1
|
Abdelhamid AG, Faraone JN, Evans JP, Liu SL, Yousef AE. SARS-CoV-2 and Emerging Foodborne Pathogens: Intriguing Commonalities and Obvious Differences. Pathogens 2022; 11:837. [PMID: 36014958 PMCID: PMC9415055 DOI: 10.3390/pathogens11080837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has resulted in tremendous human and economic losses around the globe. The pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that is closely related to SARS-CoV and other human and animal coronaviruses. Although foodborne diseases are rarely of pandemic proportions, some of the causative agents emerge in a manner remarkably similar to what was observed recently with SARS-CoV-2. For example, Shiga toxin-producing Escherichia coli (STEC), the most common cause of hemolytic uremic syndrome, shares evolution, pathogenesis, and immune evasion similarities with SARS-CoV-2. Both agents evolved over time in animal hosts, and during infection, they bind to specific receptors on the host cell's membrane and develop host adaptation mechanisms. Mechanisms such as point mutations and gene loss/genetic acquisition are the main driving forces for the evolution of SARS-CoV-2 and STEC. Both pathogens affect multiple body organs, and the resulting diseases are not completely cured with non-vaccine therapeutics. However, SARS-CoV-2 and STEC obviously differ in the nature of the infectious agent (i.e., virus vs. bacterium), disease epidemiological details (e.g., transmission vehicle and symptoms onset time), and disease severity. SARS-CoV-2 triggered a global pandemic while STEC led to limited, but sometimes serious, disease outbreaks. The current review compares several key aspects of these two pathogenic agents, including the underlying mechanisms of emergence, the driving forces for evolution, pathogenic mechanisms, and the host immune responses. We ask what can be learned from the emergence of both infectious agents in order to alleviate future outbreaks or pandemics.
Collapse
Affiliation(s)
- Ahmed G. Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Botany and Microbiology Department, Faculty of Science, Benha University, Benha 13518, Egypt
| | - Julia N. Faraone
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - John P. Evans
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH 43210, USA; (J.N.F.); (J.P.E.)
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH 43210, USA;
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| | - Ahmed E. Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
3
|
Liu Y, Tian S, Thaker H, Dong M. Shiga Toxins: An Update on Host Factors and Biomedical Applications. Toxins (Basel) 2021; 13:222. [PMID: 33803852 PMCID: PMC8003205 DOI: 10.3390/toxins13030222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxins (Stxs) are classic bacterial toxins and major virulence factors of toxigenic Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC). These toxins recognize a glycosphingolipid globotriaosylceramide (Gb3/CD77) as their receptor and inhibit protein synthesis in cells by cleaving 28S ribosomal RNA. They are the major cause of life-threatening complications such as hemolytic uremic syndrome (HUS), associated with severe cases of EHEC infection, which is the leading cause of acute kidney injury in children. The threat of Stxs is exacerbated by the lack of toxin inhibitors and effective treatment for HUS. Here, we briefly summarize the Stx structure, subtypes, in vitro and in vivo models, Gb3 expression and HUS, and then introduce recent studies using CRISPR-Cas9-mediated genome-wide screens to identify the host cell factors required for Stx action. We also summarize the latest progress in utilizing and engineering Stx components for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Warr AR, Kuehl CJ, Waldor MK. Shiga toxin remodels the intestinal epithelial transcriptional response to Enterohemorrhagic Escherichia coli. PLoS Pathog 2021; 17:e1009290. [PMID: 33529199 PMCID: PMC7880444 DOI: 10.1371/journal.ppat.1009290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/12/2021] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne pathogen that causes diarrheal disease and the potentially lethal hemolytic uremic syndrome. We used an infant rabbit model of EHEC infection that recapitulates many aspects of human intestinal disease to comprehensively assess colonic transcriptional responses to this pathogen. Cellular compartment-specific RNA-sequencing of intestinal tissue from animals infected with EHEC strains containing or lacking Shiga toxins (Stx) revealed that EHEC infection elicits a robust response that is dramatically shaped by Stx, particularly in epithelial cells. Many of the differences in the transcriptional responses elicited by these strains were in genes involved in immune signaling pathways, such as IL23A, and coagulation, including F3, the gene encoding Tissue Factor. RNA FISH confirmed that these elevated transcripts were found almost exclusively in epithelial cells. Collectively, these findings suggest that Stx potently remodels the host innate immune response to EHEC. Enterohemorrhagic Escherichia coli (EHEC) is a potentially lethal foodborne pathogen. During infection, EHEC releases a potent toxin, Shiga toxin (Stx), into the intestine, but there is limited knowledge of how this toxin shapes the host response to infection. We used an infant rabbit model of infection that closely mimics human disease to profile intestinal transcriptomic responses to EHEC infection. Comparisons of the transcriptional responses to infection by strains containing or lacking Stx revealed that this toxin markedly remodels how the epithelial cell compartment responds to infection. Our findings suggest that Stx shapes the intestinal innate immune response to EHEC and provide insight into the complex host-pathogen dialogue that underlies disease.
Collapse
Affiliation(s)
- Alyson R. Warr
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Carole J. Kuehl
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Matthew K. Waldor
- Division of Infectious Diseases, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lee MS, Tesh VL. Roles of Shiga Toxins in Immunopathology. Toxins (Basel) 2019; 11:E212. [PMID: 30970547 PMCID: PMC6521259 DOI: 10.3390/toxins11040212] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/20/2022] Open
Abstract
Shigella species and Shiga toxin-producing Escherichia coli (STEC) are agents of bloody diarrhea that may progress to potentially lethal complications such as diarrhea-associated hemolytic uremic syndrome (D+HUS) and neurological disorders. The bacteria share the ability to produce virulence factors called Shiga toxins (Stxs). Research over the past two decades has identified Stxs as multifunctional toxins capable of inducing cell stress responses in addition to their canonical ribotoxic function inhibiting protein synthesis. Notably, Stxs are not only potent inducers of cell death, but also activate innate immune responses that may lead to inflammation, and these effects may increase the severity of organ injury in patients infected with Stx-producing bacteria. In the intestines, kidneys, and central nervous system, excessive or uncontrolled host innate and cellular immune responses triggered by Stxs may result in sensitization of cells to toxin mediated damage, leading to immunopathology and increased morbidity and mortality in animal models (including primates) and human patients. Here, we review studies describing Stx-induced innate immune responses that may be associated with tissue damage, inflammation, and complement activation. We speculate on how these processes may contribute to immunopathological responses to the toxins.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Daejeon 34141, Korea.
- Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 127 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea.
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA.
| |
Collapse
|
6
|
Bacteria, the endoplasmic reticulum and the unfolded protein response: friends or foes? Nat Rev Microbiol 2014; 13:71-82. [PMID: 25534809 DOI: 10.1038/nrmicro3393] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unfolded protein response (UPR) is a cytoprotective response that is aimed at restoring cellular homeostasis following physiological stress exerted on the endoplasmic reticulum (ER), which also invokes innate immune signalling in response to invading microorganisms. Although it has been known for some time that the UPR is modulated by various viruses, recent evidence indicates that it also has multiple roles during bacterial infections. In this Review, we describe how bacteria interact with the ER, including how bacteria induce the UPR, how subversion of the UPR promotes bacterial proliferation and how the UPR contributes to innate immune responses against invading bacteria.
Collapse
|
7
|
Lee MS, Kim MH, Tesh VL. Shiga toxins expressed by human pathogenic bacteria induce immune responses in host cells. J Microbiol 2013; 51:724-30. [PMID: 24385347 DOI: 10.1007/s12275-013-3429-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/22/2013] [Indexed: 12/22/2022]
Abstract
Shiga toxins are a family of genetically and structurally related toxins that are the primary virulence factors produced by the bacterial pathogens Shigella dysenteriae serotype 1 and certain Escherichia coli strains. The toxins are multifunctional proteins inducing protein biosynthesis inhibition, ribotoxic and ER stress responses, apoptosis, autophagy, and inflammatory cytokine and chemokine production. The regulated induction of inflammatory responses is key to minimizing damage upon injury or pathogen-mediated infections, requiring the concerted activation of multiple signaling pathways to control cytokine/chemokine expression. Activation of host cell signaling cascades is essential for Shiga toxin-mediated proinflammatory responses and the contribution of the toxins to virulence. Many studies have been reported defining the inflammatory response to Shiga toxins in vivo and in vitro, including production and secretion of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), macrophage inflammatory protein-1α/β (MIP-1α/β), macrophage chemoattractant monocyte chemoattractant protein 1 (MCP-1), interleukin 8 (IL-8), interleukin 6 (IL-6), and Groβ. These cytokines and chemokines may contribute to damage in the colon and development of life threatening conditions such as acute renal failure (hemolytic uremic syndrome) and neurological abnormalities. In this review, we summarize recent findings in Shiga toxin-mediated inflammatory responses by different types of cells in vitro and in animal models. Signaling pathways involved in the inflammatory responses are briefly reviewed.
Collapse
Affiliation(s)
- Moo-Seung Lee
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Republic of Korea,
| | | | | |
Collapse
|
8
|
Mariani-Kurkdjian P, Bingen É. Physiopathologie et virulence des Escherichia coli producteurs de Shiga-toxines. MEDECINE INTENSIVE REANIMATION 2012. [DOI: 10.1007/s13546-012-0481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Szabady RL, Lokuta MA, Walters KB, Huttenlocher A, Welch RA. Modulation of neutrophil function by a secreted mucinase of Escherichia coli O157:H7. PLoS Pathog 2009; 5:e1000320. [PMID: 19247439 PMCID: PMC2642718 DOI: 10.1371/journal.ppat.1000320] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Accepted: 01/30/2009] [Indexed: 01/13/2023] Open
Abstract
Escherichia coli O157∶H7 is a human enteric pathogen that causes hemorrhagic colitis which can progress to hemolytic uremic syndrome, a severe kidney disease with immune involvement. During infection, E. coli O157∶H7 secretes StcE, a metalloprotease that promotes the formation of attaching and effacing lesions and inhibits the complement cascade via cleavage of mucin-type glycoproteins. We found that StcE cleaved the mucin-like, immune cell-restricted glycoproteins CD43 and CD45 on the neutrophil surface and altered neutrophil function. Treatment of human neutrophils with StcE led to increased respiratory burst production and increased cell adhesion. StcE-treated neutrophils exhibited an elongated morphology with defective rear detachment and impaired migration, suggesting that removal of the anti-adhesive capability of CD43 by StcE impairs rear release. Use of zebrafish embryos to model neutrophil migration revealed that StcE induced neutrophil retention in the fin after tissue wounding, suggesting that StcE modulates neutrophil-mediated inflammation in vivo. Neutrophils are crucial innate effectors of the antibacterial immune response and can contribute to severe complications caused by infection with E. coli O157∶H7. Our data suggest that the StcE mucinase can play an immunomodulatory role by directly altering neutrophil function during infection. StcE may contribute to inflammation and tissue destruction by mediating inappropriate neutrophil adhesion and activation. Enterohemorrhagic Escherichia coli (EHEC) poses a significant threat to the U.S. food supply, causing foodborne gastrointestinal disease in humans that can progress to hemolytic uremic syndrome (HUS), a potentially fatal kidney disease. Research suggests that EHEC strains are growing more virulent, resulting in a higher incidence of hospitalization and development of HUS from recent produce-associated outbreaks. Although immune dysregulation is a feature of HUS disease, the specific mechanisms contributing to altered immune function require investigation. Furthermore, the contribution of the immune response to early intestinal disease is not known. StcE is a secreted protease of EHEC that is expressed during infection and may contribute to virulence via cleavage of mucin-like glycoproteins. In this study, we define mucinase activity toward glycoproteins on the surface of human neutrophils and find that StcE alters neutrophil activity by interacting with these proteins. StcE affected crucial neutrophil functions including oxidative burst production and migration. The effects of StcE were both cleavage-dependent and cleavage-independent, providing insight into a novel mechanism for mediating neutrophil function via mucin interactions. Our study reports an immune-modulating role for a potential EHEC virulence factor and provides a possible explanation for altered neutrophil phenotypes observed during E. coli O157∶H7-induced disease.
Collapse
Affiliation(s)
- Rose L. Szabady
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Mary A. Lokuta
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kevin B. Walters
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Rodney A. Welch
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
10
|
Zanchi C, Zoja C, Morigi M, Valsecchi F, Liu XY, Rottoli D, Locatelli M, Buelli S, Pezzotta A, Mapelli P, Geelen J, Remuzzi G, Hawiger J. Fractalkine and CX3CR1 mediate leukocyte capture by endothelium in response to Shiga toxin. THE JOURNAL OF IMMUNOLOGY 2008; 181:1460-9. [PMID: 18606701 DOI: 10.4049/jimmunol.181.2.1460] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Shiga toxins (Stx) are the virulence factors of enterohemorrhagic Escherichia coli O157:H7, a worldwide emerging diarrheal pathogen, which precipitates postdiarrheal hemolytic uremic syndrome, the leading cause of acute renal failure in children. In this study, we show that Stx2 triggered expression of fractalkine (FKN), a CX3C transmembrane chemokine, acting as both adhesion counterreceptor on endothelial cells and soluble chemoattractant. Stx2 caused in HUVEC expression of FKN mRNA and protein, which promoted leukocyte capture, ablated by Abs to either endothelial FKN or leukocyte CX3CR1 receptor. Exposure of human glomerular endothelial cells to Stx2 recapitulated its FKN-inducing activity and FKN-mediated leukocyte adhesion. Both processes required phosphorylation of Src-family protein tyrosine kinase and p38 MAPK in endothelial cells. Furthermore, they depended on nuclear import of NF-kappaB and other stress-responsive transcription factors. Inhibition of their nuclear import with the cell-penetrating SN50 peptide reduced FKN mRNA levels and FKN-mediated leukocyte capture by endothelial cells. Adenoviral overexpression of IkappaBalpha inhibited FKN mRNA up-regulation. The FKN-mediated responses to Stx2 were also dependent on AP-1. In mice, both virulence factors of Stx-producing E. coli, Stx and LPS, are required to elicit hemolytic uremic syndrome. In this study, FKN was detected within glomeruli of C57BL/6 mice injected with Stx2, and further increased after Stx2 plus LPS coadministration. This was associated with recruitment of CX3CR1-positive cells. Thus, in response to Stx2, FKN is induced playing an essential role in the promotion of leukocyte-endothelial cell interaction thereby potentially contributing to the renal microvascular dysfunction and thrombotic microangiopathy that underlie hemolytic uremic syndrome due to enterohemorrhagic E. coli O157:H7 infection.
Collapse
Affiliation(s)
- Cristina Zanchi
- Mario Negri Institute for Pharmacological Research, Bergamo, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jandhyala DM, Ahluwalia A, Obrig T, Thorpe CM. ZAK: a MAP3Kinase that transduces Shiga toxin- and ricin-induced proinflammatory cytokine expression. Cell Microbiol 2008; 10:1468-77. [DOI: 10.1111/j.1462-5822.2008.01139.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Torres AG, Li Y, Tutt CB, Xin L, Eaves-Pyles T, Soong L. Outer membrane protein A of Escherichia coli O157:H7 stimulates dendritic cell activation. Infect Immun 2006; 74:2676-85. [PMID: 16622204 PMCID: PMC1459721 DOI: 10.1128/iai.74.5.2676-2685.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Outer membrane protein A (OmpA) is located in the membrane of Escherichia coli and other gram-negative bacteria and plays a multifunctional role in bacterial physiology and pathogenesis. In enterohemorrhagic E. coli (EHEC), especially serotype O157:H7, OmpA interacts with cultured human intestinal cells and likely acts as an important component to stimulate the immune response during infection. To test this hypothesis, we analyzed the effect of EHEC OmpA on cytokine production by dendritic cells (DCs) and on DC migration across polarized intestinal epithelial cells. OmpA induced murine DCs to secrete interleukin-1 (IL-1), IL-10, and IL-12 in a dose-dependent manner, and this effect was independent of Toll-like receptor 4. Although DCs displayed differential responses to EHEC OmpA and OmpA-specific antibodies enhanced DC cytokine secretion, we cannot discard that other EHEC surface elements were likely to be involved. While OmpA was required for bacterial binding to polarized Caco-2 cells, it was not needed for the induction of cytokine production by Caco-2 cells or for human DC migration across polarized cells.
Collapse
Affiliation(s)
- Alfredo G Torres
- Department of Microbiology and Immunology, 301 University Blvd., University of Texas Medical Branch, Galveston, Texas 77555-1070, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Wang JY, Wang SS, Yin PZ. Haemolytic–uraemic syndrome caused by a non-O157 : H7 Escherichia coli strain in experimentally inoculated dogs. J Med Microbiol 2006; 55:23-29. [PMID: 16388026 DOI: 10.1099/jmm.0.46239-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both O157 : H7 and non-O157 : H7 Escherichia coli strains are reported to cause haemolytic–uraemic syndrome (HUS). This study was carried out to explore the pathogenicity of O157 : H7 and non-O157 : H7 E. coli strains in experimentally inoculated dogs. Twenty 40-day-old dogs were randomly divided into four groups, and the groups (n=5) were administrated orally with E. coli O157 : H7 strains HJ2001-1 (from a patient with serious haemorrhagic diarrhoea) and HZ2001-4 (from a domestic sheep kept in the house of a patient who died from diarrhoea and subsequent acute renal failure), HZ2001-9 (a non-O157 : H7 strain, from a 6-month-old child who died from diarrhoea and subsequent acute renal failure) or a control strain, EC8099. HJ2001-1 and HZ2001-4 caused slight diarrhoea, and the dogs recovered without any complications. However, HZ2001-9 resulted in watery diarrhoea accompanied with slightly bloody stools, followed by death on the fifth or sixth day. In the fatally infected experimental animals, necrotic lesions in the liver and bacterial embolism in the kidney were observed. The primary cause of death was microvascular thrombosis caused by the bacteria, leading to renal and multiple organ failure. Therefore, the non-O157 : H7 E. coli strain HZ2001-9 causes clinical signs and pathological lesions in dogs that are consistent with those in acute renal failure or HUS in humans.
Collapse
Affiliation(s)
- Jian-Yang Wang
- Department of Intestinal Diseases, Division of Infectious Diseases, Henan Provincial Centre for Disease Control and Prevention, Zhengzhou, China
| | - Shi-Shan Wang
- Department of Intestinal Diseases, Division of Infectious Diseases, Henan Provincial Centre for Disease Control and Prevention, Zhengzhou, China
| | - Pin-Zhang Yin
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
14
|
Abstract
This article focuses on the five most common bacterial enteropathogens of the developed world--Helicobacter pylori, Escherichia coli, Shigella, Salmonella, and Campylobacter--from the perspective of how they cause disease and how they relate to each other. Basic and recurring themes of bacterial pathogenesis, including mechanisms of entry, methods of adherence, sites of cellular injury, role of toxins, and how pathogens acquire particular virulence traits (and antimicrobial resistance), are discussed.
Collapse
Affiliation(s)
- Manuel R Amieva
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, CA 94305-5208, USA.
| |
Collapse
|
15
|
Colpoys WE, Cochran BH, Carducci TM, Thorpe CM. Shiga toxins activate translational regulation pathways in intestinal epithelial cells. Cell Signal 2004; 17:891-9. [PMID: 15763431 DOI: 10.1016/j.cellsig.2004.11.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 11/03/2004] [Accepted: 11/03/2004] [Indexed: 11/20/2022]
Abstract
Shiga toxins (Stxs) cause irreversible damage to eukaryotic ribosomes, yet cellular intoxication of intestinal epithelial cells (IECs) results in increased synthesis of selected proteins, notably cytokines. How mRNA translation is maintained in this circumstance is unclear. This study was designed to assess whether Stx-induced alterations in host signal transduction machinery permit translation despite protein synthesis inhibition. A key step of translation is recruitment of initiation machinery to the 5' mRNA cap. This event occurs in part via interaction of the 5' cap with the cap binding protein, eIF4E, whose activity is positively regulated by phosphorylation and negatively regulated by binding to the translational repressor 4E-BP1. Following Stx treatment of IECs, eIF4E phosphorylation was detected by Western blotting using phospho-specific antibodies. Treatment with the p38 inhibitor, SB202190, or either of the ERK1/2 inhibitors, PD98059 and U0126, partially blocked Stx1-induced eIF4E phosphorylation. The Mnk1 inhibitor, CGP57380, blocked both basal and Stx-induced eIF4E phosphorylation. Interestingly, pretreatment with CGP57380 did not alter basal protein synthesis, but diminished the ability of cells to maintain translation following Stx1 challenge. Stx1 also induced hyperphosphorylation of 4E-BP1 and phosphorylation of S6Kinase; both effects were blocked by rapamycin. These data are novel observations showing that Stxs regulate multiple signal transduction pathways controlling translation in host cells, and support a role for eIF4E phosphorylation in maintaining host cell translation despite ribosomal intoxication.
Collapse
Affiliation(s)
- W E Colpoys
- Division of Geographic Medicine and Infectious Diseases, 750 Washington Street Box 041, Boston, MA 02111, USA
| | | | | | | |
Collapse
|
16
|
Grossman CJ, Hydo LJ, Wang JCL, Pochapin M, Barie PS. Devastating Presentations of Regional Enteritis (Crohn's Disease): Two Reports of Survival Following Severe Multiple Organ Dysfunction Syndrome. Surg Infect (Larchmt) 2004; 5:301-7. [PMID: 15684801 DOI: 10.1089/sur.2004.5.301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Regional enteritis may present in the setting of a variety of clinical symptoms. These symptoms range from mild to severe. METHODS Here we describe two different presentations of regional enteritis (Crohn's disease): one in the setting of Clostridium perfringens sepsis and the second in association with hemolytic-uremic syndrome. Both presentations resulted in life-threatening multiple organ dysfunction syndrome. RESULTS Following appropriate surgical management and intensive physiologic support, both patients recovered, despite a MODS-predicted risk of mortality of 100% and 91%, respectively. CONCLUSIONS Fulminant presentations of regional enteritis of this magnitude are rare, and highlight the resolution of severe multiple organ dysfunction for each presentation.
Collapse
Affiliation(s)
- Catherine J Grossman
- Department of Surgery, Division of Critical Care and Trauma, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | |
Collapse
|
17
|
Livny J, Friedman DI. Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. Mol Microbiol 2004; 51:1691-704. [PMID: 15009895 DOI: 10.1111/j.1365-2958.2003.03934.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shiga toxin (Stx) genes in Stx producing Escherichia coli (STEC) are encoded in prophages of the lambda family, such as H-19B. The subpopulation of STEC lysogens with induced prophages has been postulated to contribute significantly to Stx production and release. To study induced STEC, we developed a selectable in vivo expression technology, SIVET, a reporter system adapted from the RIVET system. The SIVET lysogen has a defective H-19B prophage encoding the TnpR resolvase gene downstream of the phage PR promoter and a cat gene with an inserted tet gene flanked by targets for the TnpR resolvase. Expression of resolvase results in excision of tet, restoring a functional cat gene; induced lysogens survive and are chloramphenicol resistant. Using SIVET we show that: (i) approximately 0.005% of the H-19B lysogens are spontaneously induced per generation during growth in LB. (ii) Variations in cellular physiology (e.g. RecA protein) rather than in levels of expressed repressor explain why members of a lysogen population are spontaneously induced. (iii) A greater fraction of lysogens with stx encoding prophages are induced compared to lysogens with non-Stx encoding prophages, suggesting increased sensitivity to inducing signal(s) has been selected in Stx encoding prophages. (iv) Only a small fraction of the lysogens in a culture spontaneously induce and when the lysogen carries two lambdoid prophages with different repressor/operators, 933W and H-19B, usually both prophages in the same cell are induced.
Collapse
Affiliation(s)
- Jonathan Livny
- Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
18
|
Schüller S, Frankel G, Phillips AD. Interaction of Shiga toxin from Escherichia coli with human intestinal epithelial cell lines and explants: Stx2 induces epithelial damage in organ culture. Cell Microbiol 2004; 6:289-301. [PMID: 14764112 DOI: 10.1046/j.1462-5822.2004.00370.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Shiga toxins (Stx) produced by Escherichia coli are associated with systemic complications such as haemolytic-uraemic syndrome. The mechanism of Stx translocation across the epithelial barrier is unknown as human intestinal epithelium lacks receptor Gb3. In this study, we have examined the interaction of purified Stx1 and 2 with Caco-2 (Gb3+) and T84 (Gb3-) cell lines, and determined the effects of Stx on human intestine using in vitro organ culture (IVOC). Stx exposure caused inhibition of protein synthesis and apoptosis in Caco-2 but not in T84 cells. However, both Stx1 and 2 were transported to the endoplasmic reticulum, and the Stx1 A-subunit was cleaved in a furin-dependent manner in both cell lines. Thus, a Gb3-independent retrograde transport route exists in T84 cells for Stx that does not induce cell damage. IVOC demonstrated increased epithelial cell extrusion in response to exposure to Stx2, but not Stx1, in both small intestine and colon. Pretreatment of Stx2 with Stx2-specific antibody abrogated this effect. Overlaying frozen sections with Stx showed lamina propria, but not epithelial, cell binding that paralleled Gb3 localization, and included endothelium and pericryptal myofibroblasts. This indicates that human intestinal epithelium may evince Stx2-induced damage in the absence of Gb3 receptors, by an as yet unrecognized mechanism.
Collapse
Affiliation(s)
- Stephanie Schüller
- Centre for Paediatric Gastroenterology, Royal Free and University College Medical School, London, UK.
| | | | | |
Collapse
|
19
|
Menge C, Blessenohl M, Eisenberg T, Stamm I, Baljer G. Bovine ileal intraepithelial lymphocytes represent target cells for Shiga toxin 1 from Escherichia coli. Infect Immun 2004; 72:1896-905. [PMID: 15039308 PMCID: PMC375150 DOI: 10.1128/iai.72.4.1896-1905.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The discovery that bovine peripheral lymphocytes are sensitive to Stx1 identified a possible mechanism for the persistence of infections with Shiga toxin (Stx)-producing Escherichia coli (STEC) in the bovine reservoir host. If intraepithelial lymphocytes (IEL) are also sensitive to Stx1, the idea that Stx1 affects inflammation in the bovine intestine is highly attractive. To prove this hypothesis, ileal IEL (iIEL) were prepared from adult cattle, characterized by flow cytometry, and subjected to functional assays in the presence and absence of purified Stx1. We found that 14.9% of all iIEL expressed Gb(3)/CD77, the Stx1 receptor on bovine lymphocytes, and 7.9% were able to bind the recombinant B subunit of Stx1. The majority of Gb(3)/CD77(+) cells were activated CD3(+) CD6(+) CD8 alpha(+) T cells, whereas only some CD4(+) T cells and B cells expressed Gb(3)/CD77. However, Stx1 blocked the mitogen-induced transformation to enlarged blast cells within all subpopulations to a similar extent and significantly reduced the percentage of Gb(3)/CD77(+) cells. Although Stx1 did not affect the natural killer cell activity of iIEL, the toxin accelerated the synthesis of interleukin-4 (IL-4) mRNA and reduced the amount of IL-8 mRNA in bovine iIEL cultures. Because the intestinal system comprises a rich network of interactions between different types of cells and any dysfunction may influence the course of intestinal infections, this demonstration that Stx1 can target bovine IEL may be highly relevant for our understanding of the interplay between STEC and its reservoir host.
Collapse
Affiliation(s)
- Christian Menge
- Institut für Hygiene und Infektionskrankheiten der Tiere der Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
20
|
Menge C, Stamm I, Blessenohl M, Wieler LH, Baljer G. Verotoxin 1 from Escherichia coli affects Gb3/CD77+ bovine lymphocytes independent of interleukin-2, tumor necrosis factor-alpha, and interferon-alpha. Exp Biol Med (Maywood) 2003; 228:377-86. [PMID: 12671182 DOI: 10.1177/153537020322800408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Verotoxin (VT)-induced immunomodulation has been implicated in the ability of VT-producing Escherichia coli (VTEC) to cause persistent infections in cattle. VT1, also referred to as Shiga toxin 1, is a potent cytotoxin that modulates cytokine secretions and functions. This prompted the current investigation to examine whether the inhibiting effect of VT1 on bovine lymphocytes correlates with the expression of the cellular VT1 receptor Gb3/CD77 or is mediated instead via perturbation of cytokine secretion. Using blood mononuclear cells stimulated by mitogens as a model, VT1 significantly blocked lymphoblast transformation and proliferation in the BoCD8+ T cell and BoCD21+ B cell population. In contrast, VT1 dramatically reduced the number of viable Gb3/CD77+ blast cells within all subpopulations identified (BoCD2+, BoCD4+, BoCD8+, WC1+ [i.e., gammadelta T cells] BoCD21+, and BoCD25+). Similar effects of VT1 were observed when the culture medium was supplemented with selected cytokines: tumor necrosis factor-alpha-sensitizing endothelial cells against VT1, interferon-alpha (IFN-alpha) as bovine IFN-alpha receptors are partially homologous to the B-subunit of VT1, and interleukin-2 that is critical for lymphocyte proliferation in vitro. The addition of these cytokines was neither able to mimic nor to overcome the effects of VT1. Therefore, it is concluded that VT1 directly acts on bovine lymphocytes rather than inducing a cytokine-mediated effect. VT1 considerably affects all main bovine lymphocyte subpopulations, implicating that the immune system is a predominant target for VT1 in cattle.
Collapse
Affiliation(s)
- Christian Menge
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig-Universität, D-35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|
21
|
Smith WE, Kane AV, Campbell ST, Acheson DWK, Cochran BH, Thorpe CM. Shiga toxin 1 triggers a ribotoxic stress response leading to p38 and JNK activation and induction of apoptosis in intestinal epithelial cells. Infect Immun 2003; 71:1497-504. [PMID: 12595468 PMCID: PMC148871 DOI: 10.1128/iai.71.3.1497-1504.2003] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxins made by Shiga toxin-producing Escherichia coli (STEC) are associated with hemolytic uremic syndrome. Shiga toxins (Stxs) may access the host systemic circulation by absorption across the intestinal epithelium. The effects of Stxs on this cell layer are not completely understood, although animal models of STEC infection suggest that, in the gut, Stxs may participate in both immune activation and apoptosis. Stxs have one enzymatically active A subunit associated with five identical B subunits. The A subunit inactivates ribosomes by cleaving a specific adenine from the 28S rRNA. We have previously shown that Stxs can induce multiple C-X-C chemokines in intestinal epithelial cells in vitro, including interleukin-8 (IL-8), and that Stx-induced IL-8 expression is linked to induction of c-Jun mRNA and p38 mitogen-activated protein (MAP) kinase pathway activity. We now report Stx1 induction of both primary response genes c-jun and c-fos and activation of the stress-activated protein kinases, JNK/SAPK and p38, in the intestinal epithelial cell line HCT-8. By 1 h of exposure to Stx1, mRNAs for c-jun and c-fos are induced, and both JNK and p38 are activated; activation of both kinases persisted up to 24 h. Stx1 enzymatic activity was required for kinase activation; a catalytically defective mutant toxin did not activate either. Stx1 treatment of HCT-8 cells resulted in cell death that was associated with caspase 3 cleavage and internucleosomal DNA fragmentation; this cytotoxicity also required Stx1 enzymatic activity. Blocking Stx1-induced p38 and JNK activation with the inhibitor SB202190 prevented cell death and diminished Stx1-associated caspase 3 cleavage. In summary, these data link the Stx1-induced ribotoxic stress response with both chemokine expression and apoptosis in the intestinal epithelial cell line HCT-8 and suggest that blocking host cell MAP kinases may prevent these Stx-associated events.
Collapse
Affiliation(s)
- Wendy E Smith
- Division of Geographic Medicine and Infectious Diseases, Department of Medicine, Tufts--New England Medical Center, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
22
|
Hoey DEE, Sharp L, Currie C, Lingwood CA, Gally DL, Smith DGE. Verotoxin 1 binding to intestinal crypt epithelial cells results in localization to lysosomes and abrogation of toxicity. Cell Microbiol 2003; 5:85-97. [PMID: 12580945 DOI: 10.1046/j.1462-5822.2003.00254.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Verotoxins (VTs) are important virulence factors of enterohaemorrhagic Escherichia coli (EHEC), a group of bacteria associated with severe disease sequelae in humans. The potent cytotoxic activity of VTs is important in pathogenicity, resulting in the death of cells expressing receptor Gb3 (globotriaosylceramide). EHEC, particularly serotype O157:H7, frequently colonize reservoir hosts (such as cattle) in the absence of disease, however, the basis to avirulence in this host has been unclear. The objective of this study was assessment of interaction between VT and intestinal epithelium, which represents the major interface between the host and enteric organisms. Bovine intestinal epithelial cells expressed Gb3 in vitro in primary cell cultures, localizing specifically to proliferating crypt cells in corroboration with in situ immunohistological observations on intestinal mucosa. Expression of receptor by these cells contrasts with the absence of Gb3 on human intestinal epithelium in vivo. Despite receptor expression, VT exhibited no cytotoxic activity against bovine epithelial cells. Sub-cellular localization of VT indicated that this toxin was excluded from endoplasmic reticulum but localized to lysosomes, corresponding with abrogation of cytotoxicity. VT intracellular trafficking was unaffected by treatment of primary cell cultures with methyl-beta-cyclodextrin, indicating that Gb3 in these cells is not associated with lipid rafts but is randomly distributed in the membrane. The combination of Gb3 isoform, membrane distribution and VT trafficking correlate with observations of other receptor-positive cells that resist verocytotoxicity. These studies demonstrate that intestinal epithelium is an important determinant in VT interaction with major implications for the differential consequences of EHEC infection in reservoir hosts and humans.
Collapse
Affiliation(s)
- D E Elaine Hoey
- Department of Medical Microbiology, University of Edinburgh, Edingburgh, Scotland, UK
| | | | | | | | | | | |
Collapse
|
23
|
Stamm I, Wuhrer M, Geyer R, Baljer G, Menge C. Bovine lymphocytes express functional receptors for Escherichia coli Shiga toxin 1. Microb Pathog 2002; 33:251-64. [PMID: 12495672 DOI: 10.1006/mpat.2002.0527] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interactions of Shiga toxins (Stxs) and immune cells contribute to the pathogenesis of diseases due to Stx-producing Escherichia coli (STEC) infections in humans and facilitate the persistence of infection in asymptomatically infected cattle. Our recent findings that bovine B and T lymphocytes express Gb(3)/CD77, the human Stx-receptor, prompted us to determine whether the bovine homologue also mediates binding and internalization of Stx1. In fact, Stx1 holotoxin and recombinant B subunit (rStxB1) bound to stimulated bovine peripheral blood mononuclear cells, especially to those subpopulations (B cells, BoCD8(+) T cells) that are highly sensitive to Stx1. Competition and HPTLC-binding studies confirmed that Stx1 binds to bovine Gb(3), but different receptor isoforms with varying affinities for rStxB1 were expressed during the course of lymphocyte activation. At least one of these isoforms mediated toxin uptake. An anti-StxB1 mouse monoclonal antibody, used as a model for bovine serum antibodies specific for Stx1, modulated rather than generally prevented rStxB1 binding to and internalization by the receptors. The presence of functional Stx1-receptors on bovine lymphocytes explains the immunomodulatory effect of Stx1 observed in cattle at a molecular level. Furthermore, expression of such receptors by bovine but not human T cells enlightens the background for the differential outcome of STEC infections in cattle and man, i.e., persistent infection and development of disease, respectively.
Collapse
Affiliation(s)
- Ivonne Stamm
- Institut für Hygiene und Infektionskrankheiten der Tiere der Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | |
Collapse
|
24
|
|