1
|
Liu Q, Liu A, Liu Y, Li J, Bai J, Hai G, Wang J, Liu W, Wan P, Fu X. Hydroxyapatite nanoparticle improves ovine oocyte developmental capacity by alleviating oxidative stress in response to vitrification stimuli. Theriogenology 2024; 229:88-99. [PMID: 39167837 DOI: 10.1016/j.theriogenology.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The wide application of ovine oocyte vitrification is limited by its relatively low efficiency. Nanoparticle is potentially to be used in cryopreservation technology for its unique characteristics with high biocompatibility, potent antioxidant property as well as superiority in membrane permeation and heat transduction. However, the effect of nanoparticle on ovine oocyte cryopreservation as well as the underlying mechanism has not been systematically evaluated. The objective of this study was to investigate the impact of nanoparticles on ovine oocytes cryopreservation and further identify the underlying mechanism. Firstly, the effects of Hydroxyapatite (HA) and Fe3O4 nanoparticles on the developmental potential of vitrified ovine oocytes were determined, and the results showed that neither HA (VC = 85.95 ± 6.23 % vs. VH = 92.47 ± 8.11 %, P > 0.05) nor Fe3O4 (VC = 85.95 ± 6.23 % vs. VF = 89.39 ± 6.32 %, P > 0.05) had adverse effect on the survival rate of vitrified-thawed oocytes. Notably, both HA (VC = 77.78 ± 0.09 % vs. VH = 44.00 ± 0.09 %, P<0.01) and Fe3O4 (VC = 77.78 ± 0.09 % vs. VF = 51.67 ± 0.15 %, P<0.01) nanoparticles effectively reduced the level of oocyte apoptosis after freezing and thawing. What's more, HA could significantly improve the cleavage rate of frozen oocytes (VC = 33.79 ± 2.83 % vs. VH = 59.54 ± 4.13 %, P<0.05). Moreover, reduced reactive oxygen species (ROS) level (VC = 13.66 ± 0.47 vs. VH = 12.61 ± 0.53, P < 0.05), increased glutathione (GSH) content (VC = 60.69 ± 7.89 vs. VH = 87.92 ± 1.05, P < 0.05) and elevated mitochondrial membrane potential (MMP) level (VC = 1.43 ± 0.04 vs. VH = 1.63 ± 0.01,P<0.01) were observed in oocytes treated with HA nanoparticles when compared with that of the control group. Furthermore, Smart-RNA sequence technology was utilized to identify differentially expressed mRNAs (DEMs) induced by nanoparticles during cryopreservation. When compared with the control counterparts, a total of 721 DEMs (309 up-regulated and 412 down-regulated mRNAs) were identified in oocytes treated with HA, while 702 DEMs (480 up-regulated and 222 down-regulated mRNAs) were identified in oocytes treated with Fe3O4. A comparison of DEMs showed that total 692 mRNAs were expressed in oocytes treated with HA and Fe3O4. Notably, we discovered that 15 mRNAs were specially highly expressed in oocytes treated with HA, and Focal adhesion signaling pathway mainly contributed to the improved ovine oocyte quality after vitrification by alleviating oxidative stress.
Collapse
Affiliation(s)
- Qian Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Aiju Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yucheng Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jun Li
- Department of Reproductive Medicine, Reproductive Medical Center, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiachen Bai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guiping Hai
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jingjing Wang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Weijun Liu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Pengcheng Wan
- State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| | - Xiangwei Fu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the MARA, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China; State Key Laboratory of Sheep Genetic Improvement and Healthy Breeding, Institute of Animal Husbandry and Veterinary Sciences, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China.
| |
Collapse
|
2
|
Abstract
T cell activation is initiated by the recognition of specific antigenic peptides and subsequently accomplished by complex signaling cascades. These aspects have been extensively studied for decades as pivotal factors in the establishment of adaptive immunity. However, how receptors or signaling molecules are organized in the resting state prior to encountering antigens has received less attention. Recent advancements in super-resolution microscopy techniques have revealed topographically controlled pre-formed organization of key molecules involved in antigen recognition and signal transduction on microvillar projections of T cells before activation and substantial effort has been dedicated to characterizing the topological structure of resting T cells over the past decade. This review will summarize our current understanding of how key surface receptors are pre-organized on the T-cell plasma membrane and discuss the potential role of these receptors, which are preassembled prior to ligand binding in the early activation events of T cells.
Collapse
Affiliation(s)
- Yunmin Jung
- Department of Nano-Biomedical Engineering, Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science, Seoul, Republic of Korea
| |
Collapse
|
3
|
Rump A, Ratas K, Lepasepp TK, Suurväli J, Smolander OP, Gross-Paju K, Toomsoo T, Kanellopoulos J, Rüütel Boudinot S. Sex-dependent expression levels of VAV1 and P2X7 in PBMC of multiple sclerosis patients. Scand J Immunol 2023; 98:e13283. [PMID: 38441379 DOI: 10.1111/sji.13283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/21/2023] [Accepted: 05/01/2023] [Indexed: 03/07/2024]
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disorder of the central nervous system and the leading cause of progressive neurological disability in young adults. It decreases the patient's lifespan by about 10 years and affects women more than men. No medication entirely restricts or reverses neurological degradation. However, early diagnosis and treatment increase the possibility of a better outcome. To identify new MS biomarkers, we tested the expression of six potential markers (P2X4, P2X7, CXCR4, RGS1, RGS16 and VAV1) using qPCR in peripheral blood mononuclear cells (PBMC) of MS patients treated with interferon β (IFNβ), with glatiramer acetate (GA) or untreated. We showed that P2X7 and VAV1 are significantly induced in MS patients. In contrast, the expression of P2X4, CXCR4, RGS1 and RGS16 was not significantly modified by MS in PBMC. P2X7 and VAV1 are essentially induced in female patients, suggesting these markers are connected to sex-specific mechanisms. Strikingly, VAV1 expression is higher in healthy women than healthy men and IFNβ treatment of MS reduced VAV1 expression in female MS patients while it up-regulated VAV1 in male MS patients. Our data point to the differential, sex-dependent value of MS markers and treatment effects. Although rgs16 expression in PBMC was not a valid MS marker in patients, the strong upregulation of P2X4 and P2X7 induced in the spinal cord of WT mice by EAE was abrogated in rgs16KO mice suggesting that rgs16 is required for P2X4 and P2X7 induction by neurological diseases.
Collapse
Affiliation(s)
- Airi Rump
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kristel Ratas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Synlab, Tallinn, Estonia
| | - Tuuli Katarina Lepasepp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jaanus Suurväli
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Olli-Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Katrin Gross-Paju
- Department of Health Technologies, School of Information Technologies, Tallinn University of Technology, Tallinn, Estonia
- West-Tallinn Central Hospital, Tallinn, Estonia
| | - Toomas Toomsoo
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
- Confido Medical Center, Tallinn, Estonia
| | - Jean Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, France
| | - Sirje Rüütel Boudinot
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
4
|
Shalom B, Salaymeh Y, Risling M, Katzav S. Unraveling the Oncogenic Potential of VAV1 in Human Cancer: Lessons from Mouse Models. Cells 2023; 12:cells12091276. [PMID: 37174676 PMCID: PMC10177506 DOI: 10.3390/cells12091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
VAV1 is a hematopoietic signal transducer that possesses a GDP/GTP nucleotide exchange factor (GEF) that is tightly regulated by tyrosine phosphorylation, along with adapter protein domains, such as SH2 and SH3. Research on VAV1 has advanced over the years since its discovery as an in vitro activated oncogene in an NIH3T3 screen for oncogenes. Although the oncogenic form of VAV1 first identified in the screen has not been detected in human clinical tumors, its wild-type and mutant forms have been implicated in mammalian malignancies of various tissue origins, as well as those of the hematopoietic system. This review article addresses the activity of human VAV1 as an overexpressed or mutated gene and also describes the differences in the distribution of VAV1 mutations in the hematopoietic system and in other tissues. The knowledge accumulated thus far from GEMMs expressing VAV1 is described, with the conclusion that GEMMs of both wild-type VAV1 and mutant VAV1 do not form tumors, yet these will be generated when additional molecular insults, such as loss of p53 or KRAS mutation, occur.
Collapse
Affiliation(s)
- Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| | - Matan Risling
- Department of Military Medicine and "Tzameret", Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
- Medical Corps, Israel Defense Forces, Tel-Hashomer 02149, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University, Jerusalem 91120, Israel
| |
Collapse
|
5
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
Lawton ML, Emili A. Mass Spectrometry-Based Phosphoproteomics and Systems Biology: Approaches to Study T Lymphocyte Activation and Exhaustion. J Mol Biol 2021; 433:167318. [PMID: 34687714 DOI: 10.1016/j.jmb.2021.167318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 11/24/2022]
Abstract
T lymphocytes respond to extracellular cues and recognize and clear foreign bodies. These functions are tightly regulated by receptor-mediated intracellular signal transduction pathways and phosphorylation cascades resulting in rewiring of transcription, cell adhesion, and metabolic pathways, which leads to changes in downstream effector functions including cytokine secretion and target-cell killing. Given that these pathways become dysregulated in chronic diseases such as cancer, auto-immunity, diabetes, and persistent infections, mapping T cell signaling dynamics in normal and pathological states is central to understanding and modulating immune system behavior. Despite recent advances, there remains much to be learned from the study of T cell signaling at a systems level. The application of global phospho-proteomic profiling technology has the potential to provide unprecedented insights into the molecular networks that govern T cell function. These include capturing the spatiotemporal dynamics of the T cell responses as an ensemble of interacting components, rather than a static view at a single point in time. In this review, we describe innovative experimental approaches to study signaling mechanisms in the TCR, co-stimulatory receptors, synthetic signaling molecules such as chimeric antigen receptors, inhibitory receptors, and T cell exhaustion. Technical advances in mass spectrometry and systems biology frameworks are emphasized as these are poised to identify currently unknown functional relationships and dependencies to create causal predictive models that expand from the traditional narrow reductionist lens of singular components in isolation.
Collapse
Affiliation(s)
- Matthew L Lawton
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA; Department of Biology, Boston University, Boston, MA, USA.
| |
Collapse
|
7
|
Kaminski S, Adjali O, Jacquet C, Garaude J, Keriel A, Lassaux A, Hipskind R, Sitbon M, Taylor N, Villalba M. The protooncogene Vav1 regulates murine leukemia virus-induced T-cell leukemogenesis. Oncoimmunology 2021; 1:600-608. [PMID: 22934252 PMCID: PMC3429564 DOI: 10.4161/onci.20225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vav1 is expressed exclusively in hematopoietic cells and is required for T cell development and activation. Vav1-deficient mice show thymic hypocellularity due to a partial block during thymocyte development at the DN3 stage and between the double positive (DP) and single positive (SP) transition. Vav1 has been shown to play a significant role in several non-hematopoietic tumors but its role in leukemogenesis is unknown. To address this question, we investigated the role of Vav1 in retrovirus-induced T cell leukemogenesis. Infection of Vav1-deficient mice with the Moloney strain of murine leukemia virus (M-MuLV) significantly affected tumor phenotype without modulating tumor incidence or latency. M-MuLV-infected Vav1-deficient mice showed reduced splenomegaly, higher hematocrit levels and hypertrophic thymi. Notably, Vav1-deficient mice with M-MuLV leukemias presented with markedly lower TCRβ/CD3 levels, indicating that transformation occurred at an earlier stage of T cell development than in WT mice. Thus, impaired T cell development modulates the outcome of retrovirus-induced T cell leukemias, demonstrating a link between T cell development and T cell leukemogenesis.
Collapse
Affiliation(s)
- Sandra Kaminski
- Institut de Génétique Moléculaire de Montpellier; UMR 5535; CNRS; Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Salaymeh Y, Farago M, Sebban S, Shalom B, Pikarsky E, Katzav S. Vav1 and mutant K-Ras synergize in the early development of pancreatic ductal adenocarcinoma in mice. Life Sci Alliance 2020; 3:e202000661. [PMID: 32277014 PMCID: PMC7156281 DOI: 10.26508/lsa.202000661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
To explore the contribution of Vav1, a hematopoietic signal transducer, to pancreatic ductal adenocarcinoma (PDAC) development, we generated transgenic mouse lines expressing, Vav1, K-RasG12D, or both K-RasG12D and Vav1 in pancreatic acinar cells. Co-expression of Vav1 and K-RasG12D synergistically enhanced acinar-to-ductal metaplasia (ADM) formation, far exceeding the number of lesions developed in K-RasG12D mice. Mice expressing only Vav1 did not develop ADM. Moreover, the incidence of PDAC in K-RasG12D/Vav1 was significantly higher than in K-RasG12D mice. Discontinuing Vav1 expression in K-RasG12D/Vav1 mice elicited a marked regression of malignant lesions in the pancreas, demonstrating Vav1 is required for generation and maintenance of ADM. Rac1-GTP levels in the K-RasG12D/Vav1 mice pancreas clearly demonstrated an increase in Rac1 activity. Treatment of K-RasG12D and K-RasG12D/Vav1 mice with azathioprine, an immune-suppressor drug which inhibits Vav1's activity as a GDP/GTP exchange factor, dramatically reduced the number of malignant lesions. These results suggest that Vav1 plays a role in the development of PDAC when co-expressed with K-RasG12D via its activity as a GEF for Rac1GTPase.
Collapse
Affiliation(s)
- Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Marganit Farago
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
9
|
Cheng X, Haeberle S, Shytaj IL, Gama-Brambila RA, Theobald J, Ghafoory S, Wölker J, Basu U, Schmidt C, Timm A, Taškova K, Bauer AS, Hoheisel J, Tsopoulidis N, Fackler OT, Savarino A, Andrade-Navarro MA, Ott I, Lusic M, Hadaschik EN, Wölfl S. NHC-gold compounds mediate immune suppression through induction of AHR-TGFβ1 signalling in vitro and in scurfy mice. Commun Biol 2020; 3:10. [PMID: 31909202 PMCID: PMC6941985 DOI: 10.1038/s42003-019-0716-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Gold compounds have a long history of use as immunosuppressants, but their precise mechanism of action is not completely understood. Using our recently developed liver-on-a-chip platform we now show that gold compounds containing planar N-heterocyclic carbene (NHC) ligands are potent ligands for the aryl hydrocarbon receptor (AHR). Further studies showed that the lead compound (MC3) activates TGFβ1 signaling and suppresses CD4+ T-cell activation in vitro, in human and mouse T cells. Conversely, genetic knockdown or chemical inhibition of AHR activity or of TGFβ1-SMAD-mediated signaling offsets the MC3-mediated immunosuppression. In scurfy mice, a mouse model of human immunodysregulation polyendocrinopathy enteropathy X-linked syndrome, MC3 treatment reduced autoimmune phenotypes and extended lifespan from 24 to 58 days. Our findings suggest that the immunosuppressive activity of gold compounds can be improved by introducing planar NHC ligands to activate the AHR-associated immunosuppressive pathway, thus expanding their potential clinical application for autoimmune diseases.
Collapse
Affiliation(s)
- Xinlai Cheng
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, D-60438 Frankfurt am Main, Germany
| | - Stefanie Haeberle
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Iart Luca Shytaj
- Department of Infectious Diseases Integrative Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Rodrigo. A. Gama-Brambila
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Jannick Theobald
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Shahrouz Ghafoory
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | - Jessica Wölker
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Uttara Basu
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Claudia Schmidt
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Annika Timm
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Katerina Taškova
- Biozentrum I, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
- Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany
- School of Computer Science, The University of Auckland, Auckland, New Zealand
| | | | - Jörg Hoheisel
- Functional Genome Analysis, DKFZ, Heidelberg, Germany
| | - Nikolaos Tsopoulidis
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Oliver T. Fackler
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Andrea Savarino
- Present Address: Department of Infectious and Immune-Mediated Diseases, Italian Institute of Health, Rome, Italy
| | - Miguel A. Andrade-Navarro
- Biozentrum I, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
- Faculty of Biology, Johannes Gutenberg Universität, Mainz, Germany
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstrasse 55, 38106 Braunschweig, Germany
- PVZ — Center of Pharmaceutical Engineering, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany
| | - Marina Lusic
- Department of Infectious Diseases Integrative Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Eva N. Hadaschik
- Department of Dermatology, University Hospital Heidelberg, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Stefan. Wölfl
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| |
Collapse
|
10
|
Vav1 mutations: What makes them oncogenic? Cell Signal 2020; 65:109438. [DOI: 10.1016/j.cellsig.2019.109438] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/31/2022]
|
11
|
Batcha MM, Ahamed AS, Peng CF. Identification of a new type of haematopoietic progenitor kinase-interacting protein (HIP-55) in Aedes aegypti mosquito haemocytes and its involvement in immunity-like functions in mosquito: a molecular study. Parasitol Res 2019; 118:2509-2521. [PMID: 31377908 DOI: 10.1007/s00436-019-06408-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/25/2019] [Indexed: 11/26/2022]
Abstract
In this study, we characterize the HIP-55 protein in the mosquito Aedes aegypti for the first time. HIP-55 is a 55-kDa HPK1-interacting protein that is also called SH3P7. HIP-55 constitutively binds HPK1 'via' an HPK1 proline-rich motif 2(PR2) through its C-terminal SH3 domain. HIP-55 critically interacts with ZAP-70, and this interaction was induced by TCR signalling. ZAP-70 phosphorylated HIP-55 at Tyr-334 and Tyr-344 in vitro and in vivo. In our previous findings, AaZAP gene expression strongly proved that AaZAP-70 was involved in immunity-like functions in mosquito. Northern blot analysis of HIP-55 mRNA expression confirmed that it is only expressed in the abdomen and haemocyte tissues; this prediction correlates 100% and a polyclonal antibody also confirmed its localization in haemocytes and the abdomen. We prepared extracts to show the cytoplasmic expression (CE) of this protein. Previous results had proven that this protein is secreted from the cytoplasm; thus, we confirmed here that the protein is a cytoplasmic adaptor protein in mosquitoes and mammalian systems. Furthermore, our polyclonal antibody against HIP-55 also demonstrated that this protein is found in haemocytes and abdomen tissues, which assumes that the protein may be involved in phagocytic-like functions. RNAi (siRNA) silencing studies were used to degrade mosquito HIP-55; however, silencing only slightly affected the HIP-55 sequence and the gene transcriptional level. To characterize this protein, we cloned 609 bp from the 1.6-kb full-length cDNA using a pET28 vector for polyclonal antibody production. Graphical abstract.
Collapse
Affiliation(s)
- M Mohiadeen Batcha
- Department of Zoology, HKRH College, Uthamapalayam, Theni District, Tamil Nadu, India.
- Post Doctoral Scientist, Institute of Tropical Medicine, National Yang Ming University, Shihpai, Taipei-112, Taiwan, Republic of China.
| | - A Sajith Ahamed
- Department of Microbiology, HKRH College, Uthamapalayam, Theni District, Tamil Nadu, India
| | - Chiung Fang Peng
- Fuga Biotechnology, Chongqing S. Rd, Zhongzheng Dist, Taipei - 100, Taiwan
| |
Collapse
|
12
|
Wang J, Xu L, Shaheen S, Liu S, Zheng W, Sun X, Li Z, Liu W. Growth of B Cell Receptor Microclusters Is Regulated by PIP 2 and PIP 3 Equilibrium and Dock2 Recruitment and Activation. Cell Rep 2018; 21:2541-2557. [PMID: 29186690 DOI: 10.1016/j.celrep.2017.10.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/18/2017] [Accepted: 10/29/2017] [Indexed: 01/24/2023] Open
Abstract
The growth of B cell receptor (BCR) microclusters upon antigen stimulation drives B cell activation. Here, we show that PI3K-mediated PIP3 production is required for the growth of BCR microclusters. This growth is likely inhibited by PTEN and dependent on its plasma membrane binding and lipid phosphatase activities. Mechanistically, we find that PIP3-dependent recruitment and activation of a guanine nucleotide exchange factor, Dock2, is required for the sustained growth of BCR microclusters through remodeling of the F-actin cytoskeleton. As a consequence, Dock2 deficiency significantly disrupts the structure of the B cell immunological synapse. Finally, we find that primary B cells from systemic lupus erythematosus (SLE) patients exhibit more prominent BCR and PI3K microclusters than B cells from healthy controls. These results demonstrate the importance of a PI3K- and PTEN-governed PIP2 and PIP3 equilibrium in regulating the activation of B cells through Dock2-controlled growth of BCR microclusters.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Sichen Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Lim SP, Ioannou N, Ramsay AG, Darling D, Gäken J, Mufti GJ. miR-181c-BRK1 axis plays a key role in actin cytoskeleton-dependent T cell function. J Leukoc Biol 2018; 103:855-866. [PMID: 29656550 DOI: 10.1002/jlb.1a0817-325rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/07/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs are short endogenous noncoding RNAs that play pivotal roles in a diverse range of cellular processes. The miR-181 family is important in T cell development, proliferation, and activation. In this study, we have identified BRK1 as a potential target of miR-181c using a dual selection functional assay and have showed that miR-181c regulates BRK1 by translational inhibition. Given the importance of miR-181 in T cell function and the potential role of BRK1 in the involvement of WAVE2 complex and actin polymerization in T cells, we therefore investigated the influence of miR-181c-BRK1 axis in T cell function. Stimulation of PBMC derived CD3+ T cells resulted in reduced miR-181c expression and up-regulation of BRK1 protein expression, suggesting that miR-181c-BRK1 axis is important in T cell activation. We further showed that overexpression of miR-181c or suppression of BRK1 resulted in inhibition of T cell activation and actin polymerization coupled with defective lamellipodia generation and immunological synapse formation. Additionally, we found that BRK1 silencing led to reduced expressions of other proteins in the WAVE2 complex, suggesting that the impairment of T cell actin dynamics was a result of the instability of the WAVE2 complex following BRK1 depletion. Collectively, we demonstrated that miR-181c reduces BRK1 protein expression level and highlighted the important role of miR-181c-BRK1 axis in T cell activation and actin polymerization-mediated T cell functions.
Collapse
Affiliation(s)
- Shok Ping Lim
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Nikolaos Ioannou
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alan G Ramsay
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - David Darling
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Joop Gäken
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Ghulam J Mufti
- Department of Haemato-Oncology, Division of Cancer Studies, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom.,Department of Haemato-Oncology, King's College Hospital, London, United Kingdom
| |
Collapse
|
14
|
Zhu X, Jin H, Xia Z, Wu X, Yang M, Zhang H, Shang X, Cheng R, Zhan Z, Yu Z. Vav1 expression is increased in esophageal squamous cell carcinoma and indicates poor prognosis. Biochem Biophys Res Commun 2017; 486:571-576. [PMID: 28336434 DOI: 10.1016/j.bbrc.2017.03.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/18/2017] [Indexed: 01/16/2023]
Abstract
Recently, Vav1 has been suggested to play an essential role in the progression of human cancers. However, the correlation between Vav1 expression and prognosis of esophageal squamous cell carcinoma (ESCC) is still unknown. The aim of this study was to investigate Vav1 expression and its prognostic value in ESCC. The expression of Vav1 was detected by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting in ESCC tissues and matched nontumorous tissues. Immunohistochemistry (IHC) was carried out to detect Vav1 expression in paraffin samples from 112 primary ESCC patients. Survival analysis was performed using Kaplan-Meier method. Univariate and multivariate Cox regression analyses were performed to evaluate the correlation of Vav1 expression with prognosis of ESCC patients. The expression levels of Vav1 mRNA and protein in ESCC tissues were both significantly higher than those in adjacent nontumorous tissues. High Vav1 expression was significantly correlated with larger tumor size (P = 0.015), depth of tumor invasion (P = 0.023), lymph node metastasis (P = 0.008) and TNM stage (P < 0.001). The rate of overall survival (OS) was significantly lower in patients with high Vav1 expression than those with low Vav1 expression (P = 0.014). Multivariate Cox analysis indicated that Vav1 expression is an independent prognostic factor for OS (HR = 1.660, 95%CI = 1.058-2.607, P = 0.028). In summary, our findings demonstrate that Vav1 may be a candidate molecular prognostic marker for patients with ESCC.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China; Department of Thoracic Surgery, Second Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Huan Jin
- Department of Nursing, Second Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Ziwei Xia
- Department of Thoracic Surgery, Second Hospital of Tianjin Medical University, Tianjin 300060, China
| | - Xianxian Wu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China
| | - Mingjian Yang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China
| | - Hongdian Zhang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China
| | - Xiaobin Shang
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China
| | - Runfen Cheng
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China
| | - Zhongli Zhan
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China
| | - Zhentao Yu
- Department of Esophageal Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy of Tianjin City, Tianjin 300060, China.
| |
Collapse
|
15
|
Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci U S A 2017; 114:764-769. [PMID: 28062691 DOI: 10.1073/pnas.1608839114] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of non-Hodgkin lymphomas frequently associated with poor prognosis and for which genetic mechanisms of transformation remain incompletely understood. Using RNA sequencing and targeted sequencing, here we identify a recurrent in-frame deletion (VAV1 Δ778-786) generated by a focal deletion-driven alternative splicing mechanism as well as novel VAV1 gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) in PTCL. Mechanistically these genetic lesions result in increased activation of VAV1 catalytic-dependent (MAPK, JNK) and non-catalytic-dependent (nuclear factor of activated T cells, NFAT) VAV1 effector pathways. These results support a driver oncogenic role for VAV1 signaling in the pathogenesis of PTCL.
Collapse
|
16
|
Kamiya K, Takeuchi S. Giant liposome formation toward the synthesis of well-defined artificial cells. J Mater Chem B 2017; 5:5911-5923. [DOI: 10.1039/c7tb01322a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on microfluidic technologies for giant liposome formations which emulate environments of biological cells.
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- Kawasaki
- Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- Kawasaki
- Japan
- Institute of Industrial Science
| |
Collapse
|
17
|
Morillon YM, Lessey-Morillon EC, Clark M, Zhang R, Wang B, Burridge K, Tisch R. Antibody Binding to CD4 Induces Rac GTPase Activation and Alters T Cell Migration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:3504-3511. [PMID: 27694496 PMCID: PMC5101163 DOI: 10.4049/jimmunol.1501600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/02/2016] [Indexed: 12/18/2022]
Abstract
The use of nondepleting Abs specific for CD4 and CD8 is an effective strategy to tolerize CD4+ and CD8+ T cells in a tissue-specific manner. We reported that coreceptor therapy reverses diabetes in new onset NOD mice. A striking feature of coreceptor-induced remission is the purging of T cells from the pancreatic lymph nodes (PLN) and islets of NOD mice. Evidence indicates that Abs binding to the coreceptors promotes T cell egress from these tissues. The present study examined how coreceptor therapy affects the migration of CD4+ T cells residing in the PLN of NOD mice. Anti-CD4 Ab treatment resulted in an increased frequency of PLN but not splenic CD4+ T cells that exhibited a polarized morphology consistent with a migratory phenotype. Furthermore, PLN CD4+ T cells isolated from anti-CD4 versus control Ab-treated animals displayed increased in vitro chemotaxis to chemoattractants such as sphingosine-1-phosphate and CXCL12. Notably, the latter was dependent on activation of the small Rho GTPases Rac1 and Rac2. Rac1 and Rac2 activation was increased in Ab-bound CD4+ T cells from the PLN but not the spleen, and knockdown of Rac expression blocked the heightened reactivity of Ab-bound PLN CD4+ T cells to CXCL12. Interestingly, Rac1 and Rac2 activation was independent of Rac guanine nucleotide exchange factors known to regulate T cell activity. Therefore, Ab binding to CD4 initiates a novel pathway that involves inflammation-dependent activation of Rac and establishment of altered T cell migratory properties.
Collapse
Affiliation(s)
- Y. Maurice Morillon
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| | - Elizabeth Chase Lessey-Morillon
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| | - Matthew Clark
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| | - Rui Zhang
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| | - Bo Wang
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| | - Keith Burridge
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| | - Roland Tisch
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599 USA
| |
Collapse
|
18
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
19
|
Sebban S, Farago M, Rabinovich S, Lazer G, Idelchuck Y, Ilan L, Pikarsky E, Katzav S. Vav1 promotes lung cancer growth by instigating tumor-microenvironment cross-talk via growth factor secretion. Oncotarget 2015; 5:9214-26. [PMID: 25313137 PMCID: PMC4253429 DOI: 10.18632/oncotarget.2400] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vav1 is a signal transducer that functions as a scaffold protein and a regulator of cytoskeleton organization in the hematopoietic system, where it is exclusively expressed. Recently, Vav1 was shown to be involved in diverse human cancers, including lung cancer. We demonstrate that lung cancer cells that abnormally express Vav1 secrete growth factors in a Vav1-dependent manner. Transcriptome analysis demonstrated that Vav1 depletion results in a marked reduction in the expression of colony-stimulating-factor-1 (CSF1), a hematopoietic growth factor. The association between Vav1 expression and CSF1 was further supported by signal transduction experiments, supporting involvement of Vav1 in regulating lung cancer secretome. Blocking of ERK phosphorylation, led to a decrease in CSF1 transcription, thus suggesting a role for ERK, a downstream effector of Vav1, in CSF1 expression. CSF1-silenced cells exhibited reduced focus formation, proliferation abilities, and growth in NOD/SCID mice. CSF1-silenced H358 cells resulted in significantly smaller tumors, showing increased fibrosis and a decrease in tumor infiltrating macrophages. Finally, immunohistochemical analysis of primary human lung tumors revealed a positive correlation between Vav1 and CSF1 expression, which was associated with tumor grade. Additional results presented herein suggest a potential cross-talk between cancer cells and the microenvironment controlled by CSF1/Vav1 signaling pathways.
Collapse
Affiliation(s)
- Shulamit Sebban
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Marganit Farago
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shiran Rabinovich
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Galit Lazer
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Yulia Idelchuck
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Lena Ilan
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shulamit Katzav
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| |
Collapse
|
20
|
Helou YA, Petrashen AP, Salomon AR. Vav1 Regulates T-Cell Activation through a Feedback Mechanism and Crosstalk between the T-Cell Receptor and CD28. J Proteome Res 2015; 14:2963-75. [PMID: 26043137 DOI: 10.1021/acs.jproteome.5b00340] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vav1, a Rac/Rho guanine nucleotide exchange factor and a critical component of the T-cell receptor (TCR) signaling cascade is tyrosine phosphorylated rapidly in response to T-cell activation. Vav1 has established roles in proliferation, cytokine secretion, Ca(2+) responses, and actin cytoskeleton regulation; however, its function in the regulation of phosphorylation of TCR components, including the ζ chain, the CD3 δ, ε, γ chains, and the associated kinases Lck and ZAP-70, is not well established. To obtain a more comprehensive picture of the role of Vav1 in receptor proximal signaling, we performed a wide-scale characterization of Vav1-dependent tyrosine phosphorylation events using quantitative phosphoproteomic analysis of Vav1-deficient T cells across a time course of TCR stimulation. Importantly, this study revealed a new function for Vav1 in the negative feedback regulation of the phosphorylation of immunoreceptor tyrosine-based activation motifs within the ζ chains, CD3 δ, ε, γ chains, as well as activation sites on the critical T cell tyrosine kinases Itk, Lck, and ZAP-70. Our study also uncovered a previously unappreciated role for Vav1 in crosstalk between the CD28 and TCR signaling pathways.
Collapse
Affiliation(s)
- Ynes A Helou
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| | - Anna P Petrashen
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| | - Arthur R Salomon
- †Department of Molecular Pharmacology, Physiology, and Biotechnology and ‡Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02903, United States
| |
Collapse
|
21
|
Kumari S, Depoil D, Martinelli R, Judokusumo E, Carmona G, Gertler FB, Kam LC, Carman CV, Burkhardt JK, Irvine DJ, Dustin ML. Actin foci facilitate activation of the phospholipase C-γ in primary T lymphocytes via the WASP pathway. eLife 2015; 4. [PMID: 25758716 PMCID: PMC4355629 DOI: 10.7554/elife.04953] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
Wiscott Aldrich Syndrome protein (WASP) deficiency results in defects in calcium ion signaling, cytoskeletal regulation, gene transcription and overall T cell activation. The activation of WASP constitutes a key pathway for actin filament nucleation. Yet, when WASP function is eliminated there is negligible effect on actin polymerization at the immunological synapse, leading to gaps in our understanding of the events connecting WASP and calcium ion signaling. Here, we identify a fraction of total synaptic F-actin selectively generated by WASP in the form of distinct F-actin ‘foci’. These foci are polymerized de novo as a result of the T cell receptor (TCR) proximal tyrosine kinase cascade, and facilitate distal signaling events including PLCγ1 activation and subsequent cytoplasmic calcium ion elevation. We conclude that WASP generates a dynamic F-actin architecture in the context of the immunological synapse, which then amplifies the downstream signals required for an optimal immune response. DOI:http://dx.doi.org/10.7554/eLife.04953.001 The immune system is made up of several types of cells that protect the body against infection and disease. Immune cells such as T cells survey the body and when receptors on their surface encounter infected cells, the receptors activate the T cell by triggering a signaling pathway. The early stages of T cell receptor signaling lead to the formation of a cell–cell contact zone called the immunological synapse. Filaments of a protein called F-actin—which are continuously assembled and taken apart—make versatile networks and help the immunological synapse to form. F-actin filaments have crucial roles in the later stages of T cell receptor signaling as well, but how they contribute to this is not clear. Whether it is the same F-actin network that participates both in synapse formation and the late stages of T cell receptor signaling, and if so, then by what mechanism, remains unknown. The answers came from examining the function of a protein named Wiscott-Aldrich Syndrome Protein (WASP), which forms an F-actin network at the synapse. Loss of WASP is known to result in the X-linked Wiscott-Aldrich Syndrome immunodeficiency and bleeding disorder in humans. Although T cells missing WASP can construct immunological synapses, and these synapses do have normal levels of F-actin and early T cell receptor signaling, they still fail to respond to infected cells properly. Kumari et al. analyzed the detailed structure and dynamics of actin filament networks at immunological synapses of normal and WASP-deficient T cells. Normally, cells had visible foci of newly polymerized F-actin directly above T cell receptor clusters in the immunological synapses, but these foci were not seen in the cells lacking WASP. Kumari et al. found that the F-actin foci facilitate the later stages of the signaling that activates the T cells; this signaling was lacking in WASP-deficient cells. Altogether, Kumari et al. show that WASP-generated F-actin foci at immunological synapses bridge the early and later stages of T cell receptor signaling, effectively generating an optimal immune response against infected cells. Further work will now be needed to understand whether there are other F-actin substructures that play specialized roles in T cell signaling, and if foci play a related role in other cell types known to be affected in Wiscott-Aldrich Syndrome immunodeficiency. DOI:http://dx.doi.org/10.7554/eLife.04953.002
Collapse
Affiliation(s)
- Sudha Kumari
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - David Depoil
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| | - Roberta Martinelli
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Edward Judokusumo
- Department of Biological Engineering, Columbia University, New York, United States
| | - Guillaume Carmona
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Frank B Gertler
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Lance C Kam
- Department of Biological Engineering, Columbia University, New York, United States
| | - Christopher V Carman
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, United States
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer research, Massachusetts Institute of Technology, Cambridge, United States
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
22
|
Lee HR, Huh SY, Hur DY, Jeong H, Kim TS, Kim SY, Park SB, Yang Y, Bang SI, Park H, Cho D. ERDR1 enhances human NK cell cytotoxicity through an actin-regulated degranulation-dependent pathway. Cell Immunol 2015; 292:78-84. [PMID: 25460082 DOI: 10.1016/j.cellimm.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/12/2014] [Accepted: 10/19/2014] [Indexed: 01/08/2023]
Abstract
Erythroid differentiation regulator 1 (ERDR1), which is a stress-related survival factor, exhibits anti-cancer effects against melanoma. However, the function of ERDR1 on immune cells has not been examined. We investigated whether ERDR1 regulates the cytotoxic ability of human natural killer (NK) cells, which are known as innate effector lymphocytes. In this study, treatment with recombinant ERDR1 resulted in enhanced NK cell cytotoxicity through the secretion of lytic granules. Furthermore, actin modulation was involved in the ERDR1-enhanced NK cell cytotoxicity. ERDR1 stimulated actin accumulation at the immunological synapse, which was induced by the activation of Vav-1 in NK cells. These findings suggest new insight into the function of ERDR1 function in the human immune system.
Collapse
|
23
|
Chinnasamy P, Lutz SE, Riascos-Bernal DF, Jeganathan V, Casimiro I, Brosnan CF, Sibinga NES. Loss of Allograft Inflammatory Factor-1 Ameliorates Experimental Autoimmune Encephalomyelitis by Limiting Encephalitogenic CD4 T-Cell Expansion. Mol Med 2015; 21:233-41. [PMID: 25569805 DOI: 10.2119/molmed.2014.00264] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 12/30/2014] [Indexed: 12/14/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of human multiple sclerosis (MS), is mediated by myelin-specific autoreactive T cells that cause inflammation and demyelination in the central nervous system (CNS), with significant contributions from activated microglia and macrophages. The molecular bases for expansion and activation of these cells, plus trafficking to the CNS for peripheral cells, are not fully understood. Allograft inflammatory factor-1 (Aif-1) (also known as ionized Ca(2+) binding adapter-1 [Iba-1]) is induced in leukocytes in MS and EAE; here we provide the first assessment of Aif-1 function in this setting. After myelin oligodendrocyte glycoprotein peptide (MOG35-55) immunization, Aif-1-deficient mice were less likely than controls to develop EAE and had less CNS leukocyte infiltration and demyelination; their spinal cords contained fewer CD4 T cells and microglia and more CD8 T cells. These mice also showed significantly less splenic CD4 T-cell expansion and activation, plus decreased proinflammatory cytokine expression. These findings identify Aif-1 as a potent molecule that promotes expansion and activation of CD4 T cells, plus elaboration of a proinflammatory cytokine milieu, in MOG35-55-induced EAE and as a potential therapeutic target in MS.
Collapse
Affiliation(s)
- Prameladevi Chinnasamy
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E Lutz
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Dario F Riascos-Bernal
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Venkatesh Jeganathan
- Center for Autoimmune and Musculoskeletal Disease, The Feinstein Institute of Medical Research, Manhasset, New York, United States of America
| | - Isabel Casimiro
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Celia F Brosnan
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Nicholas E S Sibinga
- Department of Medicine (Cardiovascular Division), Albert Einstein College of Medicine, Bronx, New York, United States of America.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America.,Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America
| |
Collapse
|
24
|
Molecular mechanisms and functional implications of polarized actin remodeling at the T cell immunological synapse. Cell Mol Life Sci 2014; 72:537-556. [PMID: 25355055 DOI: 10.1007/s00018-014-1760-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 02/05/2023]
Abstract
Transient,specialized cell-cell interactions play a central role in leukocyte function by enabling specific intercellular communication in the context of a highly dynamic systems level response. The dramatic structural changes required for the formation of these contacts are driven by rapid and precise cytoskeletal remodeling events. In recent years, the immunological synapse that forms between a T lymphocyte and its antigen-presenting target cell has emerged as an important model system for understanding immune cell interactions. In this review, we discuss how regulators of the cortical actin cytoskeleton control synaptic architecture and in this way specify T cell function.
Collapse
|
25
|
Tomar N, De RK. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. PLoS One 2013; 8:e80918. [PMID: 24324645 PMCID: PMC3855681 DOI: 10.1371/journal.pone.0080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
26
|
T cell antigen receptor activation and actin cytoskeleton remodeling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:546-56. [PMID: 23680625 DOI: 10.1016/j.bbamem.2013.05.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/02/2013] [Indexed: 12/20/2022]
Abstract
T cells constitute a crucial arm of the adaptive immune system and their optimal function is required for a healthy immune response. After the initial step of T cell-receptor (TCR) triggering by antigenic peptide complexes on antigen presenting cell (APC), the T cell exhibits extensive cytoskeletal remodeling. This cytoskeletal remodeling leads to the formation of an "immunological synapse" [1] characterized by regulated clustering, segregation and movement of receptors at the interface. Synapse formation regulates T cell activation and response to antigenic peptides and proceeds via feedback between actin cytoskeleton and TCR signaling. Actin polymerization participates in various events during the synapse formation, maturation, and eventually its disassembly. There is increasing knowledge about the actin effectors that couple TCR activation to actin rearrangements [2,3], and how defects in these effectors translate into impairment of T cell activation. In this review we aim to summarize and integrate parts of what is currently known about this feedback process. In addition, in light of recent advancements in our understanding of TCR triggering and translocation at the synapse, we speculate on the organizational and functional diversity of microfilament architecture in the T cell. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
|
27
|
Sebban S, Farago M, Gashai D, Ilan L, Pikarsky E, Ben-Porath I, Katzav S. Vav1 fine tunes p53 control of apoptosis versus proliferation in breast cancer. PLoS One 2013; 8:e54321. [PMID: 23342133 PMCID: PMC3544807 DOI: 10.1371/journal.pone.0054321] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/10/2012] [Indexed: 11/18/2022] Open
Abstract
Vav1 functions as a signal transducer protein in the hematopoietic system, where it is exclusively expressed. Vav1 was recently implicated in several human cancers, including lung, pancreatic and neuroblasoma. In this study, we analyzed the expression and function of Vav1 in human breast tumors and breast cancer cell lines. Immunohistochemical analysis of primary human breast carcinomas indicated that Vav1 is expressed in 62% of 65 tumors tested and is correlated positively with estrogen receptor expression. Based on published gene profiling of 50 breast cancer cell lines, several Vav1-expressing cell lines were identified. RT-PCR confirmed Vav1 mRNA expression in several of these cell lines, yet no detectable levels of Vav1 protein were observed due to cbl-c proteasomal degradation. We used two of these lines, MCF-7 (Vav1 mRNA negative) and AU565 (Vav1 mRNA positive), to explore the effect of Vav1 expression on breast cell phenotype and function. Vav1 expression had opposite effects on function in these two lines: it reduced proliferation and enhanced cell death in MCF-7 cells but enhanced proliferation in AU565 cells. Consistent with these findings, transcriptome analysis revealed an increase in expression of proliferation-related genes in Vav1-expressing AU565 cells compared to controls, and an increase in apoptosis-related genes in Vav1-expressing MCF-7 cells compared with controls. TUNEL and γ-H2AX foci assays confirmed that expression of Vav1 increased apoptosis in MCF-7 cells but not AU565 cells and shRNA experiments revealed that p53 is required for this pro-apoptotic effect of Vav1 in these cells. These results highlight for the first time the potential role of Vav1 as an oncogenic stress activator in cancer and the p53 dependence of its pro-apoptotic effect in breast cells.
Collapse
Affiliation(s)
- Shulamit Sebban
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Marganit Farago
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Dan Gashai
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Lena Ilan
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Eli Pikarsky
- Deaprtment of Immunology & Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Ittai Ben-Porath
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
| | - Shulamit Katzav
- Departement of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hadassah Medical School - Hebrew University, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
28
|
GTPase of the immune-associated nucleotide-binding protein 5 (GIMAP5) regulates calcium influx in T-lymphocytes by promoting mitochondrial calcium accumulation. Biochem J 2012; 449:353-64. [DOI: 10.1042/bj20120516] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mature T-lymphocytes undergo spontaneous apoptosis in the biobreeding diabetes-prone strain of rats due to the loss of the functional GIMAP5 (GTPase of the immune-associated nucleotide-binding protein 5) protein. The mechanisms underlying the pro-survival function of GIMAP5 in T-cells have not yet been elucidated. We have previously shown that GIMAP5 deficiency in T-cells impairs Ca2+ entry via plasma membrane channels following exposure to thapsigargin or stimulation of the T-cell antigen receptor. In the present study we report that this reduced Ca2+ influx in GIMAP5-deficient T-cells is associated with the inability of their mitochondria to sequester Ca2+ following capacitative entry, which is required for sustained Ca2+ influx via the plasma membrane channels. Consistent with a role for GIMAP5 in regulating mitochondrial Ca2+, overexpression of GIMAP5 in HEK (human embryonic kidney)-293 cells resulted in increased Ca2+ accumulation within the mitochondria. Disruption of microtubules, but not the actin cytoskeleton, abrogated mitochondrial Ca2+ sequestration in primary rat T-cells, whereas both microtubules and actin cytoskeleton were needed for the GIMAP5-mediated increase in mitochondrial Ca2+ in HEK-293 cells. Moreover, GIMAP5 showed partial colocalization with tubulin in HEK-293 cells. On the basis of these findings, we propose that the pro-survival function of GIMAP5 in T-lymphocytes may be linked to its requirement to facilitate microtubule-dependent mitochondrial buffering of Ca2+ following capacitative entry.
Collapse
|
29
|
Ksionda O, Saveliev A, Köchl R, Rapley J, Faroudi M, Smith-Garvin JE, Wülfing C, Rittinger K, Carter T, Tybulewicz VLJ. Mechanism and function of Vav1 localisation in TCR signalling. J Cell Sci 2012; 125:5302-14. [PMID: 22956543 PMCID: PMC3561853 DOI: 10.1242/jcs.105148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The antigen-specific binding of T cells to antigen presenting cells results in recruitment of signalling proteins to microclusters at the cell-cell interface known as the immunological synapse (IS). The Vav1 guanine nucleotide exchange factor plays a critical role in T cell antigen receptor (TCR) signalling, leading to the activation of multiple pathways. We now show that it is recruited to microclusters and to the IS in primary CD4+ and CD8+ T cells. Furthermore, we show that this recruitment depends on the SH2 and C-terminal SH3 (SH3B) domains of Vav1, and on phosphotyrosines 112 and 128 of the SLP76 adaptor protein. Biophysical measurements show that Vav1 binds directly to these residues on SLP76 and that efficient binding depends on the SH2 and SH3B domains of Vav1. Finally, we show that the same two domains are critical for the phosphorylation of Vav1 and its signalling function in TCR-induced calcium flux. We propose that Vav1 is recruited to the IS by binding to SLP76 and that this interaction is critical for the transduction of signals leading to calcium flux.
Collapse
Affiliation(s)
- Olga Ksionda
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Du L, Zhou J, Zhang J, Yan M, Gong L, Liu X, Chen M, Tao K, Luo N, Liu J. Actin filament reorganization is a key step in lung inflammation induced by systemic inflammatory response syndrome. Am J Respir Cell Mol Biol 2012; 47:597-603. [PMID: 22721831 DOI: 10.1165/rcmb.2012-0094oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acute lung injury (ALI) induced by systemic inflammatory response syndrome (SIRS) is characterized by deterioration in pulmonary function and leukocyte-associated lung inflammation. Actin fragment (F-actin) reorganization is required for leukocyte activation, adhesion, and transcription of inflammatory factors. We tested the hypothesis that F-actin plays a central role in SIRS-induced ALI. ALI was produced in a rat model with extracorporeal circulation. Cytochalasin B (CB) pretreatment to block F-actin reorganization improved oxygenation and reduced BAL inflammatory factors and pulmonary neutrophil sequestration, but did not reduce the adhesive molecules of blood leukocytes. We challenged blood neutrophils with TNF-α in vitro to explore the underlying mechanisms. Upon activation, neutrophils became polarized and formed a protrusive leading edge, with an aggregation of CD11b molecules. This effect could be blocked by CB, leading to reduced neutrophil adhesion. In addition, after LPS challenge, we observed F-actin reorganization and the up-regulation of inflammatory factors in pulmonary monocytes, which could also be blocked by CB pretreatment. F-actin reorganization initiates lung inflammation via increased blood neutrophil adhesion and migration, and by the production of inflammatory factors by pulmonary monocytes. Thus, blocking F-actin reorganization may potentially prevent and treat SIRS-induced ALI.
Collapse
Affiliation(s)
- Lei Du
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, 37 Wainan Guoxuexiang, Chengdu, Sichuan 610041, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gorman JA, Babich A, Dick CJ, Schoon RA, Koenig A, Gomez TS, Burkhardt JK, Billadeau DD. The cytoskeletal adaptor protein IQGAP1 regulates TCR-mediated signaling and filamentous actin dynamics. THE JOURNAL OF IMMUNOLOGY 2012; 188:6135-44. [PMID: 22573807 DOI: 10.4049/jimmunol.1103487] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The Ras GTPase-activating-like protein IQGAP1 is a multimodular scaffold that controls signaling and cytoskeletal regulation in fibroblasts and epithelial cells. However, the functional role of IQGAP1 in T cell development, activation, and cytoskeletal regulation has not been investigated. In this study, we show that IQGAP1 is dispensable for thymocyte development as well as microtubule organizing center polarization and cytolytic function in CD8(+) T cells. However, IQGAP1-deficient CD8(+) T cells as well as Jurkat T cells suppressed for IQGAP1 were hyperresponsive, displaying increased IL-2 and IFN-γ production, heightened LCK activation, and augmented global phosphorylation kinetics after TCR ligation. In addition, IQGAP1-deficient T cells exhibited increased TCR-mediated F-actin assembly and amplified F-actin velocities during spreading. Moreover, we found that discrete regions of IQGAP1 regulated cellular activation and F-actin accumulation. Taken together, our data suggest that IQGAP1 acts as a dual negative regulator in T cells, limiting both TCR-mediated activation kinetics and F-actin dynamics via distinct mechanisms.
Collapse
Affiliation(s)
- Jacquelyn A Gorman
- Department of Immunology, Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55901, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Bertagnolo V, Brugnoli F, Grassilli S, Nika E, Capitani S. Vav1 in differentiation of tumoral promyelocytes. Cell Signal 2011; 24:612-20. [PMID: 22133616 DOI: 10.1016/j.cellsig.2011.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
The multidomain protein Vav1, in addition to promote the acquisition of maturation related properties by normal hematopoietic cells, is a key player in the ATRA- and PMA-induced completion of the differentiation program of tumoral myeloid precursors derived from APL. This review is focussed on the role of Vav1 in differentiating promyelocytes, as part of interconnected networks of functionally related proteins ended to regulate different aspects of myeloid maturation. The role of Vav1 in determining actin cytoskeleton reorganization alternative to the best known function as a GEF for small G proteins is discussed, as well as the binding of Vav1 with cytoplasmic and nuclear signaling molecules which provides a new perspective in the modulation of nuclear architecture and activity. In particular, new hints are provided on the ability of Vav1 to determine the nuclear amount of proteins implicated in modulating mRNA production and stability and in regulating the ATRA-dependent protein expression also by direct interaction with transcription factors known to drive the ATRA-induced maturation of myeloid cells. The reviewed findings summarize the major advances in the understanding of additional, non conventional functions connected with the vast interactive potential of Vav1.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
33
|
Ichikawa D, Mizuno M, Yamamura T, Miyake S. GRAIL (gene related to anergy in lymphocytes) regulates cytoskeletal reorganization through ubiquitination and degradation of Arp2/3 subunit 5 and coronin 1A. J Biol Chem 2011; 286:43465-74. [PMID: 22016387 DOI: 10.1074/jbc.m111.222711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Anergy is an important mechanism for the maintenance of peripheral tolerance and avoidance of autoimmunity. The up-regulation of E3 ubiqitin ligases, including GRAIL (gene related to anergy in lymphocytes), is a key event in the induction and preservation of anergy in T cells. However, the mechanisms of GRAIL-mediated anergy induction are still not completely understood. We examined which proteins serve as substrates for GRAIL in anergic T cells. Arp2/3-5 (actin-related protein 2/3 subunit 5) and coronin 1A were polyubiquitinated by GRAIL via Lys-48 and Lys-63 linkages. In anergic T cells and GRAIL-overexpressed T cells, the expression of Arp2/3-5 and coronin 1A was reduced. Furthermore, we demonstrated that GRAIL impaired lamellipodium formation and reduced the accumulation of F-actin at the immunological synapse. GRAIL functions via the ubiquitination and degradation of actin cytoskeleton-associated proteins, in particular Arp2/3-5 and coronin 1A. These data reveal that GRAIL regulates proteins involved in the actin cytoskeletal organization, thereby maintaining the unresponsive state of anergic T cells.
Collapse
Affiliation(s)
- Daiju Ichikawa
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | |
Collapse
|
34
|
Vav1 is a crucial molecule in monocytic/macrophagic differentiation of myeloid leukemia-derived cells. Cell Tissue Res 2011; 345:163-75. [PMID: 21647562 DOI: 10.1007/s00441-011-1195-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/13/2011] [Indexed: 12/25/2022]
Abstract
Vav1 is a critical signal transducer for both the development and function of normal hematopoietic cells, in which it regulates the acquisition of maturation-related properties, including adhesion, motility, and phagocytosis. Vav1 is also important for the agonist-induced maturation of acute promyelocytic leukemia (APL)-derived promyelocytes, in which it promotes the acquisition of a mature phenotype by playing multiple functions at both cytoplasmic and nuclear levels. We investigated the possible role of Vav1 in the differentiation of leukemic precursors to monocytes/macrophages. Tumoral promyelocytes in which Vav1 was negatively modulated were induced to differentiate into monocytes/macrophages with phorbol-12-myristate-13-acetate (PMA) and monitored for their maturation-related properties. We found that Vav1 was crucial for the phenotypical differentiation of tumoral myeloid precursors to monocytes/macrophages, in terms of CD11b expression, adhesion capability and cell morphology. Confocal analysis revealed that Vav1 may synergize with actin in modulating nuclear morphology of PMA-treated adherent cells. Our data indicate that, in tumoral promyelocytes, Vav1 is a component of lineage-specific transduction machineries that can be recruited by various differentiating agents. Since Vav1 plays a central role in the completion of the differentiation program of leukemic promyelocytes along diverse hematopoietic lineages, it can be considered a common target for developing new therapeutic strategies for the various subtypes of myeloid leukemias.
Collapse
|
35
|
Itk: the rheostat of the T cell response. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:297868. [PMID: 21747996 PMCID: PMC3116522 DOI: 10.1155/2011/297868] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/19/2011] [Indexed: 12/28/2022]
Abstract
The nonreceptor tyrosine kinase Itk plays a key role in TCR-initiated signaling that directly and significantly affects the regulation of PLCγ1 and the consequent mobilization of Ca2+. Itk also participates in the regulation of cytoskeletal reorganization as well as cellular adhesion, which is necessary for a productive T cell response. The functional cellular outcome of these molecular regulations by Itk renders it an important mediator of T cell development and differentiation. This paper encompasses the structure of Itk, the signaling parameters leading to Itk activation, and Itk effects on molecular pathways resulting in functional cellular outcomes. The incorporation of these factors persuades one to believe that Itk serves as a modulator, or rheostat, critically fine-tuning the T cell response.
Collapse
|
36
|
Guo F, Zhang S, Tripathi P, Mattner J, Phelan J, Sproles A, Mo J, Wills-Karp M, Grimes HL, Hildeman D, Zheng Y. Distinct roles of Cdc42 in thymopoiesis and effector and memory T cell differentiation. PLoS One 2011; 6:e18002. [PMID: 21455314 PMCID: PMC3063799 DOI: 10.1371/journal.pone.0018002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/17/2011] [Indexed: 12/14/2022] Open
Abstract
Cdc42 of the Rho GTPase family has been implicated in cell actin organization, proliferation, survival, and migration but its physiological role is likely cell-type specific. By a T cell-specific deletion of Cdc42 in mouse, we have recently shown that Cdc42 maintains naïve T cell homeostasis through promoting cell survival and suppressing T cell activation. Here we have further investigated the involvement of Cdc42 in multiple stages of T cell differentiation. We found that in Cdc42(-/-) thymus, positive selection of CD4(+)CD8(+) double-positive thymocytes was defective, CD4(+) and CD8(+) single-positive thymocytes were impaired in migration and showed an increase in cell apoptosis triggered by anti-CD3/-CD28 antibodies, and thymocytes were hyporesponsive to anti-CD3/-CD28-induced cell proliferation and hyperresponsive to anti-CD3/-CD28-stimulated MAP kinase activation. At the periphery, Cdc42-deficient naive T cells displayed an impaired actin polymerization and TCR clustering during the formation of mature immunological synapse, and showed an enhanced differentiation to Th1 and CD8(+) effector and memory cells in vitro and in vivo. Finally, Cdc42(-/-) mice exhibited exacerbated liver damage in an induced autoimmune disease model. Collectively, these data establish that Cdc42 is critically involved in thymopoiesis and plays a restrictive role in effector and memory T cell differentiation and autoimmunity.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Guanine nucleotide exchange factors for RhoGTPases: good therapeutic targets for cancer therapy? Cell Signal 2010; 23:969-79. [PMID: 21044680 DOI: 10.1016/j.cellsig.2010.10.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 10/23/2010] [Indexed: 12/12/2022]
Abstract
Rho guanosine triphosphatases (GTPases) are a family of small proteins which function as molecular switches in a variety of signaling pathways following stimulation of cell surface receptors. RhoGTPases regulate numerous cellular processes including cytoskeleton organization, gene transcription, cell proliferation, migration, growth and cell survival. Because of their central role in regulating processes that are dysregulated in cancer, it seems reasonable that defects in the RhoGTPase pathway may be involved in the development of cancer. RhoGTPase activity is regulated by a number of protein families: guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs) and guanine nucleotide-dissociation inhibitors (GDIs). This review discusses the participation of RhoGTPases and their regulators, especially GEFs in human cancers. In particular, we focus on the involvement of the RhoGTPase GEF, Vav1, a hematopoietic specific signal transducer which is involved in human neuroblastoma, pancreatic ductal carcinoma and lung cancer. Finally, we summarize recent advances in the design and application of a number of molecules that specifically target individual RhoGTPases or their regulators or effectors, and discuss their potential for cancer therapy.
Collapse
|
38
|
Riha P, Rudd CE. CD28 co-signaling in the adaptive immune response. SELF NONSELF 2010; 1:231-240. [PMID: 21487479 DOI: 10.4161/self.1.3.12968] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 07/12/2010] [Indexed: 12/20/2022]
Abstract
T-cell proliferation and function depends on signals from the antigen-receptor complex (TCR/CD3) and by various co-receptors such as CD28 and CTLA-4. The balance of positive and negative signals determines the outcome of the T-cell response to foreign and self-antigen. CD28 is a prominent co-receptor in naïve and memory T-cell responses. Its blockade has been exploited clinically to dampen T-cell responses to self-antigen. Current evidence shows that CD28 both potentiates TCR signaling and engages a unique array of mediators (PI3K, Grb2, FLNa) in the regulation of aspects of T-cell signaling including the transcription factor NFkB. In this mini-review, we provide an up-to-date overview of our understanding of the signaling mechanisms that underlie CD28 function and its potential application to the modulation of reactivity to autoimmunity.
Collapse
Affiliation(s)
- Pavel Riha
- Cell Signaling Section; Department of Pathology; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
39
|
Abstract
CD28 costimulation regulates a wide range of cellular processes, from proliferation and survival to promoting the differentiation of specialized T-cell subsets. Since first being identified over 20 years ago, CD28 has remained a subject of intense study because of its profound consequences on T cell function and its potential for therapeutic manipulation. In this review we highlight the signaling cascades initiated by the major signaling motifs in CD28, focusing on PI-3 kinase-dependent and -independent pathways and how these are linked to specific cellular outcomes. Recent studies using gene targeted knockin mice have clarified the relative importance of these motifs on in vivo immune responses; however, much remains to be elucidated. Understanding the mechanism behind costimulation holds great potential for development of new clinically relevant reagents, a fact beginning to be realized with the advent of drugs that prevent CD28 ligation and signaling.
Collapse
Affiliation(s)
- Jonathan S Boomer
- Department of Internal Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
40
|
Yang K, Jiang Y, Han J, Gu J. The binding of actin to p38 MAPK and inhibiting its kinase activity in vitro. ACTA ACUST UNITED AC 2010; 46:87-94. [PMID: 20213365 DOI: 10.1007/bf03182688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Indexed: 11/30/2022]
Abstract
p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we used in vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them is beta-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the autophosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38 in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.
Collapse
Affiliation(s)
- Kun Yang
- Research Center of Molecular Medicine, Sun Yet-sen University of Medical Sciences, Guangzhou 510080, China
| | | | | | | |
Collapse
|
41
|
Lazer G, Pe'er L, Farago M, Machida K, Mayer BJ, Katzav S. Tyrosine residues at the carboxyl terminus of Vav1 play an important role in regulation of its biological activity. J Biol Chem 2010; 285:23075-85. [PMID: 20457609 DOI: 10.1074/jbc.m109.094508] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 is an essential signal transducer protein in the hematopoietic system, where it is expressed physiologically. It is also involved in several human malignancies. Tyrosine phosphorylation at the Vav1 amino terminus plays a central role in regulating its activity; however, the role of carboxyl terminal tyrosine residues is unknown. We found that mutation of either Tyr-826 (Y826F) or Tyr-841 (Y841F) to phenylalanine led to loss of Vav1 GEF activity. When these Vav1 mutants were ectopically expressed in pancreatic cancer cells lacking Vav1, they failed to induce growth in agar, indicating loss of transforming potential. Furthermore, although Y841F had no effect on Vav1-stimulated nuclear factor of activated T cells (NFAT) activity, Y826F doubled NFAT activity when compared with Vav1, suggesting that Tyr-826 mediates an autoinhibitory effect on NFAT activity. SH2 profiling revealed that Shc, Csk, Abl, and Sap associate with Tyr-826, whereas SH2-B, Src, Brk, GTPase-activating protein, and phospholipase C-gamma associate with Tyr-841. Although the mutations in the Tyr-826 and Tyr-841 did not affect the binding of the carboxyl SH3 of Vav1 to other proteins, binding to several of the proteins identified by the SH2 profiling was lost. Of interest is Csk, which associates with wild-type Vav1 and Y841F, yet it fails to associate with Y826F, suggesting that loss of binding between Y826F and Csk might relieve an autoinhibitory effect, leading to increased NFAT. Our data indicate that GEF activity is critical for the function of Vav1 as a transforming protein but not for NFAT stimulation. The association of Vav1 with other proteins, detected by SH2 profiling, might affect other Vav1-dependent activities, such as NFAT stimulation.
Collapse
Affiliation(s)
- Galit Lazer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Pérez-Martínez M, Gordón-Alonso M, Cabrero JR, Barrero-Villar M, Rey M, Mittelbrunn M, Lamana A, Morlino G, Calabia C, Yamazaki H, Shirao T, Vázquez J, González-Amaro R, Veiga E, Sánchez-Madrid F. F-actin-binding protein drebrin regulates CXCR4 recruitment to the immune synapse. J Cell Sci 2010; 123:1160-70. [DOI: 10.1242/jcs.064238] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The adaptive immune response depends on the interaction of T cells and antigen-presenting cells at the immune synapse. Formation of the immune synapse and the subsequent T-cell activation are highly dependent on the actin cytoskeleton. In this work, we describe that T cells express drebrin, a neuronal actin-binding protein. Drebrin colocalizes with the chemokine receptor CXCR4 and F-actin at the peripheral supramolecular activation cluster in the immune synapse. Drebrin interacts with the cytoplasmic tail of CXCR4 and both proteins redistribute to the immune synapse with similar kinetics. Drebrin knockdown in T cells impairs the redistribution of CXCR4 and inhibits actin polymerization at the immune synapse as well as IL-2 production. Our data indicate that drebrin exerts an unexpected and relevant functional role in T cells during the generation of the immune response.
Collapse
Affiliation(s)
- Manuel Pérez-Martínez
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Mónica Gordón-Alonso
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - José Román Cabrero
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Marta Barrero-Villar
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Mercedes Rey
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - María Mittelbrunn
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Amalia Lamana
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Giulia Morlino
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Carmen Calabia
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
| | - Hiroyuki Yamazaki
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Tomoaki Shirao
- Department of Neurobiology and Behavior, Gunma University Graduate School of Medicine, Maebashi, 371-8511, Japan
| | - Jesús Vázquez
- Centro de Biología Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | | | - Esteban Veiga
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Diego de León, 62, 28006, Madrid, Spain
- Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, 28029, Spain
| |
Collapse
|
43
|
VAV2 and VAV3 as candidate disease genes for spontaneous glaucoma in mice and humans. PLoS One 2010; 5:e9050. [PMID: 20140222 PMCID: PMC2816215 DOI: 10.1371/journal.pone.0009050] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 01/18/2010] [Indexed: 12/22/2022] Open
Abstract
Background Glaucoma is a leading cause of blindness worldwide. Nonetheless, the mechanism of its pathogenesis has not been well-elucidated, particularly at the molecular level, because of insufficient availability of experimental genetic animal models. Methodology/Principal Findings Here we demonstrate that deficiency of Vav2 and Vav3, guanine nucleotides exchange factors for Rho guanosine triphosphatases, leads to an ocular phenotype similar to human glaucoma. Vav2/Vav3-deficient mice, and to a lesser degree Vav2-deficient mice, show early onset of iridocorneal angle changes and elevated intraocular pressure, with subsequent selective loss of retinal ganglion cells and optic nerve head cupping, which are the hallmarks of glaucoma. The expression of Vav2 and Vav3 tissues was demonstrated in the iridocorneal angle and retina in both mouse and human eyes. In addition, a genome-wide association study screening glaucoma susceptibility loci using single nucleotide polymorphisms analysis identified VAV2 and VAV3 as candidates for associated genes in Japanese open-angle glaucoma patients. Conclusions/Significance Vav2/Vav3-deficient mice should serve not only as a useful murine model of spontaneous glaucoma, but may also provide a valuable tool in understanding of the pathogenesis of glaucoma in humans, particularly the determinants of altered aqueous outflow and subsequent elevated intraocular pressure.
Collapse
|
44
|
Saveliev A, Vanes L, Ksionda O, Rapley J, Smerdon SJ, Rittinger K, Tybulewicz VLJ. Function of the nucleotide exchange activity of vav1 in T cell development and activation. Sci Signal 2009; 2:ra83. [PMID: 20009105 PMCID: PMC3434450 DOI: 10.1126/scisignal.2000420] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The guanine nucleotide exchange factor (GEF) Vav1 is essential for transducing T cell antigen receptor (TCR) signals and therefore plays a critical role in the development and activation of T cells. It has been presumed that the GEF activity of Vav1 is important for its function; however, there has been no direct demonstration of this. Here, we generated mice expressing enzymatically inactive, but normally folded, Vav1 protein. Analysis of these mice showed that the GEF activity of Vav1 was necessary for the selection of thymocytes and for the optimal activation of T cells, including signal transduction to Rac1, Akt, and integrins. In contrast, the GEF activity of Vav1 was not required for TCR-induced calcium flux, activation of extracellular signal-regulated kinase and protein kinase D1, and cell polarization. Thus, in T cells, the GEF activity of Vav1 is essential for some, but not all, of its functions.
Collapse
Affiliation(s)
- Alexander Saveliev
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | - Lesley Vanes
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | - Olga Ksionda
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
| | - Jonathan Rapley
- Division of Immune Cell Biology, MRC National Institute for Medical Research, London, UK
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Stephen J. Smerdon
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | - Katrin Rittinger
- Division of Molecular Structure, MRC National Institute for Medical Research, London, UK
| | | |
Collapse
|
45
|
Schartner JM, Simonson WT, Wernimont SA, Nettenstrom LM, Huttenlocher A, Seroogy CM. Gene related to anergy in lymphocytes (GRAIL) expression in CD4+ T cells impairs actin cytoskeletal organization during T cell/antigen-presenting cell interactions. J Biol Chem 2009; 284:34674-81. [PMID: 19833735 PMCID: PMC2787330 DOI: 10.1074/jbc.m109.024497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 09/30/2009] [Indexed: 11/06/2022] Open
Abstract
GRAIL (gene related to anergy in lymphocytes), is an E3 ubiquitin ligase with increased expression in anergic CD4+ T cells. The expression of GRAIL has been shown to be both necessary and sufficient for the induction of T cell (T) anergy. To date, several subsets of anergic T cells have demonstrated altered interactions with antigen-presenting cells (APC) and perturbed TCR-mediated signaling. The role of GRAIL in mediating these aspects of T cell anergy remains unclear. We used flow cytometry and confocal microscopy to examine T/APC interactions in GRAIL-expressing T cells. Increased GRAIL expression resulted in reduced T/APC conjugation efficiency as assessed by flow cytometry. Examination of single T/APC conjugates by confocal microscopy revealed altered polarization of polymerized actin and LFA-1 to the T/APC interface. When GRAIL expression was knocked down, actin polarization to the T/APC interface was restored, demonstrating that GRAIL is necessary for alteration of actin cytoskeletal rearrangement under anergizing conditions. Interestingly, proximal TCR signaling including calcium flux and phosphorylation of Vav were not disrupted by expression of GRAIL in CD4+ T cells. In contrast, interrogation of distal signaling events demonstrated significantly decreased JNK phosphorylation in GRAIL-expressing T cells. In sum, GRAIL expression in CD4+ T cells mediates alterations in the actin cytoskeleton during T/APC interactions. Moreover, in this model, our data dissociates proximal T cell signaling events from functional unresponsiveness. These data demonstrate a novel role for GRAIL in modulating T/APC interactions and provide further insight into the cell biology of anergic T cells.
Collapse
Affiliation(s)
- Jill M. Schartner
- From the Departments of Cellular and Molecular Pathology
- Pediatrics, Division of Allergy/Immunology/Rheumatology, University of Wisconsin, Madison, Wisconsin 53792
| | | | | | - Lauren M. Nettenstrom
- Pediatrics, Division of Allergy/Immunology/Rheumatology, University of Wisconsin, Madison, Wisconsin 53792
| | - Anna Huttenlocher
- Pediatrics, Division of Allergy/Immunology/Rheumatology, University of Wisconsin, Madison, Wisconsin 53792
| | - Christine M. Seroogy
- Pediatrics, Division of Allergy/Immunology/Rheumatology, University of Wisconsin, Madison, Wisconsin 53792
| |
Collapse
|
46
|
Sadegh-Nasseri S, Dalai SK, Korb Ferris LC, Mirshahidi S. Suboptimal engagement of the T-cell receptor by a variety of peptide-MHC ligands triggers T-cell anergy. Immunology 2009; 129:1-7. [PMID: 20002785 DOI: 10.1111/j.1365-2567.2009.03206.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
T cells recognize antigen via the T-cell receptor (TCR) and produce a spectrum of responses that range from activation to anergy or cell death. The variety of outcomes may be dictated by the strength of the signals transmitted upon cognate recognition of the TCR. The physiological outcome of TCR engagement is determined by several factors, including the avidity of the ligand for TCR, the duration of engagement, and the presence and nature of accessory molecules present on antigen-presenting cells (APCs). In this review, we discuss a model of anergy induced by presentation of low densities of peptide-major histocompatibility complex (MHC) ligand in CD4(+) T cells and compare it to anergy induced by altered peptide ligands in an effort to identify a unifying mechanism. We suggest that altered peptide ligand (APL) and low densities of agonist ligands induce anergy by engaging less than optimal numbers of TCRs. The physiological impacts of anergy in memory CD4(+) T cells are discussed.
Collapse
|
47
|
Bécart S, Altman A. SWAP-70-like adapter of T cells: a novel Lck-regulated guanine nucleotide exchange factor coordinating actin cytoskeleton reorganization and Ca2+ signaling in T cells. Immunol Rev 2009; 232:319-33. [PMID: 19909373 PMCID: PMC2801603 DOI: 10.1111/j.1600-065x.2009.00839.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SWAP-70-like adapter of T cells (SLAT) is a recently identified guanine nucleotide exchange factor (GEF) for Cdc42 and Rac1, which is highly expressed in both thymocytes and peripheral T cells. Here, we present and discuss findings resulting from biochemical and genetic analyses aimed at unveiling the role of SLAT in CD4+ T-cell development, activation, and T-helper (Th) cell differentiation. Slat(-/-) mice display a developmental defect at one of the earliest stages of thymocyte differentiation, the double negative 1 (DN1) stage, leading to decreased peripheral T-cell numbers. Slat(-/-) peripheral CD4+ T cells demonstrate impaired T-cell receptor/CD28-induced proliferation and IL-2 production. Moreover, SLAT positively regulates the development of Th1 and Th2 inflammatory responses by controlling Ca2+/NFAT signaling. SLAT is also a positive regulator of the recently emerging Th subset, i.e., Th17 cells, as evidenced by its critical role in Th17 cell-mediated central nervous system inflammation. Furthermore, TCR engagement induces SLAT translocation to the immunological synapse, a process mediated by its Lck-dependent phosphorylation, which thereafter facilitates the triggering of SLAT GEF activity towards Cdc42 and Rac1, leading to NFAT activation and Th1/Th2 differentiation. Future work will aim to dissect the interacting partners of SLAT and may thus shed light on the poorly understood events that coordinate and link actin cytoskeleton reorganization to Ca2+ signaling and gene transcription in T cells.
Collapse
Affiliation(s)
- Stéphane Bécart
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| |
Collapse
|
48
|
Abstract
Rho family GTPases, and the proteins that regulate them, have important roles in many cellular processes, including cell division, survival, migration and adhesion. Although most of our understanding of these proteins has come from studies using cell lines, more recent gene targeting studies in mice are providing insights into the in vivo function of these proteins. Here we review recent progress revealing crucial roles for these proteins in lymphocyte development, activation, differentiation and migration. The emerging picture shows that Rho family GTPases transduce signals from receptors for antigens, chemokines and cytokines, as well as adhesion molecules and pattern recognition receptors, and that they function as focal points for crosstalk between different signalling pathways.
Collapse
Affiliation(s)
- Victor L J Tybulewicz
- Division of Immune Cell Biology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
49
|
Kummerow C, Junker C, Kruse K, Rieger H, Quintana A, Hoth M. The immunological synapse controls local and global calcium signals in T lymphocytes. Immunol Rev 2009; 231:132-47. [DOI: 10.1111/j.1600-065x.2009.00811.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Gollmer K, Asperti-Boursin F, Tanaka Y, Okkenhaug K, Vanhaesebroeck B, Peterson JR, Fukui Y, Donnadieu E, Stein JV. CCL21 mediates CD4+ T-cell costimulation via a DOCK2/Rac-dependent pathway. Blood 2009; 114:580-8. [PMID: 19451552 PMCID: PMC2713469 DOI: 10.1182/blood-2009-01-200923] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/22/2009] [Indexed: 11/20/2022] Open
Abstract
CD4(+) T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)-transgenic (tg) CD4(+) T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3Kdelta(D910A/D910A) or PI3Kgamma-deficient TCR-tg CD4(+) T cells showed similar responsiveness to CCL21 costimulation as control CD4(+) T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4(+) T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca(2+) signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.
Collapse
Affiliation(s)
- Kathrin Gollmer
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, Bern, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|