1
|
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ, van Zundert B. Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death. Mol Med 2024; 30:185. [PMID: 39455931 PMCID: PMC11505737 DOI: 10.1186/s10020-024-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2 + transients and reactive oxygen species (i.e., H2O2). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
Collapse
Affiliation(s)
- Pablo Martínez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mónica Silva
- Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Abarzúa
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| |
Collapse
|
2
|
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ, van Zundert B. Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595817. [PMID: 38826246 PMCID: PMC11142234 DOI: 10.1101/2024.05.24.595817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1 G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2+ transients and reactive oxygen species (i.e., H 2 O 2 ). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
Collapse
|
3
|
Paladini J, Maier A, Habazettl JM, Hertel I, Sonti R, Grzesiek S. The molecular basis of Abelson kinase regulation by its αI-helix. eLife 2024; 12:RP92324. [PMID: 38588001 PMCID: PMC11001296 DOI: 10.7554/elife.92324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024] Open
Abstract
Abelson tyrosine kinase (Abl) is regulated by the arrangement of its regulatory core, consisting sequentially of the SH3, SH2, and kinase (KD) domains, where an assembled or disassembled core corresponds to low or high kinase activity, respectively. It was recently established that binding of type II ATP site inhibitors, such as imatinib, generates a force from the KD N-lobe onto the SH3 domain and in consequence disassembles the core. Here, we demonstrate that the C-terminal αI-helix exerts an additional force toward the SH2 domain, which correlates both with kinase activity and type II inhibitor-induced disassembly. The αI-helix mutation E528K, which is responsible for the ABL1 malformation syndrome, strongly activates Abl by breaking a salt bridge with the KD C-lobe and thereby increasing the force onto the SH2 domain. In contrast, the allosteric inhibitor asciminib strongly reduces Abl's activity by fixating the αI-helix and reducing the force onto the SH2 domain. These observations are explained by a simple mechanical model of Abl activation involving forces from the KD N-lobe and the αI-helix onto the KD/SH2SH3 interface.
Collapse
Affiliation(s)
- Johannes Paladini
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | - Annalena Maier
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | | | - Ines Hertel
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | - Rajesh Sonti
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| | - Stephan Grzesiek
- Structural Biology and Biophysics, Biozentrum, University of BaselBaselSwitzerland
| |
Collapse
|
4
|
Pessoa FMCDP, Viana VBDJ, de Oliveira MB, Nogueira BMD, Ribeiro RM, Oliveira DDS, Lopes GS, Vieira RPG, de Moraes Filho MO, de Moraes MEA, Khayat AS, Moreira FC, Moreira-Nunes CA. Validation of Endogenous Control Genes by Real-Time Quantitative Reverse Transcriptase Polymerase Chain Reaction for Acute Leukemia Gene Expression Studies. Genes (Basel) 2024; 15:151. [PMID: 38397141 PMCID: PMC10887733 DOI: 10.3390/genes15020151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Reference genes are used as internal reaction controls for gene expression analysis, and for this reason, they are considered reliable and must meet several important criteria. In view of the absence of studies regarding the best reference gene for the analysis of acute leukemia patients, a panel of genes commonly used as endogenous controls was selected from the literature for stability analysis: Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Abelson murine leukemia viral oncogene human homolog 1 (ABL), Hypoxanthine phosphoribosyl-transferase 1 (HPRT1), Ribosomal protein lateral stalk subunit P0 (RPLP0), β-actin (ACTB) and TATA box binding protein (TBP). The stability of candidate reference genes was analyzed according to three statistical methods of assessment, namely, NormFinder, GeNorm and R software (version 4.0.3). From this study's analysis, it was possible to identify that the endogenous set composed of ACTB, ABL, TBP and RPLP0 demonstrated good performances and stable expressions between the analyzed groups. In addition to that, the GAPDH and HPRT genes could not be classified as good reference genes, considering that they presented a high standard deviation and great variability between groups, indicating low stability. Given these findings, this study suggests the main endogenous gene set for use as a control/reference for the gene expression in peripheral blood and bone marrow samples from patients with acute leukemias is composed of the ACTB, ABL, TBP and RPLP0 genes. Researchers may choose two to three of these housekeeping genes to perform data normalization.
Collapse
Affiliation(s)
- Flávia Melo Cunha de Pinho Pessoa
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - Vitória Beatriz de Jesus Viana
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Marcelo Braga de Oliveira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Beatriz Maria Dias Nogueira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | | | - Deivide de Sousa Oliveira
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
- Department of Hematology, Fortaleza General Hospital (HGF), Fortaleza 60150-160, CE, Brazil
| | - Germison Silva Lopes
- Department of Hematology, César Cals General Hospital, Fortaleza 60015-152, CE, Brazil;
| | | | - Manoel Odorico de Moraes Filho
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - Maria Elisabete Amaral de Moraes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
| | - André Salim Khayat
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Fabiano Cordeiro Moreira
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
| | - Caroline Aquino Moreira-Nunes
- Department of Medicine, Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza 60430-275, CE, Brazil; (F.M.C.d.P.P.); (B.M.D.N.); (D.d.S.O.); (M.O.d.M.F.)
- Department of Biological Sciences, Oncology Research Center, Federal University of Pará, Belém 66073-005, PA, Brazil; (V.B.d.J.V.); (M.B.d.O.); (F.C.M.)
- Central Unity, Molecular Biology Laboratory, Clementino Fraga Group, Fortaleza 60115-170, CE, Brazil
| |
Collapse
|
5
|
c-Abl tyrosine kinase inhibition attenuate oxidative stress-induced pancreatic β-Cell dysfunction via glutathione antioxidant system. Transl Res 2022; 249:74-87. [PMID: 35697276 DOI: 10.1016/j.trsl.2022.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Chronic oxidative stress, which is caused by aberrant non-receptor tyrosine kinase (c-Abl) signaling, plays a key role in the progression of β-cell loss in diabetes mellitus. Recent studies, however, have linked ferroptotic-like death to the β-cell loss in diabetes mellitus. Here, we report that oxidative stress-driven reduced/oxidized glutathione (GSH/GSSG) loss and proteasomal degradation of glutathione peroxidase 4 (GPX4) promote ferroptotic-like cell damage through increased lipid peroxidation. Mechanistically, treatment with GNF2, a non-ATP competitive c-Abl kinase inhibitor, selectively preserves β-cell function by inducing the orphan nuclear receptor estrogen-related receptor gamma (ERRγ). ERRγ-driven glutaminase 1 (GLS1) expression promotes the elevation of the GSH/GSSG ratio, and this increase leads to the inhibition of lipid peroxidation by GPX4. Strikingly, pharmacological inhibition of ERRγ represses the expression of GLS1 and reverses the GSH/GSSG ratio linked to mitochondrial dysfunction and increased lipid peroxidation mediated by GPX4 degradation. Inhibition of GLS1 suppresses the ERRγ agonist DY131-induced GSH/GSSG ratio linked to ferroptotic-like death owing to the loss of GPX4. Furthermore, immunohistochemical analysis showed enhanced ERRγ and GPX4 expression in the pancreatic islets of GNF2-treated mice compared to that in streptozotocin-treated mice. Altogether, our results provide the first evidence that the orphan nuclear receptor ERRγ-induced GLS1 expression augments the glutathione antioxidant system, and its downstream signaling leads to improved β-cell function and survival under oxidative stress conditions.
Collapse
|
6
|
Advances in the previous two decades in our understanding of the post-translational modifications, functions, and drug perspectives of ArgBP2 and its family members. Biomed Pharmacother 2022; 155:113853. [DOI: 10.1016/j.biopha.2022.113853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/20/2022] Open
|
7
|
Lan F, Chen X, Xiong Z, Cao Z, Lu L, Zhong Y, Zhan X, Yang Y, Shao Y, Li M, Han Z, Zhu X. Comprehensive transcriptomic and co-expression analysis of ABL1 gene and molecularly targeted drugs in hepatocellular carcinoma based on multi-database mining. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:146. [PMID: 35834027 DOI: 10.1007/s12032-022-01730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death worldwide. Consequently, it is essential to identify biomarkers for treatment response and the prognosis prediction. We investigated whether ABL1 can function as a biomarker or a drug target for HCC. We assessed the ABL1 expression, genetic alterations and patients' survival from LinkedOmics, GEO, TCGA and Human Protein Atlas. We analyzed PPI, GO and KEGG pathways. GSEA was analyzed for functional comparison. The current drugs targeting ABL1 were statistically analyzed using DRUGSURV and DGIdb database. We found ABL1 is overexpressed in HCC and its higher expression reduces survival probability. Genetic changes of ABL1 are not frequent. We screened out 25 differentially expressed genes correlated with ABL1. The top functions of ABL1 are biological regulation, metabolic process, protein-containing, and protein binding. KEGG pathways showed that ABL1 and correlated with ABL1 significantly genes markedly enriched in the ErbB signaling pathway, and pathways in cancer. We counted the existing drugs targeting ABL1, which indicates that inhibiting ABL1 expression may improve the survival probability of HCC. In conclusion, ABL1 plays a crucial role in the development and progression of this cancerization and is a potential drug target.
Collapse
Affiliation(s)
- Feifei Lan
- Medical Genetics Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xinqia Chen
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Zhuolong Xiong
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Zitong Cao
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Liangzong Lu
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Yueyuan Zhong
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Xuliang Zhan
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Yue Yang
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Yingqi Shao
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Minhua Li
- Zhu's Team, Guangdong Medical University, Zhanjiang, China
| | - Zenglei Han
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China.
| | - Xiao Zhu
- Zhu's Team, Guangdong Medical University, Zhanjiang, China. .,School of Laboratory Medicine and Biomedical Engineering, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
Zhang J, Sun JG, Xing X, Wu R, Zhou L, Zhang Y, Yuan F, Wang S, Yuan Z. c-Abl-induced Olig2 phosphorylation regulates the proliferation of oligodendrocyte precursor cells. Glia 2022; 70:1084-1099. [PMID: 35156232 DOI: 10.1002/glia.24157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Oligodendrocytes (OLs), the myelinating cells in the central nervous system (CNS), are differentiated from OL progenitor cells (OPCs). The proliferation of existing OPCs is indispensable for myelination during CNS development and remyelination in response to demyelination stimulation. The transcription factor Olig2 is required for the specification of OLs and is expressed in the OL lineage. However, the post-translational modification of Olig2 in the proliferation of OPCs is poorly understood. Herein, we identified that c-Abl directly phosphorylates Olig2 mainly at the Tyr137 site, and that Olig2 phosphorylation is essential for OPC proliferation. The expression levels of c-Abl gradually decreased with brain development; moreover, c-Abl was highly expressed in OPCs. OL-specific c-Abl knockout at the developmental stage led to an insufficient proliferation of OPCs, a decreased expression of myelin-related genes, and myelination retardation. Accordingly, a c-Abl-specific kinase inhibitor suppressed OPC proliferation in vitro. Furthermore, we observed that OL-specific c-Abl knockout reduced OPC proliferation and remyelination in a cuprizone model of demyelination. In addition, we found that nilotinib, a clinically used c-Abl inhibitor, decreased the expression of myelin basic protein (Mbp) and motor coordination in mice, indicating a neurological side effect of a long-term administration of the c-Abl inhibitor. Thus, we identified the important role of c-Abl in OLs during developmental myelination and remyelination in a disease model.
Collapse
Affiliation(s)
- Jun Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jian-Guang Sun
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xiaowen Xing
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Rong Wu
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Lujun Zhou
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Ying Zhang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fang Yuan
- Department of Oncology, The General Hospital of Chinese People's Liberation Army No.5 Medical Science Center, Beijing, China
| | - Shukun Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Beijing, China
| |
Collapse
|
9
|
Grzesiek S, Paladini J, Habazettl J, Sonti R. Imatinib disassembles the regulatory core of Abelson kinase by binding to its ATP site and not by binding to its myristoyl pocket. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:91-99. [PMID: 37905178 PMCID: PMC10539847 DOI: 10.5194/mr-3-91-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/02/2023]
Abstract
It was recently reported (Xie et al., 2022) that the Abelson tyrosine kinase (Abl) ATP-site inhibitor imatinib also binds to Abl's myristoyl binding pocket, which is the target of allosteric Abl inhibitors. This was based on a crystal structure of a truncated Abl kinase domain construct in complex with imatinib bound to the allosteric site as well as further isothermal titration calorimetry (ITC), NMR, and kinase activity data. Although imatinib's affinity for the allosteric site is significantly weaker (10 µ M) than for the ATP site (10 nM), imatinib binding to the allosteric site may disassemble the regulatory core of Abl, thereby stimulating kinase activity, in particular for Abl mutants with reduced imatinib ATP-site affinity. It was argued that the previously observed imatinib-induced opening of the Abl regulatory core (Skora et al., 2013; Sonti et al., 2018) may be caused by the binding of imatinib to the allosteric site and not to the ATP site. We show here that this is not the case but that indeed imatinib binding to the ATP site induces the opening of the regulatory core at nanomolar concentrations. This agrees with findings that other type-II ATP-site inhibitors (nilotinib, ponatinib) disassemble the regulatory core despite demonstrated negligible binding to the allosteric site.
Collapse
Affiliation(s)
| | | | | | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of
Pharmaceutical Education and Research, Hyderabad, Telangana, 500037, India
| |
Collapse
|
10
|
The Role of WAVE2 Signaling in Cancer. Biomedicines 2021; 9:biomedicines9091217. [PMID: 34572403 PMCID: PMC8464821 DOI: 10.3390/biomedicines9091217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
The Wiskott–Aldrich syndrome protein (WASP) and WASP family verprolin-homologous protein (WAVE)—WAVE1, WAVE2 and WAVE3 regulate rapid reorganization of cortical actin filaments and have been shown to form a key link between small GTPases and the actin cytoskeleton. Upon receiving upstream signals from Rho-family GTPases, the WASP and WAVE family proteins play a significant role in polymerization of actin cytoskeleton through activation of actin-related protein 2/3 complex (Arp2/3). The Arp2/3 complex, once activated, forms actin-based membrane protrusions essential for cell migration and cancer cell invasion. Thus, by activation of Arp2/3 complex, the WAVE and WASP family proteins, as part of the WAVE regulatory complex (WRC), have been shown to play a critical role in cancer cell invasion and metastasis, drawing significant research interest over recent years. Several studies have highlighted the potential for targeting the genes encoding either part of or a complete protein from the WASP/WAVE family as therapeutic strategies for preventing the invasion and metastasis of cancer cells. WAVE2 is well documented to be associated with the pathogenesis of several human cancers, including lung, liver, pancreatic, prostate, colorectal and breast cancer, as well as other hematologic malignancies. This review focuses mainly on the role of WAVE2 in the development, invasion and metastasis of different types of cancer. This review also summarizes the molecular mechanisms that regulate the activity of WAVE2, as well as those oncogenic pathways that are regulated by WAVE2 to promote the cancer phenotype. Finally, we discuss potential therapeutic strategies that target WAVE2 or the WAVE regulatory complex, aimed at preventing or inhibiting cancer invasion and metastasis.
Collapse
|
11
|
Fernandes PO, Martins DM, de Souza Bozzi A, Martins JPA, de Moraes AH, Maltarollo VG. Molecular insights on ABL kinase activation using tree-based machine learning models and molecular docking. Mol Divers 2021; 25:1301-1314. [PMID: 34191245 PMCID: PMC8241884 DOI: 10.1007/s11030-021-10261-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Abelson kinase (c-Abl) is a non-receptor tyrosine kinase involved in several biological processes essential for cell differentiation, migration, proliferation, and survival. This enzyme's activation might be an alternative strategy for treating diseases such as neutropenia induced by chemotherapy, prostate, and breast cancer. Recently, a series of compounds that promote the activation of c-Abl has been identified, opening a promising ground for c-Abl drug development. Structure-based drug design (SBDD) and ligand-based drug design (LBDD) methodologies have significantly impacted recent drug development initiatives. Here, we combined SBDD and LBDD approaches to characterize critical chemical properties and interactions of identified c-Abl's activators. We used molecular docking simulations combined with tree-based machine learning models-decision tree, AdaBoost, and random forest to understand the c-Abl activators' structural features required for binding to myristoyl pocket, and consequently, to promote enzyme and cellular activation. We obtained predictive and robust models with Matthews correlation coefficient values higher than 0.4 for all endpoints and identified characteristics that led to constructing a structure-activity relationship model (SAR).
Collapse
Affiliation(s)
- Philipe Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Diego Magno Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline de Souza Bozzi
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Paulo A Martins
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adolfo Henrique de Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Wang GF, Niu X, Liu H, Dong Q, Yao Y, Wang D, Liu X, Cao C. c-Abl kinase regulates cell proliferation and ionizing radiation-induced G2/M arrest via phosphorylation of FHL2. FEBS Open Bio 2021; 11:1731-1738. [PMID: 33932144 PMCID: PMC8167852 DOI: 10.1002/2211-5463.13177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/20/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Nonreceptor tyrosine kinase c‐Abl participates in several cellular processes by phosphorylating transcription factors or cofactors. c‐Abl binds and phosphorylates four‐and‐a‐half‐LIM‐only protein 2 (FHL2), but the identity of the phosphorylation sites and their contribution to cell cycle regulation is unclear. In this study, we demonstrate that c‐Abl highly phosphorylates FHL2 at Y97, Y176, Y217, and Y236 through mass spectrometry and tyrosine‐to‐phenylalanine (Y → F) mutant analysis. Proliferation was inhibited in cells expressing wild‐type (WT) FHL2 but not cells expressing the phosphorylation‐defective mutant FHL2(4YF). Moreover, FHL2 contributed to cell cycle arrest at G2/M induced by ionizing radiation (IR). FHL2 WT but not FHL2(4YF) rescued FHL2 function in FHL2‐depleted cells by causing IR‐induced G2/M arrest. These results demonstrate that c‐Abl regulates cell cycle progression by phosphorylating FHL2.
Collapse
Affiliation(s)
| | | | - Hainan Liu
- Beijing Institute of Biotechnology, China
| | | | - Yebao Yao
- Beijing Institute of Biotechnology, China
| | - Di Wang
- Anhui University, Hefei, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, China
| |
Collapse
|
13
|
Higuchi M, Ishiyama K, Maruoka M, Kanamori R, Takaori-Kondo A, Watanabe N. Paradoxical activation of c-Src as a drug-resistant mechanism. Cell Rep 2021; 34:108876. [PMID: 33761359 DOI: 10.1016/j.celrep.2021.108876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
ATP-competitive inhibitors have been developed as promising anti-cancer agents. However, drug-resistance frequently occurs, and the underlying mechanisms are not fully understood. Here, we show that the activation of c-Src and its downstream phosphorylation cascade can be paradoxically induced by Src-targeted and RTK-targeted kinase inhibitors. We reveal that inhibitor binding induces a conformational change in c-Src, leading to the association of the active form c-Src with focal adhesion kinase (FAK). Reduction of the inhibitor concentration results in the dissociation of inhibitors from the c-Src-FAK complex, which allows c-Src to phosphorylate FAK and initiate FAK-Grb2-mediated Erk signaling. Furthermore, a drug-resistant mutation in c-Src, which reduces the affinity of inhibitors for c-Src, converts Src inhibitors into facilitators of cell proliferation by enhancing the phosphorylation of FAK and Erk in c-Src-mutated cells. Our data thus reveal paradoxical enhancement of cell growth evoked by target-based kinase inhibitors, providing potentially important clues for the future development of effective and safe cancer treatment.
Collapse
Affiliation(s)
- Makio Higuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichi Ishiyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Maruoka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ryosuke Kanamori
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| |
Collapse
|
14
|
Xu Y, Nijhuis A, Keun HC. RNA-binding motif protein 39 (RBM39): An emerging cancer target. Br J Pharmacol 2020; 179:2795-2812. [PMID: 33238031 DOI: 10.1111/bph.15331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/13/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
RNA-binding motif protein 39 (RBM39) is an RNA-binding protein involved in transcriptional co-regulation and alternative RNA splicing. Recent studies have revealed that RBM39 is the unexpected target of aryl sulphonamides, which act as molecular glues between RBM39 and the DCAF15-associated E3 ubiquitin ligase complex leading to selective degradation of the target. Loss of RBM39 leads to aberrant splicing events and differential gene expression, thereby inhibiting cell cycle progression and causing tumour regression in a number of preclinical models. Many clinical studies have shown that aryl sulphonamides were well tolerated, but their clinical performance was limited due to an insufficient understanding of the target, RBM39 biology and a lack of predictive biomarkers. This review summarises the current knowledge of RBM39 function and discusses the therapeutic potential of this spliceosome target in cancer therapy.
Collapse
Affiliation(s)
- Yuewei Xu
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Anke Nijhuis
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Hector C Keun
- Cancer Metabolism & Systems Toxicology Group, Division of Cancer, Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
15
|
Wang F, Hou W, Chitsike L, Xu Y, Bettler C, Perera A, Bank T, Cotler SJ, Dhanarajan A, Denning MF, Ding X, Breslin P, Qiang W, Li J, Koleske AJ, Qiu W. ABL1, Overexpressed in Hepatocellular Carcinomas, Regulates Expression of NOTCH1 and Promotes Development of Liver Tumors in Mice. Gastroenterology 2020; 159:289-305.e16. [PMID: 32171747 PMCID: PMC7387191 DOI: 10.1053/j.gastro.2020.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/31/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS We investigated whether ABL proto-oncogene 1, non-receptor tyrosine kinase (ABL1) is involved in development of hepatocellular carcinoma (HCC). METHODS We analyzed clinical and gene expression data from The Cancer Genome Atlas. Albumin-Cre (HepWT) mice and mice with hepatocyte-specific disruption of Abl1 (HepAbl-/- mice) were given hydrodynamic injections of plasmids encoding the Sleeping Beauty transposase and transposons with the MET gene and a catenin β1 gene with an N-terminal truncation, which induces development of liver tumors. Some mice were then gavaged with the ABL1 inhibitor nilotinib or vehicle (control) daily for 4 weeks. We knocked down ABL1 with short hairpin RNAs in Hep3B and Huh7 HCC cells and analyzed their proliferation and growth as xenograft tumors in mice. We performed RNA sequencing and gene set enrichment analysis of tumors. We knocked down or overexpressed NOTCH1 and MYC in HCC cells and analyzed proliferation. We measured levels of phosphorylated ABL1, MYC, and NOTCH1 by immunohistochemical analysis of an HCC tissue microarray. RESULTS HCC tissues had higher levels of ABL1 than non-tumor liver tissues, which correlated with shorter survival times of patients. HepWT mice with the MET and catenin β1 transposons developed liver tumors and survived a median 64 days; HepAbl-/- mice with these transposons developed tumors that were 50% smaller and survived a median 81 days. Knockdown of ABL1 in human HCC cells reduced proliferation, growth as xenograft tumors in mice, and expression of MYC, which reduced expression of NOTCH1. Knockdown of NOTCH1 or MYC in HCC cells significantly reduced cell growth. NOTCH1 or MYC overexpression in human HCC cells promoted proliferation and rescued the phenotype caused by ABL1 knockdown. The level of phosphorylated (activated) ABL1 correlated with levels of MYC and NOTCH1 in human HCC specimens. Nilotinib decreased expression of MYC and NOTCH1 in HCC cell lines, reduced the growth of xenograft tumors in mice, and slowed growth of liver tumors in mice with MET and catenin β1 transposons, reducing tumor levels of MYC and NOTCH1. CONCLUSIONS HCC samples have increased levels of ABL1 compared with nontumor liver tissues, and increased levels of ABL1 correlate with shorter survival times of patients. Loss or inhibition of ABL1 reduces proliferation of HCC cells and slows growth of liver tumors in mice. Inhibitors of ABL1 might be used for treatment of HCC.
Collapse
Affiliation(s)
- Fang Wang
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Wei Hou
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Lennox Chitsike
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Yingchen Xu
- Department of General Surgery, Beijing Tongren Hospital, Capital Medical University
| | - Carlee Bettler
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Aldeb Perera
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Thomas Bank
- Departments of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Scott J. Cotler
- Department of Medicine, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Asha Dhanarajan
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Mitchell F. Denning
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Peter Breslin
- Departments of Molecular/Cellular Physiology and Oncology Institute, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA,Department of Biology, Loyola University Chicago Stritch School of Medicine, 2160 South 1st Avenue., Maywood, IL 60153, USA
| | - Wenan Qiang
- Department of Obstetrics and Gynecology and Pathology, Northwestern University
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame
| | | | - Wei Qiu
- Department of Surgery, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois; Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Chicago, Illinois.
| |
Collapse
|
16
|
Chen S, Liu G, Chen J, Hu A, Zhang L, Sun W, Tang W, Liu C, Zhang H, Ke C, Wu J, Chen X. Ponatinib Protects Mice From Lethal Influenza Infection by Suppressing Cytokine Storm. Front Immunol 2019; 10:1393. [PMID: 31293574 PMCID: PMC6598400 DOI: 10.3389/fimmu.2019.01393] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Excessive inflammation associated with the uncontrolled release of pro-inflammatory cytokines is the main cause of death from influenza virus infection. Previous studies have indicated that inhibition of interferon gamma-induced protein 10 (IP-10), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), or their cognate receptors has beneficial effects. Here, by using monocytic U937 cells that capable of secreting the three important cytokines during influenza A virus infection, we measured the inhibitory activities on the production of three cytokines of six anti-inflammatory compounds reported in other models of inflammation. We found that ponatinib had a highly inhibitory effect on the production of all three cytokines. We tested ponatinib in a mouse influenza model to assess its therapeutic effects with different doses and administration times and found that the delayed administration of ponatinib was protective against lethal influenza A virus infection without reducing virus titers. Therefore, we suggest that ponatinib may serve as a new immunomodulator in the treatment of influenza.
Collapse
Affiliation(s)
- Si Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ge Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jungang Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ao Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenyu Sun
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wei Tang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chunlan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Haiwei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Chang Ke
- Wuhan Virolead Biopharmaceutical Company, Wuhan, China
| | - Jianguo Wu
- Guangzhou Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xulin Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Molecular dynamics investigation on the Asciminib resistance mechanism of I502L and V468F mutations in BCR-ABL. J Mol Graph Model 2019; 89:242-249. [PMID: 30927708 DOI: 10.1016/j.jmgm.2019.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/23/2019] [Accepted: 03/18/2019] [Indexed: 01/29/2023]
Abstract
Asciminib, a highly selective non-ATP competitive inhibitor of BCR-ABL, has demonstrated to be a promising drug for patients with chronic myeloid leukemia. It is a pity that two resistant mutations (I502L and V468F) have been found during the clinical trial, which is a challenge for the curative effect of Asciminib. In this study, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to investigate the molecular mechanism of Asciminib resistance induced by the two mutants. The obtained results indicate that the mutations have adversely influence on the binding of Asciminib to BCR-ABL, as the nonpolar contributions decline in the two mutants. In addition, I502L mutation causes α-helix I' (αI') to shift away from the helical bundle composed of αE, αF, and αH, making the distance between αI' and Asciminib increased. For V468F mutant, the side chain of Phe468 occupies the bottom of the myristoyl pocket (MP), which drives Asciminib to shift toward the outside of MP. Our results provide the molecular insights of Asciminib resistance mechanism in BCR-ABL mutants, which may help the design of novel inhibitors.
Collapse
|
18
|
Posselt G, Wiesauer M, Chichirau BE, Engler D, Krisch LM, Gadermaier G, Briza P, Schneider S, Boccellato F, Meyer TF, Hauser-Kronberger C, Neureiter D, Müller A, Wessler S. Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Commun Signal 2019; 17:10. [PMID: 30704478 PMCID: PMC6357398 DOI: 10.1186/s12964-019-0323-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Deregulated c-Abl activity has been intensively studied in a variety of solid tumors and leukemia. The class-I carcinogen Helicobacter pylori (Hp) activates the non-receptor tyrosine kinase c-Abl to phosphorylate the oncoprotein cytotoxin-associated gene A (CagA). The role of c-Abl in CagA-dependent pathways is well established; however, the knowledge of CagA-independent c-Abl processes is scarce. METHODS c-Abl phosphorylation and localization were analyzed by immunostaining and immunofluorescence. Interaction partners were identified by tandem-affinity purification. Cell elongation and migration were analyzed in transwell-filter experiments. Apoptosis and cell survival were examined by FACS analyses and MTT assays. In mice experiments and human biopsies, the involvement of c-Abl in Hp pathogenesis was investigated. RESULTS Here, we investigated the activity and subcellular localization of c-Abl in vitro and in vivo and unraveled the contribution of c-Abl in CagA-dependent and -independent pathways to gastric Hp pathogenesis. We report a novel mechanism and identified strong c-Abl threonine 735 phosphorylation (pAblT735) mediated by the type-IV secretion system (T4SS) effector D-glycero-β-D-manno-heptose-1,7-bisphosphate (βHBP) and protein kinase C (PKC) as a new c-Abl kinase. pAblT735 interacted with 14-3-3 proteins, which caused cytoplasmic retention of c-Abl, where it potentiated Hp-mediated cell elongation and migration. Further, the nuclear exclusion of pAblT735 attenuated caspase-8 and caspase-9-dependent apoptosis. Importantly, in human patients suffering from Hp-mediated gastritis c-Abl expression and pAblT735 phosphorylation were drastically enhanced as compared to type C gastritis patients or healthy individuals. Pharmacological inhibition using the selective c-Abl kinase inhibitor Gleevec confirmed that c-Abl plays an important role in Hp pathogenesis in a murine in vivo model. CONCLUSIONS In this study, we identified a novel regulatory mechanism in Hp-infected gastric epithelial cells by which Hp determines the subcellular localization of activated c-Abl to control Hp-mediated EMT-like processes while decreasing cell death.
Collapse
Affiliation(s)
- Gernot Posselt
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Maria Wiesauer
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Bianca E Chichirau
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Daniela Engler
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Linda M Krisch
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria
| | - Gabriele Gadermaier
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Str. 34, A-5020, Salzburg, Austria
| | - Peter Briza
- Department of Biosciences, Division of Allergy and Immunology, University of Salzburg, Paris-Lodron University of Salzburg, Hellbrunner Str. 34, A-5020, Salzburg, Austria
| | - Sabine Schneider
- Paul-Ehrlich-Institute, Paul-Ehrlich-Str. 51-59, D-63225, Langen, Germany
| | - Francesco Boccellato
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Thomas F Meyer
- Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117, Berlin, Germany
| | - Cornelia Hauser-Kronberger
- Department of Pathology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria
| | - Daniel Neureiter
- Department of Pathology, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, A-5020, Salzburg, Austria.,Cancer Cluster Salzburg, University of Salzburg, A-5020, Salzburg, Austria
| | - Anne Müller
- Institute of Molecular Cancer Research, University of Zurich, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Silja Wessler
- Department of Biosciences, Division of Microbiology, University of Salzburg, Paris-Lodron University of Salzburg, Billroth Str. 11, A-5020, Salzburg, Austria. .,Cancer Cluster Salzburg, University of Salzburg, A-5020, Salzburg, Austria.
| |
Collapse
|
19
|
Langberg MK, Berglund-Nord C, Cohn-Cedermark G, Haugnes HS, Tandstad T, Langberg CW. Imatinib may reduce chemotherapy-induced pneumonitis. A report on four cases from the SWENOTECA. Acta Oncol 2018; 57:1401-1406. [PMID: 29869895 DOI: 10.1080/0284186x.2018.1479072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND An increasing number of anticancer drugs have been reported to cause pneumonitis. Chemotherapy-induced pneumonitis may cause severe morbidity and event death. As there has been a lack of effective treatment, new treatment strategies are needed. A previous case report has indicated that imatinib may be useful. PATIENT AND METHODS The SWENOTECA experience of four cases with severe life-threatening chemotherapy-induced pneumonitis treated with imatinib is presented. RESULTS All four patients responded to treatment with imatinib. CONCLUSIONS Imatinib appears to be an effective treatment of severe chemotherapy-induced pneumonitis in germ cell cancer patients.
Collapse
Affiliation(s)
| | - Carina Berglund-Nord
- Department of Oncology–Pathology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Gabriella Cohn-Cedermark
- Department of Oncology–Pathology, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Hege S. Haugnes
- Institute of Clinical Medicine - Oncology, University of Tromsø and University Hospital of North Norway, Tromsø, Norway
| | | | - Carl W. Langberg
- Department of Oncology, University Hospital of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Feng R, Wang X, Li J, Chen K, Guo G, Liao Y, Sun L, Huang S, Chen JL. Interaction of Abl Tyrosine Kinases with SOCS3 Impairs Its Suppressor Function in Tumorigenesis. Neoplasia 2018; 20:1095-1105. [PMID: 30236924 PMCID: PMC6143717 DOI: 10.1016/j.neo.2018.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 01/19/2023] Open
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is involved in Bcr-Abl–induced tumorigenesis. However, how SOCS3 interacts with Bcr-Abl and is regulated by Abl kinases remains largely unknown. Since c-Abl plays a critical role in tumorigenesis, we asked whether SOCS3 is regulated by c-Abl–dependent phosphorylation. Here, we found that SOCS3 interacted with all three Abl kinases (Bcr-Abl, v-Abl, and c-Abl), and SH1 domain of the Abl kinases was critically required for such interaction. Furthermore, the SH2 domain of SOCS3 was sufficient to pull down the SH1 domain but not the full length of Bcr-Abl. Importantly, SOCS3 was highly tyrosine phosphorylated by c-Abl, leading to impairment of its ability to suppress JAK8+72 activity. In addition, disrupting the tyrosine phosphorylation of SOCS3 promoted apoptosis of c-Abl–expressing cells and impeded xenograft growth of these tumor cells in nude mice. The results demonstrate that SOCS3 is highly tyrosine phosphorylated by c-Abl and that tyrosine phosphorylation of SOCS3 is required for the survival and tumorigenesis of certain cells. Our findings provide novel insights into complicated mechanisms underlying the oncogenic function of Abl kinases.
Collapse
Affiliation(s)
- Riyue Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xuefei Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jianning Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ke Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Guijie Guo
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yuan Liao
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liping Sun
- Department of Blood Transfusion, Chinese PLA General Hospital, Beijing, China
| | - Shile Huang
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
21
|
Daraiseh SI, Kassardjian A, Alexander KE, Rizkallah R, Hurt MM. c-Abl phosphorylation of Yin Yang 1's conserved tyrosine 254 in the spacer region modulates its transcriptional activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1173-1186. [PMID: 29807053 DOI: 10.1016/j.bbamcr.2018.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/02/2018] [Accepted: 05/24/2018] [Indexed: 12/31/2022]
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor that can activate or repress transcription depending on the promotor and/or the co-factors recruited. YY1 is phosphorylated in various signaling pathways and is critical for different biological functions including embryogenesis, apoptosis, proliferation, cell-cycle regulation and tumorigenesis. Here we report that YY1 is a substrate for c-Abl kinase phosphorylation at conserved residue Y254 in the spacer region. Pharmacological inhibition of c-Abl kinase by imatinib, nilotinib and GZD824, knock-down of c-Abl using siRNA, and the use of c-Abl kinase-dead drastically reduces tyrosine phosphorylation of YY1. Both radioactive and non-radioactive in vitro kinase assays, as well as co-immunoprecipitation in different cell lines, show that the target of c-Abl phosphorylation is tyrosine residue 254. c-Abl phosphorylation has little effect on YY1 DNA binding ability or cellular localization in asynchronous cells. However, functional studies reveal that c-Abl mediated phosphorylation of YY1 regulates YY1's transcriptional ability in vivo. In conclusion, we demonstrate the novel role of c-Abl kinase in regulation of YY1's transcriptional activity, linking YY1 regulation with c-Abl tyrosine kinase signaling pathways.
Collapse
Affiliation(s)
- Susan I Daraiseh
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Ari Kassardjian
- David Geffen School of Medicine, Department of Pathology and Laboratory Medicine at UCLA, Los Angeles, CA, USA
| | - Karen E Alexander
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Raed Rizkallah
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Myra M Hurt
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
22
|
Liu H, Cui Y, Wang GF, Dong Q, Yao Y, Li P, Cao C, Liu X. The nonreceptor tyrosine kinase c-Abl phosphorylates Runx1 and regulates Runx1-mediated megakaryocyte maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1060-1072. [PMID: 29730354 DOI: 10.1016/j.bbamcr.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
Abstract
The transcription factor Runx1 is an essential regulator of definitive hematopoiesis, megakaryocyte (MK) maturation, and lymphocyte differentiation. Runx1 mutations that interfere with its transcriptional activity are often present in leukemia patients. Recent work demonstrated that the transcriptional activity of Runx1 is regulated by kinase-mediated phosphorylation. In this study, we showed that c-Abl, but not Arg tyrosine kinase, associated with Runx1 both in cultured cells and in vitro. c-Abl-mediated tyrosine phosphorylation in the Runx1 transcription inhibition domain negatively regulated the transcriptional activity of Runx1 and inhibited Runx1-mediated MK maturation. Consistent with these findings, increased numbers of MKs were detected in the spleens and bone marrow of abl gene conditional knockout mice. Our findings demonstrate an important role of c-Abl kinase in Runx1-mediated MK maturation and platelet formation and provide a potential mechanism of Abl kinase-regulated hematopoiesis.
Collapse
Affiliation(s)
- Hainan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Yan Cui
- Department of Laboratory Animal Science, Third Military Medical University, Chongqing 400038, China
| | - Guang-Fei Wang
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Qincai Dong
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Yebao Yao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| |
Collapse
|
23
|
El Rashedy AA, Olotu FA, Soliman MES. Dual Drug Targeting of Mutant Bcr-Abl Induces Inactive Conformation: New Strategy for the Treatment of Chronic Myeloid Leukemia and Overcoming Monotherapy Resistance. Chem Biodivers 2018; 15:e1700533. [DOI: 10.1002/cbdv.201700533] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/09/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed A. El Rashedy
- Molecular Modeling and Drug Design Research Group; School of Health Sciences; University of KwaZulu-Natal; Westville Campus Durban 4001 South Africa
| | - Fisayo A. Olotu
- Molecular Modeling and Drug Design Research Group; School of Health Sciences; University of KwaZulu-Natal; Westville Campus Durban 4001 South Africa
| | - Mahmoud E. S. Soliman
- Molecular Modeling and Drug Design Research Group; School of Health Sciences; University of KwaZulu-Natal; Westville Campus Durban 4001 South Africa
- College of Pharmacy and Pharmaceutical Sciences; Florida Agricultural and Mechanical University, FAMU; Tallahassee Florida 32307 USA
| |
Collapse
|
24
|
La Sala G, Decherchi S, De Vivo M, Rocchia W. Allosteric Communication Networks in Proteins Revealed through Pocket Crosstalk Analysis. ACS CENTRAL SCIENCE 2017; 3:949-960. [PMID: 28979936 PMCID: PMC5620967 DOI: 10.1021/acscentsci.7b00211] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Indexed: 05/17/2023]
Abstract
The detection and characterization of binding pockets and allosteric communication in proteins is crucial for studying biological regulation and performing drug design. Nowadays, ever-longer molecular dynamics (MD) simulations are routinely used to investigate the spatiotemporal evolution of proteins. Yet, there is no computational tool that can automatically detect all the pockets and potential allosteric communication networks along these extended MD simulations. Here, we use a novel and fully automated algorithm that examines pocket formation, dynamics, and allosteric communication embedded in microsecond-long MD simulations of three pharmaceutically relevant proteins, namely, PNP, A2A, and Abl kinase. This dynamic analysis uses pocket crosstalk, defined as the temporal exchange of atoms between adjacent pockets, along the MD trajectories as a fingerprint of hidden allosteric communication networks. Importantly, this study indicates that dynamic pocket crosstalk analysis provides new mechanistic understandings on allosteric communication networks, enriching the available experimental data. Thus, our results suggest the prospective use of this unprecedented dynamic analysis to characterize transient binding pockets for structure-based drug design.
Collapse
Affiliation(s)
- Giuseppina La Sala
- Laboratory
of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Decherchi
- CONCEPT
Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- BiKi
Technologies s.r.l., via XX Settembre 33, 16121 Genova, Italy
| | - Marco De Vivo
- Laboratory
of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- IAS-S/INM-9
Computational Biomedicine Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
- Phone: +39 01071781577. E-mail:
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Phone: +39 01071781552. E-mail:
| |
Collapse
|
25
|
Demirel Ö, Balló O, Reddy PNG, Vakhrusheva O, Zhang J, Eichler A, Fernandes R, Badura S, Serve H, Brandts C. SOCS1 function in BCR-ABL mediated myeloproliferative disease is dependent on the cytokine environment. PLoS One 2017; 12:e0180401. [PMID: 28753604 PMCID: PMC5533340 DOI: 10.1371/journal.pone.0180401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/15/2017] [Indexed: 11/23/2022] Open
Abstract
Treatment with tyrosine kinase inhibitors is the standard of care for Philadelphia chromosome positive leukemias. However the eradication of leukemia initiating cells remains a challenge. Circumstantial evidence suggests that the cytokine microenvironment may play a role in BCR-ABL mediated leukemogenesis and in imatinib resistance. Gene expression analyses of BCR-ABL positive ALL long-term cultured cells revealed strong reduction of SOCS mRNA expression after imatinib treatment, thereby demonstrating a strong inhibition of cytokine signaling. In this study we employed SOCS1—a strong inhibitor of cytokine signaling—as a tool to terminate external cytokine signals in BCR-ABL transformed cells in vitro and in vivo. In colony formation assays with primary bone marrow cells, expression of SOCS1 decreased colony numbers under pro-proliferative cytokines, while it conferred growth resistance to anti-proliferative cytokines. Importantly, co-expression of SOCS1 with BCR-ABL led to the development of a MPD phenotype with a prolonged disease latency compared to BCR-ABL alone in a murine bone marrow transplantation model. Interestingly, SOCS1 co-expression protected 20% of mice from MPD development. In summary, we conclude that under pro-proliferative cytokine stimulation at the onset of myeloproliferative diseases SOCS1 acts as a tumor suppressor, while under anti-proliferative conditions it exerts oncogenic function. Therefore SOCS1 can promote opposing functions depending on the cytokine environment.
Collapse
Affiliation(s)
- Özlem Demirel
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Olivier Balló
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Pavankumar N. G. Reddy
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- Hematology/Oncology, Children’s Hospital Boston, Harvard Medical School, Boston, United States of America
| | - Olesya Vakhrusheva
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Jing Zhang
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Eichler
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Ramona Fernandes
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Susanne Badura
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Brandts
- Department of Medicine, Hematology/Oncology, Goethe University, Frankfurt, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- * E-mail:
| |
Collapse
|
26
|
Patras de Campaigno E, Bondon‐Guitton E, Laurent G, Montastruc F, Montastruc J, Lapeyre‐Mestre M, Despas F. Identification of cellular targets involved in cardiac failure caused by PKI in oncology: an approach combining pharmacovigilance and pharmacodynamics. Br J Clin Pharmacol 2017; 83:1544-1555. [PMID: 28098949 PMCID: PMC5465347 DOI: 10.1111/bcp.13238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/20/2016] [Accepted: 01/05/2017] [Indexed: 12/11/2022] Open
Abstract
AIMS The aims of the present study were to evaluate the risk of cardiac failure (CF) associated with 15 anticancer protein kinase inhibitors (PKIs) through a case/noncase analysis and to identify which PK(s) and pathways are involved in PKI-induced CF. METHODS In order to evaluate the risk of CF, adjusted reporting odds ratios (aRORs) were calculated for the 15 anticancer PKIs in the World Health Organization safety report database (VigiBase®). We realised a literature review to identify 21 protein kinases (PKs) that were possibly involved in CF caused by PKIs. Pearson correlation coefficients (r) between aRORs and affinity data of the 15 PKIs for the 21 PKs were calculated to identify the cellular target most likely to be involved in PKI-induced CF. RESULTS A total of 141 601 individual case safety reports (ICSRs) were extracted from VigiBase® for the following PKIs: afatinib, axitinib, bosutinib, crizotinib, dasatinib, erlotinib, gefitinib, imatinib, lapatinib, nilotinib, pazopanib, ruxolitinib, sorafenib, sunitinib and vandetanib. Among them, 2594 ICSRs concerned CF. The disproportionality analysis revealed that, for dasatinib, imatinib, bosutinib, sunitinib and nilotinib, disproportionality for CF was significantly higher than for other PKIs, with aRORs of 2.52 [95% CI 2.26, 2.82], 1.79 (95% CI 1.57, 2.03), 1.73 (95% CI 1.18, 2.54), 1.67 (95% CI 1.51, 1.84) and 1.38 (95% CI 1.18, 1.61), respectively. Significant values for correlation coefficients between the product of dissociation constant (pKd) and aROR were observed for two non-receptor protein kinases: ABL1 (non-phosphorylated and phosphorylated forms) and ABL2 protein kinases, with values of r = 0.83 (P = 0.0001), r = 0.75 (P = 0.0014) and r = 0.78 (P = 0.0006), respectively. CONCLUSION We observed a higher disproportionality for CF with dasatinib, imatinib, bosutinib, sunitinib and nilotinib than with other PKIs. In addition, the study highlighted the role of ABL tyrosine kinases in CF caused by anticancer PKIs.
Collapse
Affiliation(s)
- Emilie Patras de Campaigno
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
| | - Emmanuelle Bondon‐Guitton
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- Centre Midi‐Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d'Informations sur le MédicamentCentre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Guy Laurent
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Département d'Hématologie et de médecine InterneInstitut Universitaire du Cancer‐Oncopole1 Avenue Irène Joliot‐CurieToulouseFrance
| | - Francois Montastruc
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- Centre Midi‐Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d'Informations sur le MédicamentCentre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Jean‐Louis Montastruc
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- Centre Midi‐Pyrénées de Pharmacovigilance, de Pharmacoépidémiologie et d'Informations sur le MédicamentCentre Hospitalier Universitaire de ToulouseToulouseFrance
| | - Maryse Lapeyre‐Mestre
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- INSERM CIC 1436 Toulouse, Centre d'Investigation Clinique de ToulouseCentre Hospitalier Universitaire de ToulouseFrance
| | - Fabien Despas
- Service de Pharmacologie Médicale et CliniqueCHU de Toulouse37 allées Jules Guesde31000ToulouseFrance
- UMR1027, InsermUniversité Paul SabatierToulouseFrance
- Service de Pharmacologie Médicale et Clinique, Faculté de MédecineUniversité Paul SabatierToulouseFrance
- INSERM CIC 1436 Toulouse, Centre d'Investigation Clinique de ToulouseCentre Hospitalier Universitaire de ToulouseFrance
| |
Collapse
|
27
|
c-Abl regulates gastrointestinal muscularis propria homeostasis via ERKs. Sci Rep 2017; 7:3563. [PMID: 28620185 PMCID: PMC5472598 DOI: 10.1038/s41598-017-03569-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/02/2017] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is responsible for food digestion and absorption. The muscularis propria propels the foodstuff through the GI tract and defects in intestine motility may cause obstruction disorders. Our present genetic studies identified non-receptor tyrosine kinase c-Abl as an important regulator of the muscularis propria homeostasis and a risk factor for rectal prolapse. Mouse deficient for c-Abl showed defects in the muscularis propria of gastrointestinal tract and older c-Abl -/- mice developed megaesophagus and rectal prolapse. Inhibition of c-Abl with imatinib mesylate, an anti-CML drug, or ablation of c-Abl using Prx1-Cre, which marks smooth muscle cells, recapitulated most of the muscularis propria phenotypes. The pathogenesis of rectal prolapse was attributable to overproliferation of smooth muscle cells, which was caused by enhanced ERK1/2 activation. Administration of ERK inhibitor U0126 impeded the development of rectal prolapse in c-Abl deficient mice. These results reveal a role for c-Abl-regulated smooth muscle proliferation in the pathogenesis of rectal prolapse, and imply that long-term use of imatinib mesylate may cause gastrointestinal problems in patients while ERK inhibitor may be effective in treating rectal prolapse.
Collapse
|
28
|
Zheng S, Eierhoff T, Aigal S, Brandel A, Thuenauer R, de Bentzmann S, Imberty A, Römer W. The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1236-1245. [PMID: 28428058 DOI: 10.1016/j.bbamcr.2017.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022]
Abstract
The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkIIY221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to CrkY221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkIIY221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes.
Collapse
Affiliation(s)
- Shuangshuang Zheng
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Thorsten Eierhoff
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| | - Sahaja Aigal
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Annette Brandel
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Roland Thuenauer
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Sophie de Bentzmann
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université, CNRS UMR7255, Marseille, France
| | - Anne Imberty
- Centre de Recherches sur les Macromolécules Végétales, UPR5301 CNRS and University of Grenoble Alpes, BP53, 38041 Grenoble cédex 09, France
| | - Winfried Römer
- Faculty of Biology, Schänzlestraβe 1, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Schänzlestraβe 18, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany.
| |
Collapse
|
29
|
Sharapov MG, Novoselov VI, Fesenko EE, Bruskov VI, Gudkov SV. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals. Free Radic Res 2017; 51:148-166. [DOI: 10.1080/10715762.2017.1289377] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- M. G. Sharapov
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - V. I. Novoselov
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - E. E. Fesenko
- Institute of Cell Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - V. I. Bruskov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Moscow, Russia
| | - S. V. Gudkov
- A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow, Russia
- Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
| |
Collapse
|
30
|
Liu T, Zeng X, Sun F, Hou H, Guan Y, Guo D, Ai H, Wang W, Zhang G. EphB4 Regulates Self-Renewal, Proliferation and Neuronal Differentiation of Human Embryonic Neural Stem Cells in Vitro. Cell Physiol Biochem 2017; 41:819-834. [DOI: 10.1159/000459693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Background/Aims: EphB4 belongs to the largest family of Eph receptor tyrosine kinases. It contributes to a variety of pathological progresses of cancer malignancy. However, little is known about its role in neural stem cells (NSCs). This study examined whether EphB4 is required for proliferation and differentiation of human embryonic neural stem cells (hNSCs) in vitro. Methods: We up- and down-regulated EphB4 expression in hNSCs using lentiviral over-expression and shRNA knockdown constructs and then investigated the influence of EphB4 on the properties of hNSCs. Results: Our results show that shRNA-mediated EphB4 reduction profoundly impaired hNSCs self-renewal and proliferation. Furthermore, detection of differentiation revealed that knockdown of EphB4 inhibited hNSCs differentiation towards a neuronal lineage and promoted hNSCs differentiation to glial cells. In contrast, EphB4 overexpression promoted hNSCs self-renewal and proliferation, further induced hNSCs differentiation towards a neuronal lineage and inhibited hNSCs differentiation to glial cells. Moreover, we found that EphB4 regulates cell proliferation mediated by the Abl-CyclinD1 pathway. Conclusion: These studies provide strong evidence that fine tuning of EphB4 expression is crucial for the proliferation and neuronal differentiation of hNSCs, suggesting that EphB4 might be an interesting target for overcoming some of the therapeutic limitations of neuronal loss in brain diseases.
Collapse
|
31
|
Vuong TA, Leem YE, Kim BG, Cho H, Lee SJ, Bae GU, Kang JS. A Sonic hedgehog coreceptor, BOC regulates neuronal differentiation and neurite outgrowth via interaction with ABL and JNK activation. Cell Signal 2016; 30:30-40. [PMID: 27871935 DOI: 10.1016/j.cellsig.2016.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 12/21/2022]
Abstract
Neurite outgrowth is a critical step for neurogenesis and remodeling synaptic circuitry during neuronal development and regeneration. An immunoglobulin superfamily member, BOC functions as Sonic hedgehog (Shh) coreceptor in canonical and noncanonical Shh signaling in neuronal development and axon outgrowth/guidance. However signaling mechanisms responsible for BOC action during these processes remain unknown. In our previous studies, a multiprotein complex containing BOC and a closely related protein CDO promotes myogenic differentiation through activation of multiple signaling pathways, including non-receptor tyrosine kinase ABL. Given that ABL and Jun. N-terminal kinase (JNK) are implicated in actin cytoskeletal dynamics required for neurogenesis, we investigated the relationship between BOC, ABL and JNK during neuronal differentiation. Here, we demonstrate that BOC and ABL are induced in P19 embryonal carcinoma (EC) cells and cortical neural progenitor cells (NPCs) during neuronal differentiation. BOC-depleted EC cells or Boc-/- NPCs exhibit impaired neuronal differentiation with shorter neurite formation. BOC interacts with ABL through its putative SH2 binding domain and seems to be phosphorylated in an ABL activity-dependent manner. Unlike wildtype BOC, ABL-binding defective BOC mutants exhibit impaired JNK activation and neuronal differentiation. Finally, Shh treatment enhances JNK activation which is diminished by BOC depletion. These data suggest that BOC interacts with ABL and activates JNK thereby promoting neuronal differentiation and neurite outgrowth.
Collapse
Affiliation(s)
- Tuan Anh Vuong
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Young-Eun Leem
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Bok-Geon Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Hana Cho
- Department of Physiology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea
| | - Sang-Jin Lee
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Gyu-Un Bae
- Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Biomedical Research Institute, Suwon 16419, Republic of Korea.
| |
Collapse
|
32
|
Opening the door to the development of novel Abl kinase inhibitors. Future Med Chem 2016; 8:2143-2165. [PMID: 27774798 DOI: 10.4155/fmc-2016-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The discovery of the importance of kinase activity and its relationship to the emergence and proliferation of cancer cells, due to changes in normal physiology, opened a remarkable pathway for the treatment of chronic myelogenous leukemia through intense search of drug candidates. Six Abl kinase inhibitors have received the US FDA approval as chronic myelogenous leukemia treatment, and continuous efforts in obtaining new, more effective and selective molecules are being carried out. Herein we discuss the mechanisms of Abl inhibition, structural features and ligand/protein interactions that are important for the design of new Abl kinase inhibitors. This review provides a broad overview of binding mode predictions, through molecular docking, which can be an approach to discover novel Abl kinase inhibitors.
Collapse
|
33
|
La Sala G, Riccardi L, Gaspari R, Cavalli A, Hantschel O, De Vivo M. HRD Motif as the Central Hub of the Signaling Network for Activation Loop Autophosphorylation in Abl Kinase. J Chem Theory Comput 2016; 12:5563-5574. [DOI: 10.1021/acs.jctc.6b00600] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | | | - Andrea Cavalli
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Oliver Hantschel
- Swiss
Institute for Experimental Cancer Research (ISREC), School of Life
Sciences, École polytechnique fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- ISREC Foundation Chair in Translational Oncology, 1015 Lausanne, Switzerland
| | - Marco De Vivo
- IAS-S/INM-9 Computational Biomedicine Forschungszentrum, Jülich Wilhelm-Johnen-Staße, 52428 Jülich, Germany
| |
Collapse
|
34
|
Mai S, Qu X, Li P, Ma Q, Liu X, Cao C. Functional interaction between nonreceptor tyrosine kinase c-Abl and SR-Rich protein RBM39. Biochem Biophys Res Commun 2016; 473:355-360. [PMID: 27018250 DOI: 10.1016/j.bbrc.2016.03.108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 03/22/2016] [Indexed: 11/28/2022]
Abstract
RBM39, also known as splicing factor HCC1.4, acts as a transcriptional coactivator for the steroid nuclear receptors JUN/AP-1, ESR1/ER-α and ESR2/ER-β. RBM39 is involved in the regulation of the transcriptional responses of these steroid nuclear receptors and promotes transcriptional initiation. In this paper, we report that RBM39 interacts with the nonreceptor tyrosine kinase c-Abl. Both the Src homology (SH) 2 and SH3 domains of c-Abl interact with RBM39. The major tyrosine phosphorylation sites on RBM39 that are phosphorylated by c-Abl are Y95 and Y99, as demonstrated by liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) and mutational analysis. c-Abl was shown boost the transcriptional coactivation activity of RBM39 for ERα and PRβ in a tyrosine kinase-dependent manner. The results suggest that mammalian c-Abl plays an important role in steroid hormone receptor-mediated transcription by regulating RBM39.
Collapse
Affiliation(s)
- Sanyue Mai
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Xiuhua Qu
- General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037, China
| | - Ping Li
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Qingjun Ma
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Xuan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| | - Cheng Cao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| |
Collapse
|
35
|
Hellweg CE, Spitta LF, Henschenmacher B, Diegeler S, Baumstark-Khan C. Transcription Factors in the Cellular Response to Charged Particle Exposure. Front Oncol 2016; 6:61. [PMID: 27047795 PMCID: PMC4800317 DOI: 10.3389/fonc.2016.00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/03/2016] [Indexed: 12/23/2022] Open
Abstract
Charged particles, such as carbon ions, bear the promise of a more effective cancer therapy. In human spaceflight, exposure to charged particles represents an important risk factor for chronic and late effects such as cancer. Biological effects elicited by charged particle exposure depend on their characteristics, e.g., on linear energy transfer (LET). For diverse outcomes (cell death, mutation, transformation, and cell-cycle arrest), an LET dependency of the effect size was observed. These outcomes result from activation of a complex network of signaling pathways in the DNA damage response, which result in cell-protective (DNA repair and cell-cycle arrest) or cell-destructive (cell death) reactions. Triggering of these pathways converges among others in the activation of transcription factors, such as p53, nuclear factor κB (NF-κB), activated protein 1 (AP-1), nuclear erythroid-derived 2-related factor 2 (Nrf2), and cAMP responsive element binding protein (CREB). Depending on dose, radiation quality, and tissue, p53 induces apoptosis or cell-cycle arrest. In low LET radiation therapy, p53 mutations are often associated with therapy resistance, while the outcome of carbon ion therapy seems to be independent of the tumor's p53 status. NF-κB is a central transcription factor in the immune system and exhibits pro-survival effects. Both p53 and NF-κB are activated after ionizing radiation exposure in an ataxia telangiectasia mutated (ATM)-dependent manner. The NF-κB activation was shown to strongly depend on charged particles' LET, with a maximal activation in the LET range of 90-300 keV/μm. AP-1 controls proliferation, senescence, differentiation, and apoptosis. Nrf2 can induce cellular antioxidant defense systems, CREB might also be involved in survival responses. The extent of activation of these transcription factors by charged particles and their interaction in the cellular radiation response greatly influences the destiny of the irradiated and also neighboring cells in the bystander effect.
Collapse
Affiliation(s)
- Christine E. Hellweg
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Luis F. Spitta
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Bernd Henschenmacher
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Sebastian Diegeler
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| | - Christa Baumstark-Khan
- Cellular Biodiagnostics, Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Centre (DLR), Cologne, Germany
| |
Collapse
|
36
|
Ebrahim HY, El Sayed KA. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds. Mar Drugs 2016; 14:md14030057. [PMID: 26978377 PMCID: PMC4820311 DOI: 10.3390/md14030057] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/27/2016] [Accepted: 03/03/2016] [Indexed: 01/05/2023] Open
Abstract
Marine natural products (MNPs) are recognized for their structural complexity, diversity, and novelty. The vast majority of MNPs are pharmacologically relevant through their ability to modulate macromolecular targets underlying human diseases. Angiogenesis is a fundamental process in cancer progression and metastasis. Targeting angiogenesis through selective modulation of linked protein kinases is a valid strategy to discover novel effective tumor growth and metastasis inhibitors. An in-house marine natural products mini-library, which comprises diverse MNP entities, was submitted to the Lilly’s Open Innovation Drug Discovery platform. Accepted structures were subjected to in vitro screening to discover mechanistically novel angiogenesis inhibitors. Active hits were subjected to additional angiogenesis-targeted kinase profiling. Some natural and semisynthetic MNPs, including multiple members of the macrolide latrunculins, the macrocyclic oxaquinolizidine alkaloid araguspongine C, and the sesquiterpene quinone puupehenone, showed promising results in primary and secondary angiogenesis screening modules. These hits inhibited vascular endothelial growth factor (VEGF)-mediated endothelial tube-like formation, with minimal cytotoxicity at relevant doses. Secondary kinase profiling identified six target protein kinases, all involved in angiogenesis signaling pathways. Molecular modeling and docking experiments aided the understanding of molecular binding interactions, identification of pharmacophoric epitopes, and deriving structure-activity relationships of active hits. Marine natural products are prolific resources for the discovery of chemically and mechanistically unique selective antiangiogenic scaffolds.
Collapse
Affiliation(s)
- Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
37
|
Rojas F, Gonzalez D, Cortes N, Ampuero E, Hernández DE, Fritz E, Abarzua S, Martinez A, Elorza AA, Alvarez A, Court F, van Zundert B. Reactive oxygen species trigger motoneuron death in non-cell-autonomous models of ALS through activation of c-Abl signaling. Front Cell Neurosci 2015; 9:203. [PMID: 26106294 PMCID: PMC4460879 DOI: 10.3389/fncel.2015.00203] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/11/2015] [Indexed: 01/31/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which pathogenesis and death of motor neurons are triggered by non-cell-autonomous mechanisms. We showed earlier that exposing primary rat spinal cord cultures to conditioned media derived from primary mouse astrocyte conditioned media (ACM) that express human SOD1G93A (ACM-hSOD1G93A) quickly enhances Nav channel-mediated excitability and calcium influx, generates intracellular reactive oxygen species (ROS), and leads to death of motoneurons within days. Here we examined the role of mitochondrial structure and physiology and of the activation of c-Abl, a tyrosine kinase that induces apoptosis. We show that ACM-hSOD1G93A, but not ACM-hSOD1WT, increases c-Abl activity in motoneurons, interneurons and glial cells, starting at 60 min; the c-Abl inhibitor STI571 (imatinib) prevents this ACM-hSOD1G93A-mediated motoneuron death. Interestingly, similar results were obtained with ACM derived from astrocytes expressing SOD1G86R or TDP43A315T. We further find that co-application of ACM-SOD1G93A with blockers of Nav channels (spermidine, mexiletine, or riluzole) or anti-oxidants (Trolox, esculetin, or tiron) effectively prevent c-Abl activation and motoneuron death. In addition, ACM-SOD1G93A induces alterations in the morphology of neuronal mitochondria that are related with their membrane depolarization. Finally, we find that blocking the opening of the mitochondrial permeability transition pore with cyclosporine A, or inhibiting mitochondrial calcium uptake with Ru360, reduces ROS production and c-Abl activation. Together, our data point to a sequence of events in which a toxic factor(s) released by ALS-expressing astrocytes rapidly induces hyper-excitability, which in turn increases calcium influx and affects mitochondrial structure and physiology. ROS production, mediated at least in part through mitochondrial alterations, trigger c-Abl signaling and lead to motoneuron death.
Collapse
Affiliation(s)
- Fabiola Rojas
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - David Gonzalez
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Nicole Cortes
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Estibaliz Ampuero
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Diego E Hernández
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Elsa Fritz
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Sebastián Abarzua
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| | - Alexis Martinez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Alvaro A Elorza
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile ; Millennium Institute of Immunology and Immunotherapy Santiago, Chile
| | - Alejandra Alvarez
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Felipe Court
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Brigitte van Zundert
- Center for Biomedical Research, Faculty of Biological Sciences and Faculty of Medicine, Universidad Andres Bello Santiago, Chile
| |
Collapse
|
38
|
Non-receptor tyrosine kinase inhibitors enhances β-cell survival by suppressing the PKCδ signal transduction pathway in streptozotocin – induced β-cell apoptosis. Cell Signal 2015; 27:1066-74. [DOI: 10.1016/j.cellsig.2015.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 11/17/2022]
|
39
|
Davis WJ, Lehmann PZ, Li W. Nuclear PI3K signaling in cell growth and tumorigenesis. Front Cell Dev Biol 2015; 3:24. [PMID: 25918701 PMCID: PMC4394695 DOI: 10.3389/fcell.2015.00024] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/27/2015] [Indexed: 12/12/2022] Open
Abstract
The PI3K/Akt signaling pathway is a major driving force in a variety of cellular functions. Dysregulation of this pathway has been implicated in many human diseases including cancer. While the activity of the cytoplasmic PI3K/Akt pathway has been extensively studied, the functions of these molecules and their effector proteins within the nucleus are poorly understood. Harboring key cellular processes such as DNA replication and repair as well as nascent messenger RNA transcription, the nucleus provides a unique compartmental environment for protein–protein and protein–DNA/RNA interactions required for cell survival, growth, and proliferation. Here we summarize recent advances made toward elucidating the nuclear PI3K/Akt signaling cascade and its key components within the nucleus as they pertain to cell growth and tumorigenesis. This review covers the spatial and temporal localization of the major nuclear kinases having PI3K activities and the counteracting phosphatases as well as the role of nuclear PI3K/Akt signaling in mRNA processing and exportation, DNA replication and repair, ribosome biogenesis, cell survival, and tumorigenesis.
Collapse
Affiliation(s)
- William J Davis
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Peter Z Lehmann
- College of Medical Sciences, Washington State University Spokane, WA, USA
| | - Weimin Li
- College of Medical Sciences, Washington State University Spokane, WA, USA
| |
Collapse
|
40
|
The SH2 domain of Abl kinases regulates kinase autophosphorylation by controlling activation loop accessibility. Nat Commun 2014; 5:5470. [PMID: 25399951 DOI: 10.1038/ncomms6470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/03/2014] [Indexed: 01/07/2023] Open
Abstract
The activity of protein kinases is regulated by multiple molecular mechanisms, and their disruption is a common driver of oncogenesis. A central and almost universal control element of protein kinase activity is the activation loop that utilizes both conformation and phosphorylation status to determine substrate access. In this study, we use recombinant Abl tyrosine kinases and conformation-specific kinase inhibitors to quantitatively analyse structural changes that occur after Abl activation. Allosteric SH2-kinase domain interactions were previously shown to be essential for the leukemogenesis caused by the Bcr-Abl oncoprotein. We find that these allosteric interactions switch the Abl activation loop from a closed to a fully open conformation. This enables the trans-autophosphorylation of the activation loop and requires prior phosphorylation of the SH2-kinase linker. Disruption of the SH2-kinase interaction abolishes activation loop phosphorylation. Our analysis provides a molecular mechanism for the SH2 domain-dependent activation of Abl that may also regulate other tyrosine kinases.
Collapse
|
41
|
Tao W, Leng X, Chakraborty SN, Ma H, Arlinghaus RB. c-Abl activates janus kinase 2 in normal hematopoietic cells. J Biol Chem 2014; 289:21463-72. [PMID: 24923444 DOI: 10.1074/jbc.m114.554501] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Jak2 is involved in cytokine growth factor-stimulated signal transduction, but the mechanism of its activation is largely unknown. Here, we investigated Jak2 activation in a normal hematopoietic cell line, 32D mouse myeloid cells. The bimolecular fluorescence complementation studies showed that c-Abl formed a stable complex with Jak2 in live cells. Co-immunoprecipitation results showed that c-Abl bound to the βc chain of IL-3/IL-5/GM-CSF receptors. The kinase activities of both c-Abl and Jak2 were stimulated by IL-3 in 32D cells. Decreasing c-Abl protein expression in 32D cells by inducible shRNA decreased Jak2 activity and resulted in the failure of Jak2 activation in response to IL-3. Treatment of IL-3 and serum-starved 32D cells with 1 μM imatinib mysylate inhibited IL-3 stimulated kinase activities of both c-Abl and Jak2. In addition, the kinase-deficient Bcr-Abl mutant (p210K1172R) was defective for activation of Jak2 in 32D cells and impaired IL-3 independent growth, which was rescued by overexpression of c-Abl (+Abl). IL-3 efficiently inhibited apoptosis of 32Dp210K/R+Abl cells induced by imatinib mysylate but not Jak2 kinase inhibitor TG101209. In summary, our findings provide evidence that the kinase function of c-Abl and its C-terminal CT4 region is crucial for its interaction with Jak2 and its activation. c-Abl kinase activity induced by IL-3 is required for IL-3-stimulated Jak2 and Jak1 activation. Our findings reveal a novel regulatory role of c-Abl in Jak2 activation induced by IL-3 cytokine growth factor in 32D hematopoietic cells.
Collapse
Affiliation(s)
- Wenjing Tao
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Xiaohong Leng
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Sandip N Chakraborty
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Helen Ma
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| | - Ralph B Arlinghaus
- From the Department of Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
42
|
Structure-guided optimization of small molecule c-Abl activators. J Comput Aided Mol Des 2014; 28:75-87. [PMID: 24573412 PMCID: PMC3949015 DOI: 10.1007/s10822-014-9731-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 02/11/2014] [Indexed: 11/02/2022]
Abstract
c-Abl kinase is maintained in its normal inactive state in the cell through an assembled, compact conformation. We describe two chemical series that bind to the myristoyl site of the c-Abl kinase domain and stimulate c-Abl activation. We hypothesize that these molecules activate c-Abl either by blocking the C-terminal helix from adopting a bent conformation that is critical for the formation of the autoinhibited conformation or by simply providing no stabilizing interactions to the bent conformation of this helix. Structure-based molecular modeling guided the optimization of binding and activation of c-Abl of these two chemical series and led to the discovery of c-Abl activators with nanomolar potency. The small molecule c-Abl activators reported herein could be used as molecular tools to investigate the biological functions of c-Abl and therapeutic implications of its activation.
Collapse
|
43
|
Hannemann S, Gao B, Galán JE. Salmonella modulation of host cell gene expression promotes its intracellular growth. PLoS Pathog 2013; 9:e1003668. [PMID: 24098123 PMCID: PMC3789771 DOI: 10.1371/journal.ppat.1003668] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023] Open
Abstract
Salmonella Typhimurium has evolved a complex functional interface with its host cell largely determined by two type III secretion systems (T3SS), which through the delivery of bacterial effector proteins modulate a variety of cellular processes. We show here that Salmonella Typhimurium infection of epithelial cells results in a profound transcriptional reprogramming that changes over time. This response is triggered by Salmonella T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for the formation of its specialized vesicular compartment that is permissive for its intracellular replication. This study uncovers a cell-autonomous process required for Salmonella pathogenesis potentially opening up new avenues for the development of anti-infective strategies that target relevant host pathways. Essential for the ability of Salmonella Typhimurium to cause disease is the function of a type III secretion system (T3SS) encoded within its pathogenicity island 1 (SPI-1), which through the delivery of bacterial effector proteins modulates a variety of cellular functions. This study reports that the infection of mammalian cells with Salmonella Typhimurium results in a profound reprogramming of gene expression that changes over time. The stimulation of this response requires the activity of a specific subset of bacterial T3SS effector proteins, which stimulate unique signal transduction pathways leading to STAT3 activation. We found that the Salmonella-stimulated changes in host cell gene expression are required for its intracellular replication. Targeting the mechanisms described in this study may lead to the development of novel anti-infective strategies.
Collapse
Affiliation(s)
- Sebastian Hannemann
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Beile Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
44
|
Zhang M, Li L, Wang Z, Liu H, Hou J, Zhang M, Hao A, Liu Y, He G, Shi Y, He L, Wang X, Wan Y, Li B. A role for c-Abl in cell senescence and spontaneous immortalization. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1251-1262. [PMID: 22791394 PMCID: PMC3705115 DOI: 10.1007/s11357-012-9452-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/27/2012] [Indexed: 06/01/2023]
Abstract
c-Abl is a proto-oncogene that is essential for mouse development and tissue homeostasis. Misregulation of c-Abl, as seen in the constitutively active BCR-ABL, is the leading cause of human chronic myeloid leukemia. However, how the Abl proteins execute their functions still remains largely unknown. Here, we report an important role for c-Abl in replicative senescence and immortalization by regulating the expression of two tumor suppressors that induce cellular senescence, p53 and p16(INK4a). Using primary mouse embryonic fibroblasts (MEFs), we show that c-Abl (-/-) cells were more resistant to immortalization than wildtype cells using a standard 3T3 or 3T9 protocol. We could only immortalize three out of nine c-Abl (-/-) MEF cultures even when we increased the number of starting cells. This resistance was attributed to premature senescence and reduced survival in senescent c-Abl (-/-) cells due to an increase in p16(INK4a) and p53 expression. Deleting p53 allows c-Abl (-/-) p53 (-/-) MEFs to bypass senescence to be spontaneously immortalized. Cell immortalization, but not senescence, was generally accompanied by mutations in p53 in both wildtype and c-Abl (-/-) MEFs, although the spectrum is different from that of human tumors. The role for c-Abl in regulating cell senescence and immortalization might explain some of the developmental defects in c-Abl (-/-) mice and how BCR-ABL transforms cells.
Collapse
Affiliation(s)
- Man Zhang
- />Department of Clinical Laboratory, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lili Li
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- />Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, People’s Republic of China
| | - Zhongfeng Wang
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Huijuan Liu
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Junlin Hou
- />Department of Clinical Laboratory, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Min Zhang
- />Department of Clinical Laboratory, Beijing Shi Ji Tan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Aijun Hao
- />Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University School of Medicine, Jinan, People’s Republic of China
| | - Yun Liu
- />Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Guang He
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yongyong Shi
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lin He
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xueying Wang
- />Department of Biochemistry, Yong Loo Lin School of Medicine, Cancer Science Institute of Singapore, MD7, 8 Medical Drive, Singapore, 117597 Singapore
| | - Yue Wan
- />Howard Hughes Medical Institute and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Baojie Li
- />Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
45
|
Zhang C, Yang C, Wang R, Jiao Y, Ampah KK, Wang X, Zeng X. c-Abl Kinase Is a Regulator of αvβ3 Integrin Mediated Melanoma A375 Cell Migration. PLoS One 2013; 8:e66108. [PMID: 23805201 PMCID: PMC3689700 DOI: 10.1371/journal.pone.0066108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Integrins are heterodimeric transmembrane receptors that physically link the extracellular matrix (ECM) to the intracellular actin cytoskeleton, and are also signaling molecules that transduce signals bi-directionally across the plasma membrane. Integrin regulation is essential for tumor cell migration in response to growth factors. c-Abl kinase is a nonreceptor tyrosine kinase and is critical for signaling transduction from various receptors. Here we show that c-Abl kinase is involved in A375 cell migration mediated by αvβ3 integrin in response to PDGF stimulation. c-Abl kinase colocalizes with αvβ3 integrin dynamically and affects αvβ3 integrin affinity by regulating its cluster. The interaction between c-Abl kinase and αvβ3 integrin was dependent on the activity of c-Abl kinase induced by PDGF stimulation, but was not dependent on the binding of αvβ3 integrin with its ligands, suggesting that c-Abl kinase is not involved in the outside-in signaling of αvβ3 integrin. Talin head domain was required for the interaction between c-Abl kinase and αvβ3 integrin, and the SH3 domain of c-Abl kinase was involved in its interaction with talin and αvβ3 integrin. Taken together, we have uncovered a novel and critical role of c-Abl kinase in αvβ3 integrin mediated melanoma cell migration.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China
| | - Chao Yang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Ruifei Wang
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Yang Jiao
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Khamal Kwesi Ampah
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
| | - Xiaoguang Wang
- Department of Bioscience, Changchun Teachers College, Changchun, Jilin Province, China
- * E-mail: (XZ); (XW)
| | - Xianlu Zeng
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin Province, China
- * E-mail: (XZ); (XW)
| |
Collapse
|
46
|
Mendoza MC. Phosphoregulation of the WAVE regulatory complex and signal integration. Semin Cell Dev Biol 2013; 24:272-9. [PMID: 23354023 DOI: 10.1016/j.semcdb.2013.01.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/16/2013] [Indexed: 01/19/2023]
Abstract
The WAVE2 regulatory complex (WRC) induces actin polymerization by activating the actin nucleator Arp2/3. Polymerizing actin pushes against the cell membrane and induces dramatic edge protrusions. In order to properly control such changes in cell morphology and function, cells have evolved multiple methods to tightly regulate WRC and Arp2/3 activity in space and time. Of these mechanisms, phosphorylation plays a fundamental role in transmitting extracellular and intracellular signals to the WRC and the actin cytoskeleton. This review discusses the phosphorylation-based regulatory inputs into the WRC. Signaling pathways that respond to growth factors, chemokines, hormones, and extracellular matrix converge upon the WAVE and ABI components of the WRC. The Abl, Src, ERK, and PKA kinases promote complex activation through a WRC conformation change that permits interaction with the Arp2/3 complex and through WRC translocation to the cell edge. The neuron-specific CDK5 and constitutively active CK2 kinases inhibit WRC activation. These regulatory signals are integrated in space and time as they coalesce upon the WRC. The combination of WRC phosphorylation events and WRC activity is controlled by stimulus, cell type, and cell cycle-specific pathway activation and via pathway cross-inhibition and cross-activation.
Collapse
Affiliation(s)
- Michelle C Mendoza
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
47
|
Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. Structure and dynamic regulation of Abl kinases. J Biol Chem 2013; 288:5443-50. [PMID: 23316053 DOI: 10.1074/jbc.r112.438382] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The c-abl proto-oncogene encodes a unique protein-tyrosine kinase (Abl) distinct from c-Src, c-Fes, and other cytoplasmic tyrosine kinases. In normal cells, Abl plays prominent roles in cellular responses to genotoxic stress as well as in the regulation of the actin cytoskeleton. Abl is also well known in the context of Bcr-Abl, the oncogenic fusion protein characteristic of chronic myelogenous leukemia. Selective inhibitors of Bcr-Abl, of which imatinib is the prototype, have had a tremendous impact on clinical outcomes in chronic myelogenous leukemia and revolutionized the field of targeted cancer therapy. In this minireview, we focus on the structural organization and dynamics of Abl kinases and how these features influence inhibitor sensitivity.
Collapse
Affiliation(s)
- Shoghag Panjarian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219, USA
| | | | | | | | | |
Collapse
|
48
|
Tau protein kinases: involvement in Alzheimer's disease. Ageing Res Rev 2013; 12:289-309. [PMID: 22742992 DOI: 10.1016/j.arr.2012.06.003] [Citation(s) in RCA: 435] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/21/2012] [Accepted: 06/06/2012] [Indexed: 02/07/2023]
Abstract
Tau phosphorylation is regulated by a balance between tau kinase and phosphatase activities. Disruption of this equilibrium was suggested to be at the origin of abnormal tau phosphorylation and thereby might contribute to tau aggregation. Thus, understanding the regulation modes of tau phosphorylation is of high interest in determining the possible causes at the origin of the formation of tau aggregates in order to elaborate protection strategies to cope with these lesions in Alzheimer's disease. Among the possible and specific interventions that reverse tau phosphorylation is the inhibition of certain tau kinases. Here, we extensively reviewed tau protein kinases, their physiological roles and regulation, their involvement in tau phosphorylation and their relevance to AD. We also reviewed the most common inhibitory compounds acting on each tau kinase.
Collapse
|
49
|
Krishnan H, Miller WT, Goldberg GS. SRC points the way to biomarkers and chemotherapeutic targets. Genes Cancer 2012; 3:426-35. [PMID: 23226580 DOI: 10.1177/1947601912458583] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of Src in tumorigenesis has been extensively studied since the work of Peyton Rous over a hundred years ago. Src is a non-receptor tyrosine kinase that plays key roles in signaling pathways controlling tumor cell growth and migration. Src regulates the activities of numerous molecules to induce cell transformation. However, transformed cells do not always migrate and realize their tumorigenic potential. They can be normalized by surrounding nontransformed cells by a process called contact normalization. Tumor cells need to override contact normalization to become malignant or metastatic. In this review, we discuss the role of Src in cell migration and contact normalization, with emphasis on Cas and Abl pathways. This paradigm illuminates several chemotherapeutic targets and may lead to the identification of new biomarkers and the development of effective anticancer treatments.
Collapse
Affiliation(s)
- Harini Krishnan
- University of Medicine and Dentistry of New Jersey, Graduate School of Biomedical Sciences, School of Osteopathic Medicine, Stratford, NJ, USA
| | | | | |
Collapse
|
50
|
Abstract
The deregulated tyrosine kinase activity of BCR-ABL is necessary and sufficient to induce chronic myelogenous leukemia (CML). This observation has paved the way for the development of small-molecule inhibitors specifically targeting the kinase activity of the BCR-ABL protein. Indeed, the amazing success of imatinib has revolutionized the whole area of targeted cancer therapeutics. However, enthusiasm for the striking efficacy of imatinib has been tempered by the development of clinical resistance. In essentially all cases, resistance results from kinase domain mutations and/or overexpression of the BCR-ABL gene. To overcome resistance, several novel BCR-ABL inhibitors have been developed and are in clinical trials, though it is inevitable that resistance to second-generation inhibitors will occur as well. Nonetheless, kinases represent an attractive target for therapeutic intervention in several diseases and, at present, some 50 different kinase inhibitors are in clinical trials. We anticipate that resistance to these compounds will follow mechanisms similar to those observed with imatinib. Resistance mutations cause their effect either by direct steric hindrance to drug binding or by allosterically modulating kinase dynamics. This review highlights the principal mechanisms underlying point mutations from these two different classes to confer drug resistance.
Collapse
Affiliation(s)
- Mohammad Azam
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|