and aflatoxins biosynthesis. This highlights the potential of targeting hacA as a novel approach for early prevention of A. flavus contamination.
Collapse
Affiliation(s)
- Min Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoling Zhou
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Dongyue Chen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuan Jiao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Guomin Han
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Fang Tao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Li ST, Hirayama H, Huang C, Matsuda T, Oka R, Yamasaki T, Kohda D, Suzuki T. Hydrolytic activity of yeast oligosaccharyltransferase is enhanced when misfolded proteins accumulate in the endoplasmic reticulum. FEBS J 2024; 291:884-896. [PMID: 37997624 DOI: 10.1111/febs.17011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/06/2023] [Accepted: 11/21/2023] [Indexed: 11/25/2023]
Abstract
It is known that oligosaccharyltransferase (OST) has hydrolytic activity toward dolichol-linked oligosaccharides (DLO), which results in the formation of free N-glycans (FNGs), i.e. unconjugated oligosaccharides with structural features similar to N-glycans. The functional importance of this hydrolytic reaction, however, remains unknown. In this study, the hydrolytic activity of OST was characterized in yeast. It was shown that the hydrolytic activity of OST is enhanced in ubiquitin ligase mutants that are involved in endoplasmic reticulum-associated degradation. Interestingly, this enhanced hydrolysis activity is completely suppressed in asparagine-linked glycosylation (alg) mutants, bearing mutations related to the biosynthesis of DLO, indicating that the effect of ubiquitin ligase on OST-mediated hydrolysis is context-dependent. The enhanced hydrolysis activity in ubiquitin ligase mutants was also found to be canceled upon treatment of the cells with dithiothreitol, a reagent that potently induces protein unfolding in the endoplasmic reticulum (ER). Our results clearly suggest that the hydrolytic activity of OST is enhanced under conditions in which the formation of unfolded proteins is promoted in the ER in yeast. The possible role of FNGs on protein folding is discussed.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Hiroto Hirayama
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Chengcheng Huang
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Tsugiyo Matsuda
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Ritsuko Oka
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| | - Takahiro Yamasaki
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Daisuke Kohda
- Division of Structural Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, RIKEN Cluster for Pioneering Research (CPR), RIKEN, Saitama, Japan
| |
Collapse
|
4
|
Ciccarelli M, Masser AE, Kaimal JM, Planells J, Andréasson C. Genetic inactivation of essential HSF1 reveals an isolated transcriptional stress response selectively induced by protein misfolding. Mol Biol Cell 2023; 34:ar101. [PMID: 37467033 PMCID: PMC10551698 DOI: 10.1091/mbc.e23-05-0153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
Heat Shock Factor 1 (Hsf1) in yeast drives the basal transcription of key proteostasis factors and its activity is induced as part of the core heat shock response. Exploring Hsf1 specific functions has been challenging due to the essential nature of the HSF1 gene and the extensive overlap of target promoters with environmental stress response (ESR) transcription factors Msn2 and Msn4 (Msn2/4). In this study, we constructed a viable hsf1∆ strain by replacing the HSF1 open reading frame with genes that constitutively express Hsp40, Hsp70, and Hsp90 from Hsf1-independent promoters. Phenotypic analysis showed that the hsf1∆ strain grows slowly, is sensitive to heat as well as protein misfolding and accumulates protein aggregates. Transcriptome analysis revealed that the transcriptional response to protein misfolding induced by azetidine-2-carboxylic acid is fully dependent on Hsf1. In contrast, the hsf1∆ strain responded to heat shock through the ESR. Following HS, Hsf1 and Msn2/4 showed functional compensatory induction with stronger activation of the remaining stress pathway when the other branch was inactivated. Thus, we provide a long-overdue genetic test of the function of Hsf1 in yeast using the novel hsf1∆ construct. Our data highlight that the accumulation of misfolded proteins is uniquely sensed by Hsf1-Hsp70 chaperone titration inducing a highly selective transcriptional stress response.
Collapse
Affiliation(s)
- Michela Ciccarelli
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Anna E Masser
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | - Jordi Planells
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | - Claes Andréasson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| |
Collapse
|
5
|
Lin Y, Feng Y, Zheng L, Zhao M, Huang M. Improved protein production in yeast using cell engineering with genes related to a key factor in the unfolded protein response. Metab Eng 2023; 77:152-161. [PMID: 37044356 DOI: 10.1016/j.ymben.2023.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/14/2023]
Abstract
The yeast Saccharomyces cerevisiae is a widely used cell factory for protein production. Increasing the protein production capacity of a yeast strain may be beneficial for obtaining recombinant proteins as a product or exerting its competence in consolidated bioprocessing. However, heterologous protein expression usually imposes stress on cells. Improving the cell's ability to cope with stress enhances protein yield. HAC1 is a key transcription factor in the unfolded protein response (UPR). In this study, several genes related to the UPR signal pathway, including unfolded protein sensing, HAC1 mRNA splicing, mRNA ligation, mRNA decay, translation, and Hac1p degradation, were selected as targets to engineer yeast strains. The final engineered strain produced α-amylase 3.3-fold, and human serum albumin 15.3-fold, greater than that of the control strain. Key regulation and metabolic network changes in the engineered strains were identified by transcriptome analysis and physiological characterizations. This study demonstrated that cell engineering with genes relevant to the key node HAC1 in UPR increased protein secretion substantially. The verified genetic modifications of this study provide useful targets in the construction of yeast cell factories for efficient protein production.
Collapse
Affiliation(s)
- Yeping Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou, 510650, China.
| |
Collapse
|
6
|
Matabishi-Bibi L, Challal D, Barucco M, Libri D, Babour A. Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat Commun 2022; 13:6331. [PMID: 36284099 PMCID: PMC9596429 DOI: 10.1038/s41467-022-34133-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2022] [Indexed: 12/25/2022] Open
Abstract
Cellular homeostasis is maintained by surveillance mechanisms that intervene at virtually every step of gene expression. In the nucleus, the yeast chromatin remodeler Isw1 holds back maturing mRNA ribonucleoparticles to prevent their untimely export, but whether this activity operates beyond quality control of mRNA biogenesis to regulate gene expression is unknown. Here, we identify the mRNA encoding the central effector of the unfolded protein response (UPR) HAC1, as an Isw1 RNA target. The direct binding of Isw1 to the 3' untranslated region of HAC1 mRNA restricts its nuclear export and is required for accurate UPR abatement. Accordingly, ISW1 inactivation sensitizes cells to endoplasmic reticulum (ER) stress while its overexpression reduces UPR induction. Our results reveal an unsuspected mechanism, in which binding of ER-stress induced Isw1 to HAC1 mRNA limits its nuclear export, providing a feedback loop that fine-tunes UPR attenuation to guarantee homeostatic adaptation to ER stress.
Collapse
Affiliation(s)
- Laura Matabishi-Bibi
- grid.508487.60000 0004 7885 7602Univ Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| | - Drice Challal
- grid.457334.20000 0001 0667 2738Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Mara Barucco
- grid.461913.80000 0001 0676 2143Institut Jacques Monod, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Domenico Libri
- grid.429192.50000 0004 0599 0285Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Anna Babour
- grid.508487.60000 0004 7885 7602Univ Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR7212, Hôpital St. Louis 1, Avenue Claude Vellefaux, 75475 Paris Cedex 10, France
| |
Collapse
|
7
|
Uppala JK, Sathe L, Chakraborty A, Bhattacharjee S, Pulvino AT, Dey M. The cap-proximal RNA secondary structure inhibits preinitiation complex formation on HAC1 mRNA. J Biol Chem 2022; 298:101648. [PMID: 35101452 PMCID: PMC8881652 DOI: 10.1016/j.jbc.2022.101648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Translation of HAC1 mRNA in the budding yeast Saccharomyces cerevisiae is derepressed when RNase Ire1 removes its intron via nonconventional cytosolic splicing in response to accumulation of unfolded proteins inside the endoplasmic reticulum. The spliced HAC1 mRNA is translated into a transcription factor that changes the cellular gene expression patterns to increase the protein folding capacity of cells. Previously, we showed that a segment of the intronic sequence interacts with the 5′-UTR of the unspliced mRNA, resulting in repression of HAC1 translation at the initiation stage. However, the exact mechanism of translational derepression is not clear. Here, we show that at least 11-base-pairing interactions between the 5′-UTR and intron (UI) are sufficient to repress HAC1 translation. We also show that overexpression of the helicase eukaryotic initiation factor 4A derepressed translation of an unspliced HAC1 mRNA containing only 11-bp interactions between the 5′-UTR and intronic sequences. In addition, our genetic screen identifies that single mutations in the UI interaction site could derepress translation of the unspliced HAC1 mRNA. Furthermore, we show that the addition of 24 RNA bases between the mRNA 5′-cap and the UI interaction site derepressed translation of the unspliced HAC1 mRNA. Together, our data provide a mechanistic explanation for why the cap-proximal UI–RNA duplex inhibits the recruitment of translating ribosomes to HAC1 mRNA, thus keeping mRNA translationally repressed.
Collapse
Affiliation(s)
- Jagadeesh Kumar Uppala
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Leena Sathe
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Abhijit Chakraborty
- Center for Autoimmunity and Inflammation, Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Sankhajit Bhattacharjee
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Anthony Thomas Pulvino
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Madhusudan Dey
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA.
| |
Collapse
|
8
|
Starke J, Harting R, Maurus I, Leonard M, Bremenkamp R, Heimel K, Kronstad JW, Braus GH. Unfolded Protein Response and Scaffold Independent Pheromone MAP Kinase Signaling Control Verticillium dahliae Growth, Development, and Plant Pathogenesis. J Fungi (Basel) 2021; 7:jof7040305. [PMID: 33921172 PMCID: PMC8071499 DOI: 10.3390/jof7040305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Differentiation, growth, and virulence of the vascular plant pathogen Verticillium dahliae depend on a network of interconnected cellular signaling cascades. The transcription factor Hac1 of the endoplasmic reticulum-associated unfolded protein response (UPR) is required for initial root colonization, fungal growth, and vascular propagation by conidiation. Hac1 is essential for the formation of microsclerotia as long-time survival resting structures in the field. Single endoplasmic reticulum-associated enzymes for linoleic acid production as precursors for oxylipin signal molecules support fungal growth but not pathogenicity. Microsclerotia development, growth, and virulence further require the pheromone response mitogen-activated protein kinase (MAPK) pathway, but without the Ham5 scaffold function. The MAPK phosphatase Rok1 limits resting structure development of V.dahliae, but promotes growth, conidiation, and virulence. The interplay between UPR and MAPK signaling cascades includes several potential targets for fungal growth control for supporting disease management of the vascular pathogen V.dahliae.
Collapse
Affiliation(s)
- Jessica Starke
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Isabel Maurus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Rica Bremenkamp
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - Kai Heimel
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Gerhard H. Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077 Göttingen, Germany; (J.S.); (R.H.); (I.M.); (M.L.); (R.B.); (K.H.)
- Correspondence: ; Tel.: +49-(0)551-39-33771
| |
Collapse
|
9
|
Active Ribosome Profiling with RiboLace: From Bench to Data Analysis. Methods Mol Biol 2021. [PMID: 33765277 DOI: 10.1007/978-1-0716-1150-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Ribosome profiling is based on the deep sequencing of RNA fragments protected by ribosomes from nuclease digestion. This technique has been extensively used to study translation, with the unique ability to provide information about ribosomes positioning along transcripts at single-nucleotide resolution. Classical ribosome profiling approaches do not distinguish between fragments protected by either actively translating or inactive ribosomes. Here we describe an original method, called active ribosome profiling or RiboLace, which is based on a unique puromycin-containing molecule capable of isolating active ribosomes by means of an antibody-free and tag-free pull-down approach. This method allows reliable estimates of the translational state of any biological system, in high concordance with protein levels. RiboLace can be applied both in vitro and in vivo and generates snapshots of active ribosome footprints at single-nucleotide resolution and genome-wide level. RiboLace data are suitable for the analysis of translated genes, codon-specific translation rates, and local changes in ribosome occupancy profiles.
Collapse
|
10
|
Does Saccharomyces cerevisiae Require Specific Post-Translational Silencing against Leaky Translation of Hac1up? Microorganisms 2021; 9:microorganisms9030620. [PMID: 33802931 PMCID: PMC8002603 DOI: 10.3390/microorganisms9030620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/24/2022] Open
Abstract
HAC1 encodes a key transcription factor that transmits the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus and regulates downstream UPR genes in Saccharomyces cerevisiae. In response to the accumulation of unfolded proteins in the ER, Ire1p oligomers splice HAC1 pre-mRNA (HAC1u) via a non-conventional process and allow the spliced HAC1 (HAC1i) to be translated efficiently. However, leaky splicing and translation of HAC1u may occur in non-UPR cells to induce undesirable UPR. To control accidental UPR activation, multiple fail-safe mechanisms have been proposed to prevent leaky HAC1 splicing and translation and to facilitate rapid degradation of translated Hac1up and Hac1ip. Among proposed regulatory mechanisms is a degron sequence encoded at the 5′ end of the HAC1 intron that silences Hac1up expression. To investigate the necessity of an intron-encoded degron sequence that specifically targets Hac1up for degradation, we employed publicly available transcriptomic data to quantify leaky HAC1 splicing and translation in UPR-induced and non-UPR cells. As expected, we found that HAC1u is only efficiently spliced into HAC1i and efficiently translated into Hac1ip in UPR-induced cells. However, our analysis of ribosome profiling data confirmed frequent occurrence of leaky translation of HAC1u regardless of UPR induction, demonstrating the inability of translation fail-safe to completely inhibit Hac1up production. Additionally, among 32 yeast HAC1 surveyed, the degron sequence is highly conserved by Saccharomyces yeast but is poorly conserved by all other yeast species. Nevertheless, the degron sequence is the most conserved HAC1 intron segment in yeasts. These results suggest that the degron sequence may indeed play an important role in mitigating the accumulation of Hac1up to prevent accidental UPR activation in the Saccharomyces yeast.
Collapse
|
11
|
Evolution and function of the epithelial cell-specific ER stress sensor IRE1β. Mucosal Immunol 2021; 14:1235-1246. [PMID: 34075183 PMCID: PMC8528705 DOI: 10.1038/s41385-021-00412-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/30/2021] [Accepted: 05/01/2021] [Indexed: 02/04/2023]
Abstract
Barrier epithelial cells lining the mucosal surfaces of the gastrointestinal and respiratory tracts interface directly with the environment. As such, these tissues are continuously challenged to maintain a healthy equilibrium between immunity and tolerance against environmental toxins, food components, and microbes. An extracellular mucus barrier, produced and secreted by the underlying epithelium plays a central role in this host defense response. Several dedicated molecules with a unique tissue-specific expression in mucosal epithelia govern mucosal homeostasis. Here, we review the biology of Inositol-requiring enzyme 1β (IRE1β), an ER-resident endonuclease and paralogue of the most evolutionarily conserved ER stress sensor IRE1α. IRE1β arose through gene duplication in early vertebrates and adopted functions unique from IRE1α which appear to underlie the basic development and physiology of mucosal tissues.
Collapse
|
12
|
Xia X. Beyond Trees: Regulons and Regulatory Motif Characterization. Genes (Basel) 2020; 11:genes11090995. [PMID: 32854400 PMCID: PMC7564462 DOI: 10.3390/genes11090995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/13/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
Trees and their seeds regulate their germination, growth, and reproduction in response to environmental stimuli. These stimuli, through signal transduction, trigger transcription factors that alter the expression of various genes leading to the unfolding of the genetic program. A regulon is conceptually defined as a set of target genes regulated by a transcription factor by physically binding to regulatory motifs to accomplish a specific biological function, such as the CO-FT regulon for flowering timing and fall growth cessation in trees. Only with a clear characterization of regulatory motifs, can candidate target genes be experimentally validated, but motif characterization represents the weakest feature of regulon research, especially in tree genetics. I review here relevant experimental and bioinformatics approaches in characterizing transcription factors and their binding sites, outline problems in tree regulon research, and demonstrate how transcription factor databases can be effectively used to aid the characterization of tree regulons.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
13
|
Telini BDP, Menoncin M, Bonatto D. Does Inter-Organellar Proteostasis Impact Yeast Quality and Performance During Beer Fermentation? Front Genet 2020; 11:2. [PMID: 32076433 PMCID: PMC7006503 DOI: 10.3389/fgene.2020.00002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/06/2020] [Indexed: 02/02/2023] Open
Abstract
During beer production, yeast generate ethanol that is exported to the extracellular environment where it accumulates. Depending on the initial carbohydrate concentration in the wort, the amount of yeast biomass inoculated, the fermentation temperature, and the yeast attenuation capacity, a high concentration of ethanol can be achieved in beer. The increase in ethanol concentration as a consequence of the fermentation of high gravity (HG) or very high gravity (VHG) worts promotes deleterious pleiotropic effects on the yeast cells. Moderate concentrations of ethanol (5% v/v) change the enzymatic kinetics of proteins and affect biological processes, such as the cell cycle and metabolism, impacting the reuse of yeast for subsequent fermentation. However, high concentrations of ethanol (> 5% v/v) dramatically alter protein structure, leading to unfolded proteins as well as amorphous protein aggregates. It is noteworthy that the effects of elevated ethanol concentrations generated during beer fermentation resemble those of heat shock stress, with similar responses observed in both situations, such as the activation of proteostasis and protein quality control mechanisms in different cell compartments, including endoplasmic reticulum (ER), mitochondria, and cytosol. Despite the extensive published molecular and biochemical data regarding the roles of proteostasis in different organelles of yeast cells, little is known about how this mechanism impacts beer fermentation and how different proteostasis mechanisms found in ER, mitochondria, and cytosol communicate with each other during ethanol/fermentative stress. Supporting this integrative view, transcriptome data analysis was applied using publicly available information for a lager yeast strain grown under beer production conditions. The transcriptome data indicated upregulation of genes that encode chaperones, co-chaperones, unfolded protein response elements in ER and mitochondria, ubiquitin ligases, proteasome components, N-glycosylation quality control pathway proteins, and components of processing bodies (p-bodies) and stress granules (SGs) during lager beer fermentation. Thus, the main purpose of this hypothesis and theory manuscript is to provide a concise picture of how inter-organellar proteostasis mechanisms are connected with one another and with biological processes that may modulate the viability and/or vitality of yeast populations during HG/VHG beer fermentation and serial repitching.
Collapse
Affiliation(s)
- Bianca de Paula Telini
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcelo Menoncin
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Diego Bonatto
- Brewing Yeast Research Group, Centro de Biotecnologia da UFRGS, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
14
|
Sahu RK, Saha N, Das L, Sahu PK, Sariki SK, Tomar RS. SWI/SNF chromatin remodelling complex contributes to clearance of cytoplasmic protein aggregates and regulates unfolded protein response in Saccharomyces cerevisiae. FEBS J 2020; 287:3024-3041. [PMID: 31846549 DOI: 10.1111/febs.15180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/09/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Chromatin remodelling complexes are multi-subunit assemblies, each containing a catalytic ATPase and translocase that is capable of mobilizing nucleosomes to alter the chromatin structure. SWI/SNF remodelling complexes with higher DNA translocation efficiency evict histones or slide the nucleosomes away from each other making DNA accessible for transcription and repair machinery. Chromatin remodelling at the promoter of stress-responsive genes by SWI/SNF becomes necessary during the heat and proteotoxic stress. While the involvement of SWI/SNF in transcription of stress-responsive genes has been studied extensively, the regulation of proteostasis by SWI/SNF is not well understood. This study demonstrates critical functions of SWI/SNF in response to cadmium-induced proteotoxic stress. Deletion of either ATPase-translocase subunit of SWI/SNF complex (Swi2/Snf2) or a regulatory subunit Swi3 abrogates the clearance of cadmium-induced protein aggregates. Our results suggest that Snf2 and Swi3 regulate the protein folding in endoplasmic reticulum (ER) that reduces the chances of forming unfolded protein aggregates under the proteotoxic stress of cadmium. The Ire1-mediated unfolded protein response (UPR) maintains ER homeostasis by upregulating the expression of chaperones and ER-associated degradation (ERAD) components. We found that Snf2 maintains normal oxidative environment essential for Ire1 activity. Deletion of SNF2 reduced the Ire1 activity and UPR, indicating involvement of Snf2 in Ire1-mediated ER proteostasis. Together, these findings suggest that SWI/SNF complex regulates ER homeostasis and protein folding crucial for tolerating proteotoxic stress.
Collapse
Affiliation(s)
- Rakesh Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Nitu Saha
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Laxmidhar Das
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Pushpendra Kumar Sahu
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Santhosh Kumar Sariki
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| |
Collapse
|
15
|
Contribution of introns to the species diversity associated with the apicomplexan parasite, Neospora caninum. Parasitol Res 2020; 119:431-445. [PMID: 31901106 DOI: 10.1007/s00436-019-06561-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023]
Abstract
Neospora caninum is an intracellular parasite considered a leading cause of bovine reproduction failure worldwide, and a serious neurological disease of canines. Transplacental transmission in intermediate hosts is considered the most efficient means of transmission, which strictly involves asexual reproduction. Nonetheless, extensive genetic diversity has been reported within the species. What is yet to be elucidated are the major drivers of such diversity, and their impact on important parasite phenotypes such as virulence. Instead of protein-encoding sequences, genome and transcriptome data were used to investigate SNPs in introns between two distinct N. caninum isolates, with reported differences in pathogenicity. Variant analysis identified 840 and 501 SNPs within intergenic regions and introns, respectively, distinctly concentrated on chromosomes VI and XI, whereas the rest of the genome was monomorphic in comparison. Gene ontologies for SNP-dense intron-containing genes included ATP binding, transmembrane transport, protein kinase activity, and transcription and translation processes. This study shows that variation in non-coding DNA is contributing to N. caninum intraspecies genetic diversity, and potentially influencing and contributing to important parasite mechanisms. Finally, we present an assembled and annotated N. caninum apicoplast genome and show that this essential organelle is highly conserved between the two isolates, and related Coccidia.
Collapse
|
16
|
Overexpression of the transcription factor HAC1 improves nerolidol production in engineered yeast. Enzyme Microb Technol 2019; 134:109485. [PMID: 32044032 DOI: 10.1016/j.enzmictec.2019.109485] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022]
Abstract
Increasing the metabolic flux of the mevalonate pathway, reducing the metabolic flux of competing pathway and utilizing the diauxie-inducible system constructed by GAL promoters are strategies commonly used in yeast metabolic engineering for the production of terpenoids. Using these strategies, we constructed a series of yeast strains with a strengthened mevalonate pathway and finally produced 336.5 mg/L nerolidol in a shake flask. The spliced HAC1 mRNA assay indicated that the unfolded protein response (UPR) occurred in the strains that we constructed. UPR strains exhibited the low transcriptional activities of GAL1 promoter. HAC1-overexpressing strain exhibited dramatically enhanced transcriptional activity of GAL1 promoter at 72 h of fermentation in flasks. HAC1 overexpression also increased the nerolidol titer by 47.7 %, reaching 497.0 mg/L and increased cell vitality. RNA-seq showed that the genes whose transcription responded to HAC1-overexpression were involved in the regulation of monocarboxylic acid metabolic processes and cellular amino acid biosynthetic process, indicating that the metabolic regulation may be part of the reason of the improved nerolidol synthesis. Our findings enrich the knowledge of the relationship between the construction of sesquiterpene-producing cell factories and UPR regulation. This study provides an effective strategy for sesquiterpene production in yeast.
Collapse
|
17
|
Pierce M, Vengsarkar D, McLaughlin JE, Kahn JN, Tumer NE. Ribosome depurination by ricin leads to inhibition of endoplasmic reticulum stress-induced HAC1 mRNA splicing on the ribosome. J Biol Chem 2019; 294:17848-17862. [PMID: 31624149 DOI: 10.1074/jbc.ra119.009128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/27/2019] [Indexed: 11/06/2022] Open
Abstract
Ricin undergoes retrograde transport to the endoplasmic reticulum (ER), and ricin toxin A chain (RTA) enters the cytosol from the ER. Previous reports indicated that RTA inhibits activation of the unfolded protein response (UPR) in yeast and in mammalian cells. Both precursor (preRTA) and mature form of RTA (mRTA) inhibited splicing of HAC1u (u for uninduced) mRNA, suggesting that UPR inhibition occurred on the cytosolic face of the ER. Here, we examined the role of ribosome binding and depurination activity on inhibition of the UPR using mRTA mutants. An active-site mutant with very low depurination activity, which bound ribosomes as WT RTA, did not inhibit HAC1u mRNA splicing. A ribosome-binding mutant, which showed reduced binding to ribosomes but retained depurination activity, inhibited HAC1u mRNA splicing. This mutant allowed separation of the UPR inhibition by RTA from cytotoxicity because it reduced the rate of depurination. The ribosome-binding mutant inhibited the UPR without affecting IRE1 oligomerization or cleavage of HAC1u mRNA at the splice site junctions. Inhibition of the UPR correlated with the depurination level, suggesting that ribosomes play a role in splicing of HAC1u mRNA. We show that HAC1u mRNA is associated with ribosomes and does not get processed on depurinated ribosomes, thereby inhibiting the UPR. These results demonstrate that RTA inhibits HAC1u mRNA splicing through its depurination activity on the ribosome without directly affecting IRE1 oligomerization or the splicing reaction and provide evidence that IRE1 recognizes HAC1u mRNA that is associated with ribosomes.
Collapse
Affiliation(s)
- Michael Pierce
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | - Diana Vengsarkar
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | - John E McLaughlin
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | - Jennifer N Kahn
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| | - Nilgun E Tumer
- Department of Plant Biology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901-8520
| |
Collapse
|
18
|
Gao Y, Kim S, Lee YI, Lee J. Cellular Stress-Modulating Drugs Can Potentially Be Identified by in Silico Screening with Connectivity Map (CMap). Int J Mol Sci 2019; 20:ijms20225601. [PMID: 31717493 PMCID: PMC6888006 DOI: 10.3390/ijms20225601] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022] Open
Abstract
Accompanied by increased life span, aging-associated diseases, such as metabolic diseases and cancers, have become serious health threats. Recent studies have documented that aging-associated diseases are caused by prolonged cellular stresses such as endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress. Thus, ameliorating cellular stresses could be an effective approach to treat aging-associated diseases and, more importantly, to prevent such diseases from happening. However, cellular stresses and their molecular responses within the cell are typically mediated by a variety of factors encompassing different signaling pathways. Therefore, a target-based drug discovery method currently being used widely (reverse pharmacology) may not be adequate to uncover novel drugs targeting cellular stresses and related diseases. The connectivity map (CMap) is an online pharmacogenomic database cataloging gene expression data from cultured cells treated individually with various chemicals, including a variety of phytochemicals. Moreover, by querying through CMap, researchers may screen registered chemicals in silico and obtain the likelihood of drugs showing a similar gene expression profile with desired and chemopreventive conditions. Thus, CMap is an effective genome-based tool to discover novel chemopreventive drugs.
Collapse
Affiliation(s)
- Yurong Gao
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Sungwoo Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
| | - Yun-Il Lee
- Well Aging Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
- Correspondence: (Y.-I.L.); (J.L.)
| | - Jaemin Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (Y.G.); (S.K.)
- Correspondence: (Y.-I.L.); (J.L.)
| |
Collapse
|
19
|
Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic ER-resident proteins. Sci Rep 2019; 9:8637. [PMID: 31201345 PMCID: PMC6572771 DOI: 10.1038/s41598-019-45020-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/29/2019] [Indexed: 12/31/2022] Open
Abstract
Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defined. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR). Surprisingly, we observed certain ER-resident transmembrane proteins, which form part of the UPR programme, to be destabilised under lipid bilayer stress. Among these, the protein translocon subunit Sbh1 was prematurely degraded by membrane stiffening at the ER. Moreover, our findings suggest that the Doa10 complex recognises free Sbh1 that becomes increasingly accessible during lipid bilayer stress, perhaps due to the change in ER membrane properties. Premature removal of key ER-resident transmembrane proteins might be an underlying cause of chronic ER stress as a result of lipid bilayer stress.
Collapse
|
20
|
Xia X. Translation Control of HAC1 by Regulation of Splicing in Saccharomyces cerevisiae. Int J Mol Sci 2019; 20:ijms20122860. [PMID: 31212749 PMCID: PMC6627864 DOI: 10.3390/ijms20122860] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
Hac1p is a key transcription factor regulating the unfolded protein response (UPR) induced by abnormal accumulation of unfolded/misfolded proteins in the endoplasmic reticulum (ER) in Saccharomyces cerevisiae. The accumulation of unfolded/misfolded proteins is sensed by protein Ire1p, which then undergoes trans-autophosphorylation and oligomerization into discrete foci on the ER membrane. HAC1 pre-mRNA, which is exported to the cytoplasm but is blocked from translation by its intron sequence looping back to its 5’UTR to form base-pair interaction, is transported to the Ire1p foci to be spliced, guided by a cis-acting bipartite element at its 3’UTR (3’BE). Spliced HAC1 mRNA can be efficiently translated. The resulting Hac1p enters the nucleus and activates, together with coactivators, a large number of genes encoding proteins such as protein chaperones to restore and maintain ER homeostasis and secretary protein quality control. This review details the translation regulation of Hac1p production, mediated by the nonconventional splicing, in the broad context of translation control and summarizes the evolution and diversification of the UPR signaling pathway among fungal, metazoan and plant lineages.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada.
| |
Collapse
|
21
|
Cherry PD, Peach SE, Hesselberth JR. Multiple decay events target HAC1 mRNA during splicing to regulate the unfolded protein response. eLife 2019; 8:e42262. [PMID: 30874502 PMCID: PMC6456296 DOI: 10.7554/elife.42262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/14/2019] [Indexed: 01/24/2023] Open
Abstract
In the unfolded protein response (UPR), stress in the endoplasmic reticulum (ER) activates a large transcriptional program to increase ER folding capacity. During the budding yeast UPR, Ire1 excises an intron from the HAC1 mRNA and the exon products of cleavage are ligated, and the translated protein induces hundreds of stress-response genes. Using cells with mutations in RNA repair and decay enzymes, we show that phosphorylation of two different HAC1 splicing intermediates is required for their degradation by the 5'→3' exonuclease Xrn1 to enact opposing effects on the UPR. We also found that ligated but 2'-phosphorylated HAC1 mRNA is cleaved, yielding a decay intermediate with both 5'- and 2'-phosphates at its 5'-end that inhibit 5'→3' decay and suggesting that Ire1 degrades incompletely processed HAC1. These decay events expand the scope of RNA-based regulation in the budding yeast UPR and have implications for the control of the metazoan UPR.
Collapse
Affiliation(s)
- Patrick D Cherry
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
- RNA Bioscience Initiative, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Sally E Peach
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, Program in Molecular Biology, School of MedicineUniversity of ColoradoAuroraUnited States
| |
Collapse
|
22
|
Adaptation to Endoplasmic Reticulum Stress Requires Transphosphorylation within the Activation Loop of Protein Kinases Kin1 and Kin2, Orthologs of Human Microtubule Affinity-Regulating Kinase. Mol Cell Biol 2018; 38:MCB.00266-18. [PMID: 30201804 DOI: 10.1128/mcb.00266-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/18/2018] [Indexed: 12/30/2022] Open
Abstract
Perturbations in endoplasmic reticulum (ER) homeostasis, a condition termed ER stress, activate the unfolded protein response (UPR), an intracellular network of signaling pathways. Recently, we have shown that protein kinase Kin1 and its paralog, Kin2, in the budding yeast Saccharomyces cerevisiae (orthologs of microtubule affinity-regulating kinase in humans) contribute to the UPR function. These Kin kinases contain a conserved kinase domain and an autoinhibitory kinase-associated 1 (KA1) domain separated by a long undefined domain. Here, we show that Kin1 or Kin2 protein requires minimally a kinase domain and an adjacent kinase extension region (KER) for UPR function. We also show that the functional mini-Kin2 protein is predominantly visualized inside the cells and precipitated with the cellular membrane fraction, suggesting its association with the cellular endomembrane system. Furthermore, we show that transphosphorylation of the Kin1 residue T302 and the analogous Kin2 residue T281 within the activation loop are important for full kinase activity. Collectively, our data suggest that, during ER stress, the Kin kinase domain is released from its autoinhibitory KA1 domain and is activated by transphosphorylation.
Collapse
|
23
|
Active Ribosome Profiling with RiboLace. Cell Rep 2018; 25:1097-1108.e5. [DOI: 10.1016/j.celrep.2018.09.084] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/20/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022] Open
|
24
|
The Unfolded Protein Response Pathway in the Yeast Kluyveromyces lactis. A Comparative View among Yeast Species. Cells 2018; 7:cells7080106. [PMID: 30110882 PMCID: PMC6116095 DOI: 10.3390/cells7080106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/04/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic cells have evolved signalling pathways that allow adaptation to harmful conditions that disrupt endoplasmic reticulum (ER) homeostasis. When the function of the ER is compromised in a condition known as ER stress, the cell triggers the unfolded protein response (UPR) in order to restore ER homeostasis. Accumulation of misfolded proteins due to stress conditions activates the UPR pathway. In mammalian cells, the UPR is composed of three branches, each containing an ER sensor (PERK, ATF6 and IRE1). However, in yeast species, the only sensor present is the inositol-requiring enzyme Ire1. To cope with unfolded protein accumulation, Ire1 triggers either a transcriptional response mediated by a transcriptional factor that belongs to the bZIP transcription factor family or an mRNA degradation process. In this review, we address the current knowledge of the UPR pathway in several yeast species: Saccharomyces cerevisiae, Schizosaccharomyces pombe, Candida glabrata, Cryptococcus neoformans, and Candida albicans. We also include unpublished data on the UPR pathway of the budding yeast Kluyveromyces lactis. We describe the basic components of the UPR pathway along with similarities and differences in the UPR mechanism that are present in these yeast species.
Collapse
|
25
|
Morimoto S, Yahara K. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance. Heliyon 2018; 4:e00558. [PMID: 29560469 PMCID: PMC5857721 DOI: 10.1016/j.heliyon.2018.e00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/03/2018] [Accepted: 02/23/2018] [Indexed: 11/26/2022] Open
Abstract
Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes (ADC17 and KIN1) that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning) that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after accounting for potential time delays.
Collapse
Affiliation(s)
- Shimpei Morimoto
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
26
|
Cold atmospheric pressure plasma causes protein denaturation and endoplasmic reticulum stress in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2018; 102:2279-2288. [PMID: 29356871 DOI: 10.1007/s00253-018-8758-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/11/2017] [Accepted: 12/17/2017] [Indexed: 12/14/2022]
Abstract
Cold atmospheric pressure plasma (CAP) does not cause thermal damage or generate toxic residues; hence, it is projected as an alternative agent for sterilization in food and pharmaceutical industries. The fungicidal effects of CAP have not yet been investigated as extensively as its bactericidal effects. We herein examined the effects of CAP on yeast proteins using a new CAP system with an improved processing capacity. We demonstrated that protein ubiquitination and the formation of protein aggregates were induced in the cytoplasm of yeast cells by the CAP treatment. GFP-tagged Tsa1 and Ssa1, an H2O2-responsive molecular chaperone and constitutively expressed Hsp70, respectively, formed cytoplasmic foci in CAP-treated cells. Furthermore, Tsa1 was essential for the formation of Ssa1-GFP foci. These results indicate that the denaturation of yeast proteins was caused by CAP, at least partially, in a H2O2-dependent manner. Furthermore, misfolded protein levels in the endoplasmic reticulum (ER) and the oligomerization of Ire1, a key sensor of ER stress, were enhanced by the treatment with CAP, indicating that CAP causes ER stress in yeast cells as a specific phenomenon to eukaryotic cells. The pretreatment of yeast cells at 37 °C significantly alleviated cell death caused by CAP. Our results strongly suggest that the induction of protein denaturation is a primary mechanism of the fungicidal effects of CAP.
Collapse
|
27
|
Diminished Ost3-dependent N-glycosylation of the BiP nucleotide exchange factor Sil1 is an adaptive response to reductive ER stress. Proc Natl Acad Sci U S A 2017; 114:12489-12494. [PMID: 29109265 DOI: 10.1073/pnas.1705641114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BiP (Kar2 in yeast) is an essential Hsp70 chaperone and master regulator of endoplasmic reticulum (ER) function. BiP's activity is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, Sil1 and Lhs1. Both Sil1 and Lhs1 are glycoproteins, but how N-glycosylation regulates their function is not known. Here, we show that N-glycosylation of Sil1, but not of Lhs1, is diminished upon reductive stress. N-glycosylation of Sil1 is predominantly Ost3-dependent and requires a functional Ost3 CxxC thioredoxin motif. N-glycosylation of Lhs1 is largely Ost3-independent and independent of the CxxC motif. Unglycosylated Sil1 is not only functional but is more effective at rescuing loss of Lhs1 activity than N-glycosylated Sil1. Furthermore, substitution of the redox active cysteine pair C52 and C57 in the N terminus of Sil1 results in the Doa10-dependent ERAD of this mutant protein. We propose that reductive stress in the ER inhibits the Ost3-dependent N-glycosylation of Sil1, which regulates specific BiP functions appropriate to the needs of the ER under reductive stress.
Collapse
|
28
|
Ishikawa T, Kashima M, Nagano AJ, Ishikawa-Fujiwara T, Kamei Y, Todo T, Mori K. Unfolded protein response transducer IRE1-mediated signaling independent of XBP1 mRNA splicing is not required for growth and development of medaka fish. eLife 2017; 6:26845. [PMID: 28952924 PMCID: PMC5636610 DOI: 10.7554/elife.26845] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
When activated by the accumulation of unfolded proteins in the endoplasmic reticulum, metazoan IRE1, the most evolutionarily conserved unfolded protein response (UPR) transducer, initiates unconventional splicing of XBP1 mRNA. Unspliced and spliced mRNA are translated to produce pXBP1(U) and pXBP1(S), respectively. pXBP1(S) functions as a potent transcription factor, whereas pXBP1(U) targets pXBP1(S) to degradation. In addition, activated IRE1 transmits two signaling outputs independent of XBP1, namely activation of the JNK pathway, which is initiated by binding of the adaptor TRAF2 to phosphorylated IRE1, and regulated IRE1-dependent decay (RIDD) of various mRNAs in a relatively nonspecific manner. Here, we conducted comprehensive and systematic genetic analyses of the IRE1-XBP1 branch of the UPR using medaka fish and found that the defects observed in XBP1-knockout or IRE1-knockout medaka were fully rescued by constitutive expression of pXBP1(S). Thus, the JNK and RIDD pathways are not required for the normal growth and development of medaka. The unfolded protein response sensor/transducer IRE1-mediated splicing of XBP1 mRNA encoding its active downstream transcription factor to maintain the homeostasis of the endoplasmic reticulum is sufficient for growth and development of medaka fish.
Collapse
Affiliation(s)
- Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | | | | | - Yasuhiro Kamei
- Spectrography and Bioimaging Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Takeshi Todo
- Graduate School of Medicine, Osaka University, Suita, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Kawazoe N, Kimata Y, Izawa S. Acetic Acid Causes Endoplasmic Reticulum Stress and Induces the Unfolded Protein Response in Saccharomyces cerevisiae. Front Microbiol 2017; 8:1192. [PMID: 28702017 PMCID: PMC5487434 DOI: 10.3389/fmicb.2017.01192] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/12/2017] [Indexed: 02/02/2023] Open
Abstract
Since acetic acid inhibits the growth and fermentation ability of Saccharomyces cerevisiae, it is one of the practical hindrances to the efficient production of bioethanol from a lignocellulosic biomass. Although extensive information is available on yeast response to acetic acid stress, the involvement of endoplasmic reticulum (ER) and unfolded protein response (UPR) has not been addressed. We herein demonstrated that acetic acid causes ER stress and induces the UPR. The accumulation of misfolded proteins in the ER and activation of Ire1p and Hac1p, an ER-stress sensor and ER stress-responsive transcription factor, respectively, were induced by a treatment with acetic acid stress (>0.2% v/v). Other monocarboxylic acids such as propionic acid and sorbic acid, but not lactic acid, also induced the UPR. Additionally, ire1Δ and hac1Δ cells were more sensitive to acetic acid than wild-type cells, indicating that activation of the Ire1p-Hac1p pathway is required for maximum tolerance to acetic acid. Furthermore, the combination of mild acetic acid stress (0.1% acetic acid) and mild ethanol stress (5% ethanol) induced the UPR, whereas neither mild ethanol stress nor mild acetic acid stress individually activated Ire1p, suggesting that ER stress is easily induced in yeast cells during the fermentation process of lignocellulosic hydrolysates. It was possible to avoid the induction of ER stress caused by acetic acid and the combined stress by adjusting extracellular pH.
Collapse
Affiliation(s)
- Nozomi Kawazoe
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of TechnologyKyoto, Japan
| | - Yukio Kimata
- Graduate School of Biological Sciences, Nara Institute of Science and TechnologyNara, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of TechnologyKyoto, Japan
| |
Collapse
|
30
|
Mitchell LA, Wang A, Stracquadanio G, Kuang Z, Wang X, Yang K, Richardson S, Martin JA, Zhao Y, Walker R, Luo Y, Dai H, Dong K, Tang Z, Yang Y, Cai Y, Heguy A, Ueberheide B, Fenyö D, Dai J, Bader JS, Boeke JD. Synthesis, debugging, and effects of synthetic chromosome consolidation: synVI and beyond. Science 2017; 355. [DOI: 10.1126/science.aaf4831] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
INTRODUCTION
Total synthesis of designer chromosomes and genomes is a new paradigm for the study of genetics and biological systems. The Sc2.0 project is building a designer yeast genome from scratch to test and extend the limits of our biological knowledge. Here we describe the design, rapid assembly, and characterization of synthetic chromosome VI (synVI). Further, we investigate the phenotypic, transcriptomic, and proteomic consequences associated with consolidation of three synthetic chromosomes–synVI, synIII, and synIXR—into a single poly-synthetic strain.
RATIONALE
A host of Sc2.0 chromosomes, including synVI, have now been constructed in discrete strains. With debugging steps, where the number of bugs scales with chromosome length, all individual synthetic chromosomes have been shown to power yeast cells to near wild-type (WT) fitness. Testing the effects of Sc2.0 chromosome consolidation to uncover possible synthetic genetic interactions and/or perturbations of native cellular networks as the number of designer changes increases is the next major step for the Sc2.0 project.
RESULTS
SynVI was rapidly assembled using nine sequential steps of SwAP-In (switching auxotrophies progressively by integration), yielding a ~240-kb synthetic chromosome designed to Sc2.0 specifications. We observed partial silencing of the left- and rightmost genes on synVI, each newly positioned subtelomerically relative to their locations on native VI. This result suggests that consensus core X elements of Sc2.0 universal telomere caps are insufficient to fully buffer telomere position effects. The synVI strain displayed a growth defect characterized by an increased frequency of glycerol-negative colonies. The defect mapped to a synVI design feature in the essential
PRE4
gene (
YFR050C
), encoding the β7 subunit of the 20
S
proteasome. Recoding 10 codons near the 3′ end of the
PRE4
open reading frame (ORF) caused a ~twofold reduction in Pre4 protein level without affecting RNA abundance. Reverting the codons to the WT sequence corrected both the Pre4 protein level and the phenotype. We hypothesize that the formation of a stem loop involving recoded codons underlies reduced Pre4 protein level.
Sc2.0 chromosomes (synI to synXVI) are constructed individually in discrete strains and consolidated into poly-synthetic (poly-syn) strains by “endoreduplication intercross.” Consolidation of synVI with synthetic chromosomes III (synIII) and IXR (synIXR) yields a triple-synthetic (triple-syn) strain that is ~6% synthetic overall—with almost 70 kb deleted, including 20 tRNAs, and more than 12 kb recoded. Genome sequencing of double-synthetic (synIII synVI, synIII synIXR, synVI synIXR) and triple-syn (synIII synVI synIXR) cells indicates that suppressor mutations are not required to enable coexistence of Sc2.0 chromosomes. Phenotypic analysis revealed a slightly slower growth rate for the triple-syn strain only; the combined effect of tRNA deletions on different chromosomes might underlie this result. Transcriptome and proteome analyses indicate that cellular networks are largely unperturbed by the existence of multiple synthetic chromosomes in a single cell. However, a second bug on synVI was discovered through proteomic analysis and is associated with alteration of the
HIS2
transcription start as a consequence of tRNA deletion and loxPsym site insertion. Despite extensive genetic alterations across 6% of the genome, no major global changes were detected in the poly-syn strain “omics” analyses.
CONCLUSION
Analyses of phenotypes, transcriptomics, and proteomics of synVI and poly-syn strains reveal, in general, WT cell properties and the existence of rare bugs resulting from genome editing. Deletion of subtelomeres can lead to gene silencing, recoding deep within an ORF can yield a translational defect, and deletion of elements such as tRNA genes can lead to a complex transcriptional output. These results underscore the complementarity of transcriptomics and proteomics to identify bugs, the consequences of designer changes in Sc2.0 chromosomes. The consolidation of Sc2.0 designer chromosomes into a single strain appears to be exceptionally well tolerated by yeast. A predictable exception to this is the deletion of tRNAs, which will be restored on a separate neochromosome to avoid synthetic lethal genetic interactions between deleted tRNA genes as additional synthetic chromosomes are introduced.
Debugging synVI and characterization of poly-synthetic yeast cells.
(
A
) The second Sc2.0 chromosome to be constructed, synVI, encodes a “bug” that causes a variable colony size, dubbed a “glycerol-negative growth-suppression defect.” (
B
) Synonymous changes in the essential
PRE4
ORF lead to a reduced protein level, which underlies the growth defect. (
C
) The poly-synthetic strain synIII synVI synIXR directs growth of yeast cells to near WT fitness levels.
Collapse
Affiliation(s)
- Leslie A. Mitchell
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Ann Wang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Giovanni Stracquadanio
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- School of Computer Science and Electronic Engineering, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| | - Zheng Kuang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Xuya Wang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Kun Yang
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sarah Richardson
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering and Institute of Genetic Medicine, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - J. Andrew Martin
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yu Zhao
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Roy Walker
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Yisha Luo
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | | | - Kang Dong
- GenScript, Piscataway, NJ 08854, USA
| | - Zuojian Tang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yanling Yang
- Proteomics Resource Center, Office of Collaborative Science, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Yizhi Cai
- Center for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Adriana Heguy
- Genome Technology Center, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Proteomics Resource Center, Office of Collaborative Science, New York University Langone School of Medicine, New York, NY 10016, USA
| | - David Fenyö
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Junbiao Dai
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Joel S. Bader
- High Throughput Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Key Laboratory for Industrial Biocatalysis (Ministry of Education), Key Laboratory of Bioinformatics (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jef D. Boeke
- Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
- Institute for Systems Genetics, New York University Langone School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Young DJ, Guydosh NR. Silence without stress. eLife 2016; 5. [PMID: 27834187 PMCID: PMC5106210 DOI: 10.7554/elife.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Two mechanisms ensure that the mRNA encoding Hac1 protein, a transcription factor involved in the unfolded protein response, is only translated when it is needed.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
32
|
Di Santo R, Aboulhouda S, Weinberg DE. The fail-safe mechanism of post-transcriptional silencing of unspliced HAC1 mRNA. eLife 2016; 5. [PMID: 27692069 PMCID: PMC5114014 DOI: 10.7554/elife.20069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022] Open
Abstract
HAC1 encodes a transcription factor that is the central effector of the unfolded protein response (UPR) in budding yeast. When the UPR is inactive, HAC1 mRNA is stored as an unspliced isoform in the cytoplasm and no Hac1 protein is detectable. Intron removal is both necessary and sufficient to relieve the post-transcriptional silencing of HAC1 mRNA, yet the precise mechanism by which the intron prevents Hac1 protein accumulation has remained elusive. Here, we show that a combination of inhibited translation initiation and accelerated protein degradation—both dependent on the intron—prevents the accumulation of Hac1 protein when the UPR is inactive. Functionally, both components of this fail-safe silencing mechanism are required to prevent ectopic production of Hac1 protein and concomitant activation of the UPR. Our results provide a mechanistic understanding of HAC1 regulation and reveal a novel strategy for complete post-transcriptional silencing of a cytoplasmic mRNA. DOI:http://dx.doi.org/10.7554/eLife.20069.001 Molecular machines called ribosomes read the genetic instructions in an mRNA molecule and then translate them to make proteins. However, cells do not translate all of the template mRNAs that they have available into proteins; instead they have a number of ways to block the process to control when certain proteins are made. In budding yeast, the mRNA that codes for a protein called Hac1 is always present in the cell but the protein is normally not detected. The Hac1 protein is responsible for helping the cell deal with certain types of stress, so it only accumulates when the cell is experiencing such stresses. The mRNA that encodes Hac1 (referred to as HAC1 mRNA) contains a sequence called an intron. These sequences are normally cut out of mRNAs before they are read by the ribosome. However, the intron in the HAC1 mRNA is unusual, because it is only removed when cells are subjected to stress. The rest of the time, this intron serves to block the production of Hac1 through a poorly understood mechanism. Now, Di Santo et al. show the HAC1 mRNA uses two strategies to keep itself fully repressed—both of which involve its intron. One strategy relies on a structure formed in the HAC1 mRNA that prevents ribosomes from starting translation in the first place. However, this block is occasionally bypassed, causing some Hac1 protein to be produced when it should not be. To deal with this, the Hac1 protein that is produced contains a short protein sequence, encoded by the intron, that targets this unneeded protein for degradation. These two strategies together comprise a “fail-safe” mechanism to completely repress the HAC1 mRNA. Following on from these findings, it will be important to determine whether other mRNAs – both in budding yeast and in other species including humans – use a similar fail-safe strategy to block proteins from being made when they should not be. DOI:http://dx.doi.org/10.7554/eLife.20069.002
Collapse
Affiliation(s)
- Rachael Di Santo
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Soufiane Aboulhouda
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Sandler Faculty Fellows Program, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
33
|
Biotechnological advances towards an enhanced peroxidase production in Pichia pastoris. J Biotechnol 2016; 233:181-9. [PMID: 27432633 DOI: 10.1016/j.jbiotec.2016.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/10/2016] [Accepted: 07/14/2016] [Indexed: 01/20/2023]
Abstract
Horseradish peroxidase (HRP) is a high-demand enzyme for applications in diagnostics, bioremediation, biocatalysis and medicine. Current HRP preparations are isolated from horseradish roots as mixtures of biochemically diverse isoenzymes. Thus, there is a strong need for a recombinant production process enabling a steady supply with enzyme preparations of consistent high quality. However, most current recombinant production systems are limited at titers in the low mg/L range. In this study, we used the well-known yeast Pichia pastoris as host for recombinant HRP production. To enhance recombinant enzyme titers we systematically evaluated engineering approaches on the secretion process, coproduction of helper proteins, and compared expression from the strong methanol-inducible PAOX1 promoter, the strong constitutive PGAP promoter, and a novel bidirectional promoter PHTX1. Ultimately, coproduction of HRP and active Hac1 under PHTX1 control yielded a recombinant HRP titer of 132mg/L after 56h of cultivation in a methanol-independent and easy-to-do bioreactor cultivation process. With regard to the many versatile applications for HRP, the establishment of a microbial host system suitable for efficient recombinant HRP production was highly overdue. The novel HRP production platform in P. pastoris presented in this study sets a new benchmark for this medically relevant enzyme.
Collapse
|
34
|
Mendes NS, Silva PM, Silva-Rocha R, Martinez-Rossi NM, Rossi A. Pre-mRNA splicing is modulated by antifungal drugs in the filamentous fungus Neurospora crassa. FEBS Open Bio 2016; 6:358-68. [PMID: 27239448 PMCID: PMC4821360 DOI: 10.1002/2211-5463.12047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 11/17/2022] Open
Abstract
For this study, we sought to identify pre‐mRNA processing events modulated by changes in extracellular pH, inorganic phosphate, and antifungal drugs. We examined genes with at least four putative introns whose transcriptional level responded to these effectors. We showed that the intron retention levels of genes encoding asparagine synthetase 2, C6‐zinc finger regulator (fluffy), and a farnesyltransferase respond to amphotericin B, ketoconazole, and other effectors. In general, the assayed antifungals promoted the disruption of the structural domains of these proteins probably leading to their inactivation, which emphasize the complexity of the metabolic modulation exerted by antifungal signaling.
Collapse
Affiliation(s)
- Niege S Mendes
- Department of Genetics Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Patricia M Silva
- Department of Genetics Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Rafael Silva-Rocha
- Department of Molecular and Cellular Biology Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| | - Antonio Rossi
- Department of Genetics Ribeirão Preto Medical School University of São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
35
|
Pausing on Polyribosomes: Make Way for Elongation in Translational Control. Cell 2016; 163:292-300. [PMID: 26451481 DOI: 10.1016/j.cell.2015.09.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/21/2022]
Abstract
Among the three phases of mRNA translation-initiation, elongation, and termination-initiation has traditionally been considered to be rate limiting and thus the focus of regulation. Emerging evidence, however, demonstrates that control of ribosome translocation (polypeptide elongation) can also be regulatory and indeed exerts a profound influence on development, neurologic disease, and cell stress. The correspondence of mRNA codon usage and the relative abundance of their cognate tRNAs is equally important for mediating the rate of polypeptide elongation. Here, we discuss recent results showing that ribosome pausing is a widely used mechanism for controlling translation and, as a result, biological transitions in health and disease.
Collapse
|
36
|
Sathe L, Bolinger C, Mannan MAU, Dever TE, Dey M. Evidence That Base-pairing Interaction between Intron and mRNA Leader Sequences Inhibits Initiation of HAC1 mRNA Translation in Yeast. J Biol Chem 2015; 290:21821-32. [PMID: 26175153 DOI: 10.1074/jbc.m115.649335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/01/2023] Open
Abstract
The Hac1 transcription factor in yeast up-regulates a collection of genes that control protein homeostasis. Base-pairing interactions between sequences in the intron and the 5'-untranslated region (5' UTR) of the HAC1 mRNA represses Hac1 protein production under basal conditions, whereas cytoplasmic splicing of the intron by the Ire1 kinase-endonuclease, activated under endoplasmic reticulum stress conditions, relieves the inhibition and enables Hac1 synthesis. Using a random mutational screen as well as site-directed mutagenesis, we identify point mutations within the 5' UTR-intron interaction site that derepress translation of the unspliced HAC1 mRNA. We also show that insertion of an in-frame AUG start codon upstream of the interaction site releases the translational block, demonstrating that an elongating ribosome can disrupt the interaction. Moreover, overexpression of translation initiation factor eIF4A, a helicase, enhances production of Hac1 from an mRNA containing an upstream AUG start codon at the beginning of the base-paired region. These results suggest that the major block of translation occurs at the initiation stage. Supporting this interpretation, the point mutations that enhanced Hac1 production resulted in an increased percentage of the HAC1 mRNA associating with polysomes versus free ribosomal subunits. Thus, our results provide evidence that the 5' UTR-intron interaction represses translation initiation on the unspliced HAC1 mRNA.
Collapse
Affiliation(s)
- Leena Sathe
- From the Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 and
| | - Cheryl Bolinger
- Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - M Amin-ul Mannan
- From the Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 and
| | - Thomas E Dever
- Eunice Kennedy Shriver NICHD, National Institutes of Health, Bethesda, Maryland 20892
| | - Madhusudan Dey
- From the Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 and
| |
Collapse
|
37
|
Montenegro-Montero A, Goity A, Larrondo LF. The bZIP Transcription Factor HAC-1 Is Involved in the Unfolded Protein Response and Is Necessary for Growth on Cellulose in Neurospora crassa. PLoS One 2015; 10:e0131415. [PMID: 26132395 PMCID: PMC4488935 DOI: 10.1371/journal.pone.0131415] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/02/2015] [Indexed: 12/15/2022] Open
Abstract
High protein secretion capacity in filamentous fungi requires an extremely efficient system for protein synthesis, folding and transport. When the folding capacity of the endoplasmic reticulum (ER) is exceeded, a pathway known as the unfolded protein response (UPR) is triggered, allowing cells to mitigate and cope with this stress. In yeast, this pathway relies on the transcription factor Hac1, which mediates the up-regulation of several genes required under these stressful conditions. In this work, we identified and characterized the ortholog of the yeast HAC1 gene in the filamentous fungus Neurospora crassa. We show that its mRNA undergoes an ER stress-dependent splicing reaction, which in N. crassa removes a 23 nt intron and leads to a change in the open reading frame. By disrupting the N. crassa hac-1 gene, we determined it to be crucial for activating UPR and for proper growth in the presence of ER stress-inducing chemical agents. Neurospora is naturally found growing on dead plant material, composed primarily by lignocellulose, and is a model organism for the study of plant cell wall deconstruction. Notably, we found that growth on cellulose, a substrate that requires secretion of numerous enzymes, imposes major demands on ER function and is dramatically impaired in the absence of hac-1, thus broadening the range of physiological functions of the UPR in filamentous fungi. Growth on hemicellulose however, another carbon source that necessitates the secretion of various enzymes for its deconstruction, is not impaired in the mutant nor is the amount of proteins secreted on this substrate, suggesting that secretion, as a whole, is unaltered in the absence of hac-1. The characterization of this signaling pathway in N. crassa will help in the study of plant cell wall deconstruction by fungi and its manipulation may result in important industrial biotechnological applications.
Collapse
Affiliation(s)
- Alejandro Montenegro-Montero
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Goity
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luis F. Larrondo
- Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
38
|
The Monoterpene Carvacrol Generates Endoplasmic Reticulum Stress in the Pathogenic Fungus Candida albicans. Antimicrob Agents Chemother 2015; 59:4584-92. [PMID: 26014932 DOI: 10.1128/aac.00551-15] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/06/2015] [Indexed: 12/15/2022] Open
Abstract
The monoterpene carvacrol, the major component of oregano and thyme oils, is known to exert potent antifungal activity against the pathogenic yeast Candida albicans. This monoterpene has been the subject of a considerable number of investigations that uncovered extensive pharmacological properties, including antifungal and antibacterial effects. However, its mechanism of action remains elusive. Here, we used integrative chemogenomic approaches, including genome-scale chemical-genetic and transcriptional profiling, to uncover the mechanism of action of carvacrol associated with its antifungal property. Our results clearly demonstrated that fungal cells require the unfolded protein response (UPR) signaling pathway to resist carvacrol. The mutants most sensitive to carvacrol in our genome-wide competitive fitness assay in the yeast Saccharomyces cerevisiae expressed mutations of the transcription factor Hac1 and the endonuclease Ire1, which is required for Hac1 activation by removing a nonconventional intron from the 3' region of HAC1 mRNA. Confocal fluorescence live-cell imaging revealed that carvacrol affects the morphology and the integrity of the endoplasmic reticulum (ER). Transcriptional profiling of pathogenic yeast C. albicans cells treated with carvacrol demonstrated a bona fide UPR transcriptional signature. Ire1 activity detected by the splicing of HAC1 mRNA in C. albicans was activated by carvacrol. Furthermore, carvacrol was found to potentiate antifungal activity of the echinocandin antifungal caspofungin and UPR inducers dithiothreitol and tunicamycin against C. albicans. This comprehensive chemogenomic investigation demonstrated that carvacrol exerts its antifungal activity by altering ER integrity, leading to ER stress and the activation of the UPR to restore protein-folding homeostasis.
Collapse
|
39
|
Fang Z, Kuang X, Zhang Y, Shi P, Huang Z. A novel HAC1-based dual-luciferase reporter vector for detecting endoplasmic reticulum stress and unfolded protein response in yeast Saccharomyces cerevisiae. Plasmid 2015; 79:48-53. [PMID: 25907266 DOI: 10.1016/j.plasmid.2015.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/09/2015] [Accepted: 04/12/2015] [Indexed: 01/09/2023]
Abstract
Unfolded protein response (UPR) is an important cellular phenomenon induced by over-accumulation of unfolded proteins in the endoplasmic reticulum (ER) lumen. ER stress and UPR are implicated in human diseases such as diabetes, atherosclerosis and neurodegenerative diseases. Current methods for measuring ER stress levels and UPR activation usually include cells lysis and other complicated procedures such as reverse transcription-PCR (RT-PCR). These methods typically have low sensitivity and are not suitable for live detection. In this study, we developed a dual-luciferase gene reporter system to monitor UPR activation in live cells of the yeast Saccharomyces cerevisiae by taking advantage of the HAC1 intron and its unconventional splicing-regulation mechanism. We showed that this reporter can be used to monitor UPR in live cells with high sensitivity.
Collapse
Affiliation(s)
- Zhijia Fang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Xin Kuang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China; Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Youshang Zhang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Zhiwei Huang
- Key Lab of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 Renmin Road, Shanghai 201620, China; Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
40
|
Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol 2015; 99:2925-38. [DOI: 10.1007/s00253-015-6470-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/05/2015] [Accepted: 02/08/2015] [Indexed: 10/23/2022]
|
41
|
Mammalian introns: when the junk generates molecular diversity. Int J Mol Sci 2015; 16:4429-52. [PMID: 25710723 PMCID: PMC4394429 DOI: 10.3390/ijms16034429] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 01/14/2023] Open
Abstract
Introns represent almost half of the human genome, yet their vast majority is eliminated from eukaryotic transcripts through RNA splicing. Nevertheless, they feature key elements and functions that deserve further interest. At the level of DNA, introns are genomic segments that can shelter independent transcription units for coding and non-coding RNAs which transcription may interfere with that of the host gene, and regulatory elements that can influence gene expression and splicing itself. From the RNA perspective, some introns can be subjected to alternative splicing. Intron retention appear to provide some plasticity to the nature of the protein produced, its distribution in a given cell type and timing of its translation. Intron retention may also serve as a switch to produce coding or non-coding RNAs from the same transcription unit. Conversely, splicing of introns has been directly implicated in the production of small regulatory RNAs. Hence, splicing of introns also appears to provide plasticity to the type of RNA produced from a genetic locus (coding, non-coding, short or long). We addressed these aspects to add to our understanding of mechanisms that control the fate of introns and could be instrumental in regulating genomic output and hence cell fate.
Collapse
|
42
|
Pimentel J, Boccaccio GL. Translation and silencing in RNA granules: a tale of sand grains. Front Mol Neurosci 2014; 7:68. [PMID: 25100944 PMCID: PMC4107967 DOI: 10.3389/fnmol.2014.00068] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/05/2014] [Indexed: 01/19/2023] Open
Abstract
The transcriptome at the synapse consists of thousands of messengers encoding several cellular functions, including a significant number of receptors and ion channels and associated proteins. The concerted translational regulation of all these molecules contributes to the dynamic control of synaptic strength. Cumulative evidence supports that dendritic RNA granules and mRNA-silencing foci play an important role in translational regulation. Several relevant RBPs – FMRP; FUS/TLS; TDP-43; Staufen; Smaug; Pumilio; CPEB; HuD; ZBP1; and DDX6 among others – form granules that contain dormant mRNAs repressed by multiple pathways. Recent reports indicate that dendritic granules may contain stalled polysomes, and furthermore, active translation may occur in association with RNA granules. Here, we discuss the molecules and pathways involved in this continuum of RNA granules that contain masked mRNAs, mRNAs trapped in inactive polysomes or mRNAs engaged in translation.
Collapse
Affiliation(s)
| | - Graciela L Boccaccio
- Instituto Leloir Buenos Aires, Argentina ; Instituto de Investigaciones Bioquímicas Buenos Aires - Consejo Nacional de Investigaciones Científicas y Tecnológicas Buenos Aires, Argentina ; Facultad de Ciencias Exactas y Naturales, University of Buenos Aires Buenos Aires, Argentina
| |
Collapse
|
43
|
Coelho DS, Domingos PM. Physiological roles of regulated Ire1 dependent decay. Front Genet 2014; 5:76. [PMID: 24795742 PMCID: PMC3997004 DOI: 10.3389/fgene.2014.00076] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/24/2014] [Indexed: 12/17/2022] Open
Abstract
Inositol-requiring enzyme 1 (Ire1) is an important transducer of the unfolded protein response (UPR) that is activated by the accumulation of misfolded proteins in the endoplamic reticulum (ER stress). Activated Ire1 mediates the splicing of an intron from the mRNA of Xbp1, causing a frame-shift during translation and introducing a new carboxyl domain in the Xbp1 protein, which only then becomes a fully functional transcription factor. Studies using cell culture systems demonstrated that Ire1 also promotes the degradation of mRNAs encoding mostly ER-targeted proteins, to reduce the load of incoming ER “client” proteins during ER stress. This process was called RIDD (regulated Ire1-dependent decay), but its physiological significance remained poorly characterized beyond cell culture systems. Here we review several recent studies that have highlighted the physiological roles of RIDD in specific biological paradigms, such as photoreceptor differentiation in Drosophila or mammalian liver and endocrine pancreas function. These studies demonstrate the importance of RIDD in tissues undergoing intense secretory function and highlight the physiologic role of RIDD during UPR activation in cells and organisms.
Collapse
Affiliation(s)
- Dina S Coelho
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| | - Pedro M Domingos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa Oeiras, Portugal
| |
Collapse
|
44
|
Ruberti C, Brandizzi F. Conserved and plant-unique strategies for overcoming endoplasmic reticulum stress. FRONTIERS IN PLANT SCIENCE 2014; 5:69. [PMID: 24616733 PMCID: PMC3935401 DOI: 10.3389/fpls.2014.00069] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/10/2014] [Indexed: 05/19/2023]
Abstract
Stress caused by environmental conditions or physiological growth can lead to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) causing ER stress, which in turn triggers a cytoprotective mechanism termed the unfolded protein response (UPR). Under mild-short stress conditions the UPR can restore ER functioning and cell growth, such as reducing the load of unfolded proteins through the upregulation of genes involved in protein folding and in degrading mis-folded proteins, and through autophagy activation, but it can also lead to cell death under prolonged and severe stress conditions. A diversified suite of sensors has been evolved in the eukaryotic lineages to orchestrate the UPR most likely to suit the cell's necessity to respond to the different kinds of stress in a conserved as well as species-specific manner. In plants three UPR sensors cooperate with non-identical signaling pathways: the protein kinase inositol-requiring enzyme (IRE1), the ER-membrane-associated transcription factor bZIP28, and the GTP-binding protein β1 (AGB1). In this mini-review, we show how plants differ from the better characterized metazoans and fungi, providing an overview of the signaling pathways of the UPR, and highlighting the overlapping and the peculiar roles of the different UPR branches in light of evolutionary divergences in eukaryotic kingdoms.
Collapse
Affiliation(s)
- Cristina Ruberti
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Federica Brandizzi
- Plant Research Laboratory, Department of Energy, Michigan State UniversityEast Lansing, MI, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
- *Correspondence: Federica Brandizzi, Plant Research Laboratory, Department of Energy, Michigan State University, 612 Wilson Road, East Lansing, MI 48824, USA e-mail:
| |
Collapse
|
45
|
Mutual cross talk between the regulators Hac1 of the unfolded protein response and Gcn4 of the general amino acid control of Saccharomyces cerevisiae. EUKARYOTIC CELL 2013; 12:1142-54. [PMID: 23794510 DOI: 10.1128/ec.00123-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hac1 is the activator of the cellular response to the accumulation of unfolded proteins in the endoplasmic reticulum. Hac1 function requires the activity of Gcn4, which mainly acts as a regulator of the general amino acid control network providing Saccharomyces cerevisiae cells with amino acids. Here, we demonstrate novel functions of Hac1 and describe a mutual connection between Hac1 and Gcn4. Hac1 is required for induction of Gcn4-responsive promoter elements in haploid as well as diploid cells and therefore participates in the cellular amino acid supply. Furthermore, Hac1 and Gcn4 mutually influence their mRNA expression levels. Hac1 is also involved in FLO11 expression and adhesion upon amino acid starvation. Hac1 and Gcn4 act through the same promoter regions of the FLO11 flocculin. The results indicate an indirect effect of both transcription factors on FLO11 expression. Our data suggest a complex mutual cross talk between the Hac1- and Gcn4-controlled networks.
Collapse
|
46
|
Miyazaki T, Nakayama H, Nagayoshi Y, Kakeya H, Kohno S. Dissection of Ire1 functions reveals stress response mechanisms uniquely evolved in Candida glabrata. PLoS Pathog 2013; 9:e1003160. [PMID: 23382685 PMCID: PMC3561209 DOI: 10.1371/journal.ppat.1003160] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/12/2012] [Indexed: 11/18/2022] Open
Abstract
Proper protein folding in the endoplasmic reticulum (ER) is vital in all eukaryotes. When misfolded proteins accumulate in the ER lumen, the transmembrane kinase/endoribonuclease Ire1 initiates splicing of HAC1 mRNA to generate the bZIP transcription factor Hac1, which subsequently activates its target genes to increase the protein-folding capacity of the ER. This cellular machinery, called the unfolded protein response (UPR), is believed to be an evolutionarily conserved mechanism in eukaryotes. In this study, we comprehensively characterized mutant phenotypes of IRE1 and other related genes in the human fungal pathogen Candida glabrata. Unexpectedly, Ire1 was required for the ER stress response independently of Hac1 in this fungus. C. glabrata Ire1 did not cleave mRNAs encoding Hac1 and other bZIP transcription factors identified in the C. glabrata genome. Microarray analysis revealed that the transcriptional response to ER stress is not mediated by Ire1, but instead is dependent largely on calcineurin signaling and partially on the Slt2 MAPK pathway. The loss of Ire1 alone did not confer increased antifungal susceptibility in C. glabrata contrary to UPR-defective mutants in other fungi. Taken together, our results suggest that the canonical Ire1-Hac1 UPR is not conserved in C. glabrata. It is known in metazoans that active Ire1 nonspecifically cleaves and degrades a subset of ER-localized mRNAs to reduce the ER load. Intriguingly, this cellular response could occur in an Ire1 nuclease-dependent fashion in C. glabrata. We also uncovered the attenuated virulence of the C. glabrata Δire1 mutant in a mouse model of disseminated candidiasis. This study has unveiled the unique evolution of ER stress response mechanisms in C. glabrata.
Collapse
Affiliation(s)
- Taiga Miyazaki
- Department of Molecular Microbiology and Immunology, Nagasaki University School of Medicine, Nagasaki, Japan.
| | | | | | | | | |
Collapse
|
47
|
Lee TH, Bae YH, Kim MD, Seo JH. Overexpression of HAC1 gene increased levels of both intracellular and secreted human kringle fragment in Saccharomyces cerevisiae. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Unfolded protein responses with or without unfolded proteins? Cells 2012; 1:926-50. [PMID: 24710536 PMCID: PMC3901143 DOI: 10.3390/cells1040926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/22/2012] [Indexed: 01/08/2023] Open
Abstract
The endoplasmic reticulum (ER) is the site of secretory protein biogenesis. The ER quality control (QC) machinery, including chaperones, ensures the correct folding of secretory proteins. Mutant proteins and environmental stresses can overwhelm the available QC machinery. To prevent and resolve accumulation of misfolded secretory proteins in the ER, cells have evolved integral membrane sensors that orchestrate the Unfolded Protein Response (UPR). The sensors, Ire1p in yeast and IRE1, ATF6, and PERK in metazoans, bind the luminal ER chaperone BiP during homeostasis. As unfolded secretory proteins accumulate in the ER lumen, BiP releases, and the sensors activate. The mechanisms of activation and attenuation of the UPR sensors have exhibited unexpected complexity. A growing body of data supports a model in which Ire1p, and potentially IRE1, directly bind unfolded proteins as part of the activation process. However, evidence for an unfolded protein-independent mechanism has recently emerged, suggesting that UPR can be activated by multiple modes. Importantly, dysregulation of the UPR has been linked to human diseases including Type II diabetes, heart disease, and cancer. The existence of alternative regulatory pathways for UPR sensors raises the exciting possibility for the development of new classes of therapeutics for these medically important proteins.
Collapse
|
49
|
Tsvetanova NG, Riordan DP, Brown PO. The yeast Rab GTPase Ypt1 modulates unfolded protein response dynamics by regulating the stability of HAC1 RNA. PLoS Genet 2012; 8:e1002862. [PMID: 22844259 PMCID: PMC3406009 DOI: 10.1371/journal.pgen.1002862] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved mechanism that mitigates accumulation of unfolded proteins in the ER. The yeast UPR is subject to intricate post-transcriptional regulation, involving recruitment of the RNA encoding the Hac1 transcription factor to the ER and its unconventional splicing. To investigate the mechanisms underlying regulation of the UPR, we screened the yeast proteome for proteins that specifically interact with HAC1 RNA. Protein microarray experiments revealed that HAC1 interacts specifically with small ras GTPases of the Ypt family. We characterized the interaction of HAC1 RNA with one of these proteins, the yeast Rab1 homolog Ypt1. We found that Ypt1 protein specifically associated in vivo with unspliced HAC1 RNA. This association was disrupted by conditions that impaired protein folding in the ER and induced the UPR. Also, the Ypt1-HAC1 interaction depended on IRE1 and ADA5, the two genes critical for UPR activation. Decreasing expression of the Ypt1 protein resulted in a reduced rate of HAC1 RNA decay, leading to significantly increased levels of both unspliced and spliced HAC1 RNA, and delayed attenuation of the UPR, when ER stress was relieved. Our findings establish that Ypt1 contributes to regulation of UPR signaling dynamics by promoting the decay of HAC1 RNA, suggesting a potential regulatory mechanism for linking vesicle trafficking to the UPR and ER homeostasis.
Collapse
Affiliation(s)
- Nikoleta G Tsvetanova
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| | | | | |
Collapse
|
50
|
Paredes JA, Carreto L, Simões J, Bezerra AR, Gomes AC, Santamaria R, Kapushesky M, Moura GR, Santos MAS. Low level genome mistranslations deregulate the transcriptome and translatome and generate proteotoxic stress in yeast. BMC Biol 2012; 10:55. [PMID: 22715922 PMCID: PMC3391182 DOI: 10.1186/1741-7007-10-55] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/20/2012] [Indexed: 11/21/2022] Open
Abstract
Background Organisms use highly accurate molecular processes to transcribe their genes and a variety of mRNA quality control and ribosome proofreading mechanisms to maintain intact the fidelity of genetic information flow. Despite this, low level gene translational errors induced by mutations and environmental factors cause neurodegeneration and premature death in mice and mitochondrial disorders in humans. Paradoxically, such errors can generate advantageous phenotypic diversity in fungi and bacteria through poorly understood molecular processes. Results In order to clarify the biological relevance of gene translational errors we have engineered codon misreading in yeast and used profiling of total and polysome-associated mRNAs, molecular and biochemical tools to characterize the recombinant cells. We demonstrate here that gene translational errors, which have negligible impact on yeast growth rate down-regulate protein synthesis, activate the unfolded protein response and environmental stress response pathways, and down-regulate chaperones linked to ribosomes. Conclusions We provide the first global view of transcriptional and post-transcriptional responses to global gene translational errors and we postulate that they cause gradual cell degeneration through synergistic effects of overloading protein quality control systems and deregulation of protein synthesis, but generate adaptive phenotypes in unicellular organisms through activation of stress cross-protection. We conclude that these genome wide gene translational infidelities can be degenerative or adaptive depending on cellular context and physiological condition.
Collapse
Affiliation(s)
- João A Paredes
- RNA Biology Laboratory, Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|