1
|
Han X, Qin H, Lu Y, Chen H, Yuan Z, Zhang Y, Yang X, Zheng L, Yan S. Post-translational modifications: The potential ways for killing cancer stem cells. Heliyon 2024; 10:e34015. [PMID: 39092260 PMCID: PMC11292267 DOI: 10.1016/j.heliyon.2024.e34015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
While strides in cancer treatment continue to advance, the enduring challenges posed by cancer metastasis and recurrence persist as formidable contributors to the elevated mortality rates observed in cancer patients. Among the multifaceted factors implicated in tumor recurrence and metastasis, cancer stem cells (CSCs) emerge as noteworthy entities due to their inherent resistance to conventional therapies and heightened invasive capacities. Characterized by their notable abilities for self-renewal, differentiation, and initiation of tumorigenesis, the eradication of CSCs emerges as a paramount objective. Recent investigations increasingly emphasize the pivotal role of post-translational protein modifications (PTMs) in governing the self-renewal and replication capabilities of CSCs. This review accentuates the critical significance of several prevalent PTMs and the intricate interplay of PTM crosstalk in regulating CSC behavior. Furthermore, it posits that the manipulation of PTMs may offer a novel avenue for targeting and eliminating CSC populations, presenting a compelling perspective on cancer therapeutics with substantial potential for future applications.
Collapse
Affiliation(s)
- Xuedan Han
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, No. 206, Sixian Street, Baiyun District, Guiyang City, 550014, Guizhou Province, China
| | - Yu Lu
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Haitao Chen
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Zhengdong Yuan
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Yiwen Zhang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Xuena Yang
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, China
| | - Simin Yan
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wu H, Wu Z, Li H, Wang Z, Chen Y, Bao J, Chen B, Xu S, Xia E, Ye D, Dai X. Glycosylphosphatidylinositol anchor biosynthesis pathway-based biomarker identification with machine learning for prognosis and T cell exhaustion status prediction in breast cancer. Front Immunol 2024; 15:1392940. [PMID: 39015576 PMCID: PMC11249538 DOI: 10.3389/fimmu.2024.1392940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024] Open
Abstract
As the primary component of anti-tumor immunity, T cells are prone to exhaustion and dysfunction in the tumor microenvironment (TME). A thorough understanding of T cell exhaustion (TEX) in the TME is crucial for effectively addressing TEX in clinical settings and promoting the efficacy of immune checkpoint blockade therapies. In eukaryotes, numerous cell surface proteins are tethered to the plasma membrane via Glycosylphosphatidylinositol (GPI) anchors, which play a crucial role in facilitating the proper translocation of membrane proteins. However, the available evidence is insufficient to support any additional functional involvement of GPI anchors. Here, we investigate the signature of GPI-anchor biosynthesis in the TME of breast cancer (BC)patients, particularly its correlation with TEX. GPI-anchor biosynthesis should be considered as a prognostic risk factor for BC. Patients with high GPI-anchor biosynthesis showed more severe TEX. And the levels of GPI-anchor biosynthesis in exhausted CD8 T cells was higher than normal CD8 T cells, which was not observed between malignant epithelial cells and normal mammary epithelial cells. In addition, we also found that GPI -anchor biosynthesis related genes can be used to diagnose TEX status and predict prognosis in BC patients, both the TEX diagnostic model and the prognostic model showed good AUC values. Finally, we confirmed our findings in cells and clinical samples. Knockdown of PIGU gene expression significantly reduced the proliferation rate of MDA-MB-231 and MCF-7 cell lines. Immunofluorescence results from clinical samples showed reduced aggregation of CD8 T cells in tissues with high expression of GPAA1 and PIGU.
Collapse
Affiliation(s)
- Haodong Wu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhixuan Wu
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongfeng Li
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ziqiong Wang
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yao Chen
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Bao
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Buran Chen
- School of Molecular Science, University of Western Australia, Perth, WA, Australia
| | - Shuning Xu
- Department of Computer Information Systems, Georgia State University, Atlanta, GA, United States
| | - Erjie Xia
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Daijiao Ye
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuanxuan Dai
- Department of Breast Surgery, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
4
|
Ku YS, Cheng SS, Cheung MY, Law CH, Lam HM. The Re-Localization of Proteins to or Away from Membranes as an Effective Strategy for Regulating Stress Tolerance in Plants. MEMBRANES 2022; 12:membranes12121261. [PMID: 36557168 PMCID: PMC9788111 DOI: 10.3390/membranes12121261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/12/2023]
Abstract
The membranes of plant cells are dynamic structures composed of phospholipids and proteins. Proteins harboring phospholipid-binding domains or lipid ligands can localize to membranes. Stress perception can alter the subcellular localization of these proteins dynamically, causing them to either associate with or detach from membranes. The mechanisms behind the re-localization involve changes in the lipidation state of the proteins and interactions with membrane-associated biomolecules. The functional significance of such re-localization includes the regulation of molecular transport, cell integrity, protein folding, signaling, and gene expression. In this review, proteins that re-localize to or away from membranes upon abiotic and biotic stresses will be discussed in terms of the mechanisms involved and the functional significance of their re-localization. Knowledge of the re-localization mechanisms will facilitate research on increasing plant stress adaptability, while the study on re-localization of proteins upon stresses will further our understanding of stress adaptation strategies in plants.
Collapse
|
5
|
Fliesler SJ, Ramachandra Rao S, Nguyen MN, KhalafAllah MT, Pittler SJ. Vertebrate Animal Models of RP59: Current Status and Future Prospects. Int J Mol Sci 2022; 23:13324. [PMID: 36362109 PMCID: PMC9657489 DOI: 10.3390/ijms232113324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 09/20/2023] Open
Abstract
Retinitis pigmentosa-59 (RP59) is a rare, recessive form of RP, caused by mutations in the gene encoding DHDDS (dehydrodolichyl diphosphate synthase). DHDDS forms a heterotetrameric complex with Nogo-B receptor (NgBR; gene NUS1) to form a cis-prenyltransferase (CPT) enzyme complex, which is required for the synthesis of dolichol, which in turn is required for protein N-glycosylation as well as other glycosylation reactions in eukaryotic cells. Herein, we review the published phenotypic characteristics of RP59 models extant, with an emphasis on their ocular phenotypes, based primarily upon knock-in of known RP59-associated DHDDS mutations as well as cell type- and tissue-specific knockout of DHDDS alleles in mice. We also briefly review findings in RP59 patients with retinal disease and other patients with DHDDS mutations causing epilepsy and other neurologic disease. We discuss these findings in the context of addressing "knowledge gaps" in our current understanding of the underlying pathobiology mechanism of RP59, as well as their potential utility for developing therapeutic interventions to block the onset or to dampen the severity or progression of RP59.
Collapse
Affiliation(s)
- Steven J. Fliesler
- Departments of Ophthalmology and Biochemistry, Neuroscience Graduate Program, Jacobs School of Medicine, State University of New York—University at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western NY Healthcare System, Buffalo, NY 14215, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, Neuroscience Graduate Program, Jacobs School of Medicine, State University of New York—University at Buffalo, Buffalo, NY 14203, USA
- Research Service, VA Western NY Healthcare System, Buffalo, NY 14215, USA
| | - Mai N. Nguyen
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mahmoud Tawfik KhalafAllah
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven J. Pittler
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Craig KC, Guo Z. Design and synthesis of 4-azido-phosphatidylinositol as a potential probe for metabolic engineering of glycosylphosphatidylinositol on cells. J Carbohydr Chem 2022; 41:238-248. [DOI: 10.1080/07328303.2022.2077358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kendall C. Craig
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
7
|
Feichtinger RG, Hüllen A, Koller A, Kotzot D, Grote V, Rapp E, Hofbauer P, Brugger K, Thiel C, Mayr JA, Wortmann SB. A spoonful of L-fucose-an efficient therapy for GFUS-CDG, a new glycosylation disorder. EMBO Mol Med 2021; 13:e14332. [PMID: 34468083 PMCID: PMC8422078 DOI: 10.15252/emmm.202114332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
Congenital disorders of glycosylation are a genetically and phenotypically heterogeneous family of diseases affecting the co- and posttranslational modification of proteins. Using exome sequencing, we detected biallelic variants in GFUS (NM_003313.4) c.[632G>A];[659C>T] (p.[Gly211Glu];[Ser220Leu]) in a patient presenting with global developmental delay, mild coarse facial features and faltering growth. GFUS encodes GDP-L-fucose synthase, the terminal enzyme in de novo synthesis of GDP-L-fucose, required for fucosylation of N- and O-glycans. We found reduced GFUS protein and decreased GDP-L-fucose levels leading to a general hypofucosylation determined in patient's glycoproteins in serum, leukocytes, thrombocytes and fibroblasts. Complementation of patient fibroblasts with wild-type GFUS cDNA restored fucosylation. Making use of the GDP-L-fucose salvage pathway, oral fucose supplementation normalized fucosylation of proteins within 4 weeks as measured in serum and leukocytes. During the follow-up of 19 months, a moderate improvement of growth was seen, as well as a clear improvement of cognitive skills as measured by the Kaufmann ABC and the Nijmegen Pediatric CDG Rating Scale. In conclusion, GFUS-CDG is a new glycosylation disorder for which oral L-fucose supplementation is promising.
Collapse
Affiliation(s)
- René G Feichtinger
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Andreas Hüllen
- Department PediatricsCentre for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Andreas Koller
- Research Program for Experimental OphthalmologyDepartment of Ophthalmology and OptometrySalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Dieter Kotzot
- Clinical Genetics UnitSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess EngineeringMagdeburgGermany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess EngineeringMagdeburgGermany
- glyXera GmbHMagdeburgGermany
| | - Peter Hofbauer
- Department of ProductionLandesapotheke SalzburgHospital PharmacySalzburgAustria
| | - Karin Brugger
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Christian Thiel
- Department PediatricsCentre for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Johannes A Mayr
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
| | - Saskia B Wortmann
- University Children’s HospitalSalzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU)SalzburgAustria
- Department of PediatricsAmalia Children’s HospitalRadboud Center for Mitochondrial MedicineRadboudumcNijmegenThe Netherlands
| |
Collapse
|
8
|
CD73 induces gemcitabine resistance in pancreatic ductal adenocarcinoma: A promising target with non-canonical mechanisms. Cancer Lett 2021; 519:289-303. [PMID: 34302921 DOI: 10.1016/j.canlet.2021.07.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022]
Abstract
CD73, a cell surface-localized ecto-5'-nucleotidase, is the major enzymatic source of extracellular adenosine. Canonically, it plays multiple roles in cancer-related processes via its metabolite. As a druggable target, clinical trials targeting CD73 in various malignant diseases are currently ongoing. Here, we report the ecto-5'-nucleotidase-independent functions of CD73 in pancreatic ductal adenocarcinoma (PDAC). Our findings support that the elevated expression of CD73 in PDAC cells promotes gemcitabine (GEM) resistance by activating AKT. We discovered that a large amount of intracellular CD73 are localized in the endoplasmic reticulum membrane. Intracellular CD73 physically interacts with major vault protein to activate the SRC-AKT circuit. Troglitazone (TGZ) is a peroxisome proliferator-activated receptor gamma agonist that could inhibit the expression of CD73. The administration of TGZ markedly enhances sensitivity to GEM via downregulating CD73 in PDAC. Our findings support that CD73 could be targeted to overcome chemoresistance in PDAC.
Collapse
|
9
|
Zhang BL, Yang XH, Jin HM, Zhan XL. Identification of differentially expressed genes in diabetic kidney disease by RNA-Seq analysis of venous blood platelets. FEBS Open Bio 2021. [PMID: 34029013 PMCID: PMC8329951 DOI: 10.1002/2211-5463.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 11/11/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end‐stage renal disease. However, because of shared complications between DKD and chronic kidney disease (CKD), the description and characterization of DKD remain ambiguous in the clinic, hindering the diagnosis and treatment of early‐stage DKD patients. Although estimated glomerular filtration rate and albuminuria are well‐established biomarkers of DKD, early‐stage DKD is rarely accompanied by a high estimated glomerular filtration rate, and thus there is a need for new sensitive biomarkers. Transcriptome profiling of kidney tissue has been reported previously, although RNA sequencing (RNA‐Seq) analysis of the venous blood platelets in DKD patients has not yet been described. In the present study, we performed RNA‐Seq analysis of venous blood platelets from three patients with CKD, five patients with DKD and 10 healthy controls, and compared the results with a CKD‐related microarray dataset. In total, 2097 genes with differential transcript levels were identified in platelets of DKD patients and healthy controls, and 462 genes with differential transcript levels were identified in platelets of DKD patients and CKD patients. Through Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, we selected 11 pathways, from which nine potential biomarkers (IL‐1B, CD‐38, CSF1R, PPARG, NR1H3, DDO, HDC, DPYS and CAD) were identified. Furthermore, by comparing the RNA‐Seq results with the GSE30566 dataset, we found that the biomarker KCND3 was the only up‐regulated gene in DKD patients. These biomarkers may have potential application for the therapy and diagnosis of DKD, as well aid in determining the mechanisms underlying DKD.
Collapse
Affiliation(s)
- Bao Long Zhang
- The Institutes of Biomedical Sciences (IBS), Fudan University, Shanghai, China
| | - Xiu Hong Yang
- Division of Nephrology, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Hui Min Jin
- Division of Nephrology, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| | - Xiao Li Zhan
- Division of Nephrology, Pudong Medical Center, Shanghai Pudong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Zhang Q, Li Z, Song X. Preparation of Complex Glycans From Natural Sources for Functional Study. Front Chem 2020; 8:508. [PMID: 32719769 PMCID: PMC7348041 DOI: 10.3389/fchem.2020.00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
One major barrier in glycoscience is the lack of diverse and biomedically relevant complex glycans in sufficient quantities for functional study. Complex glycans from natural sources serve as an important source of these glycans and an alternative to challenging chemoenzymatic synthesis. This review discusses preparation of complex glycans from several classes of glycoconjugates using both enzymatic and chemical release approaches. Novel technologies have been developed to advance the large-scale preparation of complex glycans from natural sources. We also highlight recent approaches and methods developed in functional and fluorescent tagging and high-performance liquid chromatography (HPLC) isolation of released glycans.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhonghua Li
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Shakir A, Narula S, LaGrow A, Nusrat S. Two Roads Diverge: Treatment Choice in Coexisting Severe Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria. J Med Cases 2020; 11:182-184. [PMID: 34434393 PMCID: PMC8383644 DOI: 10.14740/jmc3478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 11/19/2022] Open
Abstract
Aplastic anemia (AA) is a bone marrow failure syndrome of pancytopenia due to impaired hematopoiesis. It is strongly associated with paroxysmal nocturnal hemoglobinuria (PNH). Each condition can cause the other, or occur simultaneously. There are no guidelines for treating concomitant AA and PNH; immunosuppressive therapy (IST) or hematopoietic stem cell therapy (HSCT) is first-line for the former, and eculizumab is first-line for the latter. New studies suggest that treating AA/PNH together versus sequentially should depend on AA severity. We report the case of a previously healthy male (31-year-old, Nigerian immigrant) who developed jaundice, scleral icterus, easy fatigability, and epistaxis. He was diagnosed with AA on bone marrow biopsy and with PNH on flow cytometry. He initially underwent chemotherapy due to increased infection risk with eculizumab in a neutropenic patient; however, he showed minimal response and thus began eculizumab pending allogeneic stem cell transplant. There are no guidelines for treating patients with both AA and PNH, and clinical decision making is generally individualized based on disease severity. Only one prior publication reported simultaneous treatment with eculizumab and chemotherapy, due to stated concern for pancytopenia, especially neutropenia, being the most immediate cause of morbidity/mortality. This demonstrates the individualized decisions that must be made when treating simultaneous PNH and AA, and the importance of PNH/severe AA patients as a separate subpopulation.
Collapse
Affiliation(s)
- Aamina Shakir
- Department of Internal Medicine, University of Oklahoma, 800 Stanton L. Young Blvd., Suite 6300, Oklahoma City, OK 73104, USA
| | - Sunny Narula
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd., Suite 4000, Oklahoma City, OK 73104, USA
| | - Austin LaGrow
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd., Suite 4000, Oklahoma City, OK 73104, USA
| | - Sanober Nusrat
- Department of Internal Medicine, University of Oklahoma, 800 Stanton L. Young Blvd., Suite 6300, Oklahoma City, OK 73104, USA
| |
Collapse
|
12
|
Metabolic Labeling and Structural Analysis of Glycosylphosphatidylinositols from Parasitic Protozoa. Methods Mol Biol 2019. [PMID: 31256378 DOI: 10.1007/978-1-4939-9055-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Glycosylphosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa and represent the major carbohydrate modification of many cell-surface parasite proteins. A minimal GPI-anchor precursor consists of core glycan (ethanolamine-PO4-Manα1-2Manα1-6Manα1-4GlcNH2) linked to the 6-position of the D-myo-inositol ring of phosphatidylinositol. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. The preassembled GPI-anchor precursor is post-translationally transferred to a variety of membrane proteins in the lumen of the endoplasmic reticulum in a transamidase-like reaction during which a C-terminal GPI attachment signal is released. Increasing evidence shows that a significant proportion of the synthesized GPIs are not used for protein anchoring, particularly in protozoa in which a large amount of free GPIs are being displayed at the cell surface. The characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. Especially this pathway, at least for Trypanosoma brucei, has been validated as a drug target. Furthermore, thanks to an increase of new innovative strategies to produce pure synthetic carbohydrates, a novel era in the use of GPIs in diagnostic, anti-GPI antibody production, as well as parasitic protozoa GPI-based vaccine approach is developing fast.
Collapse
|
13
|
Zhou K. Glycosylphosphatidylinositol-Anchored Proteins in Arabidopsis and One of Their Common Roles in Signaling Transduction. FRONTIERS IN PLANT SCIENCE 2019; 10:1022. [PMID: 31555307 PMCID: PMC6726743 DOI: 10.3389/fpls.2019.01022] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/22/2019] [Indexed: 05/17/2023]
Abstract
Diverse proteins are found modified with glycosylphosphatidylinositol (GPI) at their carboxyl terminus in eukaryotes, which allows them to associate with membrane lipid bilayers and anchor on the external surface of the plasma membrane. GPI-anchored proteins (GPI-APs) play crucial roles in various processes, and more and more GPI-APs have been identified and studied. In this review, previous genomic and proteomic predictions of GPI-APs in Arabidopsis have been updated, which reveal their high abundance and complexity. From studies of individual GPI-APs in Arabidopsis, certain GPI-APs have been found associated with partner receptor-like kinases (RLKs), targeting RLKs to their subcellular localization and helping to recognize extracellular signaling polypeptide ligands. Interestingly, the association might also be involved in ligand selection. The analyses suggest that GPI-APs are essential and widely involved in signal transduction through association with RLKs.
Collapse
|
14
|
Zhang Y, Zhang H, Wu S, Wang J, Qi G. Dietary manganese supplementation affects mammillary knobs of eggshell ultrastructure in laying hens. Poult Sci 2018; 97:1253-1262. [DOI: 10.3382/ps/pex419] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 12/01/2017] [Indexed: 11/20/2022] Open
|
15
|
Chen JJ, Boehning D. Protein Lipidation As a Regulator of Apoptotic Calcium Release: Relevance to Cancer. Front Oncol 2017; 7:138. [PMID: 28706877 PMCID: PMC5489567 DOI: 10.3389/fonc.2017.00138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022] Open
Abstract
Calcium is a critical regulator of cell death pathways. One of the most proximal events leading to cell death is activation of plasma membrane and endoplasmic reticulum-resident calcium channels. A large body of evidence indicates that defects in this pathway contribute to cancer development. Although we have a thorough understanding of how downstream elevations in cytosolic and mitochondrial calcium contribute to cell death, it is much less clear how calcium channels are activated upstream of the apoptotic stimulus. Recently, it has been shown that protein lipidation is a potent regulator of apoptotic signaling. Although classically thought of as a static modification, rapid and reversible protein acylation has emerged as a new signaling paradigm relevant to many pathways, including calcium release and cell death. In this review, we will discuss the role of protein lipidation in regulating apoptotic calcium signaling with direct therapeutic relevance to cancer.
Collapse
Affiliation(s)
- Jessica J Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| | - Darren Boehning
- Department of Biochemistry and Molecular Biology, McGovern Medical School, UTHealth, Houston, TX, United States
| |
Collapse
|
16
|
López-Gutiérrez B, Dinglasan RR, Izquierdo L. Sugar nucleotide quantification by liquid chromatography tandem mass spectrometry reveals a distinct profile in Plasmodium falciparum sexual stage parasites. Biochem J 2017; 474:897-905. [PMID: 28104756 PMCID: PMC5340172 DOI: 10.1042/bcj20161030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
The obligate intracellular lifestyle of Plasmodium falciparum and the difficulties in obtaining sufficient amounts of biological material have hampered the study of specific metabolic pathways in the malaria parasite. Thus, for example, the pools of sugar nucleotides required to fuel glycosylation reactions have never been studied in-depth in well-synchronized asexual parasites or in other stages of its life cycle. These metabolites are of critical importance, especially considering the renewed interest in the presence of N-, O-, and other glycans in key parasite proteins. In this work, we adapted a liquid chromatography tandem mass spectrometry (LC-MS/MS) method based on the use of porous graphitic carbon (PGC) columns and MS-friendly solvents to quantify sugar nucleotides in the malaria parasite. We report the thorough quantification of the pools of these metabolites throughout the intraerythrocytic cycle of P. falciparum The sensitivity of the method enabled, for the first time, the targeted analysis of these glycosylation precursors in gametocytes, the parasite sexual stages that are transmissible to the mosquito vector.
Collapse
Affiliation(s)
- Borja López-Gutiérrez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Rhoel R Dinglasan
- Department of Infectious Diseases & Pathology, The University of Florida Emerging Pathogens Institute, Gainesville, FL 32611, U.S.A
| | - Luis Izquierdo
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Trotter J, Klein C, Krämer EM. GPI-Anchored Proteins and Glycosphingolipid-Rich Rafts: Platforms for Adhesion and Signaling. Neuroscientist 2016. [DOI: 10.1177/107385840000600410] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins in mammalian cells play a role in adhesion and signaling. They are sorted in the trans-Golgi network into glycosphingolipid- and cholesterol-rich microdomains termed rafts. Such rafts can be isolated from many cell types including epithelial cells, neural cells, and lymphocytes. In polarized cells, the rafts segregate in distinct regions of the cell. The rafts constitute platforms for signal transduction via raft-associated srcfamily tyrosine kinases. This review compares the sorting, distribution, and signaling of GPI-anchored proteins and rafts in epithelial cells, lymphocytes, and neural cells. A possible involvement of rafts in distinct diseases is also addressed.
Collapse
Affiliation(s)
- Jacqueline Trotter
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany,
| | - Corinna Klein
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| | - Eva-Maria Krämer
- Department of Neurobiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Lu L, Gao J, Guo Z. Labeling Cell Surface GPIs and GPI-Anchored Proteins through Metabolic Engineering with Artificial Inositol Derivatives. Angew Chem Int Ed Engl 2015; 54:9679-9682. [PMID: 26102235 PMCID: PMC4536913 DOI: 10.1002/anie.201503814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 11/07/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the cell surface is important for various biological processes, but GPI-anchored proteins are difficult to study. An effective strategy was developed for the metabolic engineering of cell-surface GPIs and GPI-anchored proteins by using inositol derivatives carrying an azido group. The azide-labeled GPIs and GPI-anchored proteins were then tagged with biotin on live cells through a click reaction, which allows further elaboration with streptavidin-conjugated dyes or other molecules. The strategy can be used to label GPI-anchored proteins with various tags for biological studies.
Collapse
Affiliation(s)
- Lili Lu
- National Glycoengineering Research Center, Shandong University, 29 Shanda Nan Lu, Jinan 250010 (China)
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (the United States)
| | - Jian Gao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (the United States)
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong University, 29 Shanda Nan Lu, Jinan 250010 (China)
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (the United States)
| |
Collapse
|
19
|
Qiu H, Price DC, Yang EC, Yoon HS, Bhattacharya D. Evidence of ancient genome reduction in red algae (Rhodophyta). JOURNAL OF PHYCOLOGY 2015; 51:624-36. [PMID: 26986787 DOI: 10.1111/jpy.12294] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 01/30/2015] [Indexed: 05/27/2023]
Abstract
Red algae (Rhodophyta) comprise a monophyletic eukaryotic lineage of ~6,500 species with a fossil record that extends back 1.2 billion years. A surprising aspect of red algal evolution is that sequenced genomes encode a relatively limited gene inventory (~5-10 thousand genes) when compared with other free-living algae or to other eukaryotes. This suggests that the common ancestor of red algae may have undergone extensive genome reduction, which can result from lineage specialization to a symbiotic or parasitic lifestyle or adaptation to an extreme or oligotrophic environment. We gathered genome and transcriptome data from a total of 14 red algal genera that represent the major branches of this phylum to study genome evolution in Rhodophyta. Analysis of orthologous gene gains and losses identifies two putative major phases of genome reduction: (i) in the stem lineage leading to all red algae resulting in the loss of major functions such as flagellae and basal bodies, the glycosyl-phosphatidylinositol anchor biosynthesis pathway, and the autophagy regulation pathway; and (ii) in the common ancestor of the extremophilic Cyanidiophytina. Red algal genomes are also characterized by the recruitment of hundreds of bacterial genes through horizontal gene transfer that have taken on multiple functions in shared pathways and have replaced eukaryotic gene homologs. Our results suggest that Rhodophyta may trace their origin to a gene depauperate ancestor. Unlike plants, it appears that a limited gene inventory is sufficient to support the diversification of a major eukaryote lineage that possesses sophisticated multicellular reproductive structures and an elaborate triphasic sexual cycle.
Collapse
Affiliation(s)
- Huan Qiu
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Dana C Price
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| | - Eun Chan Yang
- Marine Ecosystem Research Division, Korea Institute of Ocean Sciences & Technology, 787 Haeanro, Ansan, 426-744, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 440-746, Korea
| | - Debashish Bhattacharya
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, 08901, USA
| |
Collapse
|
20
|
Lu L, Gao J, Guo Z. Labeling Cell Surface GPIs and GPI-Anchored Proteins through Metabolic Engineering with Artificial Inositol Derivatives. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Molecular modeling and molecular dynamics simulations of GPI 14 in Leishmania major: Insight into the catalytic site for active site directed drug design. J Theor Biol 2014; 351:37-46. [DOI: 10.1016/j.jtbi.2014.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 11/20/2022]
|
22
|
Szűcs G, Murlasits Z, Török S, Kocsis GF, Pálóczi J, Görbe A, Csont T, Csonka C, Ferdinandy P. Cardioprotection by farnesol: role of the mevalonate pathway. Cardiovasc Drugs Ther 2014; 27:269-77. [PMID: 23673412 DOI: 10.1007/s10557-013-6460-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Farnesol is a key metabolite of the mevalonate pathway and known as an antioxidant. We examined whether farnesol treatment protects the ischemic heart. METHODS Male Wistar rats were treated orally with 0.2, 1, 5, and 50 mg/kg/day farnesol/vehicle for 12 days, respectively. On day 13, the effect of farnesol treatment on cardiac ischemic tolerance and biochemical changes was tested. Therefore, hearts were isolated and subjected either to 30 min coronary occlusion followed by 120 min reperfusion to measure infarct size or to 10 min aerobic perfusion to measure cardiac mevalonate pathway end-products (protein prenylation, cholesterol, coenzyme Q9, coenzyme Q10, dolichol), and 3-nitrotyrosine (oxidative/nitrosative stress marker), respectively. The cytoprotective effect of farnesol was also tested in cardiomyocytes subjected to simulated ischemia/reperfusion. RESULTS Farnesol pretreatment decreased infarct size in a U-shaped dose-response manner where 1 mg/kg/day dose reached a statistically significant reduction (22.3±3.9% vs. 40.9±6.1% of the area at risk, p<0.05). Farnesol showed a similar cytoprotection in cardiomyocytes. The cardioprotective dose of farnesol (1 mg/kg/day) significantly increased the marker of protein geranylgeranylation, but did not influence protein farnesylation, cardiac tissue cholesterol, coenzyme Q9, coenzyme Q10, and dolichol. While the cardioprotective dose of farnesol did not influence 3-nitrotyrosine, the highest dose of farnesol (50 mg/kg/day) tested did not show cardioprotection, however, it significantly decreased cardiac 3-nitrotyrosine. CONCLUSIONS This is the first demonstration that oral farnesol treatment reduces infarct size. The cardioprotective effect of farnesol likely involves increased protein geranylgeranylation and seems to be independent of the antioxidant effect of farnesol.
Collapse
Affiliation(s)
- Gergő Szűcs
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, 6720, 9 Dóm tér, Szeged, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guo Z. Synthetic Studies of Glycosylphosphatidylinositol (GPI) Anchors and GPI-Anchored Peptides, Glycopeptides, and Proteins. Curr Org Synth 2013; 10:366-383. [PMID: 24955081 DOI: 10.2174/1570179411310030003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchorage of proteins and glycoproteins onto the cell surface is ubiquitous in eukaryotes, and GPI-anchored proteins and glycoproteins play an important role in many biological processes. To study GPI anchorage and explore the functions of GPIs and GPI-anchored proteins and glycoproteins, it is essential to have access to these molecules in homogeneous and structurally defined forms. This review is focused on the progress that our laboratory has made towards the chemical and chemoenzymatic synthesis of structurally defined GPI anchors and GPI-anchored peptides, glycopeptides, and proteins. Briefly, highly convergent strategies were developed for GPI synthesis and were employed to successfully synthesize a number of GPIs, including those carrying unsaturated lipids and other useful functionalities such as the azido and alkynyl groups. The latter enabled further site-specific modification of GPIs by click chemistry. GPI-linked peptides, glycopeptides, and proteins were prepared by regioselective chemical coupling of properly protected GPIs and peptides/glycopeptides or through site-specific ligation of synthetic GPIs and peptides/glycopeptides/proteins under the influence of sortase A. The investigation of interactions between GPI anchors and pore-forming bacterial toxins by means of synthetic GPI anchors and GPI analogs is also discussed.
Collapse
Affiliation(s)
- Zhongwu Guo
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| |
Collapse
|
24
|
Du Y, Pattnaik AK, Song C, Yoo D, Li G. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts. Virology 2012; 424:18-32. [PMID: 22222209 PMCID: PMC7111931 DOI: 10.1016/j.virol.2011.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/22/2011] [Accepted: 12/11/2011] [Indexed: 11/25/2022]
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.
Collapse
Affiliation(s)
- Yijun Du
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | | | | | | | | |
Collapse
|
25
|
Hypoglycosylation due to dolichol metabolism defects. Biochim Biophys Acta Mol Basis Dis 2009; 1792:888-95. [DOI: 10.1016/j.bbadis.2009.01.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2008] [Revised: 01/21/2009] [Accepted: 01/26/2009] [Indexed: 11/22/2022]
|
26
|
Lannoo N, Van Damme EJM. Nucleocytoplasmic plant lectins. Biochim Biophys Acta Gen Subj 2009; 1800:190-201. [PMID: 19647040 DOI: 10.1016/j.bbagen.2009.07.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 11/28/2022]
Abstract
During the last decade it was unambiguously shown that plants synthesize minute amounts of carbohydrate-binding proteins upon exposure to stress situations like drought, high salt, hormone treatment, pathogen attack or insect herbivory. In contrast to the 'classical' plant lectins, which are typically found in storage vacuoles or in the extracellular compartment this new class of lectins is located in the cytoplasm and the nucleus. Based on these observations the concept was developed that lectin-mediated protein-carbohydrate interactions in the cytoplasm and the nucleus play an important role in the stress physiology of the plant cell. Hitherto, six families of nucleocytoplasmic lectins have been identified. This review gives an overview of our current knowledge on the occurrence of nucleocytoplasmic plant lectins. The carbohydrate-binding properties of these lectins and potential ligands in the nucleocytoplasmic compartment are discussed in view of the physiological role of the lectins in the plant cell.
Collapse
Affiliation(s)
- Nausicaä Lannoo
- Department of Molecular Biotechnology, Laboratory of Biochemistry and Glycobiology, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | | |
Collapse
|
27
|
Structural and kinetic differences between human and Aspergillus fumigatus D-glucosamine-6-phosphate N-acetyltransferase. Biochem J 2009; 415:217-23. [PMID: 18601654 DOI: 10.1042/bj20081000] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aspergillus fumigatus is the causative agent of aspergillosis, a frequently invasive colonization of the lungs of immunocompromised patients. GNA1 (D-glucosamine-6-phosphate N-acetyltransferase) catalyses the acetylation of GlcN-6P (glucosamine-6-phosphate) to GlcNAc-6P (N-acetylglucosamine-6-phosphate), a key intermediate in the UDP-GlcNAc biosynthetic pathway. Gene disruption of gna1 in yeast and Candida albicans has provided genetic validation of the enzyme as a potential target. An understanding of potential active site differences between the human and A. fumigatus enzymes is required to enable further work aimed at identifying selective inhibitors for the fungal enzyme. In the present study, we describe crystal structures of both human and A. fumigatus GNA1, as well as their kinetic characterization. The structures show significant differences in the sugar-binding site with, in particular, several non-conservative substitutions near the phosphate-binding pocket. Mutagenesis targeting these differences revealed drastic effects on steady-state kinetics, suggesting that the differences could be exploitable with small-molecule inhibitors.
Collapse
|
28
|
Abstract
Secreted and intracellular proteins including antibodies, cytokines, major histocompatibility complex molecules, antigens, and enzymes can be redirected to and anchored on the surface of mammalian cells to reveal novel functions and properties such as reducing systemic toxicity, altering the in vivo distribution of drugs and extending the range of useful drugs, creating novel, specific signaling receptors and reshaping protein immunogenicity. The present review highlights progress in designing vectors to target and retain chimeric proteins on the surface of mammalian cells. Comparison of chimeric proteins indicates that selection of the proper cytoplasmic domain and introduction of oligiosaccharides near the cell surface can dramatically enhance surface expression, especially for single-chain antibodies. We also describe progress and limitations of employing surface-tethered proteins for preferential activation of prodrugs at cancer cells, imaging gene expression in living animals, performing high-throughput screening, selectively activating immune cells in tumors, producing new adhesion molecules, creating local immune privileged sites, limiting the distribution of soluble factors such as cytokines, and enhancing polypeptide immunogenicity. Surface-anchored chimeric proteins represent a rich source for developing new techniques and creating novel therapeutics.
Collapse
Affiliation(s)
- Tian-Lu Cheng
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | |
Collapse
|
29
|
Gupta G, Sinha S, Mitra N, Surolia A. Probing into the role of conserved N-glycosylation sites in the Tyrosinase glycoprotein family. Glycoconj J 2008; 26:691-5. [PMID: 19015978 DOI: 10.1007/s10719-008-9213-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 09/08/2008] [Accepted: 10/28/2008] [Indexed: 11/25/2022]
Abstract
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.
Collapse
Affiliation(s)
- Garima Gupta
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | | | | | | |
Collapse
|
30
|
Hernández-Campo PM, Almeida J, Orfao A. Hemoglobinuria paroxística nocturna. Med Clin (Barc) 2008; 131:617-30. [DOI: 10.1157/13127921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Azzouz N, Gerold P, Schwarz RT. Metabolic labeling and structural analysis of glycosylphosphatidylinositols from parasitic protozoa. Methods Mol Biol 2008; 446:183-98. [PMID: 18373258 DOI: 10.1007/978-1-60327-084-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Glycosylphosphatidylinositol (GPI) is a complex glycolipid structure that acts as a membrane anchor for many cell-surface proteins of eukaryotes. GPI-anchored proteins are particularly abundant in protozoa and represent the major carbohydrate modification of many cell-surface parasite proteins. A minimal GPI-anchor precursor consists of core glycan (ethanolamine-P-Manalpha1-2Manalpha1-6Manalpha1-4GlcNH2) linked to the 6-position of the D-myo-inositol ring of phos-phatidylinositol. Although the GPI core glycan is conserved in all organisms, many differences in additional modifications to GPI structures and biosynthetic pathways have been reported. The preassembled GPI-anchor precursor is post-translationally transferred to a variety of membrane proteins in the lumen of the endoplasmic reticulum in a transamidase-like reaction during which a C-terminal GPI attachment signal is released. Increasing evidence show that a significant proportion of the synthesized GPIs are not used for protein anchoring, particularly in protozoa in which a large amount of free GPIs are being displayed at the cell surface. The characteristics of GPI biosynthesis are currently being explored for the development of parasite-specific inhibitors. Especially as this pathway, at least for Trypanosoma brucei, has been validated as a drug target.
Collapse
Affiliation(s)
- Nahid Azzouz
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology, Zürich, Switzerland
| | | | | |
Collapse
|
32
|
Hurtado-Guerrero R, Raimi O, Shepherd S, van Aalten DMF. Glucose-6-phosphate as a probe for the glucosamine-6-phosphate N-acetyltransferase Michaelis complex. FEBS Lett 2007; 581:5597-600. [PMID: 18005663 DOI: 10.1016/j.febslet.2007.10.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Revised: 10/25/2007] [Accepted: 10/26/2007] [Indexed: 11/30/2022]
Abstract
Glucosamine-6-phosphate N-acetyltransferase (GNA1) catalyses the N-acetylation of d-glucosamine-6-phosphate (GlcN-6P), using acetyl-CoA as an acetyl donor. The product GlcNAc-6P is an intermediate in the biosynthesis UDP-GlcNAc. GNA1 is part of the GCN5-related acetyl transferase family (GNATs), which employ a wide range of acceptor substrates. GNA1 has been genetically validated as an antifungal drug target. Detailed knowledge of the Michaelis complex and trajectory towards the transition state would facilitate rational design of inhibitors of GNA1 and other GNAT enzymes. Using the pseudo-substrate glucose-6-phosphate (Glc-6P) as a probe with GNA1 crystals, we have trapped the first GNAT (pseudo-)Michaelis complex, providing direct evidence for the nucleophilic attack of the substrate amine, and giving insight into the protonation of the thiolate leaving group.
Collapse
Affiliation(s)
- Ramon Hurtado-Guerrero
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | | | | | | |
Collapse
|
33
|
Kranz C, Jungeblut C, Denecke J, Erlekotte A, Sohlbach C, Debus V, Kehl HG, Harms E, Reith A, Reichel S, Grobe H, Hammersen G, Schwarzer U, Marquardt T. A defect in dolichol phosphate biosynthesis causes a new inherited disorder with death in early infancy. Am J Hum Genet 2007; 80:433-40. [PMID: 17273964 PMCID: PMC1821118 DOI: 10.1086/512130] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/29/2006] [Indexed: 11/04/2022] Open
Abstract
The following study describes the discovery of a new inherited metabolic disorder, dolichol kinase (DK1) deficiency. DK1 is responsible for the final step of the de novo biosynthesis of dolichol phosphate. Dolichol phosphate is involved in several glycosylation reactions, such as N-glycosylation, glycosylphosphatidylinositol (GPI)-anchor biosynthesis, and C- and O-mannosylation. We identified four patients who were homozygous for one of two mutations (c.295T-->A [99Cys-->Ser] or c.1322A-->C [441Tyr-->Ser]) in the corresponding hDK1 gene. The residual activity of mutant DK1 was 2%-4% when compared with control cells. The mutated alleles failed to complement the temperature-sensitive phenotype of DK1-deficient yeast cells, whereas the wild-type allele restored the normal growth phenotype. Affected patients present with a very severe clinical phenotype, with death in early infancy. Two of the patients died from dilative cardiomyopathy.
Collapse
|
34
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Luzzatto L. Paroxysmal nocturnal hemoglobinuria: an acquired X-linked genetic disease with somatic-cell mosaicism. Curr Opin Genet Dev 2006; 16:317-22. [PMID: 16650759 DOI: 10.1016/j.gde.2006.04.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 04/18/2006] [Indexed: 12/30/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a severe hemolytic anemia caused by an intrinsic abnormality of the red blood cells that makes them exceedingly susceptible to the lytic action of activated complement (C). This abnormality results from a mutation in the PIG-A gene on Xp22. Given that the mutation is not inherited but is somatically acquired by a hematopoietic stem cell, it creates two populations of blood cells: normal cells and PNH cells. The clinical expression of PNH depends on the relative and absolute expansion of the PNH cell population, which probably depends, in turn, on a paradoxical growth advantage conferred to it by the existence in the patients of an autoimmune process that exerts negative selection against the 'normal' hematopoietic stem cells.
Collapse
Affiliation(s)
- Lucio Luzzatto
- University of Genova Scientific Director Istituto Toscano Tumori, Via Taddeo Alderotti 26N, 50139 Firenze, Italy.
| |
Collapse
|
36
|
Fankhauser N, Mäser P. Identification of GPI anchor attachment signals by a Kohonen self-organizing map. Bioinformatics 2005; 21:1846-52. [PMID: 15691858 DOI: 10.1093/bioinformatics/bti299] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Anchoring of proteins to the extracytosolic leaflet of membranes via C-terminal attachment of glycosylphosphatidylinositol (GPI) is ubiquitous and essential in eukaryotes. The signal for GPI-anchoring is confined to the C-terminus of the target protein. In order to identify anchoring signals in silico, we have trained neural networks on known GPI-anchored proteins, systematically optimizing input parameters. RESULTS A Kohonen self-organizing map, GPI-SOM, was developed that predicts GPI-anchored proteins with high accuracy. In combination with SignalP, GPI-SOM was used in genome-wide surveys for GPI-anchored proteins in diverse eukaryotes. Apart from specialized parasites, a general trend towards higher percentages of GPI-anchored proteins in larger proteomes was observed. AVAILABILITY GPI-SOM is accessible on-line at http://gpi.unibe.ch. The source code (written in C) is available on the same website. SUPPLEMENTARY INFORMATION Positive training set, performance test sets and lists of predicted GPI-anchored proteins from different eukaryotes in fasta format.
Collapse
|
37
|
Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ. Overexpression of the plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2004; 40:225-37. [PMID: 15447649 DOI: 10.1111/j.1365-313x.2004.02203.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previous studies have established that mutations in the NDR1 gene in Arabidopsis thaliana suppress the resistance response of three resistance proteins, RPS2, RPM1, and RPS5, to Pseudomonas syringae pv. tomato (Pst) strain DC3000 containing the cognate effector genes, avrRpt2, avrRpm1, and avrpPhB, respectively. NDR1 is a plasma membrane (PM)-localized protein, and undergoes several post-translational modifications including carboxy-terminal processing and N-linked glycosylation. Expression of NDR1 under the NDR1 native promoter complements the ndr1-1 mutation, while overexpression of NDR1 results in enhanced resistance to virulent Pst. Sequence analysis and mass spectrometry suggest that NDR1 is localized to the PM via a C-terminal glycosylphosphatidyl-inositol (GPI) anchor. GPI modification would potentially place NDR1 on the outer surface of the PM, perhaps allowing NDR1 to act as a transducer of pathogen signals and/or interact directly with the pathogen.
Collapse
Affiliation(s)
- Peter Coppinger
- Department of Plant and Microbial Biology, 111 Koshland Hall, University of California, Berkeley, CA 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
38
|
Taron BW, Colussi PA, Wiedman JM, Orlean P, Taron CH. Human Smp3p Adds a Fourth Mannose to Yeast and Human Glycosylphosphatidylinositol Precursors in Vivo. J Biol Chem 2004; 279:36083-92. [PMID: 15208306 DOI: 10.1074/jbc.m405081200] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast and human glycosylphosphatidylinositol (GPI) precursors differ in the extent to which a fourth mannose is present as a side branch of the third core mannose. A fourth mannose addition to GPIs has scarcely been detected in studies of mammalian GPI synthesis but is an essential step in the Saccharomyces cerevisiae pathway. We report that human SMP3 encodes a functional homolog of the yeast Smp3 GPI fourth mannosyl-transferase. Expression of hSMP3 in yeast complements growth and biochemical defects of smp3 mutants and permits in vivo mannosylation of trimannosyl (Man(3))-GPIs. Immunolocalization shows that hSmp3p resides in the endoplasmic reticulum in human cells. Northern analysis of mRNA from human tissues and cell lines indicates that hSMP3 is expressed in most tissues, with the highest levels in brain and colon, but its mRNA is nearly absent from cultured human cell lines. Correspondingly, increasing expression of hSMP3 in cultured HeLa cells causes abundant formation of three putative tetramannosyl (Man(4))-GPIs. Our data indicate that hSmp3p functions as a mannosyltransferase that adds a fourth mannose to certain Man(3)-GPIs during biosynthesis of the human GPI precursor, and suggest it may do so in a tissue-specific manner.
Collapse
|
39
|
Liu M, Wang L, Cheng J, Zhang SL, Shao Q, Zhang J, Yang Q, Dong J. Screening and identification of interacting proteins with pre-X protein of hepatitis B virus in hepatocytes by yeast-two hybrid technique. Shijie Huaren Xiaohua Zazhi 2004; 12:790-793. [DOI: 10.11569/wcjd.v12.i4.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological function of pre-X protein encoded by hepatitis B virus (HBV) genome, and to screen proteins in hepatocytes interacting with pre-X protein by yeast-two hybrid technique.
METHODS: The pre-X gene was amplified by polymerase chain reaction (PCR) and pre-X bait plasmid was constructed by using yeast-two hybrid system 3, then the constructed vector was transformed into yeast AH109. The transformed yeast mated with yeast Y187 containing hepatocytes cDNA library plasmid in 2×YPDA medium. Diploid yeast was plated on synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) and synthetic dropout nutrient medium (SD/-Trp-Leu-His-Ade) containing x--gal for selecting two times and screening. After extracting and sequencing of plasmid from blue colonies, the results were analyzed by bioinformatics.
RESULTS: Nineteen colonies were sequenced, in which five colonies were homo sapiens ferritin, one colonies was homo sapiens insulin-like growth factor binding protein 3 (IGFBP3), one homo sapiens aldolase B, one homo sapiens gene for glycosylphosphatidylinositol anchor attachment 1 (GAA1), one homo sapiens hemopexin, one homo sapiens C1 esterase inhibitor (C1-INH), one homo sapiens vitronectin, one homo sapiens voltage-dependent anion channel 1 (VDAC1), one hepsin (transmembrane protease, serine 1), one homo sapiens spindling, one homo sapiens plasminogen (PLG), three hypothetical proteins, and one homo sapiens chromosome 16 clone RP11-542M13.
CONCLUSION: Genes of pre-X interacting proteins in hepatocytes are successfully cloned and the results bring some new clues for studying the biological functions of pre-X and associated proteins.
Collapse
|
40
|
Yang J, Tiong J, Kennard M, Jefferies WA. Deletion of the GPI pre-anchor sequence in human p97—a general approach for generating the soluble form of GPI-linked proteins. Protein Expr Purif 2004; 34:28-48. [PMID: 14766298 DOI: 10.1016/j.pep.2003.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Revised: 09/05/2003] [Indexed: 11/30/2022]
Abstract
Melanotransferrin, also named p97, belongs to the transferrin-like group of iron-binding proteins. Unlike the other members of this family, p97 exists in two forms-one soluble form and one attached to the cell membrane by a glycosylphosphatidylinositol (GPI) anchor. The GPI-linked form plays a role in the uptake of iron, while the soluble form of p97 has the unique ability of traversing the blood-brain barrier and may be utilized to deliver drug conjugates into the brain. To investigate these possibilities, a recombinant soluble form of p97 from the GPI-linked p97 protein is required. The approach involved sequential deletions of the p97 GPI pre-anchor sequence (PAS) up to the putative site of cleavage/attachment, releasing p97 from attachment to the GPI-anchor and rendering it soluble. Transfection of the p97 deletion constructs into both the CHO and BHK TK(-) cells was performed with the aim of optimizing the production of p97 by utilizing the cell characteristics unique to each cell line. Altering the GPI PAS resulted in the generation of a recombinant soluble form that was secreted at significantly higher rates than from the full-length expressing cell lines. Increases were from 22 x 10(-9) to 241 x 10(-9)microg/cell/h for expression in the CHO cell system and from 220 x 10(-9) to 4970 x 10(-9)microg/cell/h for the BHK system. Furthermore, there appeared to be differences in the secretion rates between the various deletions suggesting the need for closer examination of the C-terminus in achieving maximum production of the altered proteins. The results of this study are likely applicable for expressing soluble forms of other GPI-linked proteins.
Collapse
Affiliation(s)
- Joseph Yang
- The Biotechnology Laboratory, Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | |
Collapse
|
41
|
Imhof I, Flury I, Vionnet C, Roubaty C, Egger D, Conzelmann A. Glycosylphosphatidylinositol (GPI) proteins of Saccharomyces cerevisiae contain ethanolamine phosphate groups on the alpha1,4-linked mannose of the GPI anchor. J Biol Chem 2004; 279:19614-27. [PMID: 14985347 DOI: 10.1074/jbc.m401873200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In humans and Saccharomyces cerevisiae the free glycosylphosphatidylinositol (GPI) lipid precursor contains several ethanolamine phosphate side chains, but these side chains had been found on the protein-bound GPI anchors only in humans, not yeast. Here we confirm that the ethanolamine phosphate side chain added by Mcd4p to the first mannose is a prerequisite for the addition of the third mannose to the GPI precursor lipid and demonstrate that, contrary to an earlier report, an ethanolamine phosphate can equally be found on the majority of yeast GPI protein anchors. Curiously, the stability of this substituent during preparation of anchors is much greater in gpi7Delta sec18 double mutants than in either single mutant or wild type cells, indicating that the lack of a substituent on the second mannose (caused by the deletion of GPI7) influences the stability of the one on the first mannose. The phosphodiester-linked substituent on the second mannose, probably a further ethanolamine phosphate, is added to GPI lipids by endoplasmic reticulum-derived microsomes in vitro but cannot be detected on GPI proteins of wild type cells and undergoes spontaneous hydrolysis in saline. Genetic manipulations to increase phosphatidylethanolamine levels in gpi7Delta cells by overexpression of PSD1 restore cell growth at 37 degrees C without restoring the addition of a substituent to Man2. The three putative ethanolamine-phosphate transferases Gpi13p, Gpi7p, and Mcd4p cannot replace each other even when overexpressed. Various models trying to explain how Gpi7p, a plasma membrane protein, directs the addition of ethanolamine phosphate to mannose 2 of the GPI core have been formulated and put to the test.
Collapse
Affiliation(s)
- Isabella Imhof
- Department of Medicine, University of Fribourg, Chemin de Musée 5, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
42
|
Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G. Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 2003; 4:694-709. [PMID: 12956872 DOI: 10.1034/j.1600-0854.2003.00129.x] [Citation(s) in RCA: 353] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An expression screen of a rat cDNA library for sequences encoding Golgi-localized integral membrane proteins identified a protein with an apparent novel topology, i.e. with both an N-terminal transmembrane domain and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor. Our data are consistent with this. Thus, the protein would have a topology that, in mammalian cells, is shared only by a minor, but pathologically important, topological isoform of the prion protein (PrP). The human orthologue of this protein has been described previously (BST-2 or HM1.24 antigen) as a cell surface molecule that appears to be involved in early pre-B-cell development and which is present at elevated levels at the surface of myeloma cells. We show that rat BST-2/HM1.24 has both a cell surface and an intracellular (juxtanuclear) location and is efficiently internalized from the cell surface. We also show that the cell surface pool of BST-2/HM1.24 is predominantly present in the apical plasma membrane of polarized cells. The fact that rat BST-2/HM1.24 apparently possesses a GPI anchor led us to speculate that it might exist in cholesterol-rich lipid microdomains (lipid rafts) at the plasma membrane. Data from several experiments are consistent with this localization. We present a model in which BST-2/HM1.24 serves to link adjacent lipid rafts within the plasma membrane.
Collapse
Affiliation(s)
- Sabine Kupzig
- Department of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
43
|
Toh-e A, Oguchi T. Genetic characterization of genes encoding enzymes catalyzing addition of phospho-ethanolamine to the glycosylphosphatidylinositol anchor in Saccharomyces cerevisiae. Genes Genet Syst 2002; 77:309-22. [PMID: 12441642 DOI: 10.1266/ggs.77.309] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
MPC1/GPI13/YLL031C, one of the genes involved in the addition of phospho-ethanolamine to the glycosylphosphatidylinositol (GPI) anchor core, is an essential gene. Three available temperature-sensitive mutant alleles, mpc1-3, mpc1-4, and mpc1-5, displayed different phenotypes to each other and, correspondingly, these mutants were found to have different mutations in the MPC1 ORF. Temperature-sensitivity of mpc1-5 mutants was suppressed by 5 mM ZnSO(4) and by 5 mM MnCl(2). Multicopy suppressors were isolated from mpc1-5 mutant. Suppressors commonly effective to mpc1-4 and mpc1-5 mutations are PSD1, encoding phosphatidylserine decarboxylase, and ECM33, which were found to suppress the temperature-sensitive phenotype shown by the fsr2-1 and las21delta mutants, those of which have defects in the GPI anchor synthesis. PSD2, encoding another phosphatidylserine decarboxylase that is localized in Golgi/vacuole, was found to be able to serve as a multicopy suppressor of mpc1 and fsr2-1 mutants but not of the las21 delta mutant. In contrast to psd1delta, psd2delta showed a synthetic growth defect with mpc1 mutants but not with fsr2-1 or las21delta. Furthermore, psd1delta psd2delta mpc1 triple mutants did not form colonies on nutrient medium unless ethanolamine was supplied to the medium, whereas psd1delta psd2 delta fsr2-1 or psd1delta psd2 delta las21delta triple mutants grew on nutrient medium without supplementation of ethanolamine. These observations suggest that Mpc1 preferentially utilizes phosphatidylethanolamine produced by Psd2 that is localized in Golgi/vacuole. fsr2-1 dpl1 Delta psd1delta strains showed slower growth than fsr2-1 dpl1delta psd2 delta, suggesting that Fsr2 enzyme depends more on Dpl1 and Psd1 for production of phosphatidylethanolamine. Las21 did not show preference for the metabolic pathway to produce phosphatidylethanolamine.
Collapse
Affiliation(s)
- Akio Toh-e
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo Hongo, Japan.
| | | |
Collapse
|
44
|
Graham K, Shively JE. Improved initial yields in C-terminal sequence analysis by thiohydantoin chemistry using purified diphenylphosphoryl isothiocyanate: NMR evidence for a reaction intermediate in the coupling reaction. Anal Biochem 2002; 307:202-11. [PMID: 12202235 DOI: 10.1016/s0003-2697(02)00025-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A thiohydantoin method for C-terminal sequence analysis of proteins on Zitex membranes involves derivatization of the free alpha-carboxyl group with diphenylphosphoryl isothiocyanate (DPPITC) plus treatment with pyridine to form a peptidylthiohydantoin derivative, cleavage of the thiohydantoin (TH) amino acid from the protein with potassium trimethylsilanolate, and identification of the released TH-amino acid by online reversed-phase HPLC. This automated chemistry, which was adapted to the Hewlett-Packard G 1009A sequencer, has been shown to identify two or three cycles on a wide variety of proteins, but suffers from low initial yields and instability of the DPPITC reagent. We report here an improved method for synthesis and purification of DPPITC. With this procedure the DPPITC reagent is a clear liquid that is stable at room temperature under vacuum for more than 9 months or for more than 24 months as a 1.0M solution in benzene at -20 degrees C. Using the purified reagent we were able to more than double the initial yield (from 30.7 to 72.4%) of TH-amino acid from a test protein and substantially decrease sequencer background. Examination of the reaction between DPPITC and the carboxylate of model N-terminally protected dipeptides with 31P NMR provides spectroscopic evidence for a postulated intermediate formed between the DPPITC and the peptide carboxylate. The reaction intermediate provides new insight into the coupling mechanism.
Collapse
Affiliation(s)
- Kenneth Graham
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
45
|
Yan BC, Westfall BA, Orlean P. Ynl038wp (Gpi15p) is the Saccharomyces cerevisiae homologue of human Pig-Hp and participates in the first step in glycosylphosphatidylinositol assembly. Yeast 2001; 18:1383-9. [PMID: 11746600 DOI: 10.1002/yea.783] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are found in all eukaryotes and are synthesized in a pathway that starts with the transfer of N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to phosphatidylinositol (PI). This reaction is carried out by a protein complex, three of whose subunits in humans, hGpi1p, Pig-Cp and Pig-Ap, have sequence and functional homologues in the Saccharomyces cerevisiae Gpi1, Gpi2 and Gpi3 proteins, respectively. Human GlcNAc-PI synthase contains two further subunits, Pig-Hp and PigPp. We report that the essential YNL038w gene encodes the S. cerevisiae homologue of Pig-Hp. Haploid YNL038w-deletion strains were created, in which Ynl038wp could be depleted by repressing YNL038w expression using the GAL10 promoter. Depletion of Ynl038wp from membranes virtually abolished in vitro GlcNAc-PI synthetic activity, indicating that Ynl038wp is necessary for GlcNAc-PI synthesis in vitro. Further, depletion of Ynl038wp in an smp3 mutant background prevented the formation of the trimannosylated GPI intermediates that normally accumulate in this late-stage GPI assembly mutant. Ynl038wp is therefore required for GPI synthesis in vivo. Because YNL038w encodes a protein involved in GPI biosynthesis, we designate the gene GPI15. Potential Pig-Hp/Gpi15p counterparts are also encoded in the genomes of Schizosacchomyces pombe and Candida albicans.
Collapse
Affiliation(s)
- B C Yan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | |
Collapse
|
46
|
Azzouz N, Gerold P, Kedees MH, Shams-Eldin H, Werner R, Capdeville Y, Schwarz RT. Regulation of Paramecium primaurelia glycosylphosphatidyl-inositol biosynthesis via dolichol phosphate mannose synthesis. Biochimie 2001; 83:801-9. [PMID: 11530213 DOI: 10.1016/s0300-9084(01)01317-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A set of glycosylinositol-phosphoceramides, belonging to a family of glycosylphosphatidyl-inositols (GPIs) synthesized in a cell-free system prepared from the free-living protozoan Paramecium primaurelia has been described. The final GPI precursor was identified and structurally characterized as: ethanolamine-phosphate-6Man alpha 1-2Man alpha 1-6(mannosylphosphate) Man alpha 1-4glucosamine-inositol-phospho-ceramide. During our investigations on the biosynthesis of the acid-labile modification, the additional mannosyl phosphate substitution, we observed that the use of the nucleotide triphosphate analogue GTP gamma S (guanosine 5-O-(thiotriphosphate)) blocks the biosynthesis of the mannosylated GPI glycolipids. We show that GTP gamma S inhibits the synthesis of dolichol-phosphate-mannose, which is the donor of the mannose residues for GPI biosynthesis. Therefore, we investigated the role of GTP binding regulatory 'G' proteins using cholera and pertussis toxins and an intracellular second messenger cAMP analogue, 8-bromo-cAMP. All the data obtained suggest the involvement of classical heterotrimeric G proteins in the regulation of GPI-anchor biosynthesis through dolichol-phosphate-mannose synthesis via the activation of adenylyl cyclase and protein phosphorylation. Furthermore, our data suggest that GTP gamma S interferes with synthesis of dolichol monophosphate, indicating that the dolichol kinase is regulated by the heterotrimeric G proteins.
Collapse
Affiliation(s)
- N Azzouz
- Zentrum für Hygiene und Medizinische Mikrobiologie, Philipps-Universität Marburg, Robert-Koch-Strasse 17, 35037 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Grimme SJ, Westfall BA, Wiedman JM, Taron CH, Orlean P. The Essential Smp3 Protein Is Required for Addition of the Side-branching Fourth Mannose during Assembly of Yeast Glycosylphosphatidylinositols. J Biol Chem 2001; 276:27731-9. [PMID: 11356840 DOI: 10.1074/jbc.m101986200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The major glycosylphosphatidylinositols (GPIs) transferred to protein in mammals and trypanosomes contain three mannoses. In Saccharomyces cerevisiae, however, the GPI transferred to protein bears a fourth, alpha1,2-linked Man on the alpha1,2-Man that receives the phosphoethanolamine (EthN-P) moiety through which GPIs become linked to protein. We report that temperature-sensitive smp3 mutants accumulate a GPI containing three mannoses and that smp3 is epistatic to the gpi11, gpi13, and gaa1 mutations, which normally result in the accumulation of Man(4)-GPIs, including the presumed substrate for the yeast GPI transamidase. The Smp3 protein, which is encoded by an essential gene, is therefore required for addition of the fourth Man to yeast GPI precursors. The finding that smp3 prevents the formation of the Man(4)-GPI that accumulates when addition of EthN-P to Man-3 is blocked in a gpi13 mutant suggests that the presence of the fourth Man is important for transfer of EthN-P to Man-3 of yeast GPIs. The Man(3)-GPI that accumulates in smp3 is a mixture of two dominant isoforms, one bearing a single EthN-P side branch on Man-1, the other with EthN-P on Man-2, and these isoforms can be placed in separate arms of a branched GPI assembly pathway. Smp3-related proteins are encoded in the genomes of Schizosaccharomyces pombe, Candida albicans, Drosophila melanogaster, and Homo sapiens and form a subgroup of a family of proteins, the other groups of which are defined by the Pig-B(Gpi10) protein, which adds the third GPI mannose, and by the Alg9 and Alg12 proteins, which act in the dolichol pathway for N-glycosylation. Because Man(4)-containing GPI precursors are normally formed in yeast and Plasmodium falciparum, whereas addition of a fourth Man during assembly of mammalian GPIs is rare and not required for GPI transfer to protein, Smp3p-dependent addition of a fourth Man represents a target for antifungal and antimalarial drugs.
Collapse
Affiliation(s)
- S J Grimme
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
48
|
Anand M, Rush JS, Ray S, Doucey MA, Weik J, Ware FE, Hofsteenge J, Waechter CJ, Lehrman MA. Requirement of the Lec35 gene for all known classes of monosaccharide-P-dolichol-dependent glycosyltransferase reactions in mammals. Mol Biol Cell 2001; 12:487-501. [PMID: 11179430 PMCID: PMC30958 DOI: 10.1091/mbc.12.2.487] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Lec35 gene product (Lec35p) is required for utilization of the mannose donor mannose-P-dolichol (MPD) in synthesis of both lipid-linked oligosaccharides (LLOs) and glycosylphosphatidylinositols, which are important for functions such as protein folding and membrane anchoring, respectively. The hamster Lec35 gene is shown to encode the previously identified cDNA SL15, which corrects the Lec35 mutant phenotype and predicts a novel endoplasmic reticulum membrane protein. The mutant hamster alleles Lec35.1 and Lec35.2 are characterized, and the human Lec35 gene (mannose-P-dolichol utilization defect 1) was mapped to 17p12-13. To determine whether Lec35p was required only for MPD-dependent mannosylation of LLO and glycosylphosphatidylinositol intermediates, two additional lipid-mediated reactions were investigated: MPD-dependent C-mannosylation of tryptophanyl residues, and glucose-P-dolichol (GPD)-dependent glucosylation of LLO. Both were found to require Lec35p. In addition, the SL15-encoded protein was selective for MPD compared with GPD, suggesting that an additional GPD-selective Lec35 gene product remains to be identified. The predicted amino acid sequence of Lec35p does not suggest an obvious function or mechanism. By testing the water-soluble MPD analog mannose-beta-1-P-citronellol in an in vitro system in which the MPD utilization defect was preserved by permeabilization with streptolysin-O, it was determined that Lec35p is not directly required for the enzymatic transfer of mannose from the donor to the acceptor substrate. These results show that Lec35p has an essential role for all known classes of monosaccharide-P-dolichol-dependent reactions in mammals. The in vitro data suggest that Lec35p controls an aspect of MPD orientation in the endoplasmic reticulum membrane that is crucial for its activity as a donor substrate.
Collapse
Affiliation(s)
- M Anand
- Department of Pharmacology, UT-Southwestern Medical Center, Dallas, Texas 75390-9041, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Park SW, Choi K, Kim IC, Lee HH, Hooper NM, Park HS. Endogenous glycosylphosphatidylinositol-specific phospholipase C releases renal dipeptidase from kidney proximal tubules in vitro. Biochem J 2001; 353:339-44. [PMID: 11139399 PMCID: PMC1221577 DOI: 10.1042/0264-6021:3530339] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spontaneous enzymic release of renal dipeptidase (RDPase; EC 3.4.13.19), a glycosylphosphatidylinositol (GPI)-linked ectoenzyme, was observed in vitro during incubation of porcine proximal tubules at 37 degrees C. Triton X-114 phase separation of the released RDPase showed that the majority of the enzyme activity partitioned into the aqueous phase, indicating its hydrophilic nature. Immunoblot analyses using an antibody against the cross-reacting determinant (CRD) inositol 1,2-cyclic monophosphate, the epitope formed by phospholipase C (PLC) cleavage of the GPI anchor on a protein, detected the released RDPase. Reprobing the immunoblot with an anti-RDPase serum showed the RDPase band co-migrating with the CRD band. The release of RDPase from the proximal tubules was a Ca(2+)-dependent process and had a pH optimum of 9.0. These results indicate that RDPase is released from the proximal tubules by the action of a distinct endogenous GPI-specific PLC.
Collapse
Affiliation(s)
- S W Park
- College of Pharmacy, Chonnam National University, Kwangju 500-757, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Shams-Eldin H, Azzouz N, Eckert V, Blaschke T, Kedees MH, Hübel A, Schwarz RT. The Schizosaccharomyces pombe GPI8 gene complements a Saccharomyces cerevisiae GPI8 anchoring mutant. Yeast 2001; 18:33-9. [PMID: 11124699 DOI: 10.1002/1097-0061(200101)18:1<33::aid-yea648>3.0.co;2-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The final step in glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins consists of a transamidation reaction, in which preassembled GPI donors are substituted for C-terminal signal sequences in nascent polypeptides. The Saccharomyces cerevisiae GPI8 gene (ScGPI8) encodes a protein which is involved in the GPI transamidation reaction. We have cloned and isolated the Schizosaccharomyces pombe GPI8 homologous gene (SpGPI8). The SpGPI8 gene encodes a protein of 411 amino acids with a calculated molecular weight of about 47 kDa. It shows 53.5% identity with the ScGPI8 and complements a S. cerevisiae GPI8 anchoring mutant.
Collapse
Affiliation(s)
- H Shams-Eldin
- Medizinisches Zentrum für Hygiene und Med. Mikrobiologie, Institut für Virologie, Robert-Koch-Strasse 17, 35037 Marburg, Germany.
| | | | | | | | | | | | | |
Collapse
|