1
|
Genome-wide screen in human plasma identifies multifaceted complement evasion of Pseudomonas aeruginosa. PLoS Pathog 2023; 19:e1011023. [PMID: 36696456 PMCID: PMC9901815 DOI: 10.1371/journal.ppat.1011023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/06/2023] [Accepted: 11/23/2022] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa, an opportunistic Gram-negative pathogen, is a leading cause of bacteremia with a high mortality rate. We recently reported that P. aeruginosa forms a persister-like sub-population of evaders in human plasma. Here, using a gain-of-function transposon sequencing (Tn-seq) screen in plasma, we identified and validated previously unknown factors affecting bacterial persistence in plasma. Among them, we identified a small periplasmic protein, named SrgA, whose expression leads to up to a 100-fold increase in resistance to killing. Additionally, mutants in pur and bio genes displayed higher tolerance and persistence, respectively. Analysis of several steps of the complement cascade and exposure to an outer-membrane-impermeable drug, nisin, suggested that the mutants impede membrane attack complex (MAC) activity per se. Electron microscopy combined with energy-dispersive X-ray spectroscopy (EDX) revealed the formation of polyphosphate (polyP) granules upon incubation in plasma of different size in purD and wild-type strains, implying the bacterial response to a stress signal. Indeed, inactivation of ppk genes encoding polyP-generating enzymes lead to significant elimination of persisting bacteria from plasma. Through this study, we shed light on a complex P. aeruginosa response to the plasma conditions and discovered the multifactorial origin of bacterial resilience to MAC-induced killing.
Collapse
|
2
|
Bradley ES, Zeamer AL, Bucci V, Cincotta L, Salive MC, Dutta P, Mutaawe S, Anya O, Tocci C, Moormann A, Ward DV, McCormick BA, Haran JP. Oropharyngeal microbiome profiled at admission is predictive of the need for respiratory support among COVID-19 patients. Front Microbiol 2022; 13:1009440. [PMID: 36246273 PMCID: PMC9561819 DOI: 10.3389/fmicb.2022.1009440] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The oropharyngeal microbiome, the collective genomes of the community of microorganisms that colonizes the upper respiratory tract, is thought to influence the clinical course of infection by respiratory viruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Infectious Disease 2019 (COVID-19). In this study, we examined the oropharyngeal microbiome of suspected COVID-19 patients presenting to the Emergency Department and an inpatient COVID-19 unit with symptoms of acute COVID-19. Of 115 initially enrolled patients, 50 had positive molecular testing for COVID-19+ and had symptom duration of 14 days or less. These patients were analyzed further as progression of disease could most likely be attributed to acute COVID-19 and less likely a secondary process. Of these, 38 (76%) went on to require some form of supplemental oxygen support. To identify functional patterns associated with respiratory illness requiring respiratory support, we applied an interpretable random forest classification machine learning pipeline to shotgun metagenomic sequencing data and select clinical covariates. When combined with clinical factors, both species and metabolic pathways abundance-based models were found to be highly predictive of the need for respiratory support (F1-score 0.857 for microbes and 0.821 for functional pathways). To determine biologically meaningful and highly predictive signals in the microbiome, we applied the Stable and Interpretable RUle Set to the output of the models. This analysis revealed that low abundance of two commensal organisms, Prevotella salivae or Veillonella infantium (< 4.2 and 1.7% respectively), and a low abundance of a pathway associated with LPS biosynthesis (< 0.1%) were highly predictive of developing the need for acute respiratory support (82 and 91.4% respectively). These findings suggest that the composition of the oropharyngeal microbiome in COVID-19 patients may play a role in determining who will suffer from severe disease manifestations.
Collapse
Affiliation(s)
- Evan S. Bradley
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA, United States
- *Correspondence: Evan S. Bradley,
| | - Abigail L. Zeamer
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiologic Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Vanni Bucci
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiologic Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Lindsey Cincotta
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
| | - Marie-Claire Salive
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
| | - Protiva Dutta
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
| | - Shafik Mutaawe
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
| | - Otuwe Anya
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
| | - Christopher Tocci
- Department of Biology and Biotechnology, Worcester Polytechnique Institute, Worcester, MA, United States
| | - Ann Moormann
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Doyle V. Ward
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiologic Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Beth A. McCormick
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiologic Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - John P. Haran
- Department of Emergency Medicine, UMass Memorial Medical Center, Worcester, MA, United States
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA, United States
- Department of Microbiology and Physiologic Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Singh A, Bansal K, Kumar S, Patil PB. Deep Population Genomics Reveals Systematic and Parallel Evolution at a Lipopolysaccharide Biosynthetic Locus in Xanthomonas Pathogens That Infect Rice and Sugarcane. Appl Environ Microbiol 2022; 88:e0055022. [PMID: 35916503 PMCID: PMC9397109 DOI: 10.1128/aem.00550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
The advent of high-throughput sequencing and population genomics has enabled researchers to investigate selection pressure at hypervariable genomic loci encoding pathogen-associated molecular pattern (PAMP) molecules like lipopolysaccharide (LPS). Xanthomonas is a model and a major group of phytopathogenic bacteria that infect hosts in tissue-specific manner. Our in-depth population-based genomic investigation revealed the emergence of major lineages in two Xanthomonas pathogens that infect xylem of rice and sugarcane is associated with the acquisition and later large-scale replacement by distinct type of LPS cassettes. In the population of the rice xylem pathogen, Xanthomonas oryzae pv. oryzae (Xoo) and sugarcane pathogens Xanthomonas sacchari (Xsac) and Xanthomonas vasicola (Xvv), the BXO8 type of LPS cassette is replaced by a BXO1 type of cassette in Xoo and by Xvv type LPS cassette in Xsac and Xvv. These findings suggest a wave of parallel evolution at an LPS locus mediated by horizontal gene transfer (HGT) events during its adaptation and emergence. Aside from xylem pathogens, two closely related lineages of Xoo that infect parenchyma of rice and Leersia hexandra grass have acquired an LPS cassette from Xanthomonas pathogens that infect parenchyma of citrus, walnut, and strawberries, indicating yet another instance of parallel evolution mediated by HGT at an LPS locus. Our targeted and megapopulation-based genome dynamic studies revealed the acquisition and dominance of specific types of LPS cassettes in adaptation and success of a major group of phytopathogenic bacteria. IMPORTANCE Lipopolysaccharide (LPS) is a major microbe associated molecular pattern and hence a major immunomodulator. As a major and outer member component, it is expected that LPS is a frontline defense mechanism to deal with different host responses. Limited studies have indicated that LPS loci are also highly variable at strain and species level in plant-pathogenic bacteria, suggesting strong selection pressure from plants and associated niches. The advent of high-throughput genomics has led to the availability of a large set of genomic resources at taxonomic and population levels. This provides an exciting and important opportunity to carryout megascale targeted and population-based comparative genomic/association studies at important loci like those encoding LPS biosynthesis to understand their role in the evolution of the host, tissue specificity, and also predominant lineages. Such studies will also fill major gap in understanding host and tissue specificity in pathogenic bacteria. Our pioneering study uses the Xanthomonas group of phytopathogens that are known for their characteristic host and tissue specificity. The present deep phylogenomics of diverse Xanthomonas species and its members revealed lineage association and dominance of distinct types of LPS in accordance with their origin, host, tissue specificity, and evolutionary success.
Collapse
Affiliation(s)
- Anu Singh
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Kanika Bansal
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Sanjeet Kumar
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Prabhu B. Patil
- Bacterial Genomics and Evolution Laboratory, Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
4
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
6
|
Bradley ES, Zeamer AL, Bucci V, Cincotta L, Salive MC, Dutta P, Mutaawe S, Anya O, Tocci C, Moormann A, Ward DV, McCormick BA, Haran JP. Oropharyngeal Microbiome Profiled at Admission is Predictive of the Need for Respiratory Support Among COVID-19 Patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.02.28.22271627. [PMID: 35262096 PMCID: PMC8902889 DOI: 10.1101/2022.02.28.22271627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The clinical course of infection due to respiratory viruses such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2), the causative agent of Coronavirus Disease 2019 (COVID-19) is thought to be influenced by the community of organisms that colonizes the upper respiratory tract, the oropharyngeal microbiome. In this study, we examined the oropharyngeal microbiome of suspected COVID-19 patients presenting to the Emergency Department and an inpatient COVID-19 unit with symptoms of acute COVID-19. Of 115 enrolled patients, 74 were confirmed COVID-19+ and 50 had symptom duration of 14 days or less; 38 acute COVID-19+ patients (76%) went on to require respiratory support. Although no microbiome features were found to be significantly different between COVID-19+ and COVID-19-patients, when we conducted random forest classification modeling (RFC) to predict the need of respiratory support for the COVID-19+ patients our analysis identified a subset of organisms and metabolic pathways whose relative abundance, when combined with clinical factors (such as age and Body Mass Index), was highly predictive of the need for respiratory support (F1 score 0.857). Microbiome Multivariable Association with Linear Models (MaAsLin2) analysis was then applied to the features identified as predicative of the need for respiratory support by the RFC. This analysis revealed reduced abundance of Prevotella salivae and metabolic pathways associated with lipopolysaccharide and mycolic acid biosynthesis to be the strongest predictors of patients requiring respiratory support. These findings suggest that composition of the oropharyngeal microbiome in COVID-19 may play a role in determining who will suffer from severe disease manifestations. Importance The microbial community that colonizes the upper airway, the oropharyngeal microbiome, has the potential to affect how patients respond to respiratory viruses such as SARS-CoV2, the causative agent of COVID-19. In this study, we investigated the oropharyngeal microbiome of COVID-19 patients using high throughput DNA sequencing performed on oral swabs. We combined patient characteristics available at intake such as medical comorbidities and age, with measured abundance of bacterial species and metabolic pathways and then trained a machine learning model to determine what features are predicative of patients needing respiratory support in the form of supplemental oxygen or mechanical ventilation. We found that decreased abundance of some bacterial species and increased abundance of pathways associated bacterial products biosynthesis was highly predictive of needing respiratory support. This suggests that the oropharyngeal microbiome affects disease course in COVID-19 and could be targeted for diagnostic purposes to determine who may need oxygen, or therapeutic purposes such as probiotics to prevent severe COVID-19 disease manifestations.
Collapse
Affiliation(s)
- Evan S Bradley
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
- Program in Microbiome Dynamics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, 01605
| | - Abigail L Zeamer
- Program in Microbiome Dynamics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, 01605
- Department of Microbiology and Physiologic Systems, 55 Lake Avenue North, Worcester MA, 01605
| | - Vanni Bucci
- Program in Microbiome Dynamics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, 01605
- Department of Microbiology and Physiologic Systems, 55 Lake Avenue North, Worcester MA, 01605
| | - Lindsey Cincotta
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
| | - Marie-Claire Salive
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
| | - Protiva Dutta
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
| | - Shafik Mutaawe
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
| | - Otuwe Anya
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
| | - Christopher Tocci
- Biology and Biotechnology, Worcester Polytechnique Institute, 100 Institute Road, Worcester, MA 01609
| | - Ann Moormann
- Department of Medicine, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655
| | - Doyle V Ward
- Program in Microbiome Dynamics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, 01605
- Department of Microbiology and Physiologic Systems, 55 Lake Avenue North, Worcester MA, 01605
| | - Beth A McCormick
- Program in Microbiome Dynamics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, 01605
- Department of Microbiology and Physiologic Systems, 55 Lake Avenue North, Worcester MA, 01605
| | - John P Haran
- Department of Emergency Medicine, UMass Memorial Medical Center 55 Lake Avenue North, Worcester MA, 01605
- Program in Microbiome Dynamics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester MA, 01605
- Department of Microbiology and Physiologic Systems, 55 Lake Avenue North, Worcester MA, 01605
| |
Collapse
|
7
|
Kulkarni HS, Lease ED. Can we decloak how infections drive complications after lung transplantation? J Heart Lung Transplant 2021; 40:960-962. [PMID: 34176725 PMCID: PMC8405575 DOI: 10.1016/j.healun.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Hrishikesh S Kulkarni
- Division of Pulmonary, and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.
| | - Erika D Lease
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
8
|
Stranahan LW, Arenas-Gamboa AM. When the Going Gets Rough: The Significance of Brucella Lipopolysaccharide Phenotype in Host-Pathogen Interactions. Front Microbiol 2021; 12:713157. [PMID: 34335551 PMCID: PMC8319746 DOI: 10.3389/fmicb.2021.713157] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023] Open
Abstract
Brucella is a facultatively intracellular bacterial pathogen and the cause of worldwide zoonotic infections, infamous for its ability to evade the immune system and persist chronically within host cells. Despite the frequent association with attenuation in other Gram-negative bacteria, a rough lipopolysaccharide phenotype is retained by Brucella canis and Brucella ovis, which remain fully virulent in their natural canine and ovine hosts, respectively. While these natural rough strains lack the O-polysaccharide they, like their smooth counterparts, are able to evade and manipulate the host immune system by exhibiting low endotoxic activity, resisting destruction by complement and antimicrobial peptides, entering and trafficking within host cells along a similar pathway, and interfering with MHC-II antigen presentation. B. canis and B. ovis appear to have compensated for their roughness by alterations to their outer membrane, especially in regards to outer membrane proteins. B. canis, in particular, also shows evidence of being less proinflammatory in vivo, suggesting that the rough phenotype may be associated with an enhanced level of stealth that could allow these pathogens to persist for longer periods of time undetected. Nevertheless, much additional work is required to understand the correlates of immune protection against the natural rough Brucella spp., a critical step toward development of much-needed vaccines. This review will highlight the significance of rough lipopolysaccharide in the context of both natural disease and host–pathogen interactions with an emphasis on natural rough Brucella spp. and the implications for vaccine development.
Collapse
Affiliation(s)
- Lauren W Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Angela M Arenas-Gamboa
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
9
|
Zhou SS, Auyeung KKW, Yip KM, Ye R, Zhao ZZ, Mao Q, Xu J, Chen HB, Li SL. Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 74:152761. [PMID: 31005370 DOI: 10.1016/j.phymed.2018.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ginseng has therapeutic potential for treating obesity and the associated gut microbiota dysbiosis. However, whether white ginseng and red ginseng, the two kinds of commonly used processed ginseng, possess different anti-obesity effects remains unknown. PURPOSE Anti-obesity effects of water extracts of white ginseng and red ginseng (WEWG and WERG) were compared, and the potential mechanisms were discussed. METHODS Chemical profiles of WEWG and WERG were characterized by ultra-high performance liquid chromatography-tandem triple quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) and high performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD). Anti-obesity effects of WEWG/WERG were examined by determining fat accumulation, systemic inflammation, enteric metabolic disorders and gut microbiota dysbiosis in high-fat diet (HFD)-fed obese mice. RESULTS Both WEWG and WERG exerted anti-obesity effects, with WEWG stronger than WERG. Compared to WERG, WEWG contained less contents of carbohydrates (polysaccharides, oligosaccharides, free monosaccharides) and ginsenosides, but chemical structures or compositions of these components in WEWG were characteristic, i.e. narrower molecular weight distribution and higher molar ratios of glucose residues of polysaccharides; higher content ratios of oligosaccharides DP2-3 (di-/tri-saccharides)-to-oligosaccharides DP4-7 (tetra-/penta-/hexa-/hepta-saccharides), sucrose-to-melibiose, maltose-to-trehalose and high-polar-to-low-polar ginsenosides. WEWG better ameliorated fat accumulation, enteric metabolic disorders and gut microbiota dysbiosis in HFD-fed obese mice than WERG. CONCLUSION The stronger anti-obesity effect of white ginseng appears to correlate with differences in its chemical profile as compared to red ginseng. The carbohydrates and ginsenosides in WEWG potentially present more structural and compositional specificity to the obesity-associated gut bacteria, allowing more beneficial effects of WEWG on the gut microbiota dysbiosis. This consequently better alleviates the enteric metabolic disorders and systemic inflammation, thereby contributing to the stronger anti-obesity effect of WEWG as compared to WERG.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| | | | - Ka-Man Yip
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Rong Ye
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Zhong-Zhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| | - Jun Xu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine and Jiangsu Branch of China Academy of Chinese Medical Sciences, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Olivares-Rubio HF, Espinosa-Aguirre JJ. Role of epoxyeicosatrienoic acids in the lung. Prostaglandins Other Lipid Mediat 2020; 149:106451. [PMID: 32294527 DOI: 10.1016/j.prostaglandins.2020.106451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are synthetized from arachidonic acid by the action of members of the CYP2C and CYP2J subfamilies of cytochrome P450 (CYPs). The effects of EETs on cardiovascular function, the nervous system, the kidney and metabolic disease have been reviewed. In the lungs, the presence of these CYPs and EETs has been documented. In general, EETs play a beneficial role in this essential tissue. Among the most important effects of EETs in the lungs are the induction of vasorelaxation in the bronchi, the stimulation of Ca2+-activated K+ channels, the induction of vasoconstriction of pulmonary arteries, anti-inflammatory effects induced by asthma, and protection against infection or exposure to chemical substances such as cigarette smoke. EETs also participate in tissue regeneration, but on the downside, they are possibly involved in the progression of lung cancer. More research is necessary to design therapies with EETs for the treatment of lung disease.
Collapse
Affiliation(s)
- Hugo F Olivares-Rubio
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| | - J J Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ap. Postal 70-228, Ciudad de México, México.
| |
Collapse
|
11
|
Lucas R, Hadizamani Y, Gonzales J, Gorshkov B, Bodmer T, Berthiaume Y, Moehrlen U, Lode H, Huwer H, Hudel M, Mraheil MA, Toque HAF, Chakraborty T, Hamacher J. Impact of Bacterial Toxins in the Lungs. Toxins (Basel) 2020; 12:toxins12040223. [PMID: 32252376 PMCID: PMC7232160 DOI: 10.3390/toxins12040223] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Bacterial toxins play a key role in the pathogenesis of lung disease. Based on their structural and functional properties, they employ various strategies to modulate lung barrier function and to impair host defense in order to promote infection. Although in general, these toxins target common cellular signaling pathways and host compartments, toxin- and cell-specific effects have also been reported. Toxins can affect resident pulmonary cells involved in alveolar fluid clearance (AFC) and barrier function through impairing vectorial Na+ transport and through cytoskeletal collapse, as such, destroying cell-cell adhesions. The resulting loss of alveolar-capillary barrier integrity and fluid clearance capacity will induce capillary leak and foster edema formation, which will in turn impair gas exchange and endanger the survival of the host. Toxins modulate or neutralize protective host cell mechanisms of both the innate and adaptive immunity response during chronic infection. In particular, toxins can either recruit or kill central players of the lung's innate immune responses to pathogenic attacks, i.e., alveolar macrophages (AMs) and neutrophils. Pulmonary disorders resulting from these toxin actions include, e.g., acute lung injury (ALI), the acute respiratory syndrome (ARDS), and severe pneumonia. When acute infection converts to persistence, i.e., colonization and chronic infection, lung diseases, such as bronchitis, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) can arise. The aim of this review is to discuss the impact of bacterial toxins in the lungs and the resulting outcomes for pathogenesis, their roles in promoting bacterial dissemination, and bacterial survival in disease progression.
Collapse
Affiliation(s)
- Rudolf Lucas
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| | - Yalda Hadizamani
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
| | - Joyce Gonzales
- Department of Medicine and Division of Pulmonary Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Boris Gorshkov
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Thomas Bodmer
- Labormedizinisches Zentrum Dr. Risch, Waldeggstr. 37 CH-3097 Liebefeld, Switzerland;
| | - Yves Berthiaume
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada;
| | - Ueli Moehrlen
- Pediatric Surgery, University Children’s Hospital, Zürich, Steinwiesstrasse 75, CH-8032 Zürch, Switzerland;
| | - Hartmut Lode
- Insitut für klinische Pharmakologie, Charité, Universitätsklinikum Berlin, Reichsstrasse 2, D-14052 Berlin, Germany;
| | - Hanno Huwer
- Department of Cardiothoracic Surgery, Voelklingen Heart Center, 66333 Voelklingen/Saar, Germany;
| | - Martina Hudel
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Mobarak Abu Mraheil
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Haroldo Alfredo Flores Toque
- Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA;
| | - Trinad Chakraborty
- Justus-Liebig-University, Biomedical Research Centre Seltersberg, Schubertstr. 81, 35392 Giessen, Germany; (M.H.); (M.A.M.); (T.C.)
| | - Jürg Hamacher
- Lungen-und Atmungsstiftung, Bern, 3012 Bern, Switzerland;
- Pneumology, Clinic for General Internal Medicine, Lindenhofspital Bern, 3012 Bern, Switzerland
- Medical Clinic V-Pneumology, Allergology, Intensive Care Medicine and Environmental Medicine, Faculty of Medicine, Saarland University, University Medical Centre of the Saarland, D-66421 Homburg, Germany
- Institute for Clinical & Experimental Surgery, Faculty of Medicine, Saarland University, D-66421 Homburg, Germany
- Correspondence: (R.L.); (J.H.); Tel.: +41-31-300-35-00 (J.H.)
| |
Collapse
|
12
|
De Serrano LO, Burkhart DJ. Liposomal vaccine formulations as prophylactic agents: design considerations for modern vaccines. J Nanobiotechnology 2017; 15:83. [PMID: 29149896 PMCID: PMC5693489 DOI: 10.1186/s12951-017-0319-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/09/2017] [Indexed: 01/04/2023] Open
Abstract
Vaccinology is one of the most important cornerstones in modern medicine, providing better quality of life. The human immune system is composed of innate and adaptive immune processes that interplay when infection occurs. Innate immunity relies on pathogen-associated molecular patterns which are recognized by pathogen recognition receptors localized in antigen presenting cells. After antigen processing and presentation, CD4+ T cell polarization occurs, further leading to B cell and CD8+ activation and humoral and cell-mediated adaptive immune responses. Liposomes are being employed as vaccine technologies and their design is of importance to ensure proper immune responses. Physicochemical parameters like liposome size, charge, lamellarity and bilayer fluidity must be completely understood to ensure optimal vaccine stability and efficacy. Liposomal vaccines can be developed to target specific immune cell types for the induction of certain immune responses. In this review, we will present promising liposomal vaccine approaches for the treatment of important viral, bacterial, fungal and parasitic infections (including tuberculosis, TB). Cationic liposomes are the most studied liposome types due to their enhanced interaction with the negatively charged immune cells. Thus, a special section on the cationic lipid dimethyldioctadecylammonium and TB is also presented.
Collapse
Affiliation(s)
- Luis O. De Serrano
- Department of Biomedical & Pharmaceutical Sciences and Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT 59812 USA
| | - David J. Burkhart
- Department of Biomedical & Pharmaceutical Sciences and Center for Translational Medicine, University of Montana, 32 Campus Drive, Missoula, MT 59812 USA
| |
Collapse
|
13
|
Reiter A, Brade L, Sanchez-Carballo P, Brade H, Kosma P. Synthesis and immunochemical characterization of neoglycoproteins containing epitopes of the inner core region of Pseudomonas aeruginosa RNA group I lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519010070020701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The disaccharide allyl 2-acetamido-2-deoxy-α-D-galactopyranosyl-(1→3)-7- O-carbamoyl-L- glyceroα-D- manno-heptopyranoside 5 (GalNAc-cmHep-allyl) was synthesized starting from 1 and 2. Compound 5, cmHep-allyl and the disaccharide cmHep-(1→3)-Hep-allyl were converted into cysteamine-spacered derivatives and conjugated to bovine serum albumin (BSA) to yield the neoglycoconjugates 7—9, respectively. These conjugates were used to immunize mice and to prepare monoclonal antibodies (mAbs) which were characterized in comparison to mAbs obtained after immunization with heat-killed Pseudomonas aeruginosa strain H4. Two antibodies obtained after immunization with the neoglycoconjugates bound strongly to cmHep-BSA and with lower affinity to cmHep-Hep-BSA but did not bind to GalNAc-cmHep-BSA or to H4 LPS. Another antibody obtained after immunization with heat-killed bacteria bound to LPS and GalNAc-cmHep-BSA but not to cmHep-Hep-BSA or cmHep-BSA
Collapse
Affiliation(s)
- Andreas Reiter
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria
| | - Lore Brade
- Divisions of Medical and Biochemical Microbiology, Centre for Medicine and Biosciences, Germany
| | | | - Helmut Brade
- Divisions of Medical and Biochemical Microbiology, Centre for Medicine and Biosciences, Germany
| | - Paul Kosma
- Institute of Chemistry, University of Agricultural Sciences, Vienna, Austria,
| |
Collapse
|
14
|
The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Microbiol Mol Biol Rev 2015; 78:372-417. [PMID: 25184559 DOI: 10.1128/mmbr.00007-14] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Humans have been increasingly recognized as being superorganisms, living in close contact with a microbiota on all their mucosal surfaces. However, most studies on the human microbiota have focused on gaining comprehensive insights into the composition of the microbiota under different health conditions (e.g., enterotypes), while there is also a need for detailed knowledge of the different molecules that mediate interactions with the host. Glycoconjugates are an interesting class of molecules for detailed studies, as they form a strain-specific barcode on the surface of bacteria, mediating specific interactions with the host. Strikingly, most glycoconjugates are synthesized by similar biosynthesis mechanisms. Bacteria can produce their major glycoconjugates by using a sequential or an en bloc mechanism, with both mechanistic options coexisting in many species for different macromolecules. In this review, these common themes are conceptualized and illustrated for all major classes of known bacterial glycoconjugates, with a special focus on the rather recently emergent field of glycosylated proteins. We describe the biosynthesis and importance of glycoconjugates in both pathogenic and beneficial bacteria and in both Gram-positive and -negative organisms. The focus lies on microorganisms important for human physiology. In addition, the potential for a better knowledge of bacterial glycoconjugates in the emerging field of glycoengineering and other perspectives is discussed.
Collapse
|
15
|
Clifford JC, Rapicavoli JN, Roper MC. A rhamnose-rich O-antigen mediates adhesion, virulence, and host colonization for the xylem-limited phytopathogen Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:676-85. [PMID: 23441576 DOI: 10.1094/mpmi-12-12-0283-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Xylella fastidiosa is a gram-negative, xylem-limited bacterium that causes a lethal disease of grapevine called Pierce's disease. Lipopolysaccharide (LPS) composes approximately 75% of the outer membrane of gram-negative bacteria and, because it is largely displayed on the cell surface, it mediates interactions between the bacterial cell and its surrounding environment. LPS is composed of a conserved lipid A-core oligosaccharide component and a variable O-antigen portion. By targeting a key O-antigen biosynthetic gene, we demonstrate the contribution of the rhamnose-rich O-antigen to surface attachment, cell-cell aggregation, and biofilm maturation: critical steps for successful infection of the host xylem tissue. Moreover, we have demonstrated that a fully formed O-antigen moiety is an important virulence factor for Pierce's disease development in grape and that depletion of the O-antigen compromises its ability to colonize the host. It has long been speculated that cell-surface polysaccharides play a role in X. fastidiosa virulence and this study confirms that LPS is a major virulence factor for this important agricultural pathogen.
Collapse
Affiliation(s)
- Jennifer C Clifford
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | | | | |
Collapse
|
16
|
Rau MH, Hansen SK, Johansen HK, Thomsen LE, Workman CT, Nielsen KF, Jelsbak L, Høiby N, Yang L, Molin S. Early adaptive developments of Pseudomonas aeruginosa after the transition from life in the environment to persistent colonization in the airways of human cystic fibrosis hosts. Environ Microbiol 2010; 12:1643-58. [PMID: 20406284 DOI: 10.1111/j.1462-2920.2010.02211.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen ubiquitous to the natural environment but with the capability of moving to the host environment. Long-term infection of the airways of cystic fibrosis patients is associated with extensive genetic adaptation of P. aeruginosa, and we have studied cases of the initial stages of infection in order to characterize the early adaptive processes in the colonizing bacteria. A combination of global gene expression analysis and phenotypic characterization of longitudinal isolates from cystic fibrosis patients revealed well-known characteristics such as conversion to a mucoid phenotype by mucA mutation and increased antibiotic resistance by nfxB mutation. Additionally, upregulation of the atu operon leading to enhanced growth on leucine provides a possible example of metabolic optimization. A detailed investigation of the mucoid phenotype uncovered profound pleiotropic effects on gene expression including reduction of virulence factors and the Rhl quorum sensing system. Accordingly, mucoid isolates displayed a general reduction of virulence in the Caenorhabditis elegans infection model, altogether suggesting that the adaptive success of the mucoid variant extends beyond the benefits of alginate overproduction. In the overall perspective the global phenotype of the adapted variants appears to place them on paths in direction of fully adapted strains residing in long-term chronically infected patients.
Collapse
Affiliation(s)
- Martin Holm Rau
- Department of Systems Biology, Technical University of Denmark, Building 301, 2800 Lyngby, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Influence of selected antimicrobials on the viability, endotoxicity and lipopolysaccharide composition of Pseudomonas aeruginosa in vitro. Int J Antimicrob Agents 2009; 34:419-23. [PMID: 19656661 DOI: 10.1016/j.ijantimicag.2009.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/01/2009] [Accepted: 06/04/2009] [Indexed: 11/21/2022]
Abstract
This research focused on the influence of selected antimicrobial agents (AMAs) on the lipopolysaccharide (LPS) composition of Pseudomonas aeruginosa, a common causative agent of nosocomial infections. As LPS has been shown to play a role in attachment and virulence, the research is primarily aimed at shedding light on the response of these organisms to cleaning regimens in healthcare settings using various disinfectants. The endotoxicity and viability of the organisms following disinfection were further investigated via propagation in sublethal concentrations of the selected AMAs. The AMAs included a CIP chlorinated disinfectant, a heavy-duty alkaline detergent and a phenolic handwash solution. The effects of the antimicrobials on LPS both from intact cells and from debris were assessed by gas chromatography-mass spectrometry (GC-MS) analysis and a chromogenic Limulus amoebocyte lysate assay. Results indicated significant changes in the supramolecular structure of the O-polysaccharide when exposed to the AMAs. Adaptations occurred in both the total assessed saccharide and the lipid fractions, especially in the case of the heavy-duty alkaline detergent. Endotoxicity was found to be influenced by changes in the O-chain rather than the lipid fraction. The phenolic handwash and chlorine-based AMA treatments resulted in a slight decrease in the total amount of fatty acids in the LPS compared with saccharides, whereas the heavy-duty alkaline detergent resulted in a notable reduction in total saccharides. Microbial adaptation of the supramolecular structure of LPS may cause a reduction in membrane solubility of these organisms in an aqueous environment, thus affecting the organism's susceptibility to water-soluble AMAs as well as its ability to adhere to charged surfaces.
Collapse
|
18
|
Bufler P, Schikor D, Schmidt B, Griese M. CYTOKINE STIMULATION BYPSEUDOMONAS AERUGINOSA—STRAIN VARIATION AND MODULATION BY PULMONARY SURFACTANT. Exp Lung Res 2009; 30:163-79. [PMID: 15195551 DOI: 10.1080/01902140490276294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Pulmonary surfactant and its components are part of the first-line immune defense within the lung. Here the authors show that the surfactant protein (SP) SP-D, but not SP-A, agglutinates some clinical isolates of Pseudomonas aeruginosa and Stenotrophomonas maltophilia. No agglutination of Staphylococcus aureus or Burkholderia cepacia was observed. The SP-D-induced agglutination of P. aeruginosa was not dependent on a specific lipopolysaccharide (LPS) serotype. The authors also show that SP-D, but not SP-A, increased the tumor necrosis factor (TNF alpha) release from human monocytic cells in response to a subset of P. aeruginosa and P. aeruginosa LPS. A clinical preparation of surfactant (Alveofact) blocked the TNF alpha release from monocytic cells induced by P. aeruginosa or its LPS. SP-A reversed the inhibitory effect of Alveofact in 6/8 strains of P. aeruginosa and 2/9 preparations of P. aeruginosa LPS. SP-D did not significantly alter the TNF alpha production induced by vital P. aeruginosa in the presence of Alveofact but markedly increased the TNF alpha release induced by a preparation of rough and smooth P. aeruginosa LPS. In summary, this study shows that the immunomodulatory properties of SP-A and SP-D specifically depend on the colonizing strain of P. aeruginosa. In addition, the authors show that the function of SP-A and SP-D is modulated in the presence of surfactant lipids.
Collapse
Affiliation(s)
- Philip Bufler
- Dr. von Haunersches Kinderspital, University of Munich, Lindwarmstr. D-80337 Munich, Germany
| | | | | | | |
Collapse
|
19
|
Lagoumintzis G, Xaplanteri P, Dimitracopoulos G, Paliogianni F. TNF-alpha Induction byPseudomonas aeruginosaLipopolysaccharide or Slime-glycolipoprotein in Human Monocytes is Regulated at the Level of Mitogen-activated Protein Kinase Activity: A Distinct Role of Toll-like Receptor 2 and 4. Scand J Immunol 2008; 67:193-203. [DOI: 10.1111/j.1365-3083.2007.02053.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Pseudomonas aeruginosa RsmA plays an important role during murine infection by influencing colonization, virulence, persistence, and pulmonary inflammation. Infect Immun 2007; 76:632-8. [PMID: 18025099 DOI: 10.1128/iai.01132-07] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ability of Pseudomonas aeruginosa to cause a broad range of infections in humans is due, at least in part, to its adaptability and its capacity to regulate the expression of key virulence genes in response to specific environmental conditions. Multiple two-component response regulators have been shown to facilitate rapid responses to these environmental conditions, including the coordinated expression of specific virulence determinants. RsmA is a posttranscriptional regulatory protein which controls the expression of a number of virulence-related genes with relevance for acute and chronic infections. Many membrane-bound sensors, including RetS, LadS, and GacS, are responsible for the reciprocal regulation of genes associated with acute infection and chronic persistence. In P. aeruginosa this is due to sensors influencing the expression of the regulatory RNA RsmZ, with subsequent effects on the level of free RsmA. While interactions between an rsmA mutant and human airway epithelial cells have been examined in vitro, the role of RsmA during infection in vivo has not been determined yet. Here the function of RsmA in both acute and chronic models of infection was examined. The results demonstrate that RsmA is involved in initial colonization and dissemination in a mouse model of acute pneumonia. Furthermore, while loss of RsmA results in reduced colonization during the initial stages of acute infection, the data show that mutation of rsmA ultimately favors chronic persistence and results in increased inflammation in the lungs of infected mice.
Collapse
|
21
|
Erridge C, Moncayo-Nieto OL, Morgan R, Young M, Poxton IR. Acinetobacter baumannii lipopolysaccharides are potent stimulators of human monocyte activation via Toll-like receptor 4 signalling. J Med Microbiol 2007; 56:165-171. [PMID: 17244795 DOI: 10.1099/jmm.0.46823-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acinetobacter baumannii is a major nosocomial pathogen and frequent cause of hospital-acquired pneumonia, surgical wound infections and sepsis. As very little is known of the endotoxic potential of A. baumannii lipopolysaccharide (LPS) with respect to human cells or of its ability to stimulate inflammatory signalling via human Toll-like receptors (TLRs), the biological activity of these endotoxins was investigated in human monocytic THP-1 cells and in TLR-deficient HEK-293 cells transfected with human TLR2 and TLR4 constructs. Endotoxins derived from five clinical isolates of A. baumannii and one of Acinetobacter ‘genomospecies 9’ showed high potency, which was comparable to that of Escherichia coli strain R1 NCTC 13114 LPS, in the induction of the Limulus amoebocyte reaction and interleukin 8 and tumour necrosis factor alpha release from THP-1 cells. Whole UV-killed cells of A. baumannii and Acinetobacter ‘genomospecies 9’ stimulated both TLR2- and TLR4-dependent signalling, whereas pure endotoxins of all investigated strains induced signalling via TLR4, but not TLR2.
Collapse
Affiliation(s)
- Clett Erridge
- Department of Bioscience, 204 George Street, University of Strathclyde, Glasgow G1 1XW, UK
| | - Olga L Moncayo-Nieto
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Robert Morgan
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Michelle Young
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Ian R Poxton
- Medical Microbiology, Centre for Infectious Diseases, University of Edinburgh College of Medicine and Veterinary Medicine, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| |
Collapse
|
22
|
Coats SR, Do CT, Karimi-Naser LM, Braham PH, Darveau RP. Antagonistic lipopolysaccharides block E. coli lipopolysaccharide function at human TLR4 via interaction with the human MD-2 lipopolysaccharide binding site. Cell Microbiol 2007; 9:1191-202. [PMID: 17217428 DOI: 10.1111/j.1462-5822.2006.00859.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Lipopolysaccharides containing underacylated lipid A structures exhibit reduced abilities to activate the human (h) Toll-like receptor 4 (TLR4) signalling pathway and function as potent antagonists against lipopolysaccharides bearing canonical lipid A structures. Expression of underacylated lipopolysaccharides has emerged as a novel mechanism utilized by microbial pathogens to modulate host innate immune responses. Notably, antagonistic lipopolysaccharides are prime therapeutic candidates for combating Gram negative bacterial sepsis. Penta-acylated msbB and tetra-acylated Porphyromonas gingivalis lipopolysaccharides functionally antagonize hexa-acylated Escherichia coli lipopolysaccharide-dependent activation of hTLR4 through the coreceptor, hMD-2. Here, the molecular mechanism by which these antagonistic lipopolysaccharides act at hMD-2 is examined. We present evidence that both msbB and P. gingivalis lipopolysaccharides are capable of direct binding to hMD-2. These antagonistic lipopolysaccharides can utilize at least two distinct mechanisms to block E. coli lipopolysaccharide-dependent activation of hTLR4. The main mechanism consists of direct competition between the antagonistic lipopolysaccharides and E. coli lipopolysaccharide for the same binding site on hMD-2, while the secondary mechanism involves the ability of antagonistic lipopolysaccharide-hMD-2 complexes to inhibit E. coli lipopolysaccharide-hMD-2 complexes function at hTLR4. It is also shown that both hTLR4 and hMD-2 contribute to the species-specific recognition of msbB and P. gingivalis lipopolysaccharides as antagonists at the hTLR4 complex.
Collapse
Affiliation(s)
- Stephen R Coats
- Department of Periodontics, University of Washington School of Dentistry, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
23
|
Sedlak-Weinstein E, Cripps AW, Kyd JM, Foxwell AR. Pseudomonas aeruginosa: the potential to immunise against infection. Expert Opin Biol Ther 2005; 5:967-82. [PMID: 16018741 DOI: 10.1517/14712598.5.7.967] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Pseudomonas aeruginosa remains a serious pathogen for specific cohorts of patients where chronic infection is a poor prognostic indicator, such as those with cystic fibrosis, burn wounds or those who are immunocompromised. Significant disease burden is associated with a diverse spectrum of both nosocomial and community-acquired infections. To date, vaccines against P. aeruginosa have shown limited and often conflicting efficacy data, especially against heterologous strains, which are increasingly identified as co-colonisers of biofilms. While few studies have gone beyond Phase II clinical trials, a particular concern is the ability of P. aeruginosa to evade the immune system while provoking an immune response that contributes to the destructive nature of infection. Therefore, vaccine development needs to focus on preventing attachment and colonisation, as well as preventing conversion to a mucoid phenotype that is characteristic of the chronic condition that promotes pathology.
Collapse
Affiliation(s)
- E Sedlak-Weinstein
- Griffith University Gold Coast Campus, School of Medicine, PMB 50, Gold Coast Mail Centre, Queensland 9726, Australia
| | | | | | | |
Collapse
|
24
|
Goodman AL, Kulasekara B, Rietsch A, Boyd D, Smith RS, Lory S. A Signaling Network Reciprocally Regulates Genes Associated with Acute Infection and Chronic Persistence in Pseudomonas aeruginosa. Dev Cell 2004; 7:745-54. [PMID: 15525535 DOI: 10.1016/j.devcel.2004.08.020] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 08/27/2004] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a variety of acute and chronic infections. We identified a gene whose inactivation results in attenuation of virulence due to premature activation of genes involved in biofilm formation and coordinate repression of genes required for initial colonization. This gene, retS, encodes a hybrid sensor kinase/response regulator with an unconventional arrangement of functional domains. Genome-wide transcriptional profiling indicates that the retS gene is required for expression of the Type III secretion system and other virulence factors and for repression of genes responsible for exopolysaccharide components of the P. aeruginosa biofilm matrix. These disparate phenotypes are suppressed by transposon insertions in genes encoding the GacS/GacA/rsmZ signal transduction pathway, a highly conserved system involved in the control of diverse adaptive functions. This study defines RetS as a pleiotropic regulator of multiple virulence phenotypes that orchestrates genes required for acute infection and genes associated with chronic persistence.
Collapse
Affiliation(s)
- Andrew L Goodman
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
25
|
Malloy JL, Veldhuizen RAW, Thibodeaux BA, O'Callaghan RJ, Wright JR. Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions. Am J Physiol Lung Cell Mol Physiol 2004; 288:L409-18. [PMID: 15516485 DOI: 10.1152/ajplung.00322.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary surfactant has two distinct functions within the lung: reduction of surface tension at the air-liquid interface and participation in innate host defense. Both functions are dependent on surfactant-associated proteins. Pseudomonas aeruginosa is primarily responsible for respiratory dysfunction and death in cystic fibrosis patients and is also a leading pathogen in nosocomial pneumonia. P. aeruginosa secretes a number of proteases that contribute to its virulence. We hypothesized that P. aeruginosa protease IV degrades surfactant proteins and results in a reduction in pulmonary surfactant host defense and biophysical functions. Protease IV was isolated from cultured supernatant of P. aeruginosa by gel chromatography. Incubation of cell-free bronchoalveolar lavage fluid with protease IV resulted in degradation of surfactant proteins (SP)-A, -D, and -B. SPs were degraded in a time- and dose-dependent fashion by protease IV, and degradation was inhibited by the trypsin-like serine protease inhibitor Nalpha-p-tosyl-L-lysine-chloromethyl ketone (TLCK). Degradation by protease IV inhibited SP-A- and SP-D-mediated bacterial aggregation and uptake by macrophages. Surfactant treated with protease IV was unable to reduce surface tension as effectively as untreated surfactant, and this effect was inhibited by TLCK. We speculate that protease IV may be an important contributing factor to the development and propagation of acute lung injury associated with P. aeruginosa via loss of surfactant function within the lung.
Collapse
Affiliation(s)
- Jaret L Malloy
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
26
|
Miller WL, Wenzel CQ, Daniels C, Larocque S, Brisson JR, Lam JS. Biochemical characterization of WbpA, a UDP-N-acetyl-D-glucosamine 6-dehydrogenase involved in O-antigen biosynthesis in Pseudomonas aeruginosa PAO1. J Biol Chem 2004; 279:37551-8. [PMID: 15226302 DOI: 10.1074/jbc.m404749200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WbpA (PA3159) is an enzyme involved in the biosynthesis of unusual di-N-acetyl-d-mannosaminuronic acid-derived sugar nucleotides found in the O antigen of Pseudomonas aeruginosa PAO1 (serotype O5). The wbpA gene that encodes this enzyme was cloned into pET-28a, overexpressed as a histidine-tagged fusion protein, and purified by nickel chelation chromatography. Capillary electrophoresis was used to examine substrate conversion by WbpA, and the data revealed that WbpA is a UDP-N-acetyl-D-glucosamine 6-dehydrogenase (EC 1.1.1.136), which uses NAD(+) as a coenzyme. The enzyme reaction product was purified by HPLC and analyzed using NMR spectroscopy. Our results showed unequivocally that the product of the WbpA reaction is UDP-N-acetyl-d-glucosaminuronic acid. WbpA requires either NH(4)(+) or K(+) for activity and the accompanying anions exert secondary effects on activity consistent with their ranking in the Hofmeister series. Kinetic analysis showed positive cooperativity with respect to UDP-N-acetyl-d-glucosamine binding with a K(0.5) of 94 microM, a k(cat) of 86 min(-1), and a Hill coefficient of 1.8. In addition, WbpA has a K(0.5) for NAD(+) of 220 microM, a k(cat) of 86 min(-1), and a Hill coefficient of 1.1. The oligomerization state of WbpA was analyzed by gel filtration, dynamic light scattering, and analytical ultracentrifugation, with all three techniques indicating that WbpA exists as a trimer in solution. However, tertiary structure predictions suggested a tetramer, which was supported by data from transmission electron microscopy. The electron micrograph of negatively stained WbpA samples revealed structures with 4-fold symmetry.
Collapse
Affiliation(s)
- Wayne L Miller
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Kooistra O, Bedoux G, Brecker L, Lindner B, Sánchez Carballo P, Haras D, Zähringer U. Structure of a highly phosphorylated lipopolysaccharide core in the ΔalgC mutants derived from Pseudomonas aeruginosa wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Carbohydr Res 2003; 338:2667-77. [PMID: 14670725 DOI: 10.1016/j.carres.2003.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Lipopolysaccharides (LPS) were isolated from rough-type mutant strains of Pseudomonas aeruginosa (Delta algC) derived from wild-type strains PAO1 (serogroup O5) and PAC1R (serogroup O3). Structural studies of the LPS core region with a special focus on the phosphorylation pattern were performed by 2D NMR spectroscopy, including a 1H,(31)P HMQC-TOCSY experiment, MALDI-TOF MS, and Fourier-transform ion cyclotron resonance ESIMS using the capillary skimmer dissociation technique. Both LPS were found to contain two residues each of 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and L-glycero-D-manno-heptose (Hep), one residue of N-(L-alanyl)-D-galactosamine and one O-carbamoyl group (Cm) on the distal Hep residue. The following structures of a tetrasaccharide trisphosphate from strain PAC1R Delta algC and that carrying an additional ethanolamine phosphate group (PEtN) from strain PAO1 Delta algC were elucidated: [carbohydrate structre: see text] where R=P in PAC1R Delta algC and PPEtN in PAO1 Delta algC. To our knowledge, in this work the presence of ethanolamine diphosphate is unambiguously confirmed and its position established for the first time in the LPS core of a rough-type strain of P. aeruginosa. In addition, the structure of the complete LPS core of wild-type strain P. aeruginosa PAO1 was reinvestigated and the position of the phosphorylation sites was revised.
Collapse
Affiliation(s)
- Oliver Kooistra
- Division of Immunochemistry, Research Center, Borstel, Leibniz Center for Medicine and Biosciences, D-23845 Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Nouwens AS, Walsh BJ, Cordwell SJ. Application of proteomics to Pseudomonas aeruginosa. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2003; 83:117-40. [PMID: 12934928 DOI: 10.1007/3-540-36459-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The recent completion of the Pseudomonas Genome Project, in conjunction with the Pseudomonas Community Annotation Project (PseudoCAP) has fast-tracked our ability to apply the tools encompassed under the term 'proteomics' to this pathogen. Such global approaches will allow the research community to answer long-standing questions regarding the ability of Pseudomonas aeruginosa to survive diverse habitats, its high intrinsic resistance to antibiotics and its pathogenic nature towards humans. Proteomics provides an array of tools capable of confirming the expression of Open Reading Frames (ORF), the relative levels of their expression, the environmental conditions required for this expression and the sub-cellular location of the encoded gene-products. Since proteins are important cellular effectors, the biological questions we pose can be defined in terms of changes in protein expression detectable by separation to purity using two-dimensional gel electrophoresis (2-DGE) and relation to gene sequences via mass spectrometry. As such, we can compare strains with well-characterized phenotypic differences, growth under a variety of stresses, protein interactions and complexes and aid in defining proteins of unknown function. While the complete genome has only recently been finished, a number of studies have already utilized this information and examined various protein gene-products using proteomics. This review summarizes the application of proteomics to P. aeruginosa and highlights potential areas of future research, including overcoming the traditional technical limitations associated with 2-DGE. More focused approaches that target sub-cellular fractions ('sub-proteomes') prior to 2-DGE can provide further functional information. A review of current and previous proteomic projects on P. aeruginosa is presented, as well as theoretical considerations of the importance of sub-proteomic approaches to enhance these investigations.
Collapse
|
29
|
Bufler P, Schmidt B, Schikor D, Bauernfeind A, Crouch EC, Griese M. Surfactant protein A and D differently regulate the immune response to nonmucoid Pseudomonas aeruginosa and its lipopolysaccharide. Am J Respir Cell Mol Biol 2003; 28:249-56. [PMID: 12540493 DOI: 10.1165/rcmb.4896] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We investigated the role of the surfactant proteins (SPs) A and D in the pulmonary immune defense of nonmucoid strains of Pseudomonas aeruginosa, the most etiologic agents of nosocomial Pseudomonas pneumonia. We first examined the interactions of recombinant human SP-D dodecamers and purified natural or recombinant human SP-A with two smooth, and two rough, clinical isolates of nonmucoid P. aeruginosa. SP-D bound to all four isolates, but agglutinated only one rough and one smooth strain. SP-D functioned as an opsonin to enhance the uptake of all four strains by the human monocytic cell line Mono Mac 6 (MM6). SP-D also enhanced tumor necrosis factor-alpha secretion by MM6 cells in response to purified lipopolysaccharide (LPS) isolated from the rough, but not the smooth, strains. Although SP-A bound to all four strains, it did not cause bacterial aggregation or enhance uptake. It showed small but statistically significant inhibitory effects on the cytokine response of MM6 cells to one strain of smooth organisms, but did not significantly alter the response to purified LPS. This study in combination with previously published data strongly suggests that SP-D may play important roles in the local innate pulmonary defense against nonmucoid P. aeruginosa of diverse LPS phenotypes, and preferentially augments the cellular response to rough P. aeruginosa endotoxin.
Collapse
Affiliation(s)
- Philip Bufler
- Dr. von Haunersches Kinderspital, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Lizewski SE, Lundberg DS, Schurr MJ. The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 2002; 70:6083-93. [PMID: 12379685 PMCID: PMC130412 DOI: 10.1128/iai.70.11.6083-6093.2002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic Pseudomonas aeruginosa lung infection is the major cause of morbidity and mortality in cystic fibrosis (CF) patients. One P. aeruginosa virulence factor unique to CF isolates is overproduction of alginate, phenotypically termed mucoidy. Mucoidy is the result of increased transcription from the algD gene and is activated by the transcriptional regulator AlgR. Mutations in algR result in a nonmucoid phenotype and loss of twitching motility. Additionally, AlgR controls transcription of algC, encoding a dual-function enzyme necessary for both lipopolysaccharide (LPS) and alginate production. Therefore, to determine the effect of algR on P. aeruginosa virulence, an algR mutant was examined for sensitivity to reactive oxygen intermediates, killing by phagocytes, systemic virulence, and the ability to maintain a murine lung infection. We found that P. aeruginosa PAO700 (algR::Gm(r)) was less lethal than PAO1, as tested in an acute septicemia infection mouse model, and was cleared more efficiently in a mouse pneumonia model. Additionally, the algR mutant (PAO700) was more sensitive to hypochlorite. However, PAO700 was more resistant to hydrogen peroxide and killed less readily in an acellular myeloperoxidase assay than PAO1. There was little difference in killing between PAO1 and PAO700 with macrophage-like J774 cells and human polymorhonuclear leukocytes. Two-dimensional gel analysis of P. aeruginosa algR mutant and wild-type protein extracts revealed 47 differentially regulated proteins, suggesting that AlgR plays both a positive role and a negative role in gene expression. Together, these results imply that AlgR is necessary for virulence and regulates genes in addition to the genes associated with alginate and LPS production and pilus function.
Collapse
Affiliation(s)
- Stephen E Lizewski
- Department of Microbiology and Immunology, Program in Molecular Pathogenesis and Immunity, Tulane University Health Sciences Center, New Orleans, Louisiana 70112-2699, USA
| | | | | |
Collapse
|
31
|
Abstract
The lipopolysaccharides of Gram-negative bacteria have a profound effect on the mammalian immune system and are of great significance in the pathophysiology of many disease processes. Consideration is given in this review to the relationship between structure and function of these lipopolysaccharides.
Collapse
Affiliation(s)
- Clett Erridge
- Medical Microbiology, University of Edinburgh Medical School, Edinburgh, Scotland, EH8 9AG, UK
| | | | | |
Collapse
|
32
|
Creuzenet C, Lam JS. Topological and functional characterization of WbpM, an inner membrane UDP-GlcNAc C6 dehydratase essential for lipopolysaccharide biosynthesis in Pseudomonas aeruginosa. Mol Microbiol 2001; 41:1295-310. [PMID: 11580835 DOI: 10.1046/j.1365-2958.2001.02589.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
WbpM is essential for the biosynthesis of B-band lipopolysaccharide (LPS) in many serotypes of Pseudomonas aeruginosa. Homologues that can functionally complement a wbpM null mutant and that are also necessary for virulence have been identified in numerous pathogenic bacteria. WbpM and most of its homologues are large membrane proteins, which has long hampered the elucidation of their biochemical function. This paper describes the detailed characterization of WbpM using both in vivo and in vitro approaches. LacZ and PhoA fusion experiments showed that WbpM was anchored to the inner membrane via four N-terminal transmembrane domains, whereas the C-terminal catalytic domain resided in the cytoplasm. Although the membrane domains did not have any catalytic activity, complementation experiments suggested that they were important for the polymerization of high-molecular-weight B-band LPS. The biochemical characterization of a soluble truncated form of WbpM, His-S262, showed that WbpM was a C6 dehydratase specific for UDP-GlcNAc. It exhibited unusual low temperature (25-30 degrees C) and high pH (pH 10) optima. Although WbpM possessed an altered catalytic triad composed of SMK as opposed to SYK commonly found in other dehydratases, its catalysis was very efficient, with a kcat of 168 min(-1) and a kcat/Km of 58 mM(-1) min(-1). These unusual physico-kinetic properties suggested a potentially different mechanism of C6 dehydration for WbpM and its large homologues. His-S262 is now a precious tool for further structure-function studies.
Collapse
Affiliation(s)
- C Creuzenet
- Department of Microbiology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
33
|
Suzuki H, Ikezaki H, Chandiwala R, Hong D, Rubinstein I. Effects of Pseudomonas aeruginosa endotoxin on vasodilation in the intact spinotrapezius muscle. J Appl Physiol (1985) 2001; 91:351-6. [PMID: 11408451 DOI: 10.1152/jappl.2001.91.1.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine whether short-term exposure to clinically relevant concentrations of Pseudomonas aeruginosa lipopolysaccharide (LPS) impairs vasoreactivity of resistance arterioles in the intact spinotrapezius muscle microcirculation and, if so, to determine the mechanisms mediating this response. Using intravital microscopy, we found that 60-min suffusion of P. aeruginosa LPS (0.03-3.0 microg/ml) on the in situ hamster spinotrapezius muscle elicited an immediate, profound, and prolonged concentration-dependent vasodilation (P < 0.05). This response was reversible once suffusion of P. aeruginosa LPS was stopped. Pretreatment with N(G)-nitro-L-arginine methyl ester (10.0 microM), a nonselective nitric oxide (NO) synthase inhibitor, but not N(G)-nitro-D-arginine methyl ester, abrogated P. aeruginosa LPS-induced vasodilation and elicited a small, albeit significant, vasoconstriction. Indomethacin had no significant effects on P. aeruginosa LPS-induced responses. P. aeruginosa LPS had no significant effects on acetylcholine- and nitroglycerin-induced vasodilation in the spinotrapezius muscle. Collectively, these data indicate that short-term exposure to clinically relevant concentrations of P. aeruginosa LPS evokes an immediate, potent, prolonged, and reversible NO-dependent, prostaglandin-independent vasodilation in skeletal muscles in vivo. We suggest this response could play an important role in the pathophysiology of the profound vasomotor dysfunction observed in the peripheral circulation of patients with P. aeruginosa sepsis syndrome.
Collapse
Affiliation(s)
- H Suzuki
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
34
|
Chroneos ZC, Wert SE, Livingston JL, Hassett DJ, Whitsett JA. Role of cystic fibrosis transmembrane conductance regulator in pulmonary clearance of Pseudomonas aeruginosa in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3941-50. [PMID: 11034402 DOI: 10.4049/jimmunol.165.7.3941] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cystic fibrosis (CF)2 is a fatal genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) that is commonly associated with chronic pulmonary infections with mucoid Pseudomonas aeruginosa (PA). To test the hypothesis that CFTR plays a direct role in PA adhesion and clearance, we have used mouse lines expressing varying levels of human (h) or mouse (m) CFTR. A subacute intratracheal dose of 3 x 10(6) bacteria was cleared with similar kinetics in control wild-type (WT) and transgenic mice overexpressing hCFTR in the lung from the surfactant protein C (SP-C) promoter (SP-C-hCFTR+/-). In a second series of experiments, the clearance of an acute intratracheal dose of 1.5 x 10(7) PA bacteria was also similar in WT, hemizygous SP-C-hCFTR+/-, and bitransgenic gut-corrected FABP-hCFTR+/+-mCFTR-/-, the latter lacking expression of mCFTR in the lung. However, a small but significant decrease in bacterial killing was observed in lungs of homozygote SP-C-hCFTR+/+ mice. Lung pathology in both WT and SP-C-hCFTR+/+ mice was marked by neutrophilic inflammation and bacterial invasion of perivascular and subepithelial compartments. Bacteria were associated primarily with leukocytes and were not associated with alveolar type II or bronchiolar epithelial cells, the cellular sites of SP-C-hCFTR+/+ transgene expression. The results indicate that there is no direct correlation between levels of CFTR expression and bacterial clearance or association of bacteria with epithelial cells in vivo.
Collapse
MESH Headings
- Animals
- Bacterial Adhesion/genetics
- Bacterial Adhesion/immunology
- Cystic Fibrosis Transmembrane Conductance Regulator/biosynthesis
- Cystic Fibrosis Transmembrane Conductance Regulator/deficiency
- Cystic Fibrosis Transmembrane Conductance Regulator/genetics
- Cystic Fibrosis Transmembrane Conductance Regulator/physiology
- Interleukin-1/metabolism
- Intubation, Intratracheal
- Lung/immunology
- Lung/metabolism
- Lung/microbiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Mice, Transgenic
- Pneumonia, Bacterial/genetics
- Pneumonia, Bacterial/metabolism
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/pathology
- Proteolipids/biosynthesis
- Proteolipids/genetics
- Pseudomonas Infections/genetics
- Pseudomonas Infections/metabolism
- Pseudomonas Infections/microbiology
- Pseudomonas Infections/pathology
- Pseudomonas aeruginosa/physiology
- Pulmonary Surfactants/biosynthesis
- Pulmonary Surfactants/genetics
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Z C Chroneos
- Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
35
|
Creuzenet C, Belanger M, Wakarchuk WW, Lam JS. Expression, purification, and biochemical characterization of WbpP, a new UDP-GlcNAc C4 epimerase from Pseudomonas aeruginosa serotype O6. J Biol Chem 2000; 275:19060-7. [PMID: 10747995 DOI: 10.1074/jbc.m001171200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
B-band lipopolysaccharide is an important virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. WbpP is an enzyme essential for B-band lipopolysaccharide production in serotype O6. Sequence analysis suggests that it is involved in the formation of N-acetylgalacturonic acid. To test this hypothesis, overexpression and biochemical characterization of WbpP were performed. By using spectrophotometric assays and capillary electrophoresis, we show that WbpP is a UDP-GlcNAc C4 epimerase. The K(m) for UDP-GlcNAc and UDP-GalNAc are 197 and 224 micrometer, respectively. At equilibrium, 70% of UDP-GalNAc is converted to UDP-GlcNAc, whereas the yield of the reverse reaction is only 30%. The enzyme can also catalyze the inter-conversion of non-acetylated substrates, although the efficiency of catalysis is significantly lower. Only 15 and 40% of UDP-Glc and UDP-Gal, respectively, are converted at equilibrium. WbpP contains tightly bound NAD(H) and does not require additional cofactors for activity. It exists as a dimer in its native state. This paper is the first report of expression and characterization of a C4 UDP-GlcNAc epimerase at the biochemical level. Moreover, the characterization of the enzymatic function of WbpP will help clarify ambiguous surface carbohydrate biosynthetic pathways in P. aeruginosa and other organisms where homologues of WbpP exist.
Collapse
Affiliation(s)
- C Creuzenet
- Department of Microbiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
36
|
Petersen AM, Fussing V, Colding H, Blom J, Nørgaard A, Andersen LP, Krogfelt KA. Phenotypic and genotypic characterization of Helicobacter pylori from patients with and without peptic ulcer disease. Scand J Gastroenterol 2000; 35:359-67. [PMID: 10831258 DOI: 10.1080/003655200750023912] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Helicobacter pylori plays an important role in peptic ulcer disease, although not all H. pylori-infected persons will develop a peptic ulcer. Currently, H. pylori strains cannot be divided into commensals and pathogens. METHODS Fifty H. pylori strains were cultured from patients divided into five groups on the basis of upper endoscopic findings: gastric ulcer, duodenal ulcer, gastritis, esophagitis, or normal. The ultrastructural adherence pattern in vivo, autoagglutination, hemagglutination, adhesion to human gastric adenocarcinoma (AGS) cells, and the lipopolysaccharide (LPS) profile of H. pylori strains were recorded; randomly amplified polymorphic DNA (RAPD) and urease gene typing were performed and correlated with diagnostic groups. RESULTS Electron micrographs showed that H. pylori strains from patients with gastric ulcers adhered more frequently through filamentous strands and were less frequently found free in mucus than any other diagnostic group (P < 0.0001). Neither median hemagglutination titer nor median adhesion capacity to a human gastric adenocarcinoma cell line was related to endoscopic findings. Nevertheless, H. pylori strains from patients with gastric ulcers were more prone to autoagglutinate than were strains from the other diagnostic groups (P = 0.03). H. pylori strains from gastric ulcer patients were found to be more homogeneous, as determined by RAPD and urease gene typing, than strains from the other diagnostic groups (P < 0.01). In addition, a positive correlation was found between a patient's age and the adhesion to AGS cells of the patient's H. pylori strain (P = 0.006). CONCLUSION A combination of an H. pylori autoagglutination test, RAPD, and urease gene typing may be useful in separating gastric ulcer-related strains from duodenal ulcer-related and non-ulcer dyspepsia-related strains.
Collapse
Affiliation(s)
- A M Petersen
- Dept. of Gastro-Intestinal Infections, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
37
|
Bélanger M, Burrows LL, Lam JS. Functional analysis of genes responsible for the synthesis of the B-band O antigen of Pseudomonas aeruginosa serotype O6 lipopolysaccharide. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3505-3521. [PMID: 10627048 DOI: 10.1099/00221287-145-12-3505] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study reports the organization of the wbp gene cluster and characterization of a number of genes that are essential for B-band O antigen biosynthesis in the clinically prevalent Pseudomonas aeruginosa serotype 06. Twelve genes were identified that share homology with other LPS and polysaccharide biosynthetic genes. This cluster contains homologues of wzx (encoding the O antigen flippase/translocase) and wzz (which modulates O antigen chain length distribution) genes, typical of a wzy-dependent pathway. However, a complete wzy gene (encoding the O-polymerase) was not found within the cluster. Four biosynthetic genes, wbpO, wbpP, wbpV and wbpM, and four putative glycosyltransferase genes, wbpR, wbpT, wbpU and wbpL, were identified in the cluster. To characterize their roles in LPS biosynthesis, null mutants of wbpO, wbpP, wbpV, wbpL and wbpM were generated using a gene-replacement strategy. Mutations in each of these genes caused deficiency in B-band synthesis. The wbpL mutant was deficient in both A-band and B-band LPS. WbpL(O6) is a bi-functional enzyme which could initiate B-band synthesis through the addition of QuiNAc to undecaprenol phosphate, and A-band synthesis by transferring either a GalNAc or a GlcNAc residue. Another approach used to assign function to the wbp(O6) genes was by complementation analysis. Two genes from Salmonella typhi, wcdA and wcdB, responsible for the synthesis of a homopolymer of GalNAcA called Vi antigen were used in complementation experiments to verify the functions of wbpO and wbpP. wcdA and wcdB restored B-band synthesis in wbpO and wbpP mutants respectively, implying that wbpO and wbpP are involved in UDP-GalNAcA synthesis. Although wbpV has homology to wbpK of the serotype O5 B-band LPS synthesis cluster, complementation analysis using the respective null mutants showed that the genes are not interchangeable. A knockout mutation of wbpN (located downstream of wbpM) did not abrogate LPS synthesis in either 05 or 06; therefore, it has been renamed orf48.5. These results establish the organization of genes involved in P. aeruginosa B-band O antigen synthesis and provide the evidence to assign functions to a number of LPS biosynthetic genes.
Collapse
Affiliation(s)
- Myriam Bélanger
- Department of Microbiology, University of Guelph, Guelph, Ontario , Canada N1G 2W11
| | - Lori L Burrows
- Department of Microbiology, University of Guelph, Guelph, Ontario , Canada N1G 2W11
| | - Joseph S Lam
- Department of Microbiology, University of Guelph, Guelph, Ontario , Canada N1G 2W11
| |
Collapse
|
38
|
Pawlowski A, Svenson SB. Electron beam fragmentation of bacterial polysaccharides as a method of producing oligosaccharides for the preparation of conjugate vaccines. FEMS Microbiol Lett 1999; 174:255-63. [PMID: 10339817 DOI: 10.1111/j.1574-6968.1999.tb13577.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
End-group mediated conjugation of bacterial polysaccharides (PSs) to carrier proteins containing T-helper cell epitopes renders such polysaccharides immunogenic also in young infants. Optimal construction of such conjugate vaccines requires fragmentation of the PS prior to the coupling reaction. In the present study a general simple and inexpensive method for the fragmentation of PSs is presented. It is based on the irradiation of isolated PSs in an electron beam accelerator. Exposure of isolated pneumococcal capsular polysaccharides (PnPSs) to ionizing radiation resulted in their partial depolymerization in a radiation dose-dependent manner. Radiation, unlike sonication, generated PnPS fragments of molecular size lower than 50 kDa and as small as 1.5 kDa when high radiation doses were used. These PnPS fragments have terminal reducing groups that can be easily used for chemical activation and subsequent coupling to any chosen carrier protein. The radiation-produced PnPS fragments retained their antigenic epitopes, when compared to native, full-size PnPSs as determined by enzyme-linked immunoassay.
Collapse
Affiliation(s)
- A Pawlowski
- Swedish Institute for Infectious Disease Control, Solna, Sweden.
| | | |
Collapse
|
39
|
Hickling TP, Sim RB, Malhotra R. Induction of TNF-alpha release from human buffy coat cells by Pseudomonas aeruginosa is reduced by lung surfactant protein A. FEBS Lett 1998; 437:65-9. [PMID: 9804173 DOI: 10.1016/s0014-5793(98)01200-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Lipopolysaccharide (LPS) induction of TNF-alpha release is a central event in the pathophysiology of gram-negative bacterial septicaemia. Lung surfactant protein A (SP-A) mediates pathogen/host cell interactions. Binding of SP-A to Pseudomonas aeruginosa LPS and the effects of SP-A with LPS or whole bacteria on buffy coat cells were investigated. SP-A interacts with P. aeruginosa LPS in a concentration and calcium dependent manner, either through the lipid A portion of LPS or through another lectin/carbohydrate interaction. SP-A decreased TNF-alpha secretion induced by bacteria or LPS from buffy coat cells, in a concentration dependent manner.
Collapse
Affiliation(s)
- T P Hickling
- Department of Biochemistry, University of Oxford, UK
| | | | | |
Collapse
|
40
|
Estrada A, Van Kessel A, Yun CH, Li B. Effect of endotoxin on cytokine production and cell dynamics in mice. Immunopharmacol Immunotoxicol 1998; 20:217-31. [PMID: 9653669 DOI: 10.3109/08923979809038541] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Previous studies have shown that endotoxin potentiates immune responses by direct stimulation of B cells and macrophages. In the present study, we assessed the ability of endotoxin to stimulate cells from different lymphoid tissue compartments to release cytokines. The in vitro stimulation of macrophages with endotoxin resulted in the production of IL-1 and TNF-alpha in a dose and time-dependent manner. Endotoxin also induced the production of IL-2, IFN-gamma and IL-4 secretion in a dose dependent manner in cultured spleen, mesenteric lymph nodes and Peyer's patches cells. The intraperitoneal administration of endotoxin in mice resulted in the accumulation of leucocytes in the peritoneal cavity and in the increase of IL-1, IL-6, TNF-alpha and IFN-gamma concentration in serum. In conclusion, this study confirmed that endotoxin possesses immunomodulatory activities capable of stimulating immune functions both in vitro and in vivo.
Collapse
Affiliation(s)
- A Estrada
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | | | | | | |
Collapse
|