1
|
Jiang Y, Chang Z, Xu Y, Zhan X, Wang Y, Gao M. Advances in molecular enzymology of β-1,3-glucanases: A comprehensive review. Int J Biol Macromol 2024; 279:135349. [PMID: 39242004 DOI: 10.1016/j.ijbiomac.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
β-1,3-Glucanases are essential enzymes involved in the hydrolysis of β-1,3-glucans, with significant biological and industrial relevance. These enzymes are derived from diverse sources, including bacteria, fungi, plants, and animals, each exhibiting unique substrate specificities and biochemical properties. This review provides an in-depth analysis of the natural sources and ecological roles of β-1,3-glucanases, exploring their enzymatic properties such as optimal pH, temperature, molecular weight, isoelectric points, and kinetic parameters, which are crucial for understanding their functionality and stability. Advances in molecular enzymology are discussed, focusing on gene cloning, expression in systems like Escherichia coli and Pichia pastoris, and structural-functional relationships. The reaction mechanisms and the role of non-catalytic carbohydrate-binding modules in enhancing substrate hydrolysis are examined. Industrial applications of β-1,3-glucanases are highlighted, including the production of β-1,3-glucooligosaccharides, uses in the food industry, biological control of plant pathogens, and nutritional roles. This review aims to provide a foundation for future research, improving the efficiency and robustness of β-1,3-glucanases for various industrial applications.
Collapse
Affiliation(s)
- Yun Jiang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zepeng Chang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Ying Xu
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yuying Wang
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| | - Minjie Gao
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Yang W, Lin Y, He Y, Li Q, Chen W, Lin Q, Swevers L, Liu J. BmPGPR-L4 is a negative regulator of the humoral immune response in the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22093. [PMID: 38409870 DOI: 10.1002/arch.22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/07/2024] [Accepted: 02/11/2024] [Indexed: 02/28/2024]
Abstract
Toll, immune deficiency and prophenoloxidase cascade represent vital immune signaling pathways in insects. Peptidoglycan recognition proteins (PGRPs) are innate immune receptors that activate and regulate the immune signaling pathways. Previously, we reported that BmPGPR-L4 was induced in the silkworm Bombyx mori larvae by bacteria and peptidoglycan challenges. Here, we focused on the function of BmPGRP-L4 in regulating the expression of antimicrobial peptides (AMPs). The hemolymph from BmPGRP-L4-silenced larvae exhibited an enhanced inhibitory effect on the growth of Escherichia coli, either by growth curve or inhibitory zone experiments. Coincidentally, most of the AMP genes were upregulated after RNAi of BmPGRP-L4. Oral administration of heat-inactivated E. coli and Staphylococcus aureus after RNAi of BmPGRP-L4 resulted in the increased expression of BmPGRP-L4 in different tissues of the silkworm larvae, revealing an auto-regulatory mechanism. By contrast, the expression of most AMP genes was downregulated by oral bacterial administration after RNAi of BmPGRP-L4. The above results demonstrate that BmPGRP-L4 recognizes bacterial pathogen-associated molecular patterns and negatively regulates AMP expression to achieve immunological homeostasis. As a negative regulator, BmPGPR-L4 is proposed to be involved in the feedback regulation of the immune signaling pathways of the silkworm to prevent excessive activation of the immune response.
Collapse
Affiliation(s)
- Weiyi Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yongyi Lin
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yanying He
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qi Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Weijian Chen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Qingsha Lin
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Luc Swevers
- Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
3
|
Cao Z, Cao J, Vlasenko V, Bakumenko O, Li W. Molecular characterization and functional analysis of a beta-1,3-glucan recognition protein from oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22068. [PMID: 38013606 DOI: 10.1002/arch.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023]
Abstract
The beta-1,3-glucan recognition protein (BGRP) is an important pattern recognition protein (PRP), which plays an important role in immune recognition and signaling pathway of insect innate immunity. Herein, a BGRP gene was obtained from the transcriptome of Grapholita molesta and its expression was verified by PCR. The full cDNA of the GmBGRP gene was 1691 bp encoding 486 amino acid residues. The calculated molecular mass of the mature protein was 54.83 kDa with an estimated pI of 6.14. The amino acid sequence of GmBGRP was highly homologous to BGRPs of other lepidopterans including Leguminivora glycinivorella BGRP-3. Expression profile of GmBGRP at different developmental stages and different tissues of 5th instar larvae showed that the expression level of this gene tends to slightly increase and then decrease at the adult stage, with the highest at the pupa stage; and mainly expressed in the epidermis, fat body and hemocytes compared with other tissues. In addition, we investigated the transcription levels of other immune-related genes, such as Serine-1, Serine-2, Serine-3, Serpin, SRCB (scavenger receptor gene), Toll, PPO (prophenoloxidase) upon GmBGRP gene silencing, indicating that GmBGRP expression is associated with immune responses of G. molesta. This was further supported by the upregulation of the mRNA level of GmBGRP following fungal infection. Taken together, these results provide experimental evidence for the role of GmBGRP gene in immune defense in G. molesta larvae.
Collapse
Affiliation(s)
- Zhishan Cao
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Xinxiang, Henan, China
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Jinjun Cao
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Xinxiang, Henan, China
| | - Volodymyr Vlasenko
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Olha Bakumenko
- Department of Plant Protection, Sumy National Agrarian University, Sumy, Ukraine
| | - Weihai Li
- International Joint Laboratory of Taxonomy and Systematic Evolution of Insecta, Xinxiang, Henan, China
| |
Collapse
|
4
|
Guluarte C, Pereyra A, Ramírez-Hernández E, Zenteno E, Luis Sánchez-Salgado J. The immunomodulatory and antioxidant effects of β-glucans in invertebrates. J Invertebr Pathol 2023; 201:108022. [PMID: 37984608 DOI: 10.1016/j.jip.2023.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
β-glucans (βGs) are carbohydrate polymers linked by β-1,3, 1,4 or 1,6 bonds, they have been used to protect against potential pathogens and prevent lethal diseases. The immune system possesses several receptors that identify a wide range of structures and trigger cellular and humoral mechanisms. However, the mechanisms by which βGs activate the immune system of invertebrate organisms have not been fully clarified. This review is focused on evaluating the effect of βGs on innate immune system in invertebrates. βGs stimulate different cellular and humoral mechanisms, such as phagocytosis, oxygen species production, extracellular trap formation, proPO system, and antimicrobial peptide synthesis, moreover, βGs increase survival rate and decrease pathogen load in several species.
Collapse
Affiliation(s)
- Crystal Guluarte
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Alí Pereyra
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Eleazar Ramírez-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico
| | - José Luis Sánchez-Salgado
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, CP 04510 México City, Mexico.
| |
Collapse
|
5
|
Sato R. Mechanisms and roles of the first stage of nodule formation in lepidopteran insects. JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:3. [PMID: 37405874 DOI: 10.1093/jisesa/iead049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 06/13/2023] [Indexed: 07/07/2023]
Abstract
Nodule formation is a process of cellular immunity in insects and other arthropods with open circulatory systems. Based on histological observations, nodule formation occurs in 2 stages. The first stage occurs immediately after microbial inoculation and includes aggregate formation by granulocytes. The second stage occurs approximately 2-6 h later and involves the attachment of plasmatocytes to melanized aggregates produced during the first stage. The first stage response is thought to play a major role in the rapid capture of invading microorganisms. However, little is known regarding how granulocytes in the hemolymph form aggregates, or how the first stage of the immunological response protects against invading microorganisms. Since the late 1990s, our understanding of the molecules and immune pathways that contribute to nodule formation has improved. The first stage of nodule formation involves a hemocyte-induced response that is triggered by pathogen-associated molecular pattern (PAMP) recognition proteins in the hemolymph regulated by a serine proteinase cascade and cytokine (Spätzle) and Toll signaling pathways. Hemocyte agglutination proceeds through stepwise release of biogenic amine, 5-HT, and eicosanoids that act downstream of the Toll pathway. The first stage of nodule formation is closely linked to melanization and antimicrobial peptide (AMP) production, which is critical for insect humoral immunity. Nodule formation in response to artificial inoculation with millions of microorganisms has long been studied. It has recently been suggested that this system is the original natural immune system, and enables insects to respond to a single invading microorganism in the hemocoel.
Collapse
Affiliation(s)
- Ryoichi Sato
- Graduate School of Bio-Application and Systems Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
6
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
7
|
Fungal α-1,3-Glucan as a New Pathogen-Associated Molecular Pattern in the Insect Model Host Galleria mellonella. Molecules 2021; 26:molecules26165097. [PMID: 34443685 PMCID: PMC8399224 DOI: 10.3390/molecules26165097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Recognition of pathogen-associated molecular patterns (PAMPs) by appropriate pattern recognition receptors (PRRs) is a key step in activating the host immune response. The role of a fungal PAMP is attributed to β-1,3-glucan. The role of α-1,3-glucan, another fungal cell wall polysaccharide, in modulating the host immune response is not clear. This work investigates the potential of α-1,3-glucan as a fungal PAMP by analyzing the humoral immune response of the greater wax moth Galleria mellonella to Aspergillus niger α-1,3-glucan. We demonstrated that 57-kDa and 61-kDa hemolymph proteins, identified as β-1,3-glucan recognition proteins, bound to A. niger α-1,3-glucan. Other hemolymph proteins, i.e., apolipophorin I, apolipophorin II, prophenoloxidase, phenoloxidase activating factor, arylphorin, and serine protease, were also identified among α-1,3-glucan-interacting proteins. In response to α-1,3-glucan, a 4.5-fold and 3-fold increase in the gene expression of antifungal peptides galiomicin and gallerimycin was demonstrated, respectively. The significant increase in the level of five defense peptides, including galiomicin, corresponded well with the highest antifungal activity in hemolymph. Our results indicate that A. niger α-1,3-glucan is recognized by the insect immune system, and immune response is triggered by this cell wall component. Thus, the role of a fungal PAMP for α-1,3-glucan can be postulated.
Collapse
|
8
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
9
|
Comparative response of Spodoptera litura challenged per os with Serratia marcescens strains differing in virulence. J Invertebr Pathol 2021; 183:107562. [PMID: 33652013 DOI: 10.1016/j.jip.2021.107562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/06/2023]
Abstract
Host plays an important role in influencing virulence of a pathogen and efficacy of a biopesticide. The present study was aimed to characterize the possible factors present in Spodoptera litura that influenced pathogenecity of orally ingested S. marcescens strains, differing in their virulence. Fifth instar larvae of S. litura responded differently as challenged by two Serratia marcescens strains, SEN (virulent strain, LC50 7.02 103 cfu/ml) and ICC-4 (non-virulent strain, LC50 1.19 1012 cfu/ml). Considerable increase in activity of lytic enzymes protease and phospholipase was recorded in the gut and hemolymph of larvae fed on diet supplemented with S. marcescens strain ICC-4 as compared to the larvae treated with S. marcescens strain SEN. However, a significant up-regulation of antioxidative enzymes SOD (in foregut and midgut), CAT (in the midgut) and GST (in the foregut and hemolymph) was recorded in larvae fed on diet treated with the virulent S. marcescens strain SEN in comparison to larvae fed on diet treated with the non-virulent S. marcescens strain ICC-4. Activity of defense related enzymes lysozyme and phenoloxidase activity were also higher in the hemolymph of larvae fed with diet treated with S. marcescens strain SEN as compared to hemolymph of S. marcescens strain ICC-4 treated larvae. More number of over-expressed proteins was observed in the gut and hemolymph of S. marcescens strains ICC-4 and SEN treated larvae, respectively. Identification of the selected differentially expressed proteins indicated induction of proteins involved in insect innate immune response (Immunoglobulin I-set domain, Apolipophorin III, leucine rich repeat and Titin) in S. marcescens strain SEN treated larvae. Over-expression of two proteins, actin related protein and mt DNA helicase, were noted in S. marcescens treated larvae with very high levels observed in the non-virulent strain. Up-regulation of homeobox protein was noted only in S. marcescens strain ICC-4 challenged larvae. This study indicated that ingestion of non-virulent S. marcescens strain ICC-4 induced strong immune response in insect gut while there was weak response to the virulent S. marcescens strain SEN which probably resulted in difference in their virulence.
Collapse
|
10
|
Li J, Cao C, Jiang Y, Huang Q, Shen Y, Ni J. A Novel Digestive GH16 β-1,3(4)-Glucanase from the Fungus-Growing Termite Macrotermes barneyi. Appl Biochem Biotechnol 2020; 192:1284-1297. [PMID: 32725373 DOI: 10.1007/s12010-020-03368-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023]
Abstract
β-1,3-glucanases are the main digestive enzymes of plant and fungal cell wall. Transcriptomic analysis of the fungus-growing termite Macrotermes barneyi revealed a high expression of a predicted β-1,3(4)-glucanase (Mbbgl) transcript in termite gut. Here, we described the cDNA cloning, heterologous expression, and enzyme characterization of Mbbgl. Sequence analysis and RT-PCR results showed that Mbbgl is a termite-origin GH16 β-1,3(4)-glucanase. The recombinant enzyme showed the highest activity towards laminarin and was active optimally at 50 °C, pH 5.5. The enzyme displayed endo/exo β-1,3(4)-glucanase activities. Moreover, Mbbgl had weak transglycosylation activity. The results indicate that Mbbgl is an endogenous digestive β-1,3(4)-glucanase, which contributes to the decomposition of plant biomass and fungal hyphae. Additionally, the multiple activities, pH, and ion stabilities make Mbbgl a potential candidate for application in the food industry.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chunjing Cao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, 266237, China.,Biotechnology Development Institute, Qilu Pharmaceutical Co. Ltd., Jinan, 250100, China
| | - Yutong Jiang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Qihong Huang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yulong Shen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Jinfeng Ni
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
11
|
Prabu S, Jing D, Shabbir MZ, Yuan W, Wang Z, He K. Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer. Int J Biol Macromol 2020; 153:88-99. [DOI: 10.1016/j.ijbiomac.2020.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/09/2020] [Accepted: 03/02/2020] [Indexed: 01/29/2023]
|
12
|
Molecular cloning and characterization of the β-1,3-glucan recognition protein in Anatolica polita. Gene X 2019; 697:144-151. [DOI: 10.1016/j.gene.2019.02.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
|
13
|
Rao XJ, Zhan MY, Pan YM, Liu S, Yang PJ, Yang LL, Yu XQ. Immune functions of insect βGRPs and their potential application. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:80-88. [PMID: 29229443 DOI: 10.1016/j.dci.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
Insects rely completely on the innate immune system to sense the foreign bodies and to mount the immune responses. Germ-line encoded pattern recognition receptors play crucial roles in recognizing pathogen-associated molecular patterns. Among them, β-1,3-glucan recognition proteins (βGRPs) and gram-negative bacteria-binding proteins (GNBPs) belong to the same pattern recognition receptor family, which can recognize β-1,3-glucans. Typical insect βGRPs are comprised of a tandem carbohydrate-binding module in the N-terminal and a glucanase-like domain in the C-terminal. The former can recognize triple-helical β-1,3-glucans, whereas the latter, which normally lacks the enzymatic activity, can recruit adapter proteins to initiate the protease cascade. According to studies, insect βGRPs possess at least three types of functions. Firstly, some βGRPs cooperate with peptidoglycan recognition proteins to recognize the lysine-type peptidoglycans upstream of the Toll pathway. Secondly, some directly recognize fungal β-1,3-glucans to activate the Toll pathway and melanization. Thirdly, some form the 'attack complexes' with other immune effectors to promote the antifungal defenses. The current review will focus on the discovery of insect βGRPs, functions of some well-characterized members, structure-function studies and their potential application.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Ming-Yue Zhan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yue-Min Pan
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Su Liu
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Pei-Jin Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Li-Ling Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiao-Qiang Yu
- Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Lim J, Coates CJ, Seoane PI, Garelnabi M, Taylor-Smith LM, Monteith P, Macleod CL, Escaron CJ, Brown GD, Hall RA, May RC. Characterizing the Mechanisms of Nonopsonic Uptake of Cryptococci by Macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:3539-3546. [PMID: 29643192 PMCID: PMC5937213 DOI: 10.4049/jimmunol.1700790] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 03/20/2018] [Indexed: 12/26/2022]
Abstract
The pathogenic fungus Cryptococcus enters the human host via inhalation into the lung and is able to reside in a niche environment that is serum- (opsonin) limiting. Little is known about the mechanism by which nonopsonic phagocytosis occurs via phagocytes in such situations. Using a combination of soluble inhibitors of phagocytic receptors and macrophages derived from knockout mice and human volunteers, we show that uptake of nonopsonized Cryptococcus neoformans and C. gattii via the mannose receptor is dependent on macrophage activation by cytokines. However, although uptake of C. neoformans is via both dectin-1 and dectin-2, C. gattii uptake occurs largely via dectin-1. Interestingly, dectin inhibitors also blocked phagocytosis of unopsonized Cryptococci in wax moth (Galleria mellonella) larvae and partially protected the larvae from infection by both fungi, supporting a key role for host phagocytes in augmenting early disease establishment. Finally, we demonstrated that internalization of nonopsonized Cryptococci is not accompanied by the nuclear translocation of NF-κB or its concomitant production of proinflammatory cytokines such as TNF-α. Thus, nonopsonized Cryptococci are recognized by mammalian phagocytes in a manner that minimizes proinflammatory cytokine production and potentially facilitates fungal pathogenesis.
Collapse
Affiliation(s)
- Jenson Lim
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom;
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, Wales, United Kingdom
| | - Paula I Seoane
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Mariam Garelnabi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Leanne M Taylor-Smith
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Pauline Monteith
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Camille L Macleod
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, United Kingdom
| | - Claire J Escaron
- Protein Reference Unit, South West London Pathology, St. George's University Hospitals NHS Foundation Trust, London SW17 0QT, United Kingdom; and
| | - Gordon D Brown
- Medical Research Council Centre for Medical Mycology Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Rebecca A Hall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Robin C May
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Sampath V. Bacterial endotoxin-lipopolysaccharide; structure, function and its role in immunity in vertebrates and invertebrates. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Wu T, Zhao Y, Wang Z, Song Q, Wang Z, Xu Q, Wang Y, Wang L, Zhang Y, Feng C. β-1,3-Glucan recognition protein 3 activates the prophenoloxidase system in response to bacterial infection in Ostrinia furnacalis Guenée. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:31-43. [PMID: 29032241 DOI: 10.1016/j.dci.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Pattern recognition receptors (PRRs) are biosensor proteins that bind to non-self pathogen associated molecular patterns (PAMPs). β-1,3-glucan recognition proteins (βGRPs) play an essential role in immune recognition and signaling pathway of insect innate immunity. Here, we report the cloning and characterization of cDNA of OfβGRP3 from Ostrinia furnacalis larvae. The OfβGRP3 contains 1455 bp open reading frame, encoding a predicted 484 amino acid residue protein. In hemocytes, the expression levels of OfβGRP3 in Escherichia coli-challenged group were higher than those of Bacillus subtilis-challenged group at 2, 4, 8, 10 and 12 h post injection (HPI). In fat body, OfβGRP3 expression in both B. subtilis and E. coli-challenged group was significantly higher than that in untreated group from 4 to 10 HPI, and then the expression continuously dropped from 12 to 36 HPI. The OfβGRP3 expression in laminarin-injected group was higher than that in lipopolysaccharides (LPS)-injected group in various test tissues from 4 to 24 HPI. The LT50 of E. coli-infected OfβGRP3-RNAi larvae (1.0 days) was significantly lower compared with that of E. coli infected wild-type larvae (3.0 days) (p < 0.01). Only 10.2% Sephadex G50 beads (degree 3) were completely melanized in the larvae inoculated with OfβGRP3 dsRNA, as compared to 48.8% in control larvae (p < 0.01). A notable reduction in the PO activity and IEARase activity in hemolymph was also detected in the OfβGRP3 knockdown larvae. Our study demonstrates that OfβGRP3 is one of PRR members involved the PPO-activating system in O. furnacalis larvae.
Collapse
Affiliation(s)
- Taoyan Wu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Ya Zhao
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Zengxia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiuwen Xu
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yingjuan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Libao Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yiqiang Zhang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China.
| |
Collapse
|
17
|
Luo J, Zhong Y, Zhu J, Zhou G, Huang H, Wu Y. Comparative Transcriptomics of Buzura suppressaria (Lepidoptera: Geometridae) Assembled De Novo Yield Insights Into Response After Buzura suppressaria Nuclear Polyhedrosis Virus Infection. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1259-1268. [PMID: 28108505 DOI: 10.1093/jee/tow298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Indexed: 06/06/2023]
Abstract
Buzura suppressaria Guenee (Lepidoptera: Geometridae) is a defoliator that seriously harms eucalyptus trees in South China. Buzura suppressaria nuclear polyhedrosis virus (BsNPV) is a baculovirus that infects B. suppressaria with high specificity and efficiency. Transcriptomes of B. suppressaria were sequenced before and after BsNPV infection using an Illumina-based platform to probe for differentially expressed genes (DEGs) of B. suppressaria after viral infection. On average, ∼57.4 million high-quality clean reads were generated and assembled de novo into 69,761 unigenes. The NCBI nonredundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene ontology (GO), and Cluster of Orthologous Groups databases were used to annotate unigenes through NCBI BLAST; 33,575 unigenes (48.1%) were then mapped to at least one of these databases, and 4,366 unigenes (6.3%) were mapped to all databases. Differential expression analysis showed that 25,212 unigenes were upregulated and 22,880 unigenes were downregulated in at least one pairwise comparison. Control versus 48 h had more DEGs than other two pairwise comparisons in either the GO or KEGG database, because the number of regulated gene would increase as BsNPV infected more tissues and would decrease as more tissues were disabled. To ascertain B. suppressaria immune response to BsNPV infection, DEGs were annotated to the GO and KEGG databases. In total, 89 GO categories are related to immune response and 1,007 DEGs are annotated to these GO categories. Furthermore, 7 downregulated DEGs and 37 upregulated were obtained simultaneously in all three groups. These DEGs were considered to possess a central role throughout viral infection.
Collapse
Affiliation(s)
- Ji Luo
- Guangxi Zhuang Autonomous Region Forestry Research Institute, 23# Yongwu Road, Nanning, China, 530002 ( ; ; ; ; )
- College of Forestry, Central South University of Forestry and Technology, 498# Shaoshan South Road, Changsha, China, 410004 ( )
- Corresponding author, e-mail:
| | - Yating Zhong
- Guangxi Zhuang Autonomous Region Forestry Research Institute, 23# Yongwu Road, Nanning, China, 530002 (; ; ; ; )
| | - Jiyu Zhu
- Guangxi Zhuang Autonomous Region Forestry Research Institute, 23# Yongwu Road, Nanning, China, 530002 (; ; ; ; )
| | - Guoying Zhou
- College of Forestry, Central South University of Forestry and Technology, 498# Shaoshan South Road, Changsha, China, 410004
| | - Huayan Huang
- Guangxi Zhuang Autonomous Region Forestry Research Institute, 23# Yongwu Road, Nanning, China, 530002 (; ; ; ; )
| | - Yaojun Wu
- Guangxi Zhuang Autonomous Region Forestry Research Institute, 23# Yongwu Road, Nanning, China, 530002 (; ; ; ; )
| |
Collapse
|
18
|
Orozco-Flores AA, Valadez-Lira JA, Oppert B, Gomez-Flores R, Tamez-Guerra R, Rodríguez-Padilla C, Tamez-Guerra P. Regulation by gut bacteria of immune response, Bacillus thuringiensis susceptibility and hemolin expression in Plodia interpunctella. JOURNAL OF INSECT PHYSIOLOGY 2017; 98:275-283. [PMID: 28167070 DOI: 10.1016/j.jinsphys.2017.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Plodia interpunctella (Hübner) is an important stored grain insect pest worldwide, and the first lepidopteran with reported resistance to Bacillus thuringiensis (Bt) toxins. Since gut bacteria may affect Bt insecticidal activity, we evaluated whether P. interpunctella lacking gut bacteria had differences in immune responses and susceptibility to the Bt formulation, Bactospeine. In order to clear gut bacteria, third instar larvae were reared on artificial diet containing antibiotics, or were obtained from sterilized eggs and reared under sterile conditions, and larvae were fed diets with or without Bt. Mortality was significantly lower (p<0.05) in bacteria-free larvae treated with Bt, compared with Bt-treated larvae with unaffected gut bacteria. The number of hemocytes was lower in control and Bt-treated larvae, but was significantly higher (p<0.001) in larvae treated with antibiotics and Bt, and larvae from presterilized eggs and reared on sterile diet had the highest number of hemocytes. Phenoloxidase activity was significantly lower (p<0.05) in Bt-treated larvae from presterilized eggs reared on antibiotics for 24h or in larvae reared on antibiotic-treated diets prior to Bt introduction compared with those fed control diet. Hemolin gene expression was reduced in larvae fed Bt diets compared with control and was not detected in larvae treated with antibiotics. Larvae from sterilized eggs and fed sterile diet never reached the pupal stage. Therefore, the loss of gut bacteria in P. interpunctella larvae affected the host immune response and expression of the hemolin gene, and significantly reduced susceptibility to Bt.
Collapse
Affiliation(s)
- Alonso A Orozco-Flores
- Universidad Autónoma de Nuevo León, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Cd. Universitaria, San Nicolás de los Garza, N. L. 66455, Mexico
| | - Jose A Valadez-Lira
- Universidad Autónoma de Nuevo León, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Cd. Universitaria, San Nicolás de los Garza, N. L. 66455, Mexico
| | - Brenda Oppert
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA
| | - Ricardo Gomez-Flores
- Universidad Autónoma de Nuevo León, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Cd. Universitaria, San Nicolás de los Garza, N. L. 66455, Mexico
| | - Reyes Tamez-Guerra
- Universidad Autónoma de Nuevo León, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Cd. Universitaria, San Nicolás de los Garza, N. L. 66455, Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autónoma de Nuevo León, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Cd. Universitaria, San Nicolás de los Garza, N. L. 66455, Mexico
| | - Patricia Tamez-Guerra
- Universidad Autónoma de Nuevo León, Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Cd. Universitaria, San Nicolás de los Garza, N. L. 66455, Mexico.
| |
Collapse
|
19
|
Park IY, Cha JR, Ok SM, Shin C, Kim JS, Kwak HJ, Yu YS, Kim YK, Medina B, Cho SJ, Park SC. A new earthworm cellulase and its possible role in the innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:476-480. [PMID: 27614272 DOI: 10.1016/j.dci.2016.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 09/06/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
A new endogenous cellulase (Ean-EG) from the earthworm, Eisenia andrei and its expression pattern are demonstrated. Based on a deduced amino acid sequence, the open reading frame (ORF) of Ean-EG consisted of 1368 bps corresponding to a polypeptide of 456 amino acid residues in which is contained the conserved region specific to GHF9 that has the essential amino acid residues for enzyme activity. In multiple alignments and phylogenetic analysis, the deduced amino acid sequence of Ean- EG showed the highest sequence similarity (about 79%) to that of an annelid (Pheretima hilgendorfi) and could be clustered together with other GHF9 cellulases, indicating that Ean-EG could be categorized as a member of the GHF9 to which most animal cellulases belong. The histological expression pattern of Ean-EG mRNA using in situ hybridization revealed that the most distinct expression was observed in epithelial cells with positive hybridization signal in epidermis, chloragogen tissue cells, coelomic cell-aggregate, and even blood vessel, which could strongly support the fact that at least in the earthworm, Eisenia andrei, cellulase function must not be limited to digestive process but be possibly extended to the innate immunity.
Collapse
Affiliation(s)
- In Yong Park
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Ju Roung Cha
- Department of Life Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Suk-Mi Ok
- Department of Life Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Chuog Shin
- Department of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Jin-Se Kim
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Hee-Jin Kwak
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Yun-Sang Yu
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Yu-Kyung Kim
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Brenda Medina
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea
| | - Sung-Jin Cho
- Department of Biology, Chungbuk National University, Cheongju, Republic of Korea.
| | - Soon Cheol Park
- Department of Life Sciences, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
20
|
Characterization of putative virulence factors of Serratia marcescens strain SEN for pathogenesis in Spodoptera litura. J Invertebr Pathol 2017; 143:115-123. [DOI: 10.1016/j.jip.2016.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
|
21
|
Wang CX, Zhao AH. Leptin receptor overlapping transcript (LepROT) gene participates in insulin pathway through FoxO. Gene 2016; 587:64-9. [PMID: 27106118 DOI: 10.1016/j.gene.2016.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/07/2016] [Accepted: 04/18/2016] [Indexed: 01/14/2023]
Abstract
Leptin receptor overlapping transcript (LepROT) is co-transcribed with the leptin receptor (LepR). However, the function and mechanism of LepROT in insulin pathway is unclear. In this study, we report the function of LepROT in maintaining consistent FoxO transcription. LepROT is constitutively expressed during larval development. 20-Hydroxyecdysone, methoprene, and insulin have no effect on the transcription of LepROT. However, the knockdown of LepROT by dsRNA injection in larvae causes delay of the development of Helicoverpa armigera. Knockdown of LepROT results in the upregulation of FoxO and downregulation of PI3K. The knockdown of LepROT also results in the subcellular translocation of FoxO from cytoplasm to nuclei. By contrast, overexpression of LepROT in the HaEpi cell line inhibits FoxO expression. Results suggest that LepROT participates in insulin signaling.
Collapse
Affiliation(s)
- Chuan-Xu Wang
- College of Life Sciences, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, Shanxi, China.
| | - Ai-Hua Zhao
- College of Life Sciences, Yuncheng University, 1155 Fudan West Street, Yuncheng 044000, Shanxi, China
| |
Collapse
|
22
|
Legentil L, Paris F, Ballet C, Trouvelot S, Daire X, Vetvicka V, Ferrières V. Molecular Interactions of β-(1→3)-Glucans with Their Receptors. Molecules 2015; 20:9745-66. [PMID: 26023937 PMCID: PMC6272582 DOI: 10.3390/molecules20069745] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/20/2015] [Indexed: 12/01/2022] Open
Abstract
β-(1→3)-Glucans can be found as structural polysaccharides in cereals, in algae or as exo-polysaccharides secreted on the surfaces of mushrooms or fungi. Research has now established that β-(1→3)-glucans can trigger different immune responses and act as efficient immunostimulating agents. They constitute prevalent sources of carbons for microorganisms after subsequent recognition by digesting enzymes. Nevertheless, mechanisms associated with both roles are not yet clearly understood. This review focuses on the variety of elucidated molecular interactions that involve these natural or synthetic polysaccharides and their receptors, i.e., Dectin-1, CR3, glycolipids, langerin and carbohydrate-binding modules.
Collapse
MESH Headings
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/metabolism
- Agaricales/genetics
- Agaricales/metabolism
- Antigens, CD/genetics
- Antigens, CD/immunology
- Edible Grain/genetics
- Edible Grain/metabolism
- Gene Expression Regulation
- Glucan 1,3-beta-Glucosidase/genetics
- Glucan 1,3-beta-Glucosidase/immunology
- Glycolipids/immunology
- Glycolipids/metabolism
- Humans
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Macrophage-1 Antigen/genetics
- Macrophage-1 Antigen/immunology
- Mannose-Binding Lectins/genetics
- Mannose-Binding Lectins/immunology
- Receptors, Scavenger/genetics
- Receptors, Scavenger/immunology
- Signal Transduction
- Stramenopiles/genetics
- Stramenopiles/metabolism
- beta-Glucans/metabolism
Collapse
Affiliation(s)
- Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| | - Franck Paris
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| | - Caroline Ballet
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| | - Sophie Trouvelot
- INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300, 21065 Dijon Cedex, France.
| | - Xavier Daire
- INRA, UMR AgroSup/INRA/uB 1347 Agroécologie, Pôle Interactions Plantes-Microorganismes-ERL CNRS 6300, 21065 Dijon Cedex, France.
| | - Vaclav Vetvicka
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA.
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708 Rennes Cedex 7, France.
- Université européenne de Bretagne, F-35000 Rennes, France.
| |
Collapse
|
23
|
Huang W, Xu X, Freed S, Zheng Z, Wang S, Ren S, Jin F. Molecular cloning and characterization of a β-1,3-glucan recognition protein from Plutella xylostella (L.). N Biotechnol 2015; 32:290-9. [DOI: 10.1016/j.nbt.2015.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 01/07/2015] [Accepted: 01/13/2015] [Indexed: 11/15/2022]
|
24
|
Early responses of silkworm midgut to microsporidium infection – A Digital Gene Expression analysis. J Invertebr Pathol 2015; 124:6-14. [DOI: 10.1016/j.jip.2014.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/04/2014] [Accepted: 10/07/2014] [Indexed: 02/03/2023]
|
25
|
Rao XJ, Zhong X, Lin XY, Huang XH, Yu XQ. Characterization of a novel Manduca sexta beta-1, 3-glucan recognition protein (βGRP3) with multiple functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:13-22. [PMID: 24952171 PMCID: PMC4143429 DOI: 10.1016/j.ibmb.2014.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 05/30/2023]
Abstract
Recognition of pathogens by insect pattern recognition receptors is critical to mount effective immune responses. In this study, we reported a new member (βGRP3) of the β-1, 3-glucan recognition protein (βGRP) family from the tobacco hornworm Manduca sexta. Unlike other members of the M. sexta βGRP family proteins, which contain an N-terminal small glucan binding domain and a C-terminal large glucanase-like domain, βGRP3 is 40-45 residues shorter at the N-terminus and lacks the small glucan binding domain. The glucanase-like domain of βGRP3 is most similar to that of M. sexta microbe binding protein (MBP) with 78% identity. βGRP3 transcript was mainly expressed in the fat body, and both its mRNA and protein levels were not induced by microorganisms in larvae. Recombinant βGRP3 purified from Drosophila S2 cells could bind to several Gram-negative and Gram-positive bacteria and yeast, as well as to laminarin (β-1, 3-glucan), mannan, lipopolysaccharide (LPS), lipoteichoic acid (LTA), and meso-diaminopimelic acid (DAP)-type peptidoglycan (PG), but did not bind to Lysine-type PG. Binding of βGRP3 to laminarin could be competed well by free laminarin, mannan, LPS and LTA, but almost not competed by free PGs. Recombinant βGRP3 could agglutinate Bacillus cereus and Escherichia coli in a calcium-dependent manner and showed antibacterial (bacteriostatic) activity against B. cereus, novel functions that have not been reported for the βGRP family proteins before. M. sexta βGRP3 may serve as an immune surveillance receptor with multiple functions.
Collapse
Affiliation(s)
- Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei, Anhui 230036, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xue Zhong
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Xin-Yu Lin
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Hong Huang
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA; College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
26
|
Takahashi D, Dai H, Hiromasa Y, Krishnamoorthi R, Kanost MR. Self-association of an insect β-1,3-glucan recognition protein upon binding laminarin stimulates prophenoloxidase activation as an innate immune response. J Biol Chem 2014; 289:28399-410. [PMID: 25147183 DOI: 10.1074/jbc.m114.583971] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insect β-glucan recognition protein (βGRP), a pathogen recognition receptor for innate immune responses, detects β-1,3-glucan on fungal surfaces via its N-terminal carbohydrate-binding domain (N-βGRP) and triggers serine protease cascades for the activation of prophenoloxidase (pro-PO) or Toll pathways. Using biophysical and biochemical methods, we characterized the interaction of the N-terminal domain from Manduca sexta βGRP2 (N-βGRP2) with laminarin, a soluble form of β-1,3-glucan. We found that carbohydrate binding by N-βGRP2 induces the formation of two types of protein-carbohydrate complexes, depending on the molar ratio of carbohydrate to protein ([C]/[P]). Precipitation, analytical ultracentrifugation, and chemical cross-linking experiments have shown that an insoluble aggregate forms when the molar ratio of carbohydrate to protein is low ([C]/[P] ∼ 1). In contrast, a soluble complex, containing at least five N-βGRP2 molecules forms at a higher molar ratio of carbohydrate/protein ([C]/[P] >5). A hypothesis that this complex is assembled partly due to protein-protein interactions was supported by chemical cross-linking experiments combined with LC-MS/MS spectrometry analysis, which permitted identification of a specific intermolecular cross-link site between N-βGRP molecules in the soluble complex. The pro-PO activation in naive plasma was strongly stimulated by addition of the insoluble aggregates of N-βGRP2. The soluble complex with laminarin formed in the plasma also stimulated pro-PO activation, but at a lower level. Taken together, these results provide experimental evidence for novel mechanisms in which associations of βGRP with microbial polysaccharide promotes assembly of βGRP oligomers, which may form a platform needed to trigger the pro-PO pathway activation cascade.
Collapse
Affiliation(s)
- Daisuke Takahashi
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Huaien Dai
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Yasuaki Hiromasa
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Ramaswamy Krishnamoorthi
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| | - Michael R Kanost
- From the Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506
| |
Collapse
|
27
|
Sivakamavalli J, Tripathi SK, Singh SK, Vaseeharan B. Homology modeling, molecular dynamics, and docking studies of pattern-recognition transmembrane protein-lipopolysaccharide and β-1,3 glucan-binding protein fromFenneropenaeus indicus. J Biomol Struct Dyn 2014; 33:1269-80. [DOI: 10.1080/07391102.2014.943807] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Sivakamavalli J, Vaseeharan B. Bifunctional role of a pattern recognition molecule β-1,3 glucan binding protein purified from mangrove crab Episesarma tetragonum. J Invertebr Pathol 2014; 119:25-31. [DOI: 10.1016/j.jip.2014.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/26/2014] [Accepted: 02/27/2014] [Indexed: 10/25/2022]
|
29
|
Xialu W, Jinghai Z, Ying C, Youlei M, Wenjun Z, Guoyuan D, Wei L, Mingyi Z, Chunfu W, Rong Z. A novel pattern recognition protein of the Chinese oak silkmoth, Antheraea pernyi, is involved in the pro-PO activating system. BMB Rep 2014; 46:358-63. [PMID: 23884102 PMCID: PMC4133915 DOI: 10.5483/bmbrep.2013.46.7.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this paper, we firstly reported a C-type lectin cDNA clone of 1029 bps from the larvae of A. Pernyi (Ap-CTL) using PCR and RACE techniques. The full-length cDNA contains an open reading frame encoding 308 amino acid residues which has two different carbohydrate-recognition domains (CRDs) arranged in tandem. To investigate the biological activities in the innate immunity, recombinant Ap-CTL was expressed in E. coli with a 6-histidine at the amino-terminus (Ap-rCTL). Besides acted as a broad-spectrum recognition protein binding to a wide range of PAMPs and microorganisms, Ap-rCTL also had the ability to recognize and trigger the agglutination of bacteria and fungi. In the proPO activation assay, Ap-rCTL specifically restored the PO activity of hemolymph blocked by anti- Ap-rCTL antibody in the presence of different PAMPs or microorganisms. In summary, Ap-rCTL plays an important role in insect innate immunity as an pattern recognition protein.
Collapse
Affiliation(s)
- Wang Xialu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Vogel H, Badapanda C, Knorr E, Vilcinskas A. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. INSECT MOLECULAR BIOLOGY 2014; 23:98-112. [PMID: 24252113 DOI: 10.1111/imb.12067] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pollen beetle (Meligethes aeneus) is a major pest of oilseed rape (Brassica napus) and other cruciferous crops in Europe. Pesticide-resistant pollen beetle populations are emerging, increasing the economic impact of this species. We isolated total RNA from the larval and adult stages, the latter either naïve or immunized by injection with bacteria and yeast. High-throughput RNA sequencing (RNA-Seq) was carried out to establish a comprehensive transcriptome catalogue and to screen for developmental stage-specific and immunity-related transcripts. We assembled the transcriptome de novo by combining sequence tags from all developmental stages and treatments. Gene expression data based on normalized read counts revealed several functional gene categories that were differentially expressed between larvae and adults, particularly genes associated with digestion and detoxification that were induced in larvae, and genes associated with reproduction and environmental signalling that were induced in adults. We also identified many genes associated with microbe recognition, immunity-related signalling and defence effectors, such as antimicrobial peptides (AMPs) and lysozymes. Digital gene expression analysis revealed significant differences in the profile of AMPs expressed in larvae, naïve adults and immune-challenged adults, providing insight into the steady-state differences between developmental stages and the complex transcriptional remodelling that occurs following the induction of immunity. Our data provide insight into the adaptive mechanisms used by phytophagous insects and could lead to the development of more effective control strategies for insect pests.
Collapse
Affiliation(s)
- H Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | | | |
Collapse
|
31
|
Youlei M, Jinghai Z, Yuntao Z, Jiaoshu L, Tianyi W, Chunfu W, Rong Z. Purification and characterization of a 1,3-β-D-glucan recognition protein from Antheraea pernyi larve that is regulated after a specific immune challenge. BMB Rep 2013; 46:264-9. [PMID: 23710637 PMCID: PMC4133891 DOI: 10.5483/bmbrep.2013.46.5.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pattern recognition receptors are known to participate in the activation of Prophenoloxidase system. In this study, a 1,3-β-D-glucan recognition protein was detected for the first time in Antheraea pernyi larvae (Ap-βGRP). Ap-βGRP was purified to 99.9% homogeneity from the hemolymph using traditional chromatographic methods. Ap-βGRP specifically bind 1,3-β-D-glucan and yeast, but not E. coli or M. luteus. The 1,3-β-D-glucan dependent phenoloxidase (PO) activity of the hemolymph inhibited by anti-Ap-βGRP antibody could be recovered by addition of purified Ap-βGRP. These results demonstrate that Ap-βGRP acts as a biosensor of 1,3-β-Dglucan to trigger the Prophenoloxidase system. A trace mount of 1,3-β-D-glucan or Ap-βGRP alone was unable to trigger the proPO system, but they both did. Ap-βGRP was specifically degraded following the activation of proPO with 1,3-β-Dglucan. These results indicate the variation in the amount of Ap-βGRP after specific immune challenge in A. pernyi hemolymph is an important regulation mechanism to immune response. [BMB Reports 2013; 46(5): 264-269]
Collapse
Affiliation(s)
- Ma Youlei
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Bang K, Park S, Cho S. Characterization of a β-1,3-glucan recognition protein from the beet armyworm, Spodoptera exigua (Insecta: Lepidoptera: Noctuidae). INSECT SCIENCE 2013; 20:575-584. [PMID: 23956146 DOI: 10.1111/j.1744-7917.2012.01538.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/04/2012] [Indexed: 06/02/2023]
Abstract
The β-1,3-glucan recognition protein gene from Spodoptera exigua (SeβGRP) was cloned and characterized. The cDNA of this gene is 1 644 nucleotides in length and the predicted polypeptide is 491 amino acids (aa) in length, with a calculated molecular mass of 54.8 kDa. The first 22 aa encode a predicted secretion signal peptide. A BLAST search, multiple sequence alignment, and phylogenetic analysis of the aa sequence of SeβGRP revealed that this protein is most similar to the β-1,3-glucan recognition protein (βGRP) family of pattern recognition proteins. Using reverse-transcription polymerase chain reaction, we detected the presence of SeβGRP transcripts in the egg, larval, pupal, and adult stages of S. exigua. In addition, the SeβGRP transcript was expressed in all the tissues examined including the brain, hemocytes, fat body, intestine, and cuticle. There were no changes in SeβGRP mRNA levels in larvae infected with ultraviolet (UV)-killed Escherichia coli DH5α compared with the control larvae inoculated with the water; however, SeβGRP mRNA levels were markedly elevated 4-8 h after infection and slightly induced 12-24 h after infection in larvae injected with UV-killed Fusarium oxysporum. This may be because β-1,3-glucan is the main component of the cell wall of F. oxysporum, but not E. coli DH5α.
Collapse
Affiliation(s)
- Kyeongrin Bang
- Department of Applied Biology, College of Agriculture and Life Science, Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon
| | | | | |
Collapse
|
33
|
Identification of immune response-related genes in the Chinese oak silkworm, Antheraea pernyi by suppression subtractive hybridization. J Invertebr Pathol 2013; 114:313-23. [PMID: 24076149 DOI: 10.1016/j.jip.2013.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/26/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022]
Abstract
Insects possess an innate immune system that responds to invading microorganisms. In this study, a subtractive cDNA library was constructed to screen for immune response-related genes in the fat bodies of Antheraea pernyi (Lepidoptera: Saturniidae) pupa challenged with Escherichia coli. Four hundred putative EST clones were identified by suppression subtractive hybridization (SSH), including 50 immune response-related genes, three cytoskeleton genes, eight cell cycle and apoptosis genes, five respiration and energy metabolism genes, five transport genes, 40 metabolism genes, ten stress response genes, four transcription and translation regulation genes and 77 unknown genes. To verify the reliability of the SSH data, the transcription of a set of randomly selected immune response-related genes were confirmed by semi-quantitative reverse transcription-PCR (RT-PCR) and real-time quantitative reverse transcription-PCR (qRT-PCR). These identified immune response-related genes provide insight into understanding the innate immunity in A. pernyi.
Collapse
|
34
|
Casanova-Torres ÁM, Goodrich-Blair H. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera. INSECTS 2013; 4:320-38. [PMID: 25861461 PMCID: PMC4386667 DOI: 10.3390/insects4030320] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 06/21/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023]
Abstract
Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP) expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests.
Collapse
|
35
|
Sivakamavalli J, Vaseeharan B. Purification, characterization and functional analysis of a novel β-1, 3-glucan binding protein from green tiger shrimp Penaeus semisulcatus. FISH & SHELLFISH IMMUNOLOGY 2013; 35:689-696. [PMID: 23732849 DOI: 10.1016/j.fsi.2013.05.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 05/23/2013] [Accepted: 05/23/2013] [Indexed: 06/02/2023]
Abstract
A β-1, 3-Glucan binding protein (β-GBP) was isolated from green tiger shrimp Penaeus semisulcatus and purified using laminarin precipitation and affinity chromatography on laminarin-Sepharose 6B column respectively. P. semisulcatus β-GBP exhibits a single band with a molecular weight of 112 kDa on SDS-PAGE and pI of 5.9 in isoelectric focusing (IEF). Negative staining of P. semisulcatus β-GBP showed large aggregates with crystalline surface when viewed by Electron Microscopy. Circular dichroism spectra of P. semisulcatus β-GBP showed broad negative minimum wavelength extending from 200 to 250 nm can be attributed to the presence of β-sheets in its secondary structure. P. semisulcatus β-GBP comprises the specific binding affinity with the polysaccharide β-1, 3-glucans (laminarin), this recognition and binding leads to the activation of prophenoloxidase cascade. Interestingly, P. semisulcatus β-GBP also involved in the agglutination of baker's yeast, bacteria, erythrocytes (RBCs) and enhances the PO activity. Herein, we have investigated the importance of β-GBP in innate immune response of P. semisulcatus and they implicate the evolutionary link with similar proteins found in other invertebrates.
Collapse
Affiliation(s)
- Jeyachandran Sivakamavalli
- Crustacean Molecular Biology and Genomics Lab, Department of Animal Health and Management, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | |
Collapse
|
36
|
Abrudan J, Ramalho-Ortigão M, O'Neil S, Stayback G, Wadsworth M, Bernard M, Shoue D, Emrich S, Lawyer P, Kamhawi S, Rowton ED, Lehane MJ, Bates PA, Valenzeula JG, Tomlinson C, Appelbaum E, Moeller D, Thiesing B, Dillon R, Clifton S, Lobo NF, Wilson RK, Collins FH, McDowell MA. The characterization of the Phlebotomus papatasi transcriptome. INSECT MOLECULAR BIOLOGY 2013; 22:211-232. [PMID: 23398403 PMCID: PMC3594503 DOI: 10.1111/imb.12015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As important vectors of human disease, phlebotomine sand flies are of global significance to human health, transmitting several emerging and re-emerging infectious diseases. The most devastating of the sand fly transmitted infections are the leishmaniases, causing significant mortality and morbidity in both the Old and New World. Here we present the first global transcriptome analysis of the Old World vector of cutaneous leishmaniasis, Phlebotomus papatasi (Scopoli) and compare this transcriptome to that of the New World vector of visceral leishmaniasis, Lutzomyia longipalpis. A normalized cDNA library was constructed using pooled mRNA from Phlebotomus papatasi larvae, pupae, adult males and females fed sugar, blood, or blood infected with Leishmania major. A total of 47 615 generated sequences was cleaned and assembled into 17 120 unique transcripts. Of the assembled sequences, 50% (8837 sequences) were classified using Gene Ontology (GO) terms. This collection of transcripts is comprehensive, as demonstrated by the high number of different GO categories. An in-depth analysis revealed 245 sequences with putative homology to proteins involved in blood and sugar digestion, immune response and peritrophic matrix formation. Twelve of the novel genes, including one trypsin, two peptidoglycan recognition proteins (PGRP) and nine chymotrypsins, have a higher expression level during larval stages. Two novel chymotrypsins and one novel PGRP are abundantly expressed upon blood feeding. This study will greatly improve the available genomic resources for P. papatasi and will provide essential information for annotation of the full genome.
Collapse
Affiliation(s)
- Jenica Abrudan
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marcelo Ramalho-Ortigão
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | | | | | | | | | | | - Phillip Lawyer
- Intracellular Parasite Biology Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Edgar D. Rowton
- Entomology Program, Walter Reed Army Institute of Research, 530 Robert Grant Ave., Silver Spring, MD 20910, USA
| | | | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Jesus G. Valenzeula
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Chad Tomlinson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Elizabeth Appelbaum
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Deborah Moeller
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Brenda Thiesing
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Rod Dillon
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, LA1 4YQ, UK
| | - Sandra Clifton
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Neil F. Lobo
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Richard K. Wilson
- The Genome Institute at Washington University, St. Louis, Missouri, 63108, USA
| | - Frank H. Collins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Mary Ann McDowell
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
37
|
Dai H, Hiromasa Y, Takahashi D, VanderVelde D, Fabrick JA, Kanost MR, Krishnamoorthi R. An initial event in the insect innate immune response: structural and biological studies of interactions between β-1,3-glucan and the N-terminal domain of β-1,3-glucan recognition protein. Biochemistry 2013; 52:161-70. [PMID: 23237493 PMCID: PMC3542770 DOI: 10.1021/bi301440p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In response to invading microorganisms, insect β-1,3-glucan recognition protein (βGRP), a soluble receptor in the hemolymph, binds to the surfaces of bacteria and fungi and activates serine protease cascades that promote destruction of pathogens by means of melanization or expression of antimicrobial peptides. Here we report on the nuclear magnetic resonance (NMR) solution structure of the N-terminal domain of βGRP (N-βGRP) from Indian meal moth (Plodia interpunctella), which is sufficient to activate the prophenoloxidase (proPO) pathway resulting in melanin formation. NMR and isothermal calorimetric titrations of N-βGRP with laminarihexaose, a glucose hexamer containing β-1,3 links, suggest a weak binding of the ligand. However, addition of laminarin, a glucose polysaccharide (~6 kDa) containing β-1,3 and β-1,6 links that activates the proPO pathway, to N-βGRP results in the loss of NMR cross-peaks from the backbone (15)N-(1)H groups of the protein, suggesting the formation of a large complex. Analytical ultracentrifugation (AUC) studies of formation of the N-βGRP-laminarin complex show that ligand binding induces self-association of the protein-carbohydrate complex into a macro structure, likely containing six protein and three laminarin molecules (~102 kDa). The macro complex is quite stable, as it does not undergo dissociation upon dilution to submicromolar concentrations. The structural model thus derived from this study for the N-βGRP-laminarin complex in solution differs from the one in which a single N-βGRP molecule has been proposed to bind to a triple-helical form of laminarin on the basis of an X-ray crystallographic structure of the N-βGRP-laminarihexaose complex [Kanagawa, M., Satoh, T., Ikeda, A., Adachi, Y., Ohno, N., and Yamaguchi, Y. (2011) J. Biol. Chem. 286, 29158-29165]. AUC studies and phenoloxidase activation measurements conducted with the designed mutants of N-βGRP indicate that electrostatic interactions involving Asp45, Arg54, and Asp68 between the ligand-bound protein molecules contribute in part to the stability of the N-βGRP-laminarin macro complex and that a decreased stability is accompanied by a reduced level of activation of the proPO pathway. An increased level of β-1,6 branching in laminarin also results in destabilization of the macro complex. These novel findings suggest that ligand-induced self-association of the βGRP-β-1,3-glucan complex may form a platform on a microbial surface for recruitment of downstream proteases, as a means of amplification of the initial signal of pathogen recognition for the activation of the proPO pathway.
Collapse
Affiliation(s)
- Huaien Dai
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506
| | - Yasuaki Hiromasa
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506
| | - Daisuke Takahashi
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506
| | | | - Jeffrey A. Fabrick
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506
| | - Michael R. Kanost
- Department of Biochemistry, Kansas State University, Manhattan, KS 66506
| | | |
Collapse
|
38
|
Li F, Terenius O, Li Y, Fang S, Li W. cDNA Cloning and Expression Analysis of Pattern Recognition Proteins from the Chinese Oak Silkmoth, Antheraea pernyi. INSECTS 2012; 3:1093-104. [PMID: 26466728 PMCID: PMC4553565 DOI: 10.3390/insects3041093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 10/12/2012] [Accepted: 10/15/2012] [Indexed: 12/02/2022]
Abstract
Pattern recognition receptors play an important role in insect immune defense. We cloned the β-1,3-glucan recognition protein, lectin-5 and C-type lectin 1 genes of Antheraea pernyi and examined the expression profiles of immune-stimulated pupae. After infection with Bacillus subtilis, Escherichia coli, Antheraea pernyi nuclear polyhedrosis virus (ApNPV) and Saccharomyces cerevisiae, respectively, the pupae showed different gene expression levels in the different tissues examined (midgut, fatbody, epidermis, testis, and hemocytes). ApβGRP and Aplectin-5 was induced by all the microorganisms, and mainly in epidermis and hemocytes, but not in testis; Aplectin-5 was also expressed in fatbody. Ap C-type lectin 1 was, on the contrary, highly expressed in testis and also in fatbody, but not in hemocytes. Unlike ApβGRP and Aplectin-5, Ap C-type lectin 1 was not induced by Gram-positive bacteria. The results suggest that the cloned lectins may have different functions in different tissues of A. pernyi.
Collapse
Affiliation(s)
- Fengjuan Li
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| | - Olle Terenius
- Department of Ecology, Swedish University of Agricultural Sciences (SLU), 750 07 Uppsala, Sweden.
| | - Yuan Li
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| | - Suyun Fang
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| | - Wenli Li
- School of Life science and Biotechnology, Dalian University of Technology, Dalian, 116023 Liaoning, China.
| |
Collapse
|
39
|
Zheng X, Xia Y. β-1,3-Glucan recognition protein (βGRP) is essential for resistance against fungal pathogen and opportunistic pathogenic gut bacteria in Locusta migratoria manilensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:602-609. [PMID: 22062247 DOI: 10.1016/j.dci.2011.10.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 05/31/2023]
Abstract
Pattern recognition proteins, which form part of the innate immune system, initiate host defense reactions in response to pathogen surface molecules. The pattern recognition protein β-1,3-glucan recognition protein (βGRP) binds to β-1,3-glucan on fungal surfaces to mediate melanization via the prophenoloxidase (PPO)-activating cascade. In this study, cDNA encoding a 53-kDa βGRP (LmβGRP) was cloned from Locusta migratoria manilensis. LmβGRP mRNA shown to be constitutively expressed specifically in hemocytes and was highly upregulated following fungal infection. LmβGRP-silenced (LmβGRP-RNAi) mutant locusts exhibited significantly reduced survival rate following fungal infection (Metarhizium acridum) compared with the wild-type. Furthermore, LmβGRP-RNAi mutants exhibited abnormally loose stools indicative of a gut defect. 16S rRNA gene analysis detected the opportunistic pathogenic bacterium, Vibrio vulnificus in LmβGRP mutant but not wild-type locusts, suggesting changes in the composition of gut bacterial communities. These results indicate that LmβGRP is essential to gut immunity in L. migratoria manilensis.
Collapse
Affiliation(s)
- Xiaoli Zheng
- Genetic Engineering Research Center, School of Bioengineering, Chongqing Engineering Research Center for Fungal Insecticide, The Key Laboratory of Gene Function and Expression Regulation, Chongqing University Chongqing 400044, China
| | | |
Collapse
|
40
|
Wang CX, Zheng WW, Liu PC, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone upregulated the protein phosphatase 6 for the programmed cell death in the insect midgut. Amino Acids 2011; 43:963-71. [PMID: 22143427 DOI: 10.1007/s00726-011-1159-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 11/10/2011] [Indexed: 01/13/2023]
Abstract
Programmed cell death (PCD) plays an important role in insect midgut remodeling during metamorphosis. Insect midgut PCD is triggered by the steroid hormone 20-hydroxyecdysone (20E) and it is mediated by a series of genes. However, the mechanism by which 20E triggers midgut PCD is still unclear. Here, we report a protein phosphatase 6 (PP6) from Helicoverpa armigera playing roles in midgut PCD. PP6 was expressed in the midgut during larval growth and it is significantly increased during metamorphosis. The increase was proven to be regulated by 20E. The juvenile hormone analog methoprene has no effect on PP6 expression. RNA interference analysis suggests that 20E upregulated the PP6 transcript levels through the ecdysone receptor EcRB1. PP6 knockdown by larval feeding or PP6 dsRNA injection resulted in the repression of the midgut PCD during the metamorphic stage. The mechanism was demonstrated to be through the suppression of genes such as Broad (Br), E74a, E75b, HR3, E93, rpr, and caspase, which are involved in 20E signaling pathway or midgut PCD. These findings suggest that PP6 is involved in the 20E signal transduction pathway and participates in the PCD in midgut.
Collapse
Affiliation(s)
- Chuan-Xu Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | | | | | |
Collapse
|
41
|
Sun Z, Wu W, Zhang G. Structure and expression of β-1,3-glucan recognition proteins from the ghost moth, Thitarodes pui (Hepialidae), and their response to Beauveria bassiana infection. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:1660-1669. [PMID: 21910994 DOI: 10.1016/j.jinsphys.2011.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/24/2011] [Accepted: 08/26/2011] [Indexed: 05/31/2023]
Abstract
Beta-1,3-glucan recognition proteins (βGRPs), as a class of pattern recognition receptors, are involved in activation of the immune response in invertebrates. We cloned two cDNAs encoding putative βGRPs from larvae of Thitarodes pui, a host species of Ophiocordyceps sinensis with great economic importance in the Tibetan Plateau. The two putative βGRPs were phylogenetically classified into a novel clade 4, and designated TpβGRP-4a and TpβGRP-4b, respectively, with calculated molecular masses of 53,265 and 43,991 Da. Both TpβGRPs contained a C-terminal domain with sequence similarity to β-1,3-glucanases but without the glucanase active site. TpβGRP-4b markedly differed from other family members including TpβGRP-4a in the N-terminal region by a large deletion of ∼80 amino acid residues. Homology modelings revealed an eight-stranded β-sandwich fold (β1-β8) and two β-strands (only β1 and β2), respectively, in the N-terminal domains of TpβGRP-4a and -4b. TpβGRPs showed similar developmental expression patterns in fat body. TpβGRP-4a and -4b transcripts were induced highest 313- and 16-fold, respectively, in resistant 8th instar larvae challenged with conidia of entomopathogenic fungus Beauveria bassiana. By contrast, significant reductions in TpβGRPs expression were observed in conidia-injected susceptible 6th instar larvae (compared with saline-injected controls), accompanied by production of hyphal bodies in hemolymph. These results suggest that TpβGRPs might contribute to host defense against fungal infection, and TpβGRP-4b with the unusual deletion of the N-terminal region might have evolved new functions for βGRP family proteins.
Collapse
Affiliation(s)
- Zixuan Sun
- State Key Laboratory for Biological Control/Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, China
| | | | | |
Collapse
|
42
|
Vogel H, Badapanda C, Vilcinskas A. Identification of immunity-related genes in the burying beetle Nicrophorus vespilloides by suppression subtractive hybridization. INSECT MOLECULAR BIOLOGY 2011; 20:787-800. [PMID: 21929718 DOI: 10.1111/j.1365-2583.2011.01109.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Burying beetles reproduce on small vertebrate cadavers which they bury in the soil after localization through volatiles emitted from the carcass. They then chemically preserve the carcass and prepare it as a diet for the adults and their offspring. It is predicted that exposure to high loads of soil and/or carrion-associated microbes necessitates an effective immune system. In the present paper, we report experimental screening for immunity-related genes in the burying beetle Nicrophorus vespilloides using the suppression subtractive hybridization approach. A total of 1179 putative gene objects were identified in the Nicrophorus cDNA library, which was enriched for transcripts differentially expressed upon challenge with heat-inactivated bacteria. In addition to genes known to be involved in immunity-related recognition and signalling, we found transcripts encoding for antimicrobial peptides and for an array of enzymes that can be linked to immunity or to stress-induced pathways. We also determined proteins that may contribute to detoxification of toxins produced by microbial competitors. In addition, factors involved in mRNA stability determination and central components of the RNA interference machinery were identified, implying transcriptional reprogramming and potential stress-induced retrotransposon elimination. The identified candidate immune effector and stress-related genes may provide important information about the unusual ecology and evolution of the burying beetles.
Collapse
Affiliation(s)
- H Vogel
- Max Planck Institute for Chemical Ecology, Department of Entomology, Jena, Germany
| | | | | |
Collapse
|
43
|
Abstract
Lepidopteran insects provide important model systems for innate immunity of insects, particularly for cell biology of hemocytes and biochemical analyses of plasma proteins. Caterpillars are also among the most serious agricultural pests, and understanding of their immune systems has potential practical significance. An early response to infection in lepidopteran larvae is the activation of hemocyte adhesion, leading to phagocytosis, nodule formation, or encapsulation. Plasmatocytes and granular cells are the hemocyte types involved in these responses. Infectious microorganisms are recognized by binding of hemolymph plasma proteins to microbial surface components. This "pattern recognition" triggers phagocytosis and nodule formation, activation of prophenoloxidase and melanization and the synthesis of antimicrobial proteins that are secreted into the hemolymph. Many hemolymph proteins that function in such innate immune responses of insects were first discovered in lepidopterans. Microbial proteinases and nucleic acids released from lysed host cells may also activate lepidopteran immune responses. Hemolymph antimicrobial peptides and proteins can reach high concentrations and may have activity against a broad spectrum of microorganisms, contributing significantly to clearing of infections. Serine proteinase cascade pathways triggered by microbial components interacting with pattern recognition proteins stimulate activation of the cytokine Spätzle, which initiates the Toll pathway for expression of antimicrobial peptides. A proteinase cascade also results inproteolytic activation of phenoloxidase and production of melanin coatings that trap and kill parasites and pathogens. The proteinases in hemolymph are regulated by specific inhibitors, including members of the serpin superfamily. New developments in lepidopteran functional genomics should lead to much more complete understanding of the immune systems of this insect group.
Collapse
|
44
|
Khajuria C, Buschman LL, Chen MS, Zurek L, Zhu KY. Characterization of six antibacterial response genes from the European corn borer (Ostrinia nubilalis) larval gut and their expression in response to bacterial challenge. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:345-355. [PMID: 21167833 DOI: 10.1016/j.jinsphys.2010.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 05/30/2023]
Abstract
Six cDNAs encoding putative antibacterial response proteins were identified and characterized from the larval gut of the European corn borer (Ostrinia nubilalis). These antibacterial response proteins include four peptidoglycan recognition proteins (PGRPs), one β-1,3-glucanase-1 (βglu-1), and one lysozyme. Tissue-specific expression analysis showed that these genes were highly expressed in the midgut, except for lysozyme. Analysis of expression of these genes in different developmental stage showed that they were expressed in larval stages, but little or no detectable expression was found in egg, pupa and adult. When larvae were challenged with Gram-negative bacteria (Enterobacter aerogenes), the expression of all six genes was up-regulated in the fatbodies. However, when larvae were challenged with Gram-positive bacteria (Micrococcus luteus), only PGRP-C and lysozyme genes were up-regulated. This study provides additional insights into the expression of antibacterial response genes in O. nubilalis larvae and helps us better understand the immune defense response in O. nubilalis.
Collapse
Affiliation(s)
- Chitvan Khajuria
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | |
Collapse
|
45
|
A sensitive sandwich ELISA to measure (1→3)-β-d-glucan levels in blood. J Immunol Methods 2010; 365:158-65. [PMID: 21184758 DOI: 10.1016/j.jim.2010.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 11/22/2022]
Abstract
A highly sensitive (1→3)-β-d-glucan (β-glucan)-specific sandwich ELISA was developed using a fragment of recombinant horseshoe crab factor G protein. The factor G fragment, which was expressed in Escherichia coli, contains a QQWS motif, two β-glucan-binding domains, and an additional N-terminal cysteine residue. The sensitivity of our ELISA was comparable to a conventional (1→3)-β-d-glucan detection method using a horseshoe crab-clotting reaction such as an amebocyte lysate-based assay. In addition, the β-glucan levels measured by our sandwich ELISA in plasma samples showed a good correlation with those measured by the amebocyte lysate-based assay. In the case of our sandwich ELISA, it is not necessary to pre-inactivate interfering substances in plasma samples that is essential for the conventional amebocyte lysate-based assay. Moreover, the assay time of the ELISA method is much shorter than that of the amebocyte lysate-based assay. Because of these advantages, the ELISA system will be more suitable for high-throughput analysis in clinical laboratories using general clinical auto-analyzers. β-glucan is a typical biomarker for fungal infections and the measurements of β-glucan levels by our ELISA could be useful for the diagnosis of fungal infections.
Collapse
|
46
|
Bragatto I, Genta FA, Ribeiro AF, Terra WR, Ferreira C. Characterization of a β-1,3-glucanase active in the alkaline midgut of Spodoptera frugiperda larvae and its relation to β-glucan-binding proteins. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:861-872. [PMID: 20816775 DOI: 10.1016/j.ibmb.2010.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/23/2010] [Accepted: 08/25/2010] [Indexed: 05/29/2023]
Abstract
Spodoptera frugiperda β-1,3-glucanase (SLam) was purified from larval midgut. It has a molecular mass of 37.5 kDa, an alkaline optimum pH of 9.0, is active against β-1,3-glucan (laminarin), but cannot hydrolyze yeast β-1,3-1,6-glucan or other polysaccharides. The enzyme is an endoglucanase with low processivity (0.4), and is not inhibited by high concentrations of substrate. In contrast to other digestive β-1,3-glucanases from insects, SLam is unable to lyse Saccharomyces cerevisae cells. The cDNA encoding SLam was cloned and sequenced, showing that the protein belongs to glycosyl hydrolase family 16 as other insect glucanases and glucan-binding proteins. Multiple sequence alignment of β-1,3-glucanases and β-glucan-binding protein supports the assumption that the β-1,3-glucanase gene duplicated in the ancestor of mollusks and arthropods. One copy originated the derived β-1,3-glucanases by the loss of an extended N-terminal region and the β-glucan-binding proteins by the loss of the catalytic residues. SLam homology modeling suggests that E228 may affect the ionization of the catalytic residues, thus displacing the enzyme pH optimum. SLam antiserum reacts with a single protein in the insect midgut. Immunocytolocalization shows that the enzyme is present in secretory vesicles and glycocalyx from columnar cells.
Collapse
Affiliation(s)
- Ivan Bragatto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, 05513-970 São Paulo, Brazil
| | | | | | | | | |
Collapse
|
47
|
Saejeng A, Tidbury H, Siva-Jothy MT, Boots M. Examining the relationship between hemolymph phenoloxidase and resistance to a DNA virus, Plodia interpunctella granulosis virus (PiGV). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1232-1236. [PMID: 20380834 DOI: 10.1016/j.jinsphys.2010.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/20/2010] [Accepted: 03/20/2010] [Indexed: 05/29/2023]
Abstract
We have a detailed understanding of invertebrate immune responses to bacteria and fungal pathogens, but we know less about how insects respond to virus challenge. Phenoloxidase (PO) functions as an important immune response against many parasites and pathogens and is routinely used as a measure of immune competance. We examine the role of haemolymph PO activity in Plodia interpuncetella's response to its natural granulosis virus (PiGV). Larvae were challenged with virus by both oral inoculation of occluded virus (the natural infection route) and direct intrahaemocoelic injection of budded virus. Haemolymph was collected at time points post-viral challenge using a novel method that allows the volume of haemolymph to be quanitified. The haemolmyph was collected without killing the larvae so that haemolymph samples from individuals that developed viral disease could be distinguished from samples collected from those that fought off infection. The level of haemolymph PO activity in resistant larvae did not differ from control larvae. Therefore we have no evidence that PO is involved in resistance to virus in the haemocoel whether larvae are challenged naturally by oral innoculation or directly by intraheamocoelic injection. Phenoloxidase may therefore not be a relevant metric of immunocompetence for viral infection.
Collapse
Affiliation(s)
- A Saejeng
- The Office of Diseases Control and Prevention Region 10, Chiang Mai, Thailand
| | | | | | | |
Collapse
|
48
|
Song JM, Nam K, Sun YU, Kang MH, Kim CG, Kwon ST, Lee J, Lee YH. Molecular and biochemical characterizations of a novel arthropod endo-β-1,3-glucanase from the Antarctic springtail, Cryptopygus antarcticus, horizontally acquired from bacteria. Comp Biochem Physiol B Biochem Mol Biol 2010; 155:403-12. [DOI: 10.1016/j.cbpb.2010.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/06/2010] [Accepted: 01/07/2010] [Indexed: 10/20/2022]
|
49
|
Sui YP, Wang JX, Zhao XF. The impacts of classical insect hormones on the expression profiles of a new digestive trypsin-like protease (TLP) from the cotton bollworm, Helicoverpa armigera. INSECT MOLECULAR BIOLOGY 2009; 18:443-452. [PMID: 19469806 DOI: 10.1111/j.1365-2583.2009.00884.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Trypsin proteinases perform important roles in the protein digestion of an insect midgut. A 1042 bp full-length cDNA was cloned from Helicoverpa armigera. The gene encoded a 32 kDa protein, with a predicted isoelectric point of 5.7. The amino acid sequence of the protein had a trypsin-like serine protease domain, and the gene was named Ha-TLP. The expression of the gene was tissue-specific and the transcript of Ha-TLP existed only in the midgut and was not found in the head-thorax, integument, fat body and haemocytes from 5th instar larvae, with similar expression levels between those in feeding larvae and in molting larvae. In the midgut, the gene transcription level declined from 6th instar 72 h after the larvae entered the wandering stage, and disappeared from 6th instar at 96 h until the pupal stage. By immunohistochemistry, Ha-TLP was detected in the cytoplasm of the midgut epithelial cells of the 6th instar feeding stage worms. The expression of Ha-TLP could be up-regulated by a juvenile hormone (JH) analog methoprene and down-regulated by 20-hydroxyecdysone (20E). These facts indicate that Ha-TLP was involved in food digestion during larval growth and probably up-regulated by JH and suppressed by extra 20E in vivo.
Collapse
Affiliation(s)
- Y-P Sui
- School of Life Sciences, Shandong University, Jinan 250100, Shandong, China
| | | | | |
Collapse
|
50
|
Solution structure of the silkworm betaGRP/GNBP3 N-terminal domain reveals the mechanism for beta-1,3-glucan-specific recognition. Proc Natl Acad Sci U S A 2009; 106:11679-84. [PMID: 19561300 DOI: 10.1073/pnas.0901671106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The beta-1,3-glucan recognition protein (betaGRP)/Gram-negative bacteria-binding protein 3 (GNBP3) is a crucial pattern-recognition receptor that specifically binds beta-1,3-glucan, a component of fungal cell walls. It evokes innate immunity against fungi through activation of the prophenoloxidase (proPO) cascade and Toll pathway in invertebrates. The betaGRP consists of an N-terminal beta-1,3-glucan-recognition domain and a C-terminal glucanase-like domain, with the former reported to be responsible for the proPO cascade activation. This report shows the solution structure of the N-terminal beta-1,3-glucan recognition domain of silkworm betaGRP. Although the N-terminal domain of betaGRP has a beta-sandwich fold, often seen in carbohydrate-binding modules, both NMR titration experiments and mutational analysis showed that betaGRP has a binding mechanism which is distinct from those observed in previously reported carbohydarate-binding domains. Our results suggest that betaGRP is a beta-1,3-glucan-recognition protein that specifically recognizes a triple-helical structure of beta-1,3-glucan.
Collapse
|