1
|
Chopra A, Lang AE, Höglinger G, Outeiro TF. Towards a biological diagnosis of PD. Parkinsonism Relat Disord 2024; 122:106078. [PMID: 38472075 DOI: 10.1016/j.parkreldis.2024.106078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Since the original description by James Parkinson, Parkinson's disease (PD) has intrigued us for over 200 years. PD is a progressive condition that is incurable so far, and affects millions of people worldwide. Over the years, our knowledge has expanded tremendously, and a range of criteria have been put forward and used to try to define PD. However, owing to the complexity of the problem, it is still not consensual how to diagnose and classify a disease that manifests with diverse features, and that responds differently to existing therapies and to those under development. We are now living a time when 'biological' information is becoming abundant, precise, and accessible enabling us to attempt to incorporate different sources of information to classify different forms of PD. These refinements are essential for basic science, as they will enable us to develop improved models for studying PD, and to implement new findings into clinical practice, as this will be the path towards effective personalized medicine.
Collapse
Affiliation(s)
- Avika Chopra
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anthony E Lang
- Edmond J Safra Program in Parkinson's Disease, Krembil Brain Institute, University Health Network and the Department of Medicine, University of Toronto, Canada
| | - Günter Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
2
|
Goralski TM, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse DJ, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with cortical Lewy pathology. Nat Commun 2024; 15:2642. [PMID: 38531900 PMCID: PMC10966039 DOI: 10.1038/s41467-024-47027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
A key hallmark of Parkinson's disease (PD) is Lewy pathology. Composed of α-synuclein, Lewy pathology is found both in dopaminergic neurons that modulate motor function, and cortical regions that control cognitive function. Recent work has established the molecular identity of dopaminergic neurons susceptible to death, but little is known about cortical neurons susceptible to Lewy pathology or molecular changes induced by aggregates. In the current study, we use spatial transcriptomics to capture whole transcriptome signatures from cortical neurons with α-synuclein pathology compared to neurons without pathology. We find, both in PD and related PD dementia, dementia with Lewy bodies and in the pre-formed fibril α-synucleinopathy mouse model, that specific classes of excitatory neurons are vulnerable to developing Lewy pathology. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. Neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and describe a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas M Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lisa Turner
- Van Andel Institute Pathology Core, Grand Rapids, MI, 49503, USA
| | - Katelyn Becker
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | - Marie Adams
- Van Andel Institute Genomics Core, Grand Rapids, MI, 49503, USA
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, 49503, USA.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
3
|
Rademacher K, Nakamura K. Role of dopamine neuron activity in Parkinson's disease pathophysiology. Exp Neurol 2024; 373:114645. [PMID: 38092187 DOI: 10.1016/j.expneurol.2023.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023]
Abstract
Neural activity is finely tuned to produce normal behaviors, and disruptions in activity likely occur early in the course of many neurodegenerative diseases. However, how neural activity is altered, and how these changes influence neurodegeneration is poorly understood. Here, we focus on evidence that the activity of dopamine neurons is altered in Parkinson's disease (PD), either as a compensatory response to degeneration or as a result of circuit dynamics or pathologic proteins, based on available human data and studies in animal models of PD. We then discuss how this abnormal activity may augment other neurotoxic phenomena in PD, including mitochondrial deficits, protein aggregation and spread, dopamine toxicity, and excitotoxicity. A more complete picture of how activity is altered and the resulting effects on dopaminergic neuron health and function may inform future therapeutic interventions to target and protect dopamine neurons from degeneration.
Collapse
Affiliation(s)
- Katerina Rademacher
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, 94158, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.; Graduate Program in Neuroscience, University of California San Francisco, San Francisco, California, 94158, USA; Graduate Program in Biomedical Sciences, University of California San Francisco, San Francisco, California, 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, California, 94158, USA.
| |
Collapse
|
4
|
Bérard M, Martínez-Drudis L, Sheta R, El-Agnaf OMA, Oueslati A. Non-invasive systemic viral delivery of human alpha-synuclein mimics selective and progressive neuropathology of Parkinson's disease in rodent brains. Mol Neurodegener 2023; 18:91. [PMID: 38012703 PMCID: PMC10683293 DOI: 10.1186/s13024-023-00683-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Alpha-synuclein (α-syn) aggregation into proteinaceous intraneuronal inclusions, called Lewy bodies (LBs), is the neuropathological hallmark of Parkinson's disease (PD) and related synucleinopathies. However, the exact role of α-syn inclusions in PD pathogenesis remains elusive. This lack of knowledge is mainly due to the absence of optimal α-syn-based animal models that recapitulate the different stages of neurodegeneration. METHODS Here we describe a novel approach for a systemic delivery of viral particles carrying human α-syn allowing for a large-scale overexpression of this protein in the mouse brain. This approach is based on the use of a new generation of adeno-associated virus (AAV), AAV-PHP.eB, with an increased capacity to cross the blood-brain barrier, thus offering a viable tool for a non-invasive and large-scale gene delivery in the central nervous system. RESULTS Using this model, we report that widespread overexpression of human α-syn induced selective degeneration of dopaminergic (DA) neurons, an exacerbated neuroinflammatory response in the substantia nigra and a progressive manifestation of PD-like motor impairments. Interestingly, biochemical analysis revealed the presence of insoluble α-syn oligomers in the midbrain. Together, our data demonstrate that a single non-invasive systemic delivery of viral particles overexpressing α-syn prompted selective and progressive neuropathology resembling the early stages of PD. CONCLUSIONS Our new in vivo model represents a valuable tool to study the role of α-syn in PD pathogenesis and in the selective vulnerability of nigral DA neurons; and offers the opportunity to test new strategies targeting α-syn toxicity for the development of disease-modifying therapies for PD and related disorders.
Collapse
Affiliation(s)
- Morgan Bérard
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Laura Martínez-Drudis
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Razan Sheta
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Omar M A El-Agnaf
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, 34110, Qatar
| | - Abid Oueslati
- CHU de Québec Research Center, Axe Neurosciences, Quebec City, Canada.
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada.
| |
Collapse
|
5
|
Van Laar AD, Webb KR, Keeney MT, Van Laar VS, Zharikov A, Burton EA, Hastings TG, Glajch KE, Hirst WD, Greenamyre JT, Rocha EM. Transient exposure to rotenone causes degeneration and progressive parkinsonian motor deficits, neuroinflammation, and synucleinopathy. NPJ Parkinsons Dis 2023; 9:121. [PMID: 37567894 PMCID: PMC10421849 DOI: 10.1038/s41531-023-00561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Individuals with Parkinson's disease (PD) typically receive a diagnosis once they have developed motor symptoms, at which point there is already significant loss of substantia nigra dopamine neurons, α-synuclein accumulation in surviving neurons, and neuroinflammation. Consequently, the point of clinical presentation may be too late to initiate disease-modifying therapy. In contrast to this clinical reality, animal models often involve acute neurodegeneration and potential therapies are tested concurrently or shortly after the pathogenic insult has begun rather than later when diagnostic clinical symptoms emerge. Therefore, we sought to develop a model that reflects the clinical situation more accurately. Middle-aged rats (7-9 months-old) received a single daily intraperitoneal injection of rotenone for 5 consecutive days and were observed over the next 8-9 months. Rotenone-treated rats showed transient motor slowing and postural instability during exposure but recovered within 9 days of rotenone cessation. Rats remained without behavioral deficits for 3-4 months, then developed progressive motor abnormalities over the ensuing months. As motor abnormalities began to emerge 3 months after rotenone exposure, there was significant loss of nigral dopaminergic neurons and significant microglial activation. There was delayed accumulation of α-synuclein in neurons of the substantia nigra and frontal cortex, which was maximal at 9 months post-rotenone. In summary, a brief temporally-remote exposure to rotenone causes delayed and progressive behavioral and neuropathological changes similar to Parkinson's disease. This model mimics the human clinical situation, in which pathogenesis is well-established by the time diagnostic motor deficits appear. As such, this model may provide a more relevant experimental system in which to test disease-modifying therapeutics.
Collapse
Affiliation(s)
- Amber D Van Laar
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Katherine R Webb
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Victor S Van Laar
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alevtina Zharikov
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edward A Burton
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
- Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA
| | - Teresa G Hastings
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly E Glajch
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, 02142, USA
| | - Warren D Hirst
- Neurodegenerative Diseases Research Unit, Biogen, Cambridge, MA, 02142, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
6
|
Goralski T, Meyerdirk L, Breton L, Brasseur L, Kurgat K, DeWeerd D, Turner L, Becker K, Adams M, Newhouse D, Henderson MX. Spatial transcriptomics reveals molecular dysfunction associated with Lewy pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541144. [PMID: 37292685 PMCID: PMC10245657 DOI: 10.1101/2023.05.17.541144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lewy pathology composed of α-synuclein is the key pathological hallmark of Parkinson's disease (PD), found both in dopaminergic neurons that control motor function, and throughout cortical regions that control cognitive function. Recent work has investigated which dopaminergic neurons are most susceptible to death, but little is known about which neurons are vulnerable to developing Lewy pathology and what molecular changes an aggregate induces. In the current study, we use spatial transcriptomics to selectively capture whole transcriptome signatures from cortical neurons with Lewy pathology compared to those without pathology in the same brains. We find, both in PD and in a mouse model of PD, that there are specific classes of excitatory neurons that are vulnerable to developing Lewy pathology in the cortex. Further, we identify conserved gene expression changes in aggregate-bearing neurons that we designate the Lewy-associated molecular dysfunction from aggregates (LAMDA) signature. This gene signature indicates that neurons with aggregates downregulate synaptic, mitochondrial, ubiquitin-proteasome, endo-lysosomal, and cytoskeletal genes and upregulate DNA repair and complement/cytokine genes. However, beyond DNA repair gene upregulation, we find that neurons also activate apoptotic pathways, suggesting that if DNA repair fails, neurons undergo programmed cell death. Our results identify neurons vulnerable to Lewy pathology in the PD cortex and identify a conserved signature of molecular dysfunction in both mice and humans.
Collapse
Affiliation(s)
- Thomas Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| | | | | | | | | | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
7
|
Kamath T, Macosko EZ. Insights into Neurodegeneration in Parkinson's Disease from Single-Cell and Spatial Genomics. Mov Disord 2023; 38:518-525. [PMID: 36881930 PMCID: PMC11056908 DOI: 10.1002/mds.29374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Parkinson's disease (PD) is pathologically defined by the death of dopaminergic (DA) neurons within the pars compacta of the substantia nigra. To date, the cause of this multifaceted disease remains largely unclear, which may contribute in part to a current lack of disease-modifying therapies. Recent advances in single-cell and spatial genomic profiling tools have provided powerful new ways to measure cellular state changes in brain diseases. Here, we describe how these tools have offered insight into these complex disorders and highlight a recently performed comprehensive study of DA neuron susceptibility in PD. The data generated by this recent work provide evidence for the role of specific pathways and common genetic variants resulting in the loss of a critical DA subtype in PD. We conclude by outlining a set of basic and translational opportunities that arise from those data and insights gathered from this work. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tushar Kamath
- Stanley Center for Psychiatric Research, Broad Institute, 75 Ames Street Cambridge, MA 02139
- Harvard Medical School and Harvard/MIT MD-PhD Program, Harvard University, Cambridge, MA 02139 USA
| | - Evan Z. Macosko
- Stanley Center for Psychiatric Research, Broad Institute, 75 Ames Street Cambridge, MA 02139
- Massachusetts General Hospital, Department of Psychiatry, Boston, MA USA
| |
Collapse
|
8
|
Javid H, Saeedian Moghadam E, Farahmandfar M, Manouchehrabadi M, Amini M, Salimi M, Torkaman-Boutorabi A. Biological Activity of Novel Pyrrole Derivatives as Antioxidant Agents Against 6-OHDA Induced Neurotoxicity in PC12 Cells. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e140450. [PMID: 38444711 PMCID: PMC10912899 DOI: 10.5812/ijpr-140450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 03/07/2024]
Abstract
Background Neuroinflammation and oxidative stress are critical factors involved in the pathogenesis of Parkinson's disease (PD), the second most common progressive neurodegenerative disease. Additionally, lipid peroxidation end products contribute to inflammatory responses by activating pro-inflammatory genes. Lipid peroxidation occurs as a result of either the overproduction of intracellular reactive oxygen species (ROS) or the reaction of cyclooxygenases (COXs). Objectives In this study, we examined the role of 1,5-diaryl pyrrole derivatives against the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in a cellular model of PD. Methods PC12 cells were pre-treated with compounds 2-(4-chlorophenyl)-5-methyl-1-(4-(trifluoromethoxy)phenyl)-1H-pyrrole (A), 2-(4-chlorophenyl)-1-(4-methoxyphenyl)-5-methyl-1H-pyrrole (B), and 1-(2-chlorophenyl)-2-(4-chlorophenyl)-5-methyl-1H-pyrrole (C), respectively, 24 h before exposure to 6-OHDA. We conducted various assays, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazoliumbromide (MTT), ROS, and lipid peroxidation assays, Hoechst staining, Annexin V/PI, Western blotting analysis and ELISA method, to assess the neuroprotective effects of pyrrole derivatives on 6-OHDA-induced neurotoxicity. Results Our results demonstrated that apoptosis induction was inhibited by controlling the lipid peroxidation process in the in vitro model following pre-treatment with compounds A, B, and, somehow, C. Furthermore, compounds A and C likely act by suppressing the COX-2/PGE2 pathway, a mechanism not attributed to compound B. Conclusions These findings suggest that the novel synthetic pyrrolic derivatives may be considered promising neuroprotective agents that can potentially prevent the progression of PD.
Collapse
Affiliation(s)
- Hanieh Javid
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Saeedian Moghadam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Manouchehrabadi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design & Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Salimi
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Cognitive and Behavioral Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Nigral neuropathology of Parkinson's motor subtypes coincide with circuitopathies: a scoping review. Brain Struct Funct 2022; 227:2231-2242. [PMID: 35854141 PMCID: PMC9418085 DOI: 10.1007/s00429-022-02531-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
Abstract
The neuropathological substrates of Parkinson’s disease (PD) patients with motor subtypes tremor-dominance (TD), non-tremor dominance (nTD), postural instability and gait difficulty (PIGD), and akinetic-rigid (AR) are not completely differentiated. While extensive pathological research has been conducted on neuronal tissue of PD patients, data have not been discussed in the context of mechanistic circuitry theories differentiating motor subtypes. It is, therefore, expected that a more specific and tailored management of PD symptoms can be accomplished by understanding symptom-specific neuropathological mechanisms with the detail histology can provide. This scoping review gives an overview of the literature comparing TD and nTD PD motor subtypes by clarify observed pathology with underlying physiological circuitry theories. Studies using an array of pathological examination techniques have shown significant differences between TD and nTD PD subtypes. nTD PD patients show higher neuronal loss, gliosis, extraneuronal melanin deposits, and neuroaxonal dystrophy in multiple subregions of the substantia nigra (SN) related to the overactivity of the indirect motor loop. TD patients show more severe cell loss specifically in medial SN subdivisions, and have damage in the retrorubral field A-8 that projects to the dorsolateral striatum and ventromedial thalamus in the direct motor loop. Pathological studies are consistent with neuroimaging data and support contemporary mechanistic circuitry theories of PD motor symptom genesis. Further multimodal neuroimaging and histological studies are required to validate and expand upon these findings.
Collapse
|
10
|
Boshkovski T, Cohen‐Adad J, Misic B, Arnulf I, Corvol J, Vidailhet M, Lehéricy S, Stikov N, Mancini M. The Myelin-Weighted Connectome in Parkinson's Disease. Mov Disord 2022; 37:724-733. [PMID: 34936123 PMCID: PMC9303520 DOI: 10.1002/mds.28891] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Even though Parkinson's disease (PD) is typically viewed as largely affecting gray matter, there is growing evidence that there are also structural changes in the white matter. Traditional connectomics methods that study PD may not be specific to underlying microstructural changes, such as myelin loss. OBJECTIVE The primary objective of this study is to investigate the PD-induced changes in myelin content in the connections emerging from the basal ganglia and the brainstem. For the weighting of the connectome, we used the longitudinal relaxation rate as a biologically grounded myelin-sensitive metric. METHODS We computed the myelin-weighted connectome in 35 healthy control subjects and 81 patients with PD. We used partial least squares to highlight the differences between patients with PD and healthy control subjects. Then, a ring analysis was performed on selected brainstem and subcortical regions to evaluate each node's potential role as an epicenter for disease propagation. Then, we used behavioral partial least squares to relate the myelin alterations with clinical scores. RESULTS Most connections (~80%) emerging from the basal ganglia showed a reduced myelin content. The connections emerging from potential epicentral nodes (substantia nigra, nucleus basalis of Meynert, amygdala, hippocampus, and midbrain) showed significant decrease in the longitudinal relaxation rate (P < 0.05). This effect was not seen for the medulla and the pons. CONCLUSIONS The myelin-weighted connectome was able to identify alteration of the myelin content in PD in basal ganglia connections. This could provide a different view on the importance of myelination in neurodegeneration and disease progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Julien Cohen‐Adad
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Mila – Quebec AI InstituteMontréalQuebecCanada
- Functional Neuroimaging Unit, Centre de Recherche de l'Institut Universitaire de Gériatrie de MontréalMontréalQuebecCanada
| | | | - Isabelle Arnulf
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Jean‐Christophe Corvol
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Stéphane Lehéricy
- Sorbonne Université, Paris Brain Institute – ICM, INSERM, CNRS, Assistance Publique Hôpitaux de Paris, Hôpital Pitié‐SalpêtrièreParisFrance
| | - Nikola Stikov
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Montreal Heart InstituteMontréalQuebecCanada
| | - Matteo Mancini
- NeuroPoly Lab, Polytechnique MontréalMontréalQuebecCanada
- Department of NeuroscienceBrighton and Sussex Medical School, University of SussexBrightonUnited Kingdom
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff UniversityCardiffUnited Kingdom
| |
Collapse
|
11
|
Jan A, Gonçalves NP, Vaegter CB, Jensen PH, Ferreira N. The Prion-Like Spreading of Alpha-Synuclein in Parkinson's Disease: Update on Models and Hypotheses. Int J Mol Sci 2021; 22:8338. [PMID: 34361100 PMCID: PMC8347623 DOI: 10.3390/ijms22158338] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson's disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.
Collapse
Affiliation(s)
- Asad Jan
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nádia Pereira Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Christian Bjerggaard Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
- International Diabetic Neuropathy Consortium (IDNC), Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Poul Henning Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| | - Nelson Ferreira
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (N.P.G.); (C.B.V.); (P.H.J.)
| |
Collapse
|
12
|
Loss of fragile X mental retardation protein precedes Lewy pathology in Parkinson's disease. Acta Neuropathol 2020; 139:319-345. [PMID: 31768670 DOI: 10.1007/s00401-019-02099-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder and is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc) and the gradual appearance of α-synuclein (α-syn)-containing neuronal protein aggregates. Although the exact mechanism of α-syn-mediated cell death remains elusive, recent research suggests that α-syn-induced alterations in neuronal excitability contribute to cell death in PD. Because the fragile X mental retardation protein (FMRP) controls the expression and function of numerous neuronal genes related to neuronal excitability and synaptic function, we here investigated the role of FMRP in α-syn-associated pathological changes in cell culture and mouse models of PD as well as in post-mortem human brain tissue from PD patients. We found FMRP to be decreased in cultured DA neurons and in the mouse brain in response to α-syn overexpression. FMRP was, furthermore, lost in the SNc of PD patients and in patients with early stages of incidental Lewy body disease (iLBD). Unlike fragile X syndrome (FXS), FMR1 expression in response to α-syn was regulated by a mechanism involving Protein Kinase C (PKC) and cAMP response element-binding protein (CREB). Reminiscent of FXS neurons, α-syn-overexpressing cells exhibited an increase in membrane N-type calcium channels, increased phosphorylation of ERK1/2, eIF4E and S6, increased overall protein synthesis, and increased expression of Matrix Metalloproteinase 9 (MMP9). FMRP affected neuronal function in a PD animal model, because FMRP-KO mice were resistant to the effect of α-syn on striatal dopamine release. In summary, our results thus reveal a new role of FMRP in PD and support the examination of FMRP-regulated genes in PD disease progression.
Collapse
|
13
|
Pitz V, Malek N, Tobias ES, Grosset KA, Gentleman S, Grosset DG. The Levodopa Response Varies in Pathologically Confirmed Parkinson's Disease: A Systematic Review. Mov Disord Clin Pract 2020; 7:218-222. [PMID: 32071945 DOI: 10.1002/mdc3.12885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 01/18/2023] Open
Abstract
Background A good response to levodopa is a key feature of Parkinson's disease (PD), and a poor response suggests an alternative diagnosis, but the extent of variation in the levodopa response in definite PD is not well defined. Literature Review A systematic review of articles reporting pathologically confirmed PD and levodopa responsiveness from 1971 to 2018 was performed using the medical subheadings "postmortem," "Parkinson's disease," "levodopa," and "l-dopa" in PubMed, Embase, and Latin American and Caribbean Health Sciences Literature (LILACS) databases. Cases A total of 12 articles described 445 PD cases: 61.7% male, age at disease onset 64.0 years (SD 9.6), age at death 77.1 years (SD 7.2). Levodopa responsiveness was reported in 399 cases (89.7%) either as a graded or a binary response. In the 280 cases (70.2%) describing a graded response, it was excellent in 37.5%, good in 45.7%, moderate in 12.1%, and poor in 4.6%. In the 119 cases describing a binary response (29.8%), 73.1% were levodopa responsive, and 26.9% were nonresponsive. Comorbid brain pathology was present in 137 of 235 cases assessed, being cerebrovascular in 46.0% and Alzheimer's disease in 37.2% of these, but its contribution to levodopa responsiveness was unclear. Conclusions The levodopa motor response varies in definite PD. Explanations other than diagnostic inaccuracy should be explored.
Collapse
Affiliation(s)
- Vanessa Pitz
- Institute of Neuroscience and Psychology University of Glasgow Glasgow United Kingdom
| | - Naveed Malek
- Department of Neurology Ipswich Hospital NHS Trust Ipswich United Kingdom
| | - Edward S Tobias
- School of Medicine, Dentistry and Nursing University of Glasgow Glasgow United Kingdom.,Department of Clinical Genetics Queen Elizabeth University Hospital Glasgow United Kingdom
| | - Katherine A Grosset
- Institute of Neuroscience and Psychology University of Glasgow Glasgow United Kingdom.,Department of Neurology Institute of Neurological Sciences, Queen Elizabeth University Hospital Glasgow United Kingdom
| | - Steve Gentleman
- Department of Medicine Imperial College London London United Kingdom
| | - Donald G Grosset
- Institute of Neuroscience and Psychology University of Glasgow Glasgow United Kingdom.,Department of Neurology Institute of Neurological Sciences, Queen Elizabeth University Hospital Glasgow United Kingdom
| |
Collapse
|
14
|
Dopaminergic neuroprotective effects of rotigotine via 5-HT1A receptors: Possibly involvement of metallothionein expression in astrocytes. Neurochem Int 2019; 132:104608. [PMID: 31765686 DOI: 10.1016/j.neuint.2019.104608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/28/2022]
Abstract
Astrocytes exert neuroprotective effects through production of antioxidant molecules and neurotrophic factors. A recent study showed that stimulation of astrocyte serotonin 1A (5-HT1A) receptors promotes astrocyte proliferation and upregulation of the antioxidant molecules metallothionein (MT)-1,2, which protect dopaminergic neurons against oxidative stress. Rotigotine, an anti-parkinsonian drug, can bind to dopamine and 5-HT1A receptors. In this study, we examined neuroprotective effects of rotigotine in models of Parkinson's disease and involvement of astrocyte 5-HT1A receptors in neuroprotective effects of rotigotine against dopaminergic neurodegeneration. Rotigotine increased the number of astrocytes and MT-1,2 expression in cultured astrocytes. Pretreatment with conditioned media from rotigotine-treated astrocytes significantly inhibited 6-hydroxydopamine (6-OHDA)-induced dopaminergic neurotoxicity. These effects were completely blocked by a 5-HT1A antagonist or MT-1,2 specific antibody. Subcutaneous administration of rotigotine increased MT-1,2 expression in striatal astrocytes and prevented reduction of dopaminergic neurons in the substantia nigra of a 6-OHDA-lesioned mouse model of Parkinson's disease. These effects were blocked by co-administration with a 5-HT1A antagonist. These results suggest that rotigotine exerts neuroprotective effects through upregulation of MT expression in astrocytes by targeting 5-HT1A receptors. Our findings provide a possible therapeutic application of rotigotine to prevent dopaminergic neurodegeneration in Parkinson's disease.
Collapse
|
15
|
Mashima K, Takahashi S, Minami K, Izawa Y, Abe T, Tsukada N, Hishiki T, Suematsu M, Kajimura M, Suzuki N. Neuroprotective Role of Astroglia in Parkinson Disease by Reducing Oxidative Stress Through Dopamine-Induced Activation of Pentose-Phosphate Pathway. ASN Neuro 2019; 10:1759091418775562. [PMID: 29768946 PMCID: PMC5960859 DOI: 10.1177/1759091418775562] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress plays an important role in the onset and progression of Parkinson disease. Although released dopamine at the synaptic terminal is mostly reabsorbed by dopaminergic neurons, some dopamine is presumably taken up by astroglia. This study examined the dopamine-induced astroglial protective function through the activation of the pentose-phosphate pathway (PPP) to reduce reactive oxygen species (ROS). In vitro experiments were performed using striatal neurons and cortical or striatal astroglia prepared from Sprague-Dawley rats or C57BL/6 mice. The rates of glucose phosphorylation in astroglia were evaluated using the [14C]deoxyglucose method. PPP activity was measured using [1-14C]glucose and [6-14C]glucose after acute (60 min) or chronic (15 hr) exposure to dopamine. ROS production was measured using 2',7'-dichlorodihydrofluorescein diacetate. The involvement of the Kelch-like ECH-associated protein 1 (Keap1) or nuclear factor-erythroid-2-related factor 2 (Nrf2) system was evaluated using Nrf2 gene knockout mice, immunohistochemistry, and quantitative reverse transcription polymerase chain reaction analysis for heme oxygenase-1. Acute exposure to dopamine elicited increases in astroglial glucose consumption with lactate release. PPP activity in astroglia was robustly enhanced independently of Na+-dependent monoamine transporters. In contrast, chronic exposure to dopamine induced moderate increases in PPP activity via the Keap1/Nrf2 system. ROS production from dopamine increased gradually over 12 hr. Dopamine induced neuronal cell damage that was prevented by coculturing with astroglia but not with Nrf2-deficient astroglia. Dopamine-enhanced astroglial PPP activity in both acute and chronic manners may possibly reduce neuronal oxidative stress.
Collapse
Affiliation(s)
- Kyoko Mashima
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Shinichi Takahashi
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Kazushi Minami
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshikane Izawa
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takato Abe
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan.,2 Department of Neurology, Graduate School of Medicine, Osaka City University, Japan
| | - Naoki Tsukada
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Takako Hishiki
- 3 Clinical and Translational Research Center, Keio University School of Medicine, Tokyo, Japan.,4 Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Makoto Suematsu
- 4 Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Kajimura
- 5 Department of Biology, Keio University School of Medicine, Yokohama, Japan
| | - Norihiro Suzuki
- 1 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Geibl FF, Henrich MT, Oertel WH. Mesencephalic and extramesencephalic dopaminergic systems in Parkinson's disease. J Neural Transm (Vienna) 2019; 126:377-396. [PMID: 30643975 DOI: 10.1007/s00702-019-01970-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
Abstract
Neurodegeneration of the nigrostriatal dopaminergic system and concurrent dopamine (DA) deficiency in the basal ganglia represent core features of Parkinson's disease (PD). Despite the central role of DA in the pathogenesis of PD, dopaminergic systems outside of the midbrain have not been systematically investigated for Lewy body pathology or neurodegeneration. Dopaminergic neurons show a surprisingly rich neurobiological diversity, suggesting that there is not one general type of dopaminergic neuron, but rather a spectrum of different dopaminergic phenotypes. This heterogeneity on the cellular level could account for the observed differences in susceptibility of the dopaminergic systems to the PD disease process. In this review, we will summarize the long history from the first description of PD to the rationally derived DA replacement therapy, describe the basal neuroanatomical and neuropathological features of the different dopaminergic systems in health and PD, explore how neuroimaging techniques broadened our view of the dysfunctional dopaminergic systems in PD and discuss how dopaminergic replacement therapy ameliorates the classical motor symptoms but simultaneously induces a new set of hyperdopaminergic symptoms.
Collapse
Affiliation(s)
- Fanni F Geibl
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany.
| | - Martin T Henrich
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps University Marburg, Baldingerstraße 1, 35043, Marburg, Germany
| |
Collapse
|
17
|
Giguère N, Burke Nanni S, Trudeau LE. On Cell Loss and Selective Vulnerability of Neuronal Populations in Parkinson's Disease. Front Neurol 2018; 9:455. [PMID: 29971039 PMCID: PMC6018545 DOI: 10.3389/fneur.2018.00455] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022] Open
Abstract
Significant advances have been made uncovering the factors that render neurons vulnerable in Parkinson's disease (PD). However, the critical pathogenic events leading to cell loss remain poorly understood, complicating the development of disease-modifying interventions. Given that the cardinal motor symptoms and pathology of PD involve the loss of dopamine (DA) neurons of the substantia nigra pars compacta (SNc), a majority of the work in the PD field has focused on this specific neuronal population. PD however, is not a disease of DA neurons exclusively: pathology, most notably in the form of Lewy bodies and neurites, has been reported in multiple regions of the central and peripheral nervous system, including for example the locus coeruleus, the dorsal raphe nucleus and the dorsal motor nucleus of the vagus. Cell and/or terminal loss of these additional nuclei is likely to contribute to some of the other symptoms of PD and, most notably to the non-motor features. However, exactly which regions show actual, well-documented, cell loss is presently unclear. In this review we will first examine the strength of the evidence describing the regions of cell loss in idiopathic PD, as well as the order in which this loss occurs. Secondly, we will discuss the neurochemical, morphological and physiological characteristics that render SNc DA neurons vulnerable, and will examine the evidence for these characteristics being shared across PD-affected neuronal populations. The insights raised by focusing on the underpinnings of the selective vulnerability of neurons in PD might be helpful to facilitate the development of new disease-modifying strategies and improve animal models of the disease.
Collapse
Affiliation(s)
- Nicolas Giguère
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Samuel Burke Nanni
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Louis-Eric Trudeau
- CNS Research Group, Department of Pharmacology and Physiology, Department of Neurosciences, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
18
|
|
19
|
Steiner JA, Quansah E, Brundin P. The concept of alpha-synuclein as a prion-like protein: ten years after. Cell Tissue Res 2018; 373:161-173. [PMID: 29480459 DOI: 10.1007/s00441-018-2814-1] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/29/2018] [Indexed: 12/18/2022]
Abstract
Parkinson's disease is characterized by the loss of nigrostriatal dopaminergic signaling and the presence of alpha-synuclein aggregates (also called Lewy bodies and neurites) throughout the brain. In 2003, Braak and colleagues created a staging system for Parkinson's disease describing the connection between the alpha-synuclein pathology and disease severity. Later, they suggested that the pathology might initially be triggered by exogenous insults targeting the gut and olfactory system. In 2008, we and other groups documented Lewy pathology in grafted neurons in people with Parkinson's disease who had been transplanted over a decade prior to autopsy. We proposed that the Lewy pathology in the grafted neurons was the result of permissive templating or prion-like spread of alpha-synuclein pathology from neurons in the host to those in the grafts. During the following ten years, several studies described the transmission of alpha-synuclein pathology between neurons, both in cell culture and in experimental animals. Recent research has also begun to identify underlying molecular mechanisms. Collectively, these experimental studies tentatively support the idea that the progression from one Braak stage to the next is the consequence of prion-like propagation of Lewy pathology. However, definitive proof that intercellular propagation of alpha-synuclein pathology occurs in Parkinson's disease cases has proven difficult to secure. In this review, we highlight several open questions that currently prevent us from concluding with certainty that prion-like transfer of alpha-synuclein contributes to the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Jennifer A Steiner
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| | - Emmanuel Quansah
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| |
Collapse
|
20
|
Parkinson's Disease Is Not Simply a Prion Disorder. J Neurosci 2017; 37:9799-9807. [PMID: 29021297 DOI: 10.1523/jneurosci.1787-16.2017] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/09/2017] [Accepted: 06/17/2017] [Indexed: 12/31/2022] Open
Abstract
The notion that prion-like spreading of misfolded α-synuclein (α-SYN) causes Parkinson's disease (PD) has received a great deal of attention. Although attractive in its simplicity, the hypothesis is difficult to reconcile with postmortem analysis of human brains and connectome-mapping studies. An alternative hypothesis is that PD pathology is governed by regional or cell-autonomous factors. Although these factors provide an explanation for the pattern of neuronal loss in PD, they do not readily explain the apparently staged distribution of Lewy pathology in many PD brains, the feature of the disease that initially motivated the spreading hypothesis by Braak and colleagues. While each hypothesis alone has its shortcomings, a synthesis of the two can explain much of what we know about the etiopathology of PD.Dual Perspectives Companion Paper: Prying into the Prion Hypothesis for Parkinson's Disease, by Patrik Brundin and Ronald Melki.
Collapse
|
21
|
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017; 18:101-113. [PMID: 28104909 DOI: 10.1038/nrn.2016.178] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - José A Obeso
- Centro Integral de Neurociencias A.C. (CINAC), HM Puerta del Sur, Hospitales de Madrid, Mostoles and CEU San Pablo University, 28938 Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2006, Australia.,School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Sydney 2052, Australia
| |
Collapse
|
22
|
The Contribution of α-Synuclein Spreading to Parkinson's Disease Synaptopathy. Neural Plast 2017; 2017:5012129. [PMID: 28133550 PMCID: PMC5241463 DOI: 10.1155/2017/5012129] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/11/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Synaptopathies are diseases with synapse defects as shared pathogenic features, encompassing neurodegenerative disorders such as Parkinson's disease (PD). In sporadic PD, the most common age-related neurodegenerative movement disorder, nigrostriatal dopaminergic deficits are responsible for the onset of motor symptoms that have been related to α-synuclein deposition at synaptic sites. Indeed, α-synuclein accumulation can impair synaptic dopamine release and induces the death of nigrostriatal neurons. While in physiological conditions the protein can interact with and modulate synaptic vesicle proteins and membranes, numerous experimental evidences have confirmed that its pathological aggregation can compromise correct neuronal functioning. In addition, recent findings indicate that α-synuclein pathology spreads into the brain and can affect the peripheral autonomic and somatic nervous system. Indeed, monomeric, oligomeric, and fibrillary α-synuclein can move from cell to cell and can trigger the aggregation of the endogenous protein in recipient neurons. This novel “prion-like” behavior could further contribute to synaptic failure in PD and other synucleinopathies. This review describes the major findings supporting the occurrence of α-synuclein pathology propagation in PD and discusses how this phenomenon could induce or contribute to synaptic injury and degeneration.
Collapse
|
23
|
Sensitive analysis of α-synuclein by nonlinear laser wave mixing coupled with capillary electrophoresis. Anal Biochem 2016; 500:51-9. [PMID: 26874019 DOI: 10.1016/j.ab.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 12/31/2015] [Accepted: 01/13/2016] [Indexed: 01/07/2023]
Abstract
Multi-photon nonlinear laser wave-mixing spectroscopy is a novel absorption-based technique that offers excellent detection sensitivity for biomedical applications, including early diagnosis and investigation of neurodegenerative diseases. α-Synuclein is linked to Parkinson's disease (PD), and characterization of its oligomers and quantification of the protein may contribute to understanding PD. The laser wave-mixing signal has a quadratic dependence on analyte concentration, and hence the technique is effective in monitoring small changes in concentration within biofluids. A wide variety of labels can be employed for laser wave-mixing detection due to its ability to detect both chromophores and fluorophores. In this investigation, two fluorophores and a chromophore are studied and used as labels for the detection of α-synuclein. Wave-mixing detection limits of PD-related protein conjugated with fluorescein isothiocyanate, QSY 35 acetic acid, succinimidyl ester, and Chromeo P503 were determined to be 1.4 × 10(-13) M, 1.4 × 10(-10) M, and 1.9 × 10(-13) M, respectively. Based on the laser probe volume used, the corresponding mass detection limits were determined to be 1.1 × 10(-23) mol, 1.1 × 10(-20) mol, and 1.5 × 10(-23) mol. This study also presents molecular-based separation and quantification of α-synuclein by laser wave mixing coupled with capillary electrophoresis.
Collapse
|
24
|
The substantia nigra and ventral tegmental dopaminergic neurons from development to degeneration. J Chem Neuroanat 2016; 76:98-107. [PMID: 26859066 DOI: 10.1016/j.jchemneu.2016.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 01/25/2016] [Accepted: 02/03/2016] [Indexed: 12/20/2022]
Abstract
The pathology of Parkinson's disease (PD) is characterised by the loss of neurons in the substantia nigra parcompacta (A9), which results in the insufficient release of dopamine, and the appearance of motor symptoms. Not all neurons in the A9 subregions degenerate in PD, and the dopaminergic (DA) neurons located in the neighboring ventral tegmental area (A10) are relatively resistant to PD pathogenesis. An increasing number of quantitative studies using human tissue samples of these brain regions have revealed important biological differences. In this review, we first describe current knowledge on the multi-segmental neuromere origin of these DA neurons. We then compare the continued transcription factor and protein expression profile and morphological differences distinguishing subregions within the A9 substantia nigra, and between A9 and A10 DA neurons. We conclude that the expression of three types of factors and proteins contributes to the diversity observed in these DA neurons and potentially to their differential vulnerability to PD. In particular, the specific axonal structure of A9 neurons and the way A9 neurons maintain their DA usage makes them easily exposed to energy deficits, calcium overload and oxidative stress, all contributing to their decreased survival in PD. We highlight knowledge gaps in our understanding of the cellular biomarkers for and their different functions in DA neurons, knowledge which may assist to identify underpinning disease mechansims that could be targeted for the treatment of any subregional dysfunction and loss of these DA neurons.
Collapse
|
25
|
Di Lorenzo Alho AT, Suemoto CK, Polichiso L, Tampellini E, de Oliveira KC, Molina M, Santos GAB, Nascimento C, Leite REP, de Lucena Ferreti-Rebustini RE, da Silva AV, Nitrini R, Pasqualucci CA, Jacob-Filho W, Heinsen H, Grinberg LT. Three-dimensional and stereological characterization of the human substantia nigra during aging. Brain Struct Funct 2015; 221:3393-403. [PMID: 26386691 DOI: 10.1007/s00429-015-1108-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/05/2015] [Indexed: 11/24/2022]
Abstract
The human brain undergoes non-uniform changes during aging. The substantia nigra (SN), the source of major dopaminergic pathways in the brain, is particularly vulnerable to changes in the progression of several age-related neurodegenerative diseases. To establish normative data for high-resolution imaging, and to further clinical and anatomical studies we analyzed SNs from 15 subjects aged 50-91 cognitively normal human subjects without signs of parkinsonism. Complete brains or brainstems with substantia nigra were formalin-fixed, celloidin-mounted, serially cut and Nissl-stained. The shapes of all SNs investigated were reconstructed using fast, high-resolution computer-assisted 3D reconstruction software. We found a negative correlation between age and SN volume (p = 0.04, rho = -0.53), with great variability in neuronal numbers and density across participants. The 3D reconstructions revealed SN inter- and intra-individual variability. Furthermore, we observed that human SN is a neuronal reticulum, rather than a group of isolated neuronal islands. Caution is required when using SN volume as a surrogate for SN status in individual subjects. The use of multimodal sequences including those for fiber tracts may enhance the value of imaging as a diagnostic tool to assess SN in vivo. Further studies with a larger sample size are needed for understanding the structure-function interaction of human SN.
Collapse
Affiliation(s)
- Ana Tereza Di Lorenzo Alho
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Labor für Morphologische Hirnforschung der Klinik und Poliklinik für Psychiatrie und Psychotherapie, Institut Rechtsmedizin, Universitätsklinikum Würzburg, Würzburg, Germany.,Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Claudia Kimie Suemoto
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lívia Polichiso
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Edilaine Tampellini
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Kátia Cristina de Oliveira
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Labor für Morphologische Hirnforschung der Klinik und Poliklinik für Psychiatrie und Psychotherapie, Institut Rechtsmedizin, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Mariana Molina
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Glaucia Aparecida Bento Santos
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Camila Nascimento
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil
| | - Renata Elaine Paraizo Leite
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Renata Eloah de Lucena Ferreti-Rebustini
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alexandre Valotta da Silva
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Instituto do Cérebro, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Ricardo Nitrini
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Department of Neurology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Augusto Pasqualucci
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil.,Discipline of Geriatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Helmut Heinsen
- Labor für Morphologische Hirnforschung der Klinik und Poliklinik für Psychiatrie und Psychotherapie, Institut Rechtsmedizin, Universitätsklinikum Würzburg, Würzburg, Germany.,Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Lea Tenenholz Grinberg
- Grupo de Estudos em Envelhecimento Cerebral e LIM 22, Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, Av. Dr. Arnaldo, 455 sala 1353, São Paulo, CEP 01246-903, Brazil. .,Memory and Aging Center, Department of Neurology, University of California, San Francisco, USA. .,Department of Pathology, Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
McCann H, Cartwright H, Halliday GM. Neuropathology of α-synuclein propagation and braak hypothesis. Mov Disord 2015; 31:152-60. [DOI: 10.1002/mds.26421] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | - Glenda M. Halliday
- Neuroscience Research Australia; Sydney Australia
- University of New South Wales; Sydney Australia
| |
Collapse
|
27
|
Choi BK, Kim JY, Cha MY, Mook-Jung I, Shin YK, Lee NK. β-Amyloid and α-synuclein cooperate to block SNARE-dependent vesicle fusion. Biochemistry 2015; 54:1831-40. [PMID: 25714795 DOI: 10.1021/acs.biochem.5b00087] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are caused by β-amyloid (Aβ) and α-synuclein (αS), respectively. Ample evidence suggests that these two pathogenic proteins are closely linked and have a synergistic effect on eliciting neurodegenerative disorders. However, the pathophysiological consequences of Aβ and αS coexistence are still elusive. Here, we show that large-sized αS oligomers, which are normally difficult to form, are readily generated by Aβ42-seeding and that these oligomers efficiently hamper neuronal SNARE-mediated vesicle fusion. The direct binding of the Aβ-seeded αS oligomers to the N-terminal domain of synaptobrevin-2, a vesicular SNARE protein, is responsible for the inhibition of fusion. In contrast, large-sized Aβ42 oligomers (or aggregates) or the products of αS incubated without Aβ42 have no effect on vesicle fusion. These results are confirmed by examining PC12 cell exocytosis. Our results suggest that Aβ and αS cooperate to escalate the production of toxic oligomers, whose main toxicity is the inhibition of vesicle fusion and consequently prompts synaptic dysfunction.
Collapse
Affiliation(s)
- Bong-Kyu Choi
- School of Interdisciplinary Bioscience and Bioengineering and ‡Department of Physics, Pohang University of Science and Technology , Pohang 790-784, Korea
| | | | | | | | | | | |
Collapse
|
28
|
Cortical Metabolic and Nigrostriatal Abnormalities Associated With Clinical Stage-Specific Dementia With Lewy Bodies. Clin Nucl Med 2015; 40:26-31. [DOI: 10.1097/rlu.0000000000000620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Brichta L, Greengard P. Molecular determinants of selective dopaminergic vulnerability in Parkinson's disease: an update. Front Neuroanat 2014; 8:152. [PMID: 25565977 PMCID: PMC4266033 DOI: 10.3389/fnana.2014.00152] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/24/2014] [Indexed: 11/25/2022] Open
Abstract
Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson’s disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field.
Collapse
Affiliation(s)
- Lars Brichta
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University New York, NY, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University New York, NY, USA
| |
Collapse
|
30
|
Dufour MA, Woodhouse A, Goaillard JM. Somatodendritic ion channel expression in substantia nigra pars compacta dopaminergic neurons across postnatal development. J Neurosci Res 2014; 92:981-99. [PMID: 24723263 DOI: 10.1002/jnr.23382] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 01/12/2023]
Abstract
Dopaminergic neurons of the substantia nigra pars compacta (SNc) are involved in the control of movement, sleep, reward, learning, and nervous system disorders and disease. To date, a thorough characterization of the ion channel phenotype of this important neuronal population is lacking. Using immunohistochemistry, we analyzed the somatodendritic expression of voltage-gated ion channel subunits that are involved in pacemaking activity in SNc dopaminergic neurons in 6-, 21-, and 40-day-old rats. Our results demonstrate that the same complement of somatodendritic ion channels is present in SNc dopaminergic neurons from P6 to P40. The major developmental changes were an increase in the dendritic range of the immunolabeling for the HCN, T-type calcium, Kv4.3, delayed rectifier, and SK channels. Our study sheds light on the ion channel subunits that contribute to the somatodendritic delayed rectifier (Kv1.3, Kv2.1, Kv3.2, Kv3.3), A-type (Kv4.3) and calcium-activated SK (SK1, SK2, SK3) potassium currents, IH (mainly HCN2, HCN4), and the L- (Cav1.2, Cav1.3) and T-type (mainly Cav3.1, Cav3.3) calcium currents in SNc dopaminergic neurons. Finally, no robust differences in voltage-gated ion channel immunolabeling were observed across the population of SNc dopaminergic neurons for each age examined, suggesting that differing levels of individual ion channels are unlikely to distinguish between specific subpopulations of SNc dopaminergic neurons. This is significant in light of previous studies suggesting that age- or region-associated variations in the expression profile of voltage-gated ion channels in SNc dopaminergic neurons may underlie their vulnerability to dysfunction and disease.
Collapse
Affiliation(s)
- Martial A Dufour
- INSERM, UMR_S 1072, 13015, Marseille, France; Aix-Marseille Université, UNIS, 13015, Marseille, France
| | | | | |
Collapse
|
31
|
Shao N, Yang J, Li J, Shang HF. Voxelwise meta-analysis of gray matter anomalies in progressive supranuclear palsy and Parkinson's disease using anatomic likelihood estimation. Front Hum Neurosci 2014; 8:63. [PMID: 24600372 PMCID: PMC3927227 DOI: 10.3389/fnhum.2014.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023] Open
Abstract
Numerous voxel-based morphometry (VBM) studies on gray matter (GM) of patients with progressive supranuclear palsy (PSP) and Parkinson's disease (PD) have been conducted separately. Identifying the different neuroanatomical changes in GM resulting from PSP and PD through meta-analysis will aid the differential diagnosis of PSP and PD. In this study, a systematic review of VBM studies of patients with PSP and PD relative to healthy control (HC) in the Embase and PubMed databases from January 1995 to April 2013 was conducted. The anatomical distribution of the coordinates of GM differences was meta-analyzed using anatomical likelihood estimation. Separate maps of GM changes were constructed and subtraction meta-analysis was performed to explore the differences in GM abnormalities between PSP and PD. Nine PSP studies and 24 PD studies were included. GM reductions were present in the bilateral thalamus, basal ganglia, midbrain, insular cortex and inferior frontal gyrus, and left precentral gyrus and anterior cingulate gyrus in PSP. Atrophy of GM was concentrated in the bilateral middle and inferior frontal gyrus, precuneus, left precentral gyrus, middle temporal gyrus, right superior parietal lobule, and right cuneus in PD. Subtraction meta-analysis indicated that GM volume was lesser in the bilateral midbrain, thalamus, and insula in PSP compared with that in PD. Our meta-analysis indicated that PSP and PD shared a similar distribution of neuroanatomical changes in the frontal lobe, including inferior frontal gyrus and precentral gyrus, and that atrophy of the midbrain, thalamus, and insula are neuroanatomical markers for differentiating PSP from PD.
Collapse
Affiliation(s)
- Na Shao
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Jianpeng Li
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University Chengdu, China
| |
Collapse
|
32
|
Halliday G, McCann H, Shepherd C. Evaluation of the Braak hypothesis: how far can it explain the pathogenesis of Parkinson's disease? Expert Rev Neurother 2014; 12:673-86. [DOI: 10.1586/ern.12.47] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT. Disease duration and the integrity of the nigrostriatal system in Parkinson's disease. ACTA ACUST UNITED AC 2013; 136:2419-31. [PMID: 23884810 DOI: 10.1093/brain/awt192] [Citation(s) in RCA: 847] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The pace of nigrostriatal degeneration, both with regards to striatal denervation and loss of melanin and tyrosine hydroxylase-positive neurons, is poorly understood especially early in the Parkinson's disease process. This study investigated the extent of nigrostriatal degeneration in patients with Parkinson's disease at different disease durations from time of diagnosis. Brains of patients with Parkinson's disease (n=28) with post-diagnostic intervals of 1-27 years and normal elderly control subjects (n=9) were examined. Sections of the post-commissural putamen and substantia nigra pars compacta were processed for tyrosine hydroxylase and dopamine transporter immunohistochemistry. The post-commissural putamen was selected due to tissue availability and the fact that dopamine loss in this region is associated with motor disability in Parkinson's disease. Quantitative assessments of putaminal dopaminergic fibre density and stereological estimates of the number of melanin-containing and tyrosine hydroxylase-immunoreactive neurons in the substantia nigra pars compacta (both in total and in subregions) were performed by blinded investigators in cases where suitable material was available (n=17). Dopaminergic markers in the dorsal putamen showed a modest loss at 1 year after diagnosis in the single case available for study. There was variable (moderate to marked) loss, at 3 years. At 4 years post-diagnosis and thereafter, there was virtually complete loss of staining in the dorsal putamen with only an occasional abnormal dopaminergic fibre detected. In the substantia nigra pars compacta, there was a 50-90% loss of tyrosine hydroxylase-positive neurons from the earliest time points studied with only marginal additional loss thereafter. There was only a ∼10% loss of melanized neurons in the one case evaluated 1 year post-diagnosis, and variable (30 to 60%) loss during the first several years post-diagnosis with more gradual and subtle loss in the second decade. At all time points, there were more melanin-containing than tyrosine hydroxylase-positive cells. Loss of dopaminergic markers in the dorsal putamen occurs rapidly and is virtually complete by 4 years post-diagnosis. Loss of melanized nigral neurons lags behind the loss of dopamine markers. These findings have important implications for understanding the nature of Parkinson's disease neurodegeneration and for studies of putative neuroprotective/restorative therapies.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Centre, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Miyoshi F, Ogawa T, Kitao SI, Kitayama M, Shinohara Y, Takasugi M, Fujii S, Kaminou T. Evaluation of Parkinson disease and Alzheimer disease with the use of neuromelanin MR imaging and (123)I-metaiodobenzylguanidine scintigraphy. AJNR Am J Neuroradiol 2013; 34:2113-8. [PMID: 23744697 DOI: 10.3174/ajnr.a3567] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Progressive changes in the substantia nigra pars compacta and locus ceruleus of patients with Parkinson disease and Alzheimer disease visualized by neuromelanin MRI and cardiac postganglionic sympathetic nerve function on (123)I-metaiodobenzylguanidine scintigraphy have not been fully evaluated. We compared the diagnostic value of these modalities among patients with early Parkinson disease, late Parkinson disease, and Alzheimer disease. MATERIALS AND METHODS We compared contrast ratios of signal intensity in medial and lateral regions of the substantia nigra pars compacta and locus ceruleus with those of the tegmentum of the midbrain and the pons, respectively, by use of neuromelanin MRI in patients with early Parkinson disease (n = 13), late Parkinson disease (n = 31), Alzheimer disease (n = 6), and age-matched healthy control subjects (n = 20). We calculated heart-to-mediastinum ratios on (123)I-metaiodobenzylguanidine scintigrams after setting regions of interest on the left cardiac ventricle and upper mediastinum. RESULTS The signal intensity of the lateral substantia nigra pars compacta on neuromelanin MRI was significantly reduced in early and late Parkinson disease, and that of the medial substantia nigra pars compacta was gradually and stage-dependently reduced in Parkinson disease. The signal intensity of the locus ceruleus was obviously reduced in late Parkinson disease. Signal reduction was not significant in the substantia nigra pars compacta and locus ceruleus of patients with Alzheimer disease. The heart-to-mediastinum ratio on (123)I-metaiodobenzylguanidine scintigrams was stage-dependently reduced in Parkinson disease and normal in Alzheimer disease. The signal intensity ratios in substantia nigra pars compacta and locus ceruleus on neuromelanin MRI positively correlated with the heart-to-mediastinum ratio on (123)I-metaiodobenzylguanidine scintigrams. CONCLUSIONS Both neuromelanin MRI and (123)I-metaiodobenzylguanidine scintigraphy can help to evaluate disease progression in Parkinson disease and are useful for differentiating Parkinson disease from Alzheimer disease.
Collapse
Affiliation(s)
- F Miyoshi
- Division of Radiology, Department of Pathophysiological Therapeutic Science
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Reyes S, Cottam V, Kirik D, Double KL, Halliday GM. Variability in neuronal expression of dopamine receptors and transporters in the substantia nigra. Mov Disord 2013; 28:1351-9. [PMID: 23674405 DOI: 10.1002/mds.25493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/31/2022] Open
Abstract
Parkinson's disease (PD) patients have increased susceptibility to impulse control disorders. Recent studies have suggested that alterations in dopamine receptors in the midbrain underlie impulsive behaviors and that more impulsive individuals, including patients with PD, exhibit increased occupancy of their midbrain dopamine receptors. The cellular location of dopamine receptor subtypes and transporters within the human midbrain may therefore have important implications for the development of impulse control disorders in PD. The localization of the dopamine receptors (D1-D5) and dopamine transporter proteins in the upper brain stems of elderly adult humans (n = 8) was assessed using single immunoperoxidase and double immunofluorescence (with tyrosine hydroxylase to identify dopamine neurons). The relative amount of protein expressed in dopamine neurons from different regions was assessed by comparing their relative immunofluorescent intensities. The midbrain dopamine regions associated with impulsivity (medial nigra and ventral tegmental area [VTA]) expressed less dopamine transporter on their neurons than other midbrain dopamine regions. Medial nigral dopamine neurons expressed significantly greater amounts of D1 and D2 receptors and vesicular monoamine transporter than VTA dopamine neurons. The heterogeneous pattern of dopamine receptors and transporters in the human midbrain suggests that the effects of dopamine and dopamine agonists are likely to be nonuniform. The expression of excitatory D1 receptors on nigral dopamine neurons in midbrain regions associated with impulsivity, and their variable loss as seen in PD, may be of particular interest for impulse control.
Collapse
Affiliation(s)
- Stefanie Reyes
- Neuroscience Research Australia and the School of Medical Sciences, University of New South Wales, Randwick, Sydney, New South Wales, Australia
| | | | | | | | | |
Collapse
|
36
|
Is the treatment with psychostimulants in children and adolescents with attention deficit hyperactivity disorder harmful for the dopaminergic system? ACTA ACUST UNITED AC 2013; 5:71-81. [PMID: 23605387 DOI: 10.1007/s12402-013-0105-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 03/09/2013] [Indexed: 12/13/2022]
Abstract
A major concern regarding psychostimulant medication (amphetamine and methylphenidate) in the treatment of children and adolescents with attention deficit/hyperactivity disorder (ADHD) are the potential adverse effects to the developing brain, particularly in regard to dopaminergic brain function. The present review focuses on the pharmacology of these psychostimulants, their mode of action in the human brain and their potential neurotoxic effects to the developing brain in animals, particularly concerning DA brain function. The potential clinical significance of these findings for the treatment of ADHD in children and adolescents is discussed. Studies on sensitization to psychostimulants' rewarding effects, which is a process expected to increase the risk of substance abuse in humans, are not included. The available findings in non-human primates support the notion that the administration of amphetamine and methylphenidate with procedures simulating clinical treatment conditions does not lead to long-term adverse effects in regard to development, neurobiology or behaviour as related to the central dopaminergic system.
Collapse
|
37
|
Reyes S, Fu Y, Double K, Thompson L, Kirik D, Paxinos G, Halliday GM. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol 2013; 520:2591-607. [PMID: 22252428 DOI: 10.1002/cne.23051] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-protein-regulated inward-rectifier potassium channel 2 (GIRK2) is reported to be expressed only within certain dopamine neurons of the substantia nigra (SN), although very limited data are available in humans. We examined the localization of GIRK2 in the SN and adjacent ventral tegmental area (VTA) of humans and mice by using either neuromelanin pigment or immunolabeling with tyrosine hydroxylase (TH) or calbindin. GIRK2 immunoreactivity was found in nearly every human pigmented neuron or mouse TH-immunoreactive neuron in both the SN and VTA, although considerable variability in the intensity of GIRK2 staining was observed. The relative intensity of GIRK2 immunoreactivity in TH-immunoreactive neurons was determined; in both species nearly all SN TH-immunoreactive neurons had strong GIRK2 immunoreactivity compared with only 50-60% of VTA neurons. Most paranigral VTA neurons also contained calbindin immunoreactivity, and approximately 25% of these and nearby VTA neurons also had strong GIRK2 immunoreactivity. These data show that high amounts of GIRK2 protein are found in most SN neurons as well as in a proportion of nearby VTA neurons. The single previous human study may have been compromised by the fixation method used and the postmortem delay of their controls, whereas other studies suggesting that GIRK2 is located only in limited neuronal groups within the SN have erroneously included VTA regions as part of the SN. In particular, the dorsal layer of dopamine neurons directly underneath the red nucleus is considered a VTA region in humans but is commonly considered the dorsal tier of the SN in laboratory species.
Collapse
Affiliation(s)
- Stefanie Reyes
- Neuroscience Research Australia and the School of Medical Sciences, University of New South Wales, Randwick, Sydney, 2031 New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
38
|
Large α-synuclein oligomers inhibit neuronal SNARE-mediated vesicle docking. Proc Natl Acad Sci U S A 2013; 110:4087-92. [PMID: 23431141 DOI: 10.1073/pnas.1218424110] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Parkinson disease and dementia with Lewy bodies are featured with the formation of Lewy bodies composed mostly of α-synuclein (α-Syn) in the brain. Although evidence indicates that the large oligomeric or protofibril forms of α-Syn are neurotoxic agents, the detailed mechanisms of the toxic functions of the oligomers remain unclear. Here, we show that large α-Syn oligomers efficiently inhibit neuronal SNARE-mediated vesicle lipid mixing. Large α-Syn oligomers preferentially bind to the N-terminal domain of a vesicular SNARE protein, synaptobrevin-2, which blocks SNARE-mediated lipid mixing by preventing SNARE complex formation. In sharp contrast, the α-Syn monomer has a negligible effect on lipid mixing even with a 30-fold excess compared with the case of large α-Syn oligomers. Thus, the results suggest that large α-Syn oligomers function as inhibitors of dopamine release, which thus provides a clue, at the molecular level, to their neurotoxicity.
Collapse
|
39
|
Milber JM, Noorigian JV, Morley JF, Petrovitch H, White L, Ross GW, Duda JE. Lewy pathology is not the first sign of degeneration in vulnerable neurons in Parkinson disease. Neurology 2012; 79:2307-14. [PMID: 23152586 DOI: 10.1212/wnl.0b013e318278fe32] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether evidence of neuronal dysfunction or demise preceded deposition of Lewy pathology in vulnerable neurons in Parkinson disease (PD). METHODS We examined the extent of nigral dysfunction and degeneration among 63 normal, incidental Lewy body disease (ILBD), and PD cases based on tyrosine hydroxylase (TH) immunoreactivity and neuron densities, respectively. The relationship between these markers and Lewy pathology (LP) burden in the substantia nigra (SN) and Braak PD stage was assessed. RESULTS Compared with normal subjects, ILBD cases displayed a significantly higher percentage of TH-negative cells and lower neuronal densities in the SN as early as Braak PD stages 1 and 2, before LP deposition in the nigrostriatal system. ILBD nigral neuron densities were intermediate between normal subjects and PD cases, and TH-negative percentages were higher in ILBD than either normal or PD cases. Furthermore, neuron density and neuronal dysfunction levels remained relatively constant across Braak PD stages in ILBD. CONCLUSIONS These results suggest that significant neurodegeneration and cellular dysfunction precede LP in the SN, challenging the pathogenic role of LP in PD and the assumption that ILBD always represents preclinical PD.
Collapse
Affiliation(s)
- Joshua M Milber
- Parkinson's Disease Research, Education and Clinical Center, Philadelphia Veterans Affairs Medical Center, Philadelphia, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Fabricius K, Jacobsen JS, Pakkenberg B. Effect of age on neocortical brain cells in 90+ year old human females--a cell counting study. Neurobiol Aging 2012; 34:91-9. [PMID: 22878165 DOI: 10.1016/j.neurobiolaging.2012.06.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 06/04/2012] [Accepted: 06/07/2012] [Indexed: 11/26/2022]
Abstract
An increasing number of people are living past the age of 100 years, but little is known about what differentiates centenarians from the rest of the population. In this study, brains from female subjects in 3 different age groups, 65-75 years (n = 8), 76-85 years (n = 8), and 94-105 years (n = 7), were examined to estimate the total number of neocortical neurons, astrocytes, oligodendrocytes, and microglia. There was no statistically significant difference in the mean number of neocortical neurons between the 3 groups: 17.9 × 10(9) (CV = SD/mean = 0.15) in the youngest group, 18.1 × 10(9) (CV = 0.22) in the second group, and 16.32 × 10(9) (CV = 0.24) in the oldest group. However, there was a significant difference in the total number of neocortical glial cells between the youngest (41.0 × 10(9)) and oldest (29.0 × 10(9)) age groups (p = 0.013). The significance was probably driven by a significant difference in the total number of neocortical oligodendrocytes that differed significantly between the youngest (27.5 × 10(9)) and oldest (18.1. × 10(9), p = 0.006) age groups. In conclusion, very old individuals have brain neuron numbers comparable with younger individuals, which may be encouraging for those who live into the "fourth age" and may contribute to the longevity of this exceptional group of people.
Collapse
Affiliation(s)
- Katrine Fabricius
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | | |
Collapse
|
41
|
Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson's disease. Mov Disord 2011; 26:6-17. [PMID: 21322014 DOI: 10.1002/mds.23455] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Glia are traditionally known as support cells for neurons, and their role in neurodegeneration has been largely considered secondary to neuronal dysfunction. We review newer concepts on glial function and assess glial changes in Parkinson's disease (PD) at the time of disease initiation when α-synuclein is accumulating in brain tissue but there is limited neuronal loss, and also as the disease progresses and neuronal loss is evident. RESULTS Of the two main types of astrocytes, only protoplasmic astrocytes are involved in PD, where they become nonreactive and accumulate α-synuclein. Experimental evidence has shown that astrocytic α-synuclein deposition initiates the noncell autonomous killing of neurons through microglial signaling. As the disease progresses, more protoplasmic astrocytes are affected by the disease with an increasing microglial response. Although there is still controversy on the role microglia play in neurodegeneration, there is evidence that microglia are activated early in PD and possibly assist with the clearance of extracellular α-synuclein at this time. Microglia transform to phagocytes and target neurons as the disease progresses but appear to become dysfunctional with increasing amounts of ingested debris. Only nonmyelinating oligodendroglial cells are affected in PD, and only late in the disease process. CONCLUSIONS Glial cells are responsible for the progression of PD and play an important role in initiating the early tissue response. In particular, early dysfunction and α-synuclein accumulation in astrocytes causes recruitment of phagocytic microglia that attack selected neurons in restricted brain regions causing the clinical symptoms of PD.
Collapse
|
42
|
The role of calcium channel blockers and resveratrol in the prevention of paraquat-induced parkinsonism in Drosophila melanogaster: a locomotor analysis. INVERTEBRATE NEUROSCIENCE 2011; 11:43-51. [PMID: 21523449 DOI: 10.1007/s10158-011-0116-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/15/2011] [Indexed: 12/19/2022]
Abstract
Studies have suggested that neuronal loss in Parkinson's disease (PD) could be related to the pacemaker activity of the substantia nigra pars compacta generated by L-type Ca(v) 1.3 calcium channels, which progressively substitute voltage-dependent sodium channels in this region during aging. Besides this mechanism, which leads to increases in intracellular calcium, other factors are also known to play a role in dopaminergic cell death due to overproduction of reactive oxygen species. Thus, dihydropyridines, a class of calcium channel blockers, and resveratrol, a polyphenol that presents antioxidant properties, may represent therapeutic alternatives for the prevention of PD. In the present study, we tested the effects of the dihydropyridines, isradipine, nifedipine, and nimodipine and of resveratrol upon locomotor behavior in Drosophila melanogaster. As previously described, paraquat induced parkinsonian-like motor deficits. Moreover, none of the drugs tested were able to prevent the motor deficits produced by paraquat. Additionally, isradipine, nifedipine, resveratrol, and ethanol (vehicle), when used in isolation, induced motor deficits in flies. This study is the first demonstration that dyhidropyridines and resveratrol are unable to reverse the locomotor impairments induced by paraquat in Drosophila melanogaster.
Collapse
|
43
|
Double K, Reyes S, Werry E, Halliday G. Selective cell death in neurodegeneration: Why are some neurons spared in vulnerable regions? Prog Neurobiol 2010; 92:316-29. [DOI: 10.1016/j.pneurobio.2010.06.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 05/05/2010] [Accepted: 06/03/2010] [Indexed: 12/11/2022]
|
44
|
Bohnen NI, Muller MLTM, Kuwabara H, Cham R, Constantine GM, Studenski SA. Age-associated striatal dopaminergic denervation and falls in community-dwelling subjects. ACTA ACUST UNITED AC 2010; 46:1045-52. [PMID: 20157861 DOI: 10.1682/jrrd.2009.03.0030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Older adults have a high prevalence of gait and balance disturbances and falls. Normal aging is associated with significant striatal dopaminergic denervation, which might be a previously unrecognized additional contributor to geriatric falls. This study investigated the relationship between the severity of age-associated striatal dopaminergic denervation (AASDD) and falls in community-dwelling subjects. Community-dwelling subjects who did not have a clinical diagnosis to explain falls (n = 77: 43 female, 34 male; mean age 61.4 +/- 16.4; range 20-85) completed clinical assessment and brain dopamine transporter (DAT) [(11)C]beta-CFT (2-beta-carbomethoxy-3beta-(4-fluorophenyl) tropane) positron emission tomography imaging followed by 6 months of prospective fall monitoring using diaries. Results showed a significant inverse relationship between striatal DAT activity and age (r = -0.82, p < 0.001). A total of 26 subjects (33.8%) reported at least one fall, with 5 subjects (6.5%) reporting two or more falls. While no significant difference was noted in striatal DAT activity between nonfallers (n = 51) and fallers (n = 26; f = 0.02, not significant), striatal DAT activity was modestly reduced in the small subgroup of recurrent fallers compared with the other subjects (f = 5.07, p < 0.05). Findings indicate that AASDD does not explain isolated self-reported falls in community-dwelling subjects. However, it may be a contributing factor in the small subgroup of subjects with recurrent falls.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Veterans Affairs (VA) Ann Arbor Healthcare System, Geriatric Research, Education, and Clinical Center (GRECC), Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
To identify the progression of pathology over the entire course of Parkinson's disease, we longitudinally followed a clinical cohort to autopsy and identified three clinicopathological phenotypes that progress at different rates. Typical Parkinson's disease has an initial rapid loss of midbrain dopamine neurons with a slow progression of Lewy body infiltration into the brain (over decades). Dementia intervenes late when Lewy bodies invade the neocortex. Older onset patients (> 70 years old) dement earlier and have much shorter disease durations. Paradoxically, they have far more alpha-synuclein-containing Lewy bodies throughout the brain, and many also have additional age-related plaque pathology. In contrast, dementia with Lewy bodies has the shortest disease course, with substantive amounts of Lewy bodies and Alzheimer-type pathologies infiltrating the brain. These data suggest that two age-related factors influence pathological progression in Parkinson's disease--the age at symptom onset and the degree and type of age-related Alzheimer-type pathology.
Collapse
Affiliation(s)
- Glenda Margaret Halliday
- Prince of Wales Medical Research Institute and University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
46
|
Sun W, Sugiyama K, Fang X, Yamaguchi H, Akamine S, Magata Y, Namba H. Different striatal D2-like receptor function in an early stage after unilateral striatal lesion and medial forebrain bundle lesion in rats. Brain Res 2010; 1317:227-35. [PMID: 20043892 DOI: 10.1016/j.brainres.2009.12.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 12/14/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Unilateral striatal lesion and complete medial forebrain bundle (MFB) lesion by 6-hydroxydopamine in rats have been widely used as Parkinson disease (PD) models. However, the difference of pre- and post-synaptic dopamine (DA) system in these two models are not well concerned. In order to investigate the pathophysiologic difference between the MFB lesion rats and striatal lesion rats, we studied the variation of pre-synaptic DA transporter and post-synaptic D(2)-like receptor in nigrostriatal DA system using binding assay, behavioral test and a small animal PET. Our data showed that there was a same tendency of the striatal DA transporter decrease both in MFB lesion rats and striatal lesion rats 4 weeks after lesion, however, it showed increase (up-regulation) of D(2)-like receptor in the MFB lesion rats, whereas showed decrease (down-regulation) in the striatal lesion rat. This finding strongly indicated the different dynamic pathophysiologic process between the MFB lesion model and striatal lesion model. MFB lesion model mimics an early stage of PD, whereas striatal lesion model mimics Parkinson syndrome, such as vascular Parkinson syndrome. Such difference should be taken into account in the selection of these model systems.
Collapse
Affiliation(s)
- Wei Sun
- Department of Neurosurgery, Hamamatsu University School of Medicine 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Filamentous protein inclusions in neurons (Lewy bodies, LB) and dystrophic neurites containing pathologic alpha-synuclein (alpha Syn) are the morphologic hallmarks of sporadic Parkinson disease (PD) and dementia with Lewy bodies (DLB), but are also found in aged subjects and in a variety of neurogenerative disorders. They occur in the central, peripheral, and autonomic nervous system as an essential or coincident feature. Their formation runs through several phases from initial dust-like particles cross-linked with alpha Syn to aggregation of ubiquitinated dense filaments, formation of LBs, finally degradation and death of the afflicted neurons. Pathologic accumulation of alpha Syn/LBs proposed by Braak et al. (Neurobiol Aging 24:197-211, 2003), following a predictable sequence of lesions in six stages with ascending progression from medullary and olfactory nuclei to the cortex, has been considered to be linked to clinical dysfunctions. The consensus pathologic guidelines of DLB (Neurology 65:1863-1872, 2005), by semiquantitative scoring to alpha Syn pathology (LB density and distribution) in specific brain regions, distinguish three phenotypes (brainstem, transitional/limbic, and diffuse neocortical), and also consider concomitant Alzheimer-related pathology. alpha Syn pathology in the amygdala is often associated with Alzheimer disease. Although some retrospective clinico-pathologic studies have largely confirmed the Braak LB staging system, it shows neither correlation to the clinical severity and duration of parkinsonism nor to nigral alpha Syn burden and cell loss which significantly correlates with resulting striatal loss of dopamine, dopamine transporter and tyrosine hydroxylase, duration and severity of motor dysfunction. Between 6.3 and 43% of clinically manifested PD cases did not follow this pattern, and in 7-8.3% of those with alpha Syn-positive inclusions in midbrain and cortex the medullary nuclei were spared. On the other hand, 30-55% of elderly subjects with widespread Lewy pathology revealed no neuropsychiatric symptoms or were not classifiable. Therefore, detection and staging of Lewy pathology without assessment of neuronal loss in specific areas may not have clinical impact and its predictive validity is questionable. For demented patients, modified criteria for categorization of Lewy pathology were proposed. If robust correlations between clinical course and Lewy/alpha Syn pathology are to be confirmed by future studies, the currently used morphologic staging/classification systems should be revised accordingly.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070, Vienna, Austria.
| |
Collapse
|
48
|
Jellinger KA. A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim Biophys Acta Mol Basis Dis 2009; 1792:730-40. [PMID: 18718530 DOI: 10.1016/j.bbadis.2008.07.006] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 07/23/2008] [Indexed: 12/21/2022]
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology Kenyongasse 18, Vienna, Austria.
| |
Collapse
|
49
|
Gerlach M, Riederer P, Double KL. Neuromelanin-bound ferric iron as an experimental model of dopaminergic neurodegeneration in Parkinson's disease. Parkinsonism Relat Disord 2008; 14 Suppl 2:S185-8. [DOI: 10.1016/j.parkreldis.2008.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Jellinger KA. A critical reappraisal of current staging of Lewy-related pathology in human brain. Acta Neuropathol 2008; 116:1-16. [PMID: 18592254 DOI: 10.1007/s00401-008-0406-y] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/10/2008] [Accepted: 06/12/2008] [Indexed: 12/21/2022]
Abstract
Sporadic Parkinson disease (sPD) or brainstem-predominant type of Lewy body (LB) disease, and dementia with Lewy bodies (DLB), the two most frequent alpha-synucleinopathies, are progressive multisystem neurodegenerative disorders with widespread occurrence of alpha-synuclein (AS) deposits in the central, peripheral, and autonomic nervous system. For both LB-related disorders, staging/classification systems based on semiquantitative assessment of the distribution and progression pattern of Lewy-related/AS pathology are used that are considered to be linked to clinical dysfunctions. In PD, a six-stage system (Braak) has been suggested to indicate a predictable sequence of lesions with ascending progression from medullary and olfactory nuclei to the cortex, the first two presymptomatic stages being related to incidental LB disease, stages 3 and 4 with motor symptoms, and the last two (cortical) stages may be frequently associated with cognitive impairment. DLB, according to consensus pathologic guidelines, by semiquantitative scoring of AS pathology (LB density and distribution) in specific brain regions, is distinguished into three phenotypes (brainstem, transitional/limbic, and diffuse neocortical), also considering concomitant Alzheimer-related pathology. Retrospective clinico-pathologic studies, although largely confirming the staging system, particularly for younger onset PD with long duration, have shown that between 6.3 and 43% of the cases did not follow the proposed caudo-rostral progression pattern of AS pathology. There was sparing of medullary nuclei in 7-8.3% of clinically manifested PD cases with AS inclusions in midbrain and cortex corresponding to Braak stages 4 and 5, whereas mild parkinsonian symptoms were already observed in stages 2 and 3. There is considerable clinical and pathologic overlap between PD (with or without dementia) and DLB, corresponding to Braak LB stages 5 and 6, both frequently associated with variable Alzheimer-type pathology. Dementia often does not correlate with progressed stages of LB pathology, but may also be related to concomitant Alzheimer lesions or mixed pathologies. There is no relationship between Braak LB stage and the clinical severity of PD, and the predictive validity of this concept is doubtful, since large unselected, retrospective autopsy series in 30-55% of elderly subjects with widespread AS/Lewy-related pathology (Braak stages 5 and 6) reported no definite neuropsychiatric symptoms, suggesting considerable cerebral compensatory mechanisms. Applying the original criteria to large dementia samples, 49% of positive cases were not classifiable. Therefore, modified criteria for the categorization of Lewy-related pathology were proposed for patients with a history of dementia. The causes and molecular basis of the not infrequent deviations from the current staging schemes of AS pathology in PD and DLB, its relation to the onset of classical parkinsonian symptoms and for the lack of definite clinical deficits despite widespread AS pathology in the nervous system remain to be elucidated.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Kenyongasse 18, 1070, Vienna, Austria.
| |
Collapse
|