1
|
Cdk5-p25 as a key element linking amyloid and tau pathologies in Alzheimer's disease: Mechanisms and possible therapeutic interventions. Life Sci 2022; 308:120986. [PMID: 36152679 DOI: 10.1016/j.lfs.2022.120986] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
Abstract
Despite the fact that the small atypical serine/threonine cyclin-dependent kinase 5 (Cdk5) is expressed in a number of tissues, its activity is restricted to the central nervous system due to the neuron-only localization of its activators p35 and p39. Although its importance for the proper development and function of the brain and its role as a switch between neuronal survival and death are unmistakable and unquestionable, Cdk5 is nevertheless increasingly emerging, as supported by a large number of publications on the subject, as a therapeutic target of choice in the fight against Alzheimer's disease. Thus, its aberrant over activation via the calpain-dependent conversion of p35 into p25 is observed during the pathogenesis of the disease where it leads to the hyperphosphorylation of the β-amyloid precursor protein and tau. The present review highlights the pivotal roles of the hyperactive Cdk5-p25 complex activity in contributing to the development of Alzheimer's disease pathogenesis, with a particular emphasis on the linking function between Aβ and tau that this kinase fulfils and on the fact that Cdk5-p25 is part of a deleterious feed forward loop giving rise to a molecular machinery runaway leading to AD pathogenesis. Additionally, we discuss the advances and challenges related to the possible strategies aimed at specifically inhibiting Cdk5-p25 activity and which could lead to promising anti-AD therapeutics.
Collapse
|
2
|
Gaber AA, El-Morsy AM, Sherbiny FF, Bayoumi AH, El-Gamal KM, El-Adl K, Al-Karmalawy AA, Ezz Eldin RR, Saleh MA, Abulkhair HS. Pharmacophore-linked pyrazolo[3,4-d]pyrimidines as EGFR-TK inhibitors: Synthesis, anticancer evaluation, pharmacokinetics, and in silico mechanistic studies. Arch Pharm (Weinheim) 2021:e2100258. [PMID: 34467546 DOI: 10.1002/ardp.202100258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Targeting the epidermal growth factor receptors (EGFRs) with small inhibitor molecules has been validated as a potential therapeutic strategy in cancer therapy. Pyrazolo[3,4-d]pyrimidine is a versatile scaffold that has been exploited for developing potential anticancer agents. On the basis of fragment-based drug discovery, considering the essential pharmacophoric features of potent EGFR tyrosine kinase (TK) inhibitors, herein, we report the design and synthesis of new hybrid molecules of the pyrazolo[3,4-d]pyrimidine scaffold linked with diverse pharmacophoric fragments with reported anticancer potential. These fragments include hydrazone, indoline-2-one, phthalimide, thiourea, oxadiazole, pyrazole, and dihydropyrazole. The synthesized molecules were evaluated for their anticancer activity against the human breast cancer cell line, MCF-7. The obtained results revealed comparable antitumor activity with that of the reference drugs doxorubicin and toceranib. Docking studies were performed along with EGFR-TK and ADMET profiling studies. The results of the docking studies showed the ability of the designed compounds to interact with key residues of the EGFR-TK through a number of covalent and noncovalent interactions. The obtained activity of compound 25 (IC50 = 2.89 µM) suggested that it may serve as a lead for further optimization and drug development.
Collapse
Affiliation(s)
- Ahmed A Gaber
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Ahmed M El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf, Iraq
| | - Farag F Sherbiny
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Chemistry, Basic Science Center and Pharmaceutical Organic Chemistry College of Pharmaceutical Science & Drug Manufacturing, Misr University for Science and Technology (MUST), Al-Motamayez District, 6th of October City, Egypt
| | - Ashraf H Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Kamal M El-Gamal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
| | - Khaled El-Adl
- Department of Medicinal Chemistry & Drug Design, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Rogy R Ezz Eldin
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa A Saleh
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Hamada S Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Nasr City, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
3
|
Ibrahim SA, Rizk HF, El-Borai MA, Sadek ME. Green routes for the synthesis of new pyrazole bearing biologically active imidiazolyl, pyridine and quinoxaline derivatives as promising antimicrobial and antioxidant agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-020-02119-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
When Good Kinases Go Rogue: GSK3, p38 MAPK and CDKs as Therapeutic Targets for Alzheimer's and Huntington's Disease. Int J Mol Sci 2021; 22:ijms22115911. [PMID: 34072862 PMCID: PMC8199025 DOI: 10.3390/ijms22115911] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 01/18/2023] Open
Abstract
Alzheimer's disease (AD) is a mostly sporadic brain disorder characterized by cognitive decline resulting from selective neurodegeneration in the hippocampus and cerebral cortex whereas Huntington's disease (HD) is a monogenic inherited disorder characterized by motor abnormalities and psychiatric disturbances resulting from selective neurodegeneration in the striatum. Although there have been numerous clinical trials for these diseases, they have been unsuccessful. Research conducted over the past three decades by a large number of laboratories has demonstrated that abnormal actions of common kinases play a key role in the pathogenesis of both AD and HD as well as several other neurodegenerative diseases. Prominent among these kinases are glycogen synthase kinase (GSK3), p38 mitogen-activated protein kinase (MAPK) and some of the cyclin-dependent kinases (CDKs). After a brief summary of the molecular and cell biology of AD and HD this review covers what is known about the role of these three groups of kinases in the brain and in the pathogenesis of the two neurodegenerative disorders. The potential of targeting GSK3, p38 MAPK and CDKS as effective therapeutics is also discussed as is a brief discussion on the utilization of recently developed drugs that simultaneously target two or all three of these groups of kinases. Multi-kinase inhibitors either by themselves or in combination with strategies currently being used such as immunotherapy or secretase inhibitors for AD and knockdown for HD could represent a more effective therapeutic approach for these fatal neurodegenerative diseases.
Collapse
|
5
|
Mor S, Khatri M, Punia R, Sindhu S. Recent Progress on Anticancer Agents Incorporating Pyrazole Scaffold. Mini Rev Med Chem 2021; 22:115-163. [PMID: 33823764 DOI: 10.2174/1389557521666210325115218] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 11/22/2022]
Abstract
The search of new anticancer agents is considered as a dynamic field of medicinal chemistry. In recent years, the synthesis of compounds with anticancer potential has increased and a large number of structurally varied compounds displaying potent anticancer activities have been published. Pyrazole is an important biologically active scaffold that possessed nearly all types of biological activities. The aim of this review is to collate literature work reported by researchers to provide an overview on in vivo and in vitro anticancer activities of pyrazole based derivatives among the diverse biological activities displayed by them and also presents recent efforts made on this heterocyclic moiety regarding anticancer activities. This review has been driven from the increasing number of publications, on this issue, which have been reported in the literature since the ending of the 20th century (from 1995-to date).
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Ravinder Punia
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| | - Suchita Sindhu
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Hisar-125001, Haryana. India
| |
Collapse
|
6
|
Szlachcic P, Uchacz T, Gryl M, Danel A, Wojtasik K, Kolek P, Jarosz B, Stadnicka KM. Combined XRD and DFT studies towards understanding the impact of intramolecular H-bonding on the reductive cyclization process in pyrazole derivatives. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Kaushal T, Srivastava G, Sharma A, Singh Negi A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg Med Chem 2018; 27:16-35. [PMID: 30502116 DOI: 10.1016/j.bmc.2018.11.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Quinoxalines are benzopyrazines containing benzene and pyrazine rings fused together. In the recent past, quinoxalines have attracted Medicinal Chemists considerably for their syntheses and chemistry due to their distinct pharmacological activities. Diverse synthetic protocols have been developed via multicomponent reactions, single pot synthesis and combinatorial approach using efficient catalysts, reagents, and nano-composites etc. Further, the versatility of the quinoxaline core and its reasonable chemical simplicity devise it extremely promising source of bioactive compounds. Therefore, a wide variety of bioactive quinoxalines has been realised as antitumour, antifungal, anti-inflammatory, antimicrobial, and antiviral agents. Already, a few of them are clinical drugs while many more are under various phases of clinical trials. Present review focuses on chemistry and pharmacology (both efficacy and safety) of quinoxalines and also provides some insight in to their structure-activity relationship.
Collapse
Affiliation(s)
- Tanu Kaushal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Gaurava Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Ashok Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
8
|
Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases? J Med Chem 2018; 61:9105-9120. [PMID: 30234987 DOI: 10.1021/acs.jmedchem.8b00049] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Collapse
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Denisa Hendrychová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Tomáš Gucký
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| |
Collapse
|
9
|
Karroum NB, Patinote C, Deleuze-Masquéfa C, Moarbess G, Diab-Assaf M, Cuq P, Kassab I, Bonnet PA. Methylation of imidazopyrazine, imidazoquinoxaline, and pyrazoloquinoxaline through Suzuki–Miyaura cross coupling. Chem Heterocycl Compd (N Y) 2018. [DOI: 10.1007/s10593-018-2252-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Danel A, Wojtasik K, Szlachcic P, Gryl M, Stadnicka K. A new regiospecific synthesis method of 1 H -pyrazolo[3,4- b ]quinoxalines – Potential materials for organic optoelectronic devices, and a revision of an old scheme. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Chatterjee A, Cutler SJ, Doerksen RJ, Khan IA, Williamson JS. Discovery of thienoquinolone derivatives as selective and ATP non-competitive CDK5/p25 inhibitors by structure-based virtual screening. Bioorg Med Chem 2014; 22:6409-21. [PMID: 25438765 PMCID: PMC4254530 DOI: 10.1016/j.bmc.2014.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/15/2014] [Accepted: 09/20/2014] [Indexed: 01/17/2023]
Abstract
Calpain mediated cleavage of CDK5 natural precursor p35 causes a stable complex formation of CDK5/p25, which leads to hyperphosphorylation of tau. Thus inhibition of this complex is a viable target for numerous acute and chronic neurodegenerative diseases involving tau protein, including Alzheimer's disease. Since CDK5 has the highest sequence homology with its mitotic counterpart CDK2, our primary goal was to design selective CDK5/p25 inhibitors targeting neurodegeneration. A novel structure-based virtual screening protocol comprised of e-pharmacophore models and virtual screening workflow was used to identify nine compounds from a commercial database containing 2.84 million compounds. An ATP non-competitive and selective thieno[3,2-c]quinolin-4(5H)-one inhibitor (10) with ligand efficiency (LE) of 0.3 was identified as the lead molecule. Further SAR optimization led to the discovery of several low micromolar inhibitors with good selectivity. The research represents a new class of potent ATP non-competitive CDK5/p25 inhibitors with good CDK2/E selectivity.
Collapse
Affiliation(s)
- Arindam Chatterjee
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Stephen J Cutler
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States.
| | - Robert J Doerksen
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States
| | - Ikhlas A Khan
- National Center for Natural Products Research, University of Mississippi, MS 38677, United States
| | - John S Williamson
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, MS 38677, United States.
| |
Collapse
|
12
|
Pitchuanchom S, Boonyarat C, Forli S, Olson AJ, Yenjai C. Cyclin-dependent kinases 5 template: useful for virtual screening. Comput Biol Med 2011; 42:106-11. [PMID: 22079569 DOI: 10.1016/j.compbiomed.2011.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 10/09/2011] [Accepted: 10/27/2011] [Indexed: 11/16/2022]
Abstract
The present study reports the development of a template for the active binding site of Cdk5 for structure-based drug design. The developed template of Cdk5 was validated by redocking with ligands I (PBD code 1UNG), II (PBD code 1UNL) and III (PBD code 1UNH). The results demonstrate a good match of the docked and the crystallographic binding orientations with RMSD less than 2.0Å. The validation results show that the constructed Cdk5 template is a good model system for predicting ligand binding orientations and binding affinities. Furthermore, the developed template was applied to predict binding mode and binding affinity of thirty-six known Cdk5 inhibitors. The results showed that the binding energy of almost Cdk5 inhibitors related to their biological evaluation.
Collapse
Affiliation(s)
- Siripit Pitchuanchom
- Natural Products Research Unit, Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | |
Collapse
|
13
|
Eldar-Finkelman H, Martinez A. GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS. Front Mol Neurosci 2011; 4:32. [PMID: 22065134 PMCID: PMC3204427 DOI: 10.3389/fnmol.2011.00032] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/29/2011] [Indexed: 12/24/2022] Open
Abstract
Inhibiting glycogen synthase kinase-3 (GSK-3) activity via pharmacological intervention has become an important strategy for treating neurodegenerative and psychiatric disorders. The known GSK-3 inhibitors are of diverse chemotypes and mechanisms of action and include compounds isolated from natural sources, cations, synthetic small-molecule ATP-competitive inhibitors, non-ATP-competitive inhibitors, and substrate-competitive inhibitors. Here we describe the variety of GSK-3 inhibitors with a specific emphasis on their biological activities in neurons and neurological disorders. We further highlight our current progress in the development of non-ATP-competitive inhibitors of GSK-3. The available data raise the hope that one or more of these drug design approaches will prove successful at stabilizing or even reversing the aberrant neuropathology and cognitive deficits of certain central nervous system disorders.
Collapse
Affiliation(s)
- Hagit Eldar-Finkelman
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University Tel Aviv, Israel
| | | |
Collapse
|
14
|
Guirado A, López Sánchez JI, Bautista D. Reactions of 5,8-dichloro-2,3-dicyanoquinoxaline with amines and hydrazines. A new and efficient synthetic approach to 3-amino-5,8-dichloroflavazoles. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.03.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Laha JK, Zhang X, Qiao L, Liu M, Chatterjee S, Robinson S, Kosik KS, Cuny GD. Structure-activity relationship study of 2,4-diaminothiazoles as Cdk5/p25 kinase inhibitors. Bioorg Med Chem Lett 2011; 21:2098-101. [PMID: 21353545 DOI: 10.1016/j.bmcl.2011.01.140] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 11/30/2022]
Abstract
Cdk5/p25 has emerged as a principle therapeutic target for numerous acute and chronic neurodegenerative diseases, including Alzheimer's disease. A structure-activity relationship study of 2,4-diaminothiazole inhibitors revealed that increased Cdk5/p25 inhibitory activity could be accomplished by incorporating pyridines on the 2-amino group and addition of substituents to the 2- or 3-position of the phenyl ketone moiety. Interpretation of the SAR results for many of the analogs was aided through in silico docking with Cdk5/p25 and calculating protein hydrations sites using WaterMap. Finally, improved in vitro mouse microsomal stability was also achieved.
Collapse
Affiliation(s)
- Joydev K Laha
- Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Brigham & Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Chioua M, Soriano E, Samadi A, Marco-Contelles J. Studies on the acetylation of 3,6-diamino-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile derivatives. J Heterocycl Chem 2010. [DOI: 10.1002/jhet.403] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
El-Sabbagh OI, El-Sadek ME, Lashine SM, Yassin SH, El-Nabtity SM. Synthesis of new 2(1H)-quinoxalinone derivatives for antimicrobial and antiinflammatory evaluation. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9203-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A. Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol 2009; 156:885-98. [PMID: 19366350 DOI: 10.1111/j.1476-5381.2008.00085.x] [Citation(s) in RCA: 364] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3), a constitutively acting multi-functional serine threonine kinase is involved in diverse physiological pathways ranging from metabolism, cell cycle, gene expression, development and oncogenesis to neuroprotection. These diverse multiple functions attributed to GSK3 can be explained by variety of substrates like glycogen synthase, tau protein and beta catenin that are phosphorylated leading to their inactivation. GSK3 has been implicated in various diseases such as diabetes, inflammation, cancer, Alzheimer's and bipolar disorder. GSK3 negatively regulates insulin-mediated glycogen synthesis and glucose homeostasis, and increased expression and activity of GSK3 has been reported in type II diabetics and obese animal models. Consequently, inhibitors of GSK3 have been demonstrated to have anti-diabetic effects in vitro and in animal models. However, inhibition of GSK3 poses a challenge as achieving selectivity of an over achieving kinase involved in various pathways with multiple substrates may lead to side effects and toxicity. The primary concern is developing inhibitors of GSK3 that are anti-diabetic but do not lead to up-regulation of oncogenes. The focus of this review is the recent advances and the challenges surrounding GSK3 as an anti-diabetic therapeutic target.
Collapse
Affiliation(s)
- Geetha Vani Rayasam
- Department of Pharmacology, Research & Development (R&D III), Ranbaxy Research Labs, Gurgaon, Haryana, India.
| | | | | | | | | |
Collapse
|
19
|
Zhong W, Liu H, Kaller MR, Henley C, Magal E, Nguyen T, Osslund TD, Powers D, Rzasa RM, Wang HL, Wang W, Xiong X, Zhang J, Norman MH. Design and synthesis of quinolin-2(1H)-one derivatives as potent CDK5 inhibitors. Bioorg Med Chem Lett 2007; 17:5384-9. [PMID: 17709247 DOI: 10.1016/j.bmcl.2007.07.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/25/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine protein kinase and its deregulation is implicated in a number of neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Using active site homology modeling between CDK5 and CDK2, we explored several different chemical series of potent CDK5 inhibitors. In this report, we describe the design, synthesis, and CDK5 inhibitory activities of quinolin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Wenge Zhong
- Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rzasa RM, Kaller MR, Liu G, Magal E, Nguyen TT, Osslund TD, Powers D, Santora VJ, Viswanadhan VN, Wang HL, Xiong X, Zhong W, Norman MH. Structure-activity relationships of 3,4-dihydro-1H-quinazolin-2-one derivatives as potential CDK5 inhibitors. Bioorg Med Chem 2007; 15:6574-95. [PMID: 17697781 DOI: 10.1016/j.bmc.2007.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/30/2007] [Accepted: 07/09/2007] [Indexed: 11/17/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a serine/threonine kinase that plays a critical role in the early development of the nervous system. Deregulation of CDK5 is believed to contribute to the abnormal phosphorylation of various cellular substrates associated with neurodegenerative disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, and ischemic stroke. Acyclic urea 3 was identified as a potent CDK5 inhibitor and co-crystallographic data of urea 3/CDK2 enzyme were used to design a novel series of 3,4-dihydroquinazolin-2(1H)-ones as CDK5 inhibitors. In this investigation we present our synthetic studies toward this series of compounds and discuss their biological relevance as CDK5 inhibitors.
Collapse
Affiliation(s)
- Robert M Rzasa
- Department of Chemistry Research and Discovery, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320-1789, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen S, Xu Y, Yuan X, Bubley GJ, Balk SP. Androgen receptor phosphorylation and stabilization in prostate cancer by cyclin-dependent kinase 1. Proc Natl Acad Sci U S A 2006; 103:15969-74. [PMID: 17043241 PMCID: PMC1635111 DOI: 10.1073/pnas.0604193103] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Androgen receptors (ARs) are phosphorylated at multiple sites in response to ligand binding, but the kinases mediating AR phosphorylation and the importance of these kinases in AR function have not been established. Here we show that cyclin-dependent kinase 1 (Cdk1) mediates AR phosphorylation at Ser-81 and increases AR protein expression, and that Cdk1 inhibitors decrease AR Ser-81 phosphorylation, protein expression, and transcriptional activity in prostate cancer (PCa) cells. The decline in AR protein expression mediated by the Cdk inhibitor roscovitine was prevented by proteosome inhibitors, indicating that Cdk1 stabilizes AR protein, although roscovitine also decreased AR message levels. Analysis of an S81A AR mutant demonstrated that this site is not required for transcriptional activity or Cdk1-mediated AR stabilization in transfected cells. The AR is active and seems to be stabilized by low levels of androgen in "androgen-independent" PCas that relapse subsequent to androgen-deprivation therapy. Significantly, the expression of cyclin B and Cdk1 was increased in these tumors, and treatment with roscovitine abrogated responses to low levels of androgen in the androgen-independent C4-2 PCa cell line. Taken together, these findings identify Cdk1 as a Ser-81 kinase and indicate that Cdk1 stabilizes AR protein by phosphorylation at a site(s) distinct from Ser-81. Moreover, these results indicate that increased Cdk1 activity is a mechanism for increasing AR expression and stability in response to low androgen levels in androgen-independent PCas, and that Cdk1 antagonists may enhance responses to androgen-deprivation therapy.
Collapse
Affiliation(s)
- Shaoyong Chen
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Youyuan Xu
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Xin Yuan
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Glenn J. Bubley
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Steven P. Balk
- Hematology–Oncology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Rostom SAF. Synthesis and in vitro antitumor evaluation of some indeno[1,2-c]pyrazol(in)es substituted with sulfonamide, sulfonylurea(-thiourea) pharmacophores, and some derived thiazole ring systems. Bioorg Med Chem 2006; 14:6475-85. [PMID: 16806944 DOI: 10.1016/j.bmc.2006.06.020] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Revised: 06/01/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
The synthesis of a series of 3-(4-chlorophenyl)-[1,2-c]pyrazol(in)es substituted with benzenesulfonamide, N1,N3-disubstituted sulfonylurea, sulfonylthiourea pharmacophores, and some derived thiazolidinone and thiazoline ring systems is described. All the newly synthesized target compounds were subjected to the NCI-in vitro disease-oriented antitumor screening to be evaluated for their antitumor activity. Eight compounds namely; 2-4, 7, 8, 10, 13, and 16; showed promising broad spectrum antitumor activity against most of the tested subpanel tumor cell lines (GI50 < 100 microM). Compound 3, 4-(3-(4-chlorophenyl)-4H-indeno[1,2-c]pyrazol- 2-yl)-benzenesulfonamide; although it did not show the highest growth inhibitory value (GI50 (MG-MID) 13.2 microM), it proved to be the most active analog in this study with the highest cytostatic and cytotoxic potentials (TGI and LC50 (MG-MID) concentrations of 33.1 and 66.1 microM, respectively). In general, the oxidized pyrazoles displayed better antitumor activity than their parent pyrazoline analogs, whereas the benzenesulfonamides and the N1, N3-disubstituted sulfonylureas showed significant better antitumor spectrum than the sulfonylthioureido and the derived thiazole analogs.
Collapse
Affiliation(s)
- Sherif A F Rostom
- Department of Medicinal Chemistry, Faculty of Medicine, King Abdulaziz University, PO Box 80205, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
23
|
Senderowicz AM. Inhibitors of cyclin-dependent kinase modulators for cancer therapy. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2005; 63:183-206. [PMID: 16265881 DOI: 10.1007/3-7643-7414-4_8] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most human malignancies have an aberration in the Rb pathway due to 'cdk hyperactivation'. Several small-molecule cdk modulators are being discovered and tested in the clinic. The first ATP-competitive cdk inhibitors tested in clinical trials, flavopiridol and UCN-01, have shown promising results with evidence of antitumor activity and plasma concentrations sufficient to inhibit cdk-related functions. The best schedule to be administered, combination with standard chemotherapeutic agents, best tumor types to be targeted, and demonstration of cdk modulation from tumor samples from patients in these trials are important issues that need to be answered to advance these agents to the clinical arena.
Collapse
Affiliation(s)
- Adrian M Senderowicz
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, Room B3-B6, Bethesda, MD 20892, USA.
| |
Collapse
|
24
|
Ring-Chain Transformations of Dihydroisoxazolo[4,5-b]quinoxaline. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2005. [DOI: 10.1007/s11178-005-0350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H, Keller PR, McNamara DJ, Sherry D, Zhu T, Brodfuehrer J, Choi C, Barvian MR, Fry DW. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 2005; 48:2388-406. [PMID: 15801831 DOI: 10.1021/jm049354h] [Citation(s) in RCA: 377] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A pharmacological approach to inhibition of cyclin-dependent kinases 4 and 6 (Cdk4/6) using highly selective small molecule inhibitors has the potential to provide novel cancer therapies for clinical use. Achieving high levels of selectivity for Cdk4/6, versus other ATP-dependent kinases, presents a significant challenge. The pyrido[2,3-d]pyrimidin-7-one template provides an effective platform for the inhibition of a broad cross-section of kinases, including Cdks. It is now demonstrated that the modification of pyrido[2,3-d]pyrimidin-7-ones to include a 2-aminopyridine side chain at the C2-position provides inhibitors with exquisite selectivity for Cdk4/6 in vitro. This selectivity profile is recapitulated in cells where the most selective inhibitors create a G(1) block at concentrations up to 100-fold the IC(50) for cell proliferation. On the basis of its selectivity profile and pharmacokinetic profile, compound 43 (PD 0332991) was identified as a drug candidate for the treatment of cancer.
Collapse
Affiliation(s)
- Peter L Toogood
- Medicinal Chemistry, Cancer Pharmacology, and Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Michigan Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
VanderWel SN, Harvey PJ, McNamara DJ, Repine JT, Keller PR, Quin J, Booth RJ, Elliott WL, Dobrusin EM, Fry DW, Toogood PL. Pyrido[2,3-d]pyrimidin-7-ones as Specific Inhibitors of Cyclin-Dependent Kinase 4. J Med Chem 2005; 48:2371-87. [PMID: 15801830 DOI: 10.1021/jm049355+] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibition of the cell cycle kinase, cyclin-dependent kinase-4 (Cdk4), is expected to provide an effective method for the treatment of proliferative diseases such as cancer. The pyrido[2,3-d]pyrimidin-7-one template has been identified previously as a privileged structure for the inhibition of ATP-dependent kinases, and good potency against Cdks has been reported for representative examples. Obtaining selectivity for individual Cdk enzymes, particularly Cdk4, has been challenging. Here, we report that the introduction of a methyl substituent at the C-5 position of the pyrido[2,3-d]pyrimidin-7-one template is sufficient to confer excellent selectivity for Cdk4 vs other Cdks and representative tyrosine kinases. Further optimization led to the identification of highly potent and selective inhibitors of Cdk4 that exhibit potent antiproliferative activity against human tumor cells in vitro. The most selective Cdk4 inhibitors were evaluated for antitumor activity against MDA-MB-435 human breast carcinoma xenografts in mice.
Collapse
Affiliation(s)
- Scott N VanderWel
- Department of Medicinal Chemistry, and Cancer Pharmacology, Pfizer Global Research and Development, Michigan Laboratories, 2800 Plymouth Road, Ann Arbor, Michigan 48105, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Applied Suzuki cross-coupling reaction for syntheses of biologically active compounds. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0169-3158(06)80004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
28
|
Hardcastle IR, Arris CE, Bentley J, Boyle FT, Chen Y, Curtin NJ, Endicott JA, Gibson AE, Golding BT, Griffin RJ, Jewsbury P, Menyerol J, Mesguiche V, Newell DR, Noble MEM, Pratt DJ, Wang LZ, Whitfield HJ. N2-substituted O6-cyclohexylmethylguanine derivatives: potent inhibitors of cyclin-dependent kinases 1 and 2. J Med Chem 2004; 47:3710-22. [PMID: 15239650 DOI: 10.1021/jm0311442] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adenosine 5'-triphosphate (ATP) competitive cyclin-dependent kinase inhibitor O(6)-cyclohexylmethylguanine (NU2058, 1) has been employed as the lead in a structure-based drug discovery program resulting in the discovery of the potent CDK1 and -2 inhibitor NU6102 (3, IC(50) = 9.5 nM and 5.4 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively). The SAR for this series have been explored further by the synthesis and evaluation of 45 N(2)-substituted analogues of NU2058. These studies have confirmed the requirement for the hydrogen bonding N(2)-NH group and the requirement for an aromatic N(2)-substituent to confer potency in the series. Additional potency is conferred by the presence of a group capable of donating a hydrogen bond at the 4'-position, for example, the 4'-hydroxy derivative (25, IC(50) = 94 nM and 69 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively), 4'-monomethylsulfonamide derivative (28, IC(50) = 9 nM and 7.0 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively), and 4'-carboxamide derivative (34, IC(50) = 67 nM and 64 nM vs CDK1/cyclinB and CDK2/cyclinA3, respectively). X-ray crystal structures have been obtained for key compounds and have been used to explain the observed trends in activity.
Collapse
Affiliation(s)
- Ian R Hardcastle
- Northern Institute for Cancer Research, Bedson Building, School of Natural Sciences, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
It has become clear in the past decade that most human malignancies, including lung neoplasms, have aberrations in cell cycle control. The tumor suppressor gene retinoblastoma is an important player in the G1/S transition and its function is abnormal in most human neoplasms. Retinoblastoma function is lost as a result of phosphorylation by the cyclin-dependent kinases (CDKs). Thus, modulation of CDKs may have an important use for the therapy and prevention of human neoplasms. Direct CDK modulators are small molecules that target specifically the adenosine triphosphate binding site of CDKs. In contrast, indirect CDK modulators affect CDK function by modulation of upstream pathways required for CDK activation. The first example of a direct small-molecule CDK modulator tested in the clinic, flavopiridol, is a pan-CDK inhibitor that not only promotes cell cycle arrest but also halts transcriptional elongation, promotes apoptosis, induces differentiation, and has antiangiogenic properties. The second example of direct small-molecule CDK modulators tested in clinical trials is UCN-01 (7-hydroxystaurosporine). UCN-01 has interesting preclinical features: it inhibits Ca2+-dependent protein kinase C, promotes apoptosis, arrests cell cycle progression at G1/S, and abrogates checkpoints upon DNA damage. In summary, novel small-molecule CDK modulators are being tested in the clinic with interesting results. Although these small molecules are directed toward a very prevalent cause of carcinogenesis, their role in the clinical armamentarium is still uncertain.
Collapse
Affiliation(s)
- Adrian M Senderowicz
- Molecular Therapeutics Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4330, USA.
| |
Collapse
|
30
|
Moshinsky DJ, Bellamacina CR, Boisvert DC, Huang P, Hui T, Jancarik J, Kim SH, Rice AG. SU9516: biochemical analysis of cdk inhibition and crystal structure in complex with cdk2. Biochem Biophys Res Commun 2003; 310:1026-31. [PMID: 14550307 DOI: 10.1016/j.bbrc.2003.09.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SU9516 is a 3-substituted indolinone compound with demonstrated potent and selective inhibition toward cyclin dependent kinases (cdks). Here, we describe the kinetic characterization of this inhibition with respect to cdk2, 1, and 4, along with the crystal structure in complex with cdk2. The molecule is competitive with respect to ATP for cdk2/cyclin A, with a K(i) value of 0.031 microM. Similarly, SU9516 inhibits cdk2/cyclin E and cdk1/cyclin B1 in an ATP-competitive manner, although at a 2- to 8-fold reduced potency. In contrast, the compound exhibited non-competitive inhibition with respect to ATP toward cdk4/cyclin D1, with a 45-fold reduced potency. The X-ray crystal structure of SU9516 bound to cdk2 revealed interactions between the molecule and Leu83 and Glu81 of the kinase. This study should aid in the development of more potent and selective cdk inhibitors for potential therapeutic agents.
Collapse
|
31
|
Moreau P, Gaillard N, Marminon C, Anizon F, Dias N, Baldeyrou B, Bailly C, Pierré A, Hickman J, Pfeiffer B, Renard P, Prudhomme M. Semi-synthesis, topoisomerase I and kinases inhibitory properties, and antiproliferative activities of new rebeccamycin derivatives. Bioorg Med Chem 2003; 11:4871-9. [PMID: 14604648 DOI: 10.1016/j.bmc.2003.09.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the course of structure-activity relationship studies, new rebeccamycin derivatives substituted in 3,9-positions on the indolocarbazole framework, and a 2',3'-anhydro derivative were prepared by semi-synthesis from rebeccamycin. The antiproliferative activities against nine tumor cell lines were determined and the effect on the cell cycle of murine leukemia L1210 cells was examined. Their DNA binding properties and inhibitory properties toward topoisomerase I and three kinases PKCzeta, CDK1/cyclin B, CDK5/p25 and a phosphatase cdc25A were evaluated. The 3,9-dihydroxy derivative is the most efficient compound of this series toward CDK1/cyclin B and CDK5/p25. It is also characterized as a DNA binding topoisomerase I poison. Its broad spectrum of molecular activities likely accounts for its cytotoxic potential. This compound which displays a tumor cell line-selectivity may represent a new lead for subsequent drug design in this series of glycosylated indolocarbazoles.
Collapse
Affiliation(s)
- Pascale Moreau
- Université Blaise Pascal, Synthèse et Etude de Systèmes à Intérêt Biologique, UMR 6504, 63177, Aubière, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Aberrations in cell cycle progression occur in the majority of human malignancies. The main pathway affected is the retinoblastoma (Rb) pathway. The tumor suppressor gene Rb is an important component in the G(1)/S transition and its function is abnormal in most human neoplasms. Loss in Rb function occurs by the hyperactivation of the cyclin-dependent kinases (cdk's). Therefore, modulation of cdk's may have an important use for the therapy and prevention of human neoplasms. Efforts to obtain small-molecule cdk modulators yielded two classes of modulators: direct and indirect modulators. Direct cdk modulators are small molecules that specifically target the ATP binding site of cdk's. Examples for this group include flavopiridol, roscovitine and BMS-387032. In contrast, indirect cdk modulators affect cdk function due to modulation of upstream pathways required for cdk activation. Some examples include perifosine, lovastatin, and UCN-01. The first example of a direct small-molecule cdk modulator tested in the clinic, flavopiridol, is a pan-cdk inhibitor that not only promotes cell cycle arrest but also halts transcriptional elongation, promotes apoptosis, induces differentiation, and has antiangiogenic properties. Clinical trials with this agent were performed with at least three different schedules of administration: 1-, 24- and 72-h infusions. The main toxicities for infusions >/=24-h are secretory diarrhea and proinflammatory syndrome. In addition, patients receiving shorter infusions have nausea/vomiting and neutropenia. A phase II trial of patients with advanced non-small-cell lung carcinoma using the 72-h infusion every 2 weeks was recently completed. The median overall survival for the 20 patients who received treatment was 7.5 months, a survival similar to that obtained in a randomized trial of four chemotherapy regimens containing platinum analogues in combination with taxanes or gemcitabine, or with gefitinib, a recently approved EGFR inhibitor for the treatment of advanced lung cancer. Based on these encouraging results, a phase III trial comparing standard combination chemotherapy versus combination chemotherapy plus flavopiridol is currently under investigation. The second example of direct small-molecule cdk modulator tested in clinical trials is UCN-01 (7-hydroxystaurosporine). UCN-01 has interesting preclinical features: it inhibits Ca(2+)-dependent PKCs, promotes apoptosis, arrests cell cycle progression at G(1)/S, and abrogates checkpoints upon DNA damage. The first phase I trial of UCN-01 demonstrated a very prolonged half-life. Based on this novel feature, UCN-01 is administered as a 72-h continuous infusion every 4 weeks (in second and subsequent cycles UCN-01 is administered as a 36-h infusion). Other shorter schedules (i.e. 3 h) are being tested. Dose-limiting toxicities include nausea/vomiting, hypoxemia, and insulin-resistant hyperglycemia. Combination trials with cisplatin and other DNA-damaging agents are being tested. Recently, phase I trials with two novel small-molecule cdk modulators, BMS 387032 and R-Roscovitine (CYC202), have commenced with good tolerability. In summary, novel small-molecule cdk modulators are being tested in the clinic with interesting results. Although these small molecules are directed towards a very prevalent cause of carcinogenesis, we need to test them in advanced clinical trials to determine the future of this class of agents for the prevention and therapy of human malignancies.
Collapse
Affiliation(s)
- Adrian M Senderowicz
- Molecular Therapeutics Unit, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4330, USA.
| |
Collapse
|
33
|
Chapter 6.3 Triazines, tetrazines and fused ring polyaza systems. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0959-6380(03)80017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|