1
|
In silico screening for identification of novel HIV-1 integrase inhibitors using QSAR and docking methodologies. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0490-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
|
3
|
Antiviral agents 2. Synthesis of trimeric naphthoquinone analogues of conocurvone and their antiviral evaluation against HIV. Bioorg Med Chem 2010; 18:6442-50. [DOI: 10.1016/j.bmc.2010.06.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/25/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022]
|
4
|
Ravichandran V, Shalini S, Sundram K, Sokkalingam AD. QSAR study of substituted 1,3,4-oxadiazole naphthyridines as HIV-1 integrase inhibitors. Eur J Med Chem 2010; 45:2791-7. [DOI: 10.1016/j.ejmech.2010.02.062] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 02/23/2010] [Accepted: 02/27/2010] [Indexed: 11/27/2022]
|
5
|
Talukdar A, Morgunova E, Duan J, Meining W, Foloppe N, Nilsson L, Bacher A, Illarionov B, Fischer M, Ladenstein R, Cushman M. Virtual screening, selection and development of a benzindolone structural scaffold for inhibition of lumazine synthase. Bioorg Med Chem 2010; 18:3518-34. [PMID: 20430628 PMCID: PMC2868945 DOI: 10.1016/j.bmc.2010.03.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 10/19/2022]
Abstract
Virtual screening of a library of commercially available compounds versus the structure of Mycobacterium tuberculosis lumazine synthase identified 2-(2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamido)acetic acid (9) as a possible lead compound. Compound 9 proved to be an effective inhibitor of M. tuberculosis lumazine synthase with a K(i) of 70microM. Lead optimization through replacement of the carboxymethylsulfonamide sidechain with sulfonamides substituted with alkyl phosphates led to a four-carbon phosphate 38 that displayed a moderate increase in enzyme inhibitory activity (K(i) 38microM). Molecular modeling based on known lumazine synthase/inhibitor crystal structures suggests that the main forces stabilizing the present benzindolone/enzyme complexes involve pi-pi stacking interactions with Trp27 and hydrogen bonding of the phosphates with Arg128, the backbone nitrogens of Gly85 and Gln86, and the side chain hydroxyl of Thr87.
Collapse
Affiliation(s)
- Arindam Talukdar
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and The Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ekaterina Morgunova
- Karolinska Institute, Department of Bioscience, Hälsovägen 7-9, S-14157 Huddinge, Sweden
| | - Jianxin Duan
- Anterio Consult & Research GmbH, Augustaanlage 23, 68165 Mannheim, Germany
| | - Winfried Meining
- Lehrstuhl für Biologische Chemie, Technische Universität München, 85350 Freising-Weihenstephan, Germany
| | - Nicolas Foloppe
- Karolinska Institute, Department of Bioscience, Hälsovägen 7-9, S-14157 Huddinge, Sweden
| | - Lennart Nilsson
- Karolinska Institute, Department of Bioscience, Hälsovägen 7-9, S-14157 Huddinge, Sweden
| | - Adelbert Bacher
- Institute of Biochemistry and Food Chemistry, Food Chemistry Division, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Boris Illarionov
- Institute of Biochemistry and Food Chemistry, Food Chemistry Division, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Markus Fischer
- Institute of Biochemistry and Food Chemistry, Food Chemistry Division, University of Hamburg, Grindelallee 117, D-20146 Hamburg, Germany
| | - Rudolf Ladenstein
- Karolinska Institute, Department of Bioscience, Hälsovägen 7-9, S-14157 Huddinge, Sweden
| | - Mark Cushman
- Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmaceutical Sciences, and The Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana, 47907, USA
| |
Collapse
|
6
|
McColl DJ, Chen X. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy. Antiviral Res 2009; 85:101-18. [PMID: 19925830 DOI: 10.1016/j.antiviral.2009.11.004] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 11/05/2009] [Accepted: 11/10/2009] [Indexed: 01/16/2023]
Abstract
HIV-1 integrase (IN) is one of three essential enzymes (along with reverse transcriptase and protease) encoded by the viral pol gene. IN mediates two critical reactions during viral replication; firstly 3'-end processing (3'EP) of the double-stranded viral DNA ends and then strand transfer (STF) which joins the viral DNA to the host chromosomal DNA forming a functional integrated proviral DNA. IN is a 288 amino acid protein containing three functional domains, the N-terminal domain (NTD), catalytic core domain (CCD) and the C-terminal domain (CTD). The CCD contains three conserved catalytic residues, Asp64, Asp116 and Glu152, which coordinate divalent metal ions essential for the STF reaction. Intensive research over the last two decades has led to the discovery and development of small molecule inhibitors of the IN STF reaction (INSTIs). INSTIs are catalytic inhibitors of IN, and act to chelate the divalent metal ions in the CCD. One INSTI, raltegravir (RAL, Merck Inc.) was approved in late 2007 for the treatment of HIV-1 infection in patients with prior antiretroviral (ARV) treatment experience and was recently approved also for first line therapy. A second INSTI, elvitegravir (EVG, Gilead Sciences, Inc.) is currently undergoing phase 3 studies in ARV treatment-experienced patients and phase 2 studies in ARV naïve patients as part of a novel fixed dose combination. Several additional INSTIs are in early stage clinical development. This review will discuss the discovery and development of this novel class of antiretrovirals. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010.
Collapse
Affiliation(s)
- Damian J McColl
- Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, CA 94404, United States.
| | | |
Collapse
|
7
|
Dayam R, Gundla R, Al-Mawsawi LQ, Neamati N. HIV-1 integrase inhibitors: 2005-2006 update. Med Res Rev 2008; 28:118-54. [PMID: 17979144 DOI: 10.1002/med.20116] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
HIV-1 integrase (IN) catalyzes the integration of proviral DNA into the host genome, an essential step for viral replication. Inhibition of IN catalytic activity provides an attractive strategy for antiretroviral drug design. Currently two IN inhibitors, MK-0518 and GS-9137, are in advanced stages of human clinical trials. The IN inhibitors in clinical evaluation demonstrate excellent antiretroviral efficacy alone or in combination regimens as compared to previously used clinical antiretroviral agents in naive and treatment-experienced HIV-1 infected patients. However, the emergence of viral strains resistant to clinically studied IN inhibitors and the dynamic nature of the HIV-1 genome demand a continued effort toward the discovery of novel inhibitors to keep a therapeutic advantage over the virus. Continued efforts in the field have resulted in the discovery of compounds from diverse chemical classes. In this review, we provide a comprehensive report of all IN inhibitors discovered in the years 2005 and 2006.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, School of Pharmacy, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|
8
|
QSAR analysis of caffeoyl naphthalene sulfonamide derivatives as HIV-1 integrase inhibitors. Med Chem Res 2007. [DOI: 10.1007/s00044-006-0020-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Al-Mawsawi LQ, Fikkert V, Dayam R, Witvrouw M, Burke TR, Borchers CH, Neamati N. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site. Proc Natl Acad Sci U S A 2006; 103:10080-5. [PMID: 16785440 PMCID: PMC1502509 DOI: 10.1073/pnas.0511254103] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herein, we report the identification of a unique HIV-1 integrase (IN) inhibitor-binding site using photoaffinity labeling and mass spectrometric analysis. We chemically incorporated a photo-activatable benzophenone moiety into a series of coumarin-containing IN inhibitors. A representative of this series was covalently photo-crosslinked with the IN core domain and subjected to HPLC purification. Fractions were subsequently analyzed by using MALDI-MS and electrospray ionization (ESI)-MS to identify photo-crosslinked products. In this fashion, a single binding site for an inhibitor located within the tryptic peptide (128)AACWWAGIK(136) was identified. Site-directed mutagenesis followed by in vitro inhibition assays resulted in the identification of two specific amino acid residues, C130 and W132, in which substitutions resulted in a marked resistance to the IN inhibitors. Docking studies suggested a specific disruption in functional oligomeric IN complex formation. The combined approach of photo-affinity labeling/MS analysis with site-directed mutagenesis/molecular modeling is a powerful approach for elucidating inhibitor-binding sites of proteins at the atomic level. This approach is especially important for the study of proteins that are not amenable to traditional x-ray crystallography and NMR techniques. This type of structural information can help illuminate processes of inhibitor resistance and thereby facilitate the design of more potent second-generation inhibitors.
Collapse
Affiliation(s)
- Laith Q. Al-Mawsawi
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Valery Fikkert
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Raveendra Dayam
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
| | - Myriam Witvrouw
- Division of Molecular Medicine, Katholieke Universiteit Leuven and Interdisciplinary Research Center, Katholieke Universiteit Leuven–Campus Kortrijk, Kapucijnenvoer 33, B-3000 Leuven, Flanders, Belgium
| | - Terrence R. Burke
- Laboratory of Medicinal Chemistry, Center for Cancer Research, National Institutes of Health, Frederick, MD 21702; and
| | - Christoph H. Borchers
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
- To whom correspondence may be addressed. E-mail:
or
| | - Nouri Neamati
- *Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
10
|
Deng J, Kelley JA, Barchi JJ, Sanchez T, Dayam R, Pommier Y, Neamati N. Mining the NCI antiviral compounds for HIV-1 integrase inhibitors. Bioorg Med Chem 2006; 14:3785-92. [PMID: 16460953 DOI: 10.1016/j.bmc.2006.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 01/12/2006] [Accepted: 01/16/2006] [Indexed: 11/18/2022]
Abstract
HIV-1 integrase (IN) is an essential enzyme for effective viral replication and is a validated target for the development of antiretroviral drugs. Currently, there are no approved drugs targeting this enzyme. In this study, we have identified 11 structurally diverse small-molecule inhibitors of IN. These compounds have been selected by mining the moderately active antiviral molecules from a collection of 90,000 compounds screened by the National Cancer Institute (NCI) Antiviral Program. These compounds, which were screened at the NCI during the past 20 years, resulted in approximately 4000 compounds labeled as 'moderately active.' In our study, chalcone 11 shows the most potent activity with an IC(50) of 2+/-1 microM against purified IN in the presence of both Mn(2+) and Mg(2+) as cofactors. Docking simulations using the 11 identified inhibitors as a training set have elucidated two unique binding areas within the active site: the first encompasses the conserved D64-D116-E152 motif, while the other involves the flexible loop region formed by amino acid residues 140-149. The tested inhibitors exhibit favorable interactions with important amino acid residues through van der Waals and H-bonding contacts.
Collapse
Affiliation(s)
- Jinxia Deng
- Department of Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The integration of viral cDNA into the host genome is an essential step in the HIV-1-life cycle and is mediated by the virally encoded enzyme, integrase (IN). Inhibition of this process provides an attractive strategy for antiviral drug design. The discovery of beta-diketo acid inhibitors played a major role in validating IN as a legitimate antiretroviral drug target. Over a decade of research, a plethora of IN inhibitors have been discovered and some showed antiviral activity consistent with their effect on IN. To date, at least two compounds have been tested in human but none are close to the FDA approval. In this review, we provide a comprehensive report of all small-molecule IN inhibitors discovered during the years 2003 and 2004. Compilation of such data will prove beneficial in developing QSAR, virtual screening, pharmacophore hypothesis generation, and validation.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, 90089, USA
| | | | | |
Collapse
|
12
|
Dayam R, Neamati N. Active site binding modes of the beta-diketoacids: a multi-active site approach in HIV-1 integrase inhibitor design. Bioorg Med Chem 2005; 12:6371-81. [PMID: 15556755 DOI: 10.1016/j.bmc.2004.09.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 11/20/2022]
Abstract
Predicting a bioactive conformation of a ligand is of paramount importance in rational drug design. The task becomes very difficult when the receptor site possesses a region with unusual conformational flexibility. Significant conformational differences are present in the active site regions in the available crystal structures of the core domains of HIV-1 integrase (IN). Among all reported IN inhibitors, the beta-diketoacid class of compounds has proved to be of most promise and indeed S-1360 was the first IN inhibitor to enter clinical studies. With an aim to predict the bioactive (active site bound) conformation of S-1360, we performed extensive docking studies using three different reported crystal structures where the active site or partial active site region was resolved. For comparison we extended our studies to include 5CITEP (the first compound cocrystallized with IN core domain) and a bis-diketoacid (BDKA). We found that the conformation of S-1360 when bound in one of the active sites matches that of the experimentally observed results of IN escape mutants resistant to S-1360. Therefore, we propose that this active site conformation is the biologically relevant conformation and can be used for the future structure-based drug design studies selectively targeting IN.
Collapse
Affiliation(s)
- Raveendra Dayam
- Department of Pharmaceutical Sciences, University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304, Los Angeles, CA 90089, USA
| | | |
Collapse
|
13
|
Sechi M, Sannia L, Carta F, Palomba M, Dallocchio R, Dessì A, Derudas M, Zawahir Z, Neamati N. Design of novel bioisosteres of beta-diketo acid inhibitors of HIV-1 integrase. Antivir Chem Chemother 2005; 16:41-61. [PMID: 15739621 DOI: 10.1177/095632020501600105] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
HIV-1 integrase (IN) is an attractive and validated target for the development of novel therapeutics against AIDS. Significant efforts have been devoted to the identification of IN inhibitors using various methods. In this context, through virtual screening of the NCI database and structure-based drug design strategies, we identified several pharmacophoric fragments and incorporated them on various aromatic or heteroaromatic rings. In addition, we designed and synthesized a series of 5-aryl(heteroaryl)-isoxazole-3-carboxylic acids as biological isosteric analogues of beta-diketo acid containing inhibitors of HIV-1 IN and their derivatives. Further computational docking studies were performed to investigate the mode of interactions of the most active ligands with the IN active site. Results suggested that some of the tested compounds could be considered as lead compounds and suitable for further optimization.
Collapse
Affiliation(s)
- Mario Sechi
- Dipartimento Farmaco Chimico Tossicologico, Università di Sassari, Sassari, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu YW, Zhao GS, Shin CG, Zang HC, Lee CK, Lee YS. Caffeoyl naphthalenesulfonamide derivatives as HIV integrase inhibitors. Bioorg Med Chem 2003; 11:3589-93. [PMID: 12901903 DOI: 10.1016/s0968-0896(03)00372-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
HIV-1 integrase (IN) is an essential enzyme for retroviral replication and a rational target for the design of anti-AIDS drugs. In the present study, we have designed, synthesized and tested a series of caffeoyl naphthalenesulfonamide derivatives as HIV integrase inhibitors. Among these compounds, we found that HIV integrase inhibitory activities of compounds III-3 and III-4 were more potent than L-chicoric acid (IC(50)=11.8 microg/mL) and others were comparable to L-chicoric acid. Furthermore, the structure-activity relationships of these compounds were studied. The information gathered from this paper will be useful in the development and design of HIV-1 integrase inhibitors in the future.
Collapse
Affiliation(s)
- Yu-Wen Xu
- College of Pharmacy, Shandong University, PO Box 111, 44# Wenhuaxi Road, Ji'nan 250012, Shandong Province, PR China
| | | | | | | | | | | |
Collapse
|
15
|
Makhija MT, Kulkarni VM. QSAR of HIV-1 integrase inhibitors by genetic function approximation method. Bioorg Med Chem 2002; 10:1483-97. [PMID: 11886811 DOI: 10.1016/s0968-0896(01)00415-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Quantitative structure--activity relationship (QSAR) paradigm, using genetic function approximation (GFA) technique was used to examine the correlations between the calculated physicochemical descriptors and the in vitro activities (3'-processing and 3'-strand transfer inhibition) of a series of human immunodeficiency virus type 1 (HIV-1) integrase inhibitors. Depending on the chemical structure, all molecules were divided into two classes---catechols and noncatechols. Eighty-one molecules were used in the present study and they were divided into training set and test set. The training set in each class consisted of 35 molecules and QSAR models were generated separately for both catechols and noncatechols. Equations were evaluated using internal as well as external test set predictions. Models generated for catechols show that electronic, shape related, and thermodynamic parameters are important whereas for noncatechols, spatial, structural, and thermodynamic properties play an important role for the activity.
Collapse
Affiliation(s)
- Mahindra T Makhija
- Pharmaceutical Division, Department of Chemical Technology, University of Mumbai, Mumbai 400 019, Matunga, India
| | | |
Collapse
|
16
|
Abstract
Human immunodeficiency virus Type 1 (HIV-1) integrase is an essential enzyme for the obligatory integration of the viral DNA into the infected cell chromosome. As no cellular homologue of HIV integrase has been identified, this unique HIV-1 enzyme is an attractive target for the development of new therapeutics. Treatment of HIV-1 infection and AIDS currently consists of the use of combinations of HIV-1 inhibitors directed against reverse transcriptase (RT) and protease. However, their numerous side effects and the rapid emergence of drug-resistant variants limit greatly their use in many AIDS patients. In principle, inhibitors of the HIV-1 integrase should be relatively non-toxic and provide additional benefits for AIDS chemotherapy. There have been many major advances in our understanding of the molecular mechanism of the integration reaction, although some critical aspects remain obscure. Several classes of compounds have been screened and further scrutinised for their inhibitory properties against the HIV integrase; however, there are currently no useful inhibitors available clinically for the treatment of AIDS patients. This review describes the current knowledge of the biological functions of the HIV-1 integrase and reports the major classes of integrase inhibitors identified to date.
Collapse
Affiliation(s)
- Khampoune Sayasith
- CRRA, Faculty of Veterinary Medicine, University of Montreal, PO Box 5000, St-Hyacinthe, Quebec, Canada J2S 7C6.
| | | | | |
Collapse
|
17
|
Abstract
The pol gene of HIV-1 encodes for three essential enzymes, protease (PR), reverse transcriptase (RT) and integrase (IN). More than 16 drugs, targeting two of these enzymes, PR and RT have been approved by the FDA. At present, there are no clinically useful agents that inhibit the third enzyme, IN. Combination chemotherapy consisting of PR and RT inhibitors has shown remarkable success in the clinic and has benefited many patients. It is thought that a combination of drugs targeting all three enzymes should further incapacitate the virus. Discovery of highly selective PR inhibitors owe their success to the recent development in structure-guided drug design. During the past several years a plethora of structures of HIV-1 PR in complex with an inhibitor have been solved by x-ray crystallography. This incredible wealth of information provided opportunities for the discovery of second and third generation inhibitors. Due to the inherent nature of IN and insufficient structural information, structure-based inhibitor design selective for IN has not kept pace. However, because of recent developments in the field such information could soon become available. In this review, emphasis is placed on inhibitors with identified or proposed drug binding sites on IN.
Collapse
Affiliation(s)
- N Neamati
- University of Southern California, School of Pharmacy, 1985 Zonal Avenue, PSC 304BA, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|