1
|
Bhattacharya A, Tanwar L, Fracassi A, Brea RJ, Salvador-Castell M, Khanal S, Sinha SK, Devaraj NK. Chemoselective Esterification of Natural and Prebiotic 1,2-Amino Alcohol Amphiphiles in Water. J Am Chem Soc 2023; 145:27149-27159. [PMID: 38039527 PMCID: PMC10722506 DOI: 10.1021/jacs.3c12038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023]
Abstract
In cells, a vast number of membrane lipids are formed by the enzymatic O-acylation of polar head groups with acylating agents such as fatty acyl-CoAs. Although such ester-containing lipids appear to be a requirement for life on earth, it is unclear if similar types of lipids could have spontaneously formed in the absence of enzymatic machinery at the origin of life. There are few examples of enzyme-free esterification of amphiphiles in water and none that can occur in water at physiological pH using biochemically relevant acylating agents. Here we report the unexpected chemoselective O-acylation of 1,2-amino alcohol amphiphiles in water directed by Cu(II) and several other transition metal ions. In buffers containing Cu(II) ions, mixing biological 1,2-amino alcohol amphiphiles such as sphingosylphosphorylcholine with biochemically relevant acylating agents, namely, acyl adenylates and acyl-CoAs, leads to the formation of the O-acylation product with high selectivity. The resulting O-acylated sphingolipids self-assemble into vesicles with markedly different biophysical properties than those formed from their N-acyl counterparts. We also demonstrate that Cu(II) can direct the O-acylation of alternative 1,2-amino alcohols, including prebiotically relevant 1,2-amino alcohol amphiphiles, suggesting that simple mechanisms for aqueous esterification may have been prevalent on earth before the evolution of enzymes.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Lalita Tanwar
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Alessandro Fracassi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Roberto J. Brea
- Biomimetic
Membrane Chemistry (BioMemChem) Group, Centro de Investigacións
Científicas Avanzadas (CICA), Universidade
da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Marta Salvador-Castell
- Department
of Physics, University of California, San
Diego, La Jolla, California 92093, United States
| | - Satyam Khanal
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Sunil K. Sinha
- Department
of Physics, University of California, San
Diego, La Jolla, California 92093, United States
| | - Neal K. Devaraj
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
2
|
Ferrer-Gago FJ, Koh LQ. Methods and Approaches for the Solid-Phase Synthesis of Peptide Alcohols. Chempluschem 2020; 85:641-652. [PMID: 32237227 DOI: 10.1002/cplu.201900749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/10/2020] [Indexed: 11/08/2022]
Abstract
Many methods have been developed for attaching an alcohol functionality to a solid support. However, not all of these methods are used to obtain peptide alcohols. In this Minireview, we will discuss several of the most important methods and approaches for the synthesis of peptide alcohols and the attachment of hydroxy groups to a solid support for the synthesis of cyclic peptides. Some of the methods include the use of functionalized Wang resin and the attachment of an alcohol to an enol ether resin. We also discuss the use of the chlorotrityl resin, one of the most common linkers used to obtain peptide alcohols. In addition, we outline the recently developed resins with the Rink, Ramage and Sieber handles. The majority of these methods have been used to synthesize many important drugs, such as octreotide and the antibiotic peptaibols.
Collapse
Affiliation(s)
- Fernando J Ferrer-Gago
- p53 Laboratory, Agency for Science Technology and Research (A*STAR) 8A Biomedical Grove, #06-04/05 Neuros/Immunos., Singapore, 138648, Singapore
| | - Li Quan Koh
- p53 Laboratory, Agency for Science Technology and Research (A*STAR) 8A Biomedical Grove, #06-04/05 Neuros/Immunos., Singapore, 138648, Singapore
| |
Collapse
|
3
|
Mailig M, Liu F. The Application of Isoacyl Structural Motifs in Prodrug Design and Peptide Chemistry. Chembiochem 2019; 20:2017-2031. [DOI: 10.1002/cbic.201900260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Melrose Mailig
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| | - Fa Liu
- Discovery ChemistryNovo Nordisk Research Center Seattle 530 Fairview Ave N Seattle WA 98109 USA
| |
Collapse
|
4
|
Cheng AV, Wuest WM. Signed, Sealed, Delivered: Conjugate and Prodrug Strategies as Targeted Delivery Vectors for Antibiotics. ACS Infect Dis 2019; 5:816-828. [PMID: 30969100 PMCID: PMC6570538 DOI: 10.1021/acsinfecdis.9b00019] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Innate and developed resistance mechanisms of bacteria to antibiotics are obstacles in the design of novel drugs. However, antibacterial prodrugs and conjugates have shown promise in circumventing resistance and tolerance mechanisms via directed delivery of antibiotics to the site of infection or to specific species or strains of bacteria. The selective targeting and increased permeability and accumulation of these prodrugs not only improves efficacy over unmodified drugs but also reduces off-target effects, toxicity, and development of resistance. Herein, we discuss some of these methods, including sideromycins, antibody-directed prodrugs, cell penetrating peptide conjugates, and codrugs.
Collapse
Affiliation(s)
- Ana V. Cheng
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
- Emory Antibiotic Resistance Center, Emory School of Medicine, 201 Dowman Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
5
|
Hamada Y. Recent progress in prodrug design strategies based on generally applicable modifications. Bioorg Med Chem Lett 2017; 27:1627-1632. [PMID: 28285913 DOI: 10.1016/j.bmcl.2017.02.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 11/15/2022]
Abstract
The development of prodrugs has progressed with the aim of improving drug bioavailability by overcoming various barriers that reduce drug benefits in clinical use, such as stability, duration, water solubility, side effect profile, and taste. Many conventional drugs act as the precursors of an active agent in vivo; for example, the anti-HIV agent azidothymidine (AZT) is converted into its corresponding active triphosphate ester in the body, meaning that AZT is a prodrug in the broadest sense. However prodrug design is generally difficult owing to the lack of general versatility. Thus, these prodrugs, broadly defined, are often discovered by chance or trial-and-error. Recently, many prodrugs that could release the corresponding parent drugs with or without enzymatic action under physiological conditions have been reported. These prodrugs can be easily designed and synthesized because of their generally applicable modifications. This digest paper provides an overview of recent development in prodrug strategies for drugs with a carboxylic acid or hydroxyl/amino group on the basis of a generally applicable modification strategy, such as esterification, amidation, or benzylation.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Frontiers of Innovative Research in Science and Technology, Konan University, Minatojima-minamimachi, Chuo, Kobe 650-0043, Japan; Faculty of Pharmaceutical Sciences, Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| |
Collapse
|
6
|
Petrov AA, Pakal’nis VV, Zerov AV, Yakimovich SI. N → N acyl group migration in N-acylpyrazoles: Isomerization of 1,4-diacyl-5-methyl-1H-pyrazoles to 1,4-diacyl-3-methyl-1H-pyrazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428017030125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Novel prodrugs with a spontaneous cleavable guanidine moiety. Bioorg Med Chem Lett 2016; 26:1685-9. [DOI: 10.1016/j.bmcl.2016.02.060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 11/22/2022]
|
8
|
Hamada Y. A novel N-terminal degradation reaction of peptides via N-amidination. Bioorg Med Chem Lett 2016; 26:1690-5. [PMID: 26916439 DOI: 10.1016/j.bmcl.2016.02.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/05/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
The cleavage of amide bonds requires considerable energy. It is difficult to cleave the amide bonds in peptides at room temperature, whereas ester bonds are cleaved easily. If peptide bonds can be selectively cleaved at room temperature, it will become a powerful tool for life science research, peptide prodrug, and tissue-targeting drug delivery systems. To cleave a specific amide bond at room temperature, the decomposition reaction of arginine methyl ester was investigated. Arginine methyl ester forms a dimer; the dimer releases a heterocyclic compound and ornithine methyl ester at room temperature. We designed and synthesized N-amidinopeptides based on the decomposition reaction of arginine methyl ester. Alanyl-alanine anilide was used as the model peptide and could be converted into N-degraded peptide, alanine anilide, via an N-amidination reaction at close to room temperature. Although the cleavage rate in pH 7.4 phosphate buffered saline (PBS) at 37°C was slow (t1/2=35.7h), a rapid cleavage rate was observed in 2% NaOH aq (t1/2=1.5min). To evaluate the versatility of this reaction, a series of peptides with Lys, Glu, Ser, Cys, Tyr, Val, and Pro residue at the N-terminal were synthesized; they showed rapid cleavage rates of t1/2 values from 1min to 10min.
Collapse
Affiliation(s)
- Yoshio Hamada
- Medicinal Chemistry Laboratory, Kobe Pharmaceutical University, Motoyamakita, Higashinada, Kobe 658-8558, Japan.
| |
Collapse
|
9
|
Reddy TL, Krishnarao PS, Rao GK, Bhimireddy E, Venkateswarlu P, Mohapatra DK, Yadav JS, Bhadra U, Bhadra MP. Para amino benzoic acid-derived self-assembled biocompatible nanoparticles for efficient delivery of siRNA. Int J Nanomedicine 2015; 10:6411-23. [PMID: 26491299 PMCID: PMC4608593 DOI: 10.2147/ijn.s86238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
A number of diseases can result from abnormal gene expression. One of the approaches for treating such diseases is gene therapy to inhibit expression of a particular gene in a specific cell population by RNA interference. Use of efficient delivery vehicles increases the safety and success of gene therapy. Here we report the development of functionalized biocompatible fluorescent nanoparticles from para amino benzoic acid nanoparticles for efficient delivery of short interfering RNA (siRNA). These nanoparticles were non-toxic and did not interfere with progression of the cell cycle. The intrinsic fluorescent nature of these nanoparticles allows easy tracking and an opportunity for diagnostic applications. Human Bcl-2 siRNA was complexed with these nanoparticles to inhibit expression in cells at both the transcriptional and translational levels. Our findings indicated high gene transfection efficiency. These biocompatible nanoparticles allow targeted delivery of siRNA, providing an efficient vehicle for gene delivery.
Collapse
Affiliation(s)
- Teegala Lakshminarayan Reddy
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - P Sivarama Krishnarao
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Garikapati Koteswara Rao
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - Eswar Bhimireddy
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - P Venkateswarlu
- Department of Chemistry, Sri Venkateswara University, Tirpupati, India
| | - Debendra K Mohapatra
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| | - J S Yadav
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Utpal Bhadra
- Functional Genomics and Gene Silencing Group, CSIR-Indian Institute of Chemical Technology, CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Manika Pal Bhadra
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India ; Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
10
|
Stach M, Weidkamp AJ, Yang SH, Hung KY, Furkert DP, Harris PWR, Smaill JB, Patterson AV, Brimble MA. Improved Strategy for the Synthesis of the Anticancer Agent Culicinin D. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Stereo-selective synthesis, structural and antibacterial studies of novel glycosylated β2,3-amino acid analogues. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1370-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Hamada Y, Miyamoto N, Kiso Y. Novel β-amyloid aggregation inhibitors possessing a turn mimic. Bioorg Med Chem Lett 2015; 25:1572-6. [DOI: 10.1016/j.bmcl.2015.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/16/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
|
13
|
El-Gendy BEDM, Ghazvini Zadeh EH, Sotuyo AC, Pillai GG, Katritzky AR. α-Substitution Effects on the Ease ofS→N-Acyl Transfer in Aminothioesters. Chem Biol Drug Des 2013. [DOI: 10.1111/cbdd.12092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
14
|
Hamada Y, Kiso Y. The application of bioisosteres in drug design for novel drug discovery: focusing on acid protease inhibitors. Expert Opin Drug Discov 2012; 7:903-22. [PMID: 22873630 DOI: 10.1517/17460441.2012.712513] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION A bioisostere is a powerful concept for medicinal chemistry. It allows the improvement of the stability; oral absorption; membrane permeability; and absorption, distribution, metabolism and excretion (ADME) of drug candidate, while retaining their biological properties. The term 'bioisostere' is derived from 'isostere', whose physical and chemical properties, such as steric size, hydrophobicity, and electronegativity, are similar to those of a functional or atomic group, and is considered to possess biological properties. Here, the authors highlight the recent applications of bioisosteres in drug design, mainly based on our drug discovery studies. AREAS COVERED This review discusses the application of bioisosteres for novel drug discovery with focus on the authors' drug discovery studies such as renin, HIV-protease, and β-secretase inhibitors. The authors highlight that some bioisosteres can form the scaffolding for drug candidates, namely substrate transition state, amide/ester, and carboxylic acid bioisosteres. Moreover, the authors propose the new terms 'electron-donor bioisostere' and 'conformational bioisostere' for drug discovery. EXPERT OPINION The authors discuss the importance of bioisostere's design concept based on specific interaction with the corresponding biomolecule. In addition, some strategies for drug discovery based on the bioisostere concept are introduced. Many bioisosteres, which are recognized by corresponding target biomolecules as exhibiting similar biological properties, have been reported to date; most of the recently developed bioisosteres were designed by cheminformatics approaches. Some molecular design softwares and databases are introduced.
Collapse
Affiliation(s)
- Yoshio Hamada
- Faculty of Pharmaceutical Sciences , Kobe Gakuin University, Minatojima, Chuo-ku, Kobe, Japan
| | | |
Collapse
|
15
|
Monbaliu JCM, Katritzky AR. Recent trends in Cys- and Ser/Thr-based synthetic strategies for the elaboration of peptide constructs. Chem Commun (Camb) 2012; 48:11601-22. [DOI: 10.1039/c2cc34434c] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Koszytkowska-Stawińska M. Studies on the synthesis of N'-acetyl aza-analogues of ganciclovir-unexpected liability of N'-(2-hydroxyethyl)-azanucleosides under basic conditions. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2011; 29:768-85. [PMID: 20924958 DOI: 10.1080/15257770.2010.519367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The O'-pivaloyl diesters of N'-acetyl-azanucleosides were obtained from N-[1,3-di(pivaloyloxy)prop-2-yl]-N-(pivaloyloxymethyl)acetamide and a silylated nucleobase under Vorbruggen's conditions. Unexpectedly, de-pivaloylation of the diesters under basic conditions afforded the corresponding nucleobase and N-acetylserinol. Mechanistic investigations showed that these products result from the following cascade of spontaneous transformations initiated by the mono de-pivaloylation of the starting diesters. N'-Deacetylation of the resultant mono-esters via the intramolecular N-O acetyl migration is the key step of the cascade; the corresponding NH-azanucleosides in the form of O-acetyl-O'-pivaloyl diesters are formed. Fragmentation of these diester intermediates gives the nucleobase and O-acetyl-O'-pivaloylserinol. Conversion of the latter to N-acetylserinol involves the selective O-N acetyl migration followed by de-pivaloylation of the resulting N-acetyl-O-pivaloylserinol.
Collapse
|
17
|
Eng H, Niosi M, McDonald TS, Wolford A, Chen Y, Simila STM, Bauman JN, Warmus J, Kalgutkar AS. Utility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptor. Xenobiotica 2010; 40:369-80. [PMID: 20297923 DOI: 10.3109/00498251003706598] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The potent, functional agonist of the bile acid Takeda G-protein-coupled receptor 5 (TGR5), (S)-1-(6-fluoro-2-methyl-3,4-dihydroquinolin-1(2H)-yl)-2-(isoquinolin-5-yloxy)ethanone (3), represents a useful tool to probe in vivo TGR5 pharmacology. Rapid degradation of 3 in both rat and mouse plasma, however, hindered the conduct of in vivo pharmacokinetic/pharmacodynamic investigations (including plasma-free fraction (f(u plasma)) determination) in rodent models of pharmacology. Studies were therefore initiated to understand the biochemical basis for plasma instability so that appropriate methodology could be implemented in in vivo pharmacology studies to prevent the breakdown of 3. Compound 3 underwent amide bond cleavage in both rat and mouse plasma with half-lives (T(1/2)) of 39 + or - 7 and 9.9 + or - 0.1 min. bis(p-nitrophenyl) phosphate (BNPP), a specific inhibitor of carboxylesterases, was found to inhibit hydrolytic cleavage in a time- and concentration-dependent manner, which suggested the involvement of carboxylesterases in the metabolism of 3. In contrast with the findings in rodents, 3 was resistant to hydrolytic cleavage in both dog and human plasma. The instability of 3 was also observed in rat and mouse liver microsomes. beta-Nicotinamide adenine dinucleotide phosphate, reduced form (NADPH)-dependent metabolism of 3 occurred more rapidly (T(1/2) approximately 2.22-6.4 min) compared with the metabolic component observed in the absence of the co-factor (T(1/2) approximately 89-130 min). Oxidative metabolism dominated the NADPH-dependent decline of 3, whereas NADPH-independent metabolism of 3 proceeded via simple amide bond hydrolysis. Compound 3 was highly bound (approximately 95%) to both dog and human plasmas. Rat and mouse plasma, pre-treated with BNPP to inhibit carboxylesterases activity, were used to determine the f(u plasma) of 3. A BNPP concentration of 500 microM was determined to be optimal for these studies. Higher BNPP concentrations (1000 microM) appeared to displace 3 from its plasma protein-binding sites in preclinical species and human. Under the conditions of carboxylesterases-inhibited rat and mouse plasma, the level of protein binding displayed by 3 was similar to those observed in dog and human. In conclusion, a novel system has been devised to measure f(u plasma) for a plasma-labile compound. The BNPP methodology can be potentially applied to stabilize hydrolytic cleavage of structurally diverse carboxylesterase substrates in the plasma (and other tissue), thereby allowing the characterization of pharmacology studies on plasma-labile compounds if and when they emerge as hits in exploratory drug-discovery programmes.
Collapse
Affiliation(s)
- H Eng
- Pharmacokinetics, Dynamics and Metabolism, Groton, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
After about one century of peptide chemistry, the main limitation to the accessibility of peptides and proteins via chemosynthesis is the arising of folding and aggregation phenomena. This is true not only for sequences above a critical length but also for several biologically relevant substrates that are relatively short yet form either highly folded structures (e.g. WW domains) or fibrils and aggregates after final deprotection (beta-amyloid peptide). Such so-called difficult sequences may be more easily obtained via their corresponding depsipeptides (O-acyl isopeptides), ester isomers that are often easier to assemble and purify, and are smoothly converted to the parent amides under mild conditions. The depsipeptide method is the most recent technique to improve the outcome of difficult syntheses, applicable to sequences containing residues of serine or threonine. A brief overview is presented about chemical aspects of the method, the steps that have been undertaken for its optimization, and the evaluation of its efficiency. Further applications of analogous principles to other critical topics in peptide synthesis such as condensation of peptide segments and solid-phase synthesis of naturally occurring cyclodepsipeptides are addressed as well.
Collapse
Affiliation(s)
- Irene Coin
- The Salk Institute for Biological Studies, CBPL, La Jolla, CA 92037-1099, USA.
| |
Collapse
|
19
|
Taniguchi A, Sohma Y, Hirayama Y, Mukai H, Kimura T, Hayashi Y, Matsuzaki K, Kiso Y. "Click peptide": pH-triggered in situ production and aggregation of monomer Abeta1-42. Chembiochem 2009; 10:710-5. [PMID: 19222037 DOI: 10.1002/cbic.200800765] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The intense and uncontrollable self-assembling nature of amyloid beta peptide (Abeta) 1-42 is known to cause difficulties in preparing monomeric Abeta1-42; this results in irreproducible or discrepant study outcomes. Herein, we report novel features of a pH click peptide of Abeta1-42 that was designed to overcome these problems. The click peptide is a water-soluble precursor peptide of Abeta1-42 with an O-acyl isopeptide structure between the Gly25-Ser26 sequence. The click peptide adopts and retains a monomeric, random coil state under acidic conditions. Upon change to neutral pH (pH click), the click peptide converts to Abeta1-42 promptly (t(1/2) approximately 10 s) and quantitatively through an O-to-N intramolecular acyl migration. As a result of this quick and irreversible conversion, monomer Abeta1-42 with a random coil structure is produced in situ. Moreover, the oligomerization, amyloid fibril formation and conformational changes of the produced Abeta1-42 can be observed over time. This click peptide strategy should provide a reliable experimental system to investigate the pathological role of Abeta1-42 in Alzheimer's disease.
Collapse
Affiliation(s)
- Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nguyen JT, Hamada Y, Kimura T, Kiso Y. Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm (Weinheim) 2008; 341:523-35. [PMID: 18763714 DOI: 10.1002/ardp.200700267] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this retrospective, personal review covering our research from the late 1980s until 2007, we outline nearly two-decade worth of our own work on several aspartic protease inhibitors including those affecting renin, HIV-1 protease, plasmepsins, beta-secretase, and HTLV-I protease and we report on aspartic protease inhibitors as potential drugs to treat hypertension, AIDS, malaria, Alzheimer's disease and adult T-cell leukemia, HTLV-I associated myelopathy / tropical spastic paraparesis, and various, respectively, associated diseases. Herein, we describe our methods for rational substrate-based drug design of peptidomimetics that potently inhibit the activity of renin, HIV-1 protease, plasmepsins, beta-secretase, and HTLV-I protease accordingly, using an appropriately selected inhibitory residue that contained a hydroxymethylcarbonyl isostere. Although this non-hydrolyzable isostere mimics the transition state that is formed during protein cleavage of a substrate, the isostere-containing inhibitor is not cleaved. We highlight our optimization studies in which we used various techniques and tools such as truncation studies, natural and non-natural amino acid substitution studies, various moieties to promote chemical and pharmacological stability, X-ray crystallography, computer-assisted docking and dynamic simulations, quantitative structure-activity relationship studies, and various other methods that this review can barely mention.
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
21
|
Camus MS, Dos Santos S, Chandravarkar A, Mandal B, Schmid AW, Tuchscherer G, Mutter M, Lashuel HA. Switch-Peptides: Design and Characterization of Controllable Super-Amyloid-Forming Host-Guest Peptides as Tools for Identifying Anti-Amyloid Agents. Chembiochem 2008; 9:2104-12. [DOI: 10.1002/cbic.200800245] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Coin I, Schmieder P, Bienert M, Beyermann M. The depsipeptide technique applied to peptide segment condensation: scope and limitations. J Pept Sci 2008; 14:299-306. [PMID: 17935259 DOI: 10.1002/psc.928] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A promising application of the depsipeptide technique has recently been proposed to provide ideal conditions for segment condensation, in that coupling of peptides bearing a C-terminal depsipeptide unit occurs without giving rise to epimerization at the activated amino acid. This is due to the low tendency of the activated depsipeptide units, in contrast to the corresponding peptide segments, to form optically labile oxazolones. In this work we demonstrate that coupling of depsipeptides via base-assisted activation using HBTU occurs not only without loss of configuration, but even much faster than the coupling of the corresponding all-amide segments. Nevertheless, when the coupling of long depsipeptide segments proceeds slowly, we uncovered the occurrence of beta-elimination at the activated depsipeptide unit, in an extent dependent on the presence of base in the system and on the type of the solvent. Beta-elimination was completely suppressed by using carbodiimide/HOBt activation in a non-polar solvent (DCM), and in more polar media it was limited by substituting TMP for DIEA during HBTU activation, or using particular solvent mixtures (such as DMSO/toluene) for activation via carbodiimide. Finally, we show the application of C-terminal pseudoprolines, in comparison with that of depsipeptide units, to segment coupling.
Collapse
Affiliation(s)
- Irene Coin
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125 Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Stella VJ, Nti-Addae KW. Prodrug strategies to overcome poor water solubility. Adv Drug Deliv Rev 2007; 59:677-94. [PMID: 17628203 DOI: 10.1016/j.addr.2007.05.013] [Citation(s) in RCA: 351] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Drug design in recent years has attempted to explore new chemical spaces resulting in more complex, larger molecular weight molecules, often with limited water solubility. To deliver molecules with these properties, pharmaceutical scientists have explored many different techniques. An older but time-tested strategy is the design of bioreversible, more water-soluble derivatives of the problematic molecule, or prodrugs. This review explores the use of prodrugs to effect improved oral and parenteral delivery of poorly water-soluble problematic drugs, using both marketed as well as investigational prodrugs as examples. Prodrug interventions should be considered early in the drug discovery paradigm rather than as a technique of last resort. Their importance is supported by the increasing percentage of approved new drug entities that are, in fact, prodrugs.
Collapse
Affiliation(s)
- Valentino J Stella
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, Kansas 66047, USA.
| | | |
Collapse
|
24
|
Sohma Y, Kiso Y. "Click peptides"--chemical biology-oriented synthesis of Alzheimer's disease-related amyloid beta peptide (abeta) analogues based on the "O-acyl isopeptide method". Chembiochem 2007; 7:1549-57. [PMID: 16915597 DOI: 10.1002/cbic.200600112] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A clear understanding of the pathological mechanism of amyloid beta peptide (Abeta) 1-42, a currently unexplained process, would be of great significance for the discovery of novel drug targets for Alzheimer's disease (AD) therapy. To date, though, the elucidation of these Abeta1-42 dynamic events has been a difficult issue because of uncontrolled polymerization, which also poses a significant obstacle in establishing experimental systems with which to clarify the pathological function of Abeta1-42. We have recently developed chemical biology-oriented pH- or phototriggered "click peptide" isoform precursors of Abeta1-42, based on the "O-acyl isopeptide method", in which a native amide bond at a hydroxyamino acid residue, such as Ser, is isomerized to an ester bond, the target peptide subsequently being generated by an O-N intramolecular acyl migration reaction. These click peptide precursors did not exhibit any self-assembling character under physiological conditions, thanks to the presence of the one single ester bond, and were able to undergo migration to give the target Abeta1-42 in a quick and easy, one-way (so-called "click")conversion reaction. The use of click peptides could be a useful strategy to investigate the biological functions of Abeta1-42 in AD through inducible activation of Abeta1-42 self-assembly.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry Center for Frontier Research in Medicinal Science 21st Century COE Program, Kyoto Pharmaceutical University Yamashina-ku, Kyoto 607-8412, Japan
| | | |
Collapse
|
25
|
Tuchscherer G, Chandravarkar A, Camus MS, Bérard J, Murat K, Schmid A, Mimna R, Lashuel HA, Mutter M. Switch-peptides as folding precursors in self-assembling peptides and amyloid fibrillogenesis. Biopolymers 2007; 88:239-52. [PMID: 17206626 DOI: 10.1002/bip.20663] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The study of conformational transitions of peptides has obtained considerable attention recently because of their importance as a molecular key event in a variety of degenerative diseases. However, the study of peptide self-assembly into beta-sheets and amyloid beta (Abeta) fibrils is strongly hampered by their difficult synthetic access and low solubility. We have recently developed a new concept termed switch-peptides that allows the controlled onset of polypeptide folding and misfolding at physiologic conditions. As a major feature, the folding process is initiated by chemically or enzyme triggered O,N-acyl migration in flexible and soluble folding precursors containing Ser- or Thr-derived switch (S)-elements. The elaborated methodologies are exemplified for the in situ conversion of NPY- and Cyclosporine A-derived prodrugs, as well as for the onset and reversal of alpha and beta conformational transitions in Abeta peptides. In combining orthogonally addressable switch-elements, the consecutive switching on of S-elements gives new insights into the role of individual peptide segments (hot spots) in early processes of polypeptide self-assembly and fibrillogenesis. Finally, the well-known secondary structure disrupting effect of pseudoprolines (PsiPro) is explored for its use as a building block (S-element) in switch-peptides. To this end, synthetic strategies are described, allowing for the preparation of PsiPro-containing folding precursors, exhibiting flexible random-coil conformations devoid of fibril forming propensity. The onset of beta-sheet and fibril formation by restoring the native peptide chain in a single step classify PsiPro-units as the most powerful tool for inhibiting peptide self-assembly, and complement the present methodologies of the switch-concept for the study of fibrillogenesis.
Collapse
Affiliation(s)
- Gabriele Tuchscherer
- Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sohma Y, Chiyomori Y, Kimura M, Fukao F, Taniguchi A, Hayashi Y, Kimura T, Kiso Y. ‘O-Acyl isopeptide method’ for the efficient preparation of amyloid β peptide 1–42 mutants. Bioorg Med Chem 2005; 13:6167-74. [PMID: 16040249 DOI: 10.1016/j.bmc.2005.06.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 06/13/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Novel water-soluble isopeptides of Abeta1-42 mutants, '26-O-acyl isoAbeta1-42 (26-AIAbeta42) mutants', which were efficiently converted to intact Abeta1-42 mutants with no byproduct formation under physiological conditions, were synthesized. These isopeptides provide a new system useful for investigating the biological function of Abeta1-42 mutants.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dos Santos S, Chandravarkar A, Mandal B, Mimna R, Murat K, Saucède L, Tella P, Tuchscherer G, Mutter M. Switch-Peptides: Controlling Self-Assembly of Amyloid β-Derived Peptides in vitro by Consecutive Triggering of Acyl Migrations. J Am Chem Soc 2005; 127:11888-9. [PMID: 16117497 DOI: 10.1021/ja052083v] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sequential triggering (Soff --> Son) of O, N-acyl migrations (AcM) by chemical and enzymatic methods (Ti) in peptides containing structure-disrupting switch-elements, S (switch-peptides), offers a novel tool for studying in statu nascendi the onset and inhibition of polypeptide folding and self-assembly as a key process in degenerative diseases.
Collapse
Affiliation(s)
- Sonia Dos Santos
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Skwarczynski M, Sohma Y, Noguchi M, Kimura M, Hayashi Y, Hamada Y, Kimura T, Kiso Y. No Auxiliary, No Byproduct Strategy for Water-Soluble Prodrugs of Taxoids: Scope and Limitation of O−N Intramolecular Acyl and Acyloxy Migration Reactions. J Med Chem 2005; 48:2655-66. [PMID: 15801856 DOI: 10.1021/jm049344g] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since numerous new taxoids active against multidrug resistant (MDR) tumors have been developed and their poor water-solubility is a very real problem in intravenous administration, we have designed and synthesized a series of novel water-soluble taxoid prodrugs (isotaxoids). These prodrugs, a 2'-O-isoform of taxoids, showed promising results with higher water solubility (0.8-1.1 mg/mL) and proper kinetics for parent drug release by a simple pH-dependent chemical mechanism via O-N intramolecular acyl migration. No additional functional auxiliaries are released during the conversion to parent drugs, which would be an advantage in toxicology and general pharmacology, and the cost for the evaluations of auxiliary units in these fields could be saved in prodrug development. In addition, we demonstrate for the first time the successful application of the O-N intramolecular acyloxy migration reaction in the prodrug design, with the exception of the tert-butyloxycarbonyl group, and that this reaction can be provided with no organic solvent and no side products.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kimura T, Shuto D, Hamada Y, Igawa N, Kasai S, Liu P, Hidaka K, Hamada T, Hayashi Y, Kiso Y. Design and synthesis of highly active Alzheimer’s β-secretase (BACE1) inhibitors, KMI-420 and KMI-429, with enhanced chemical stability. Bioorg Med Chem Lett 2005; 15:211-5. [PMID: 15582441 DOI: 10.1016/j.bmcl.2004.09.090] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 09/30/2004] [Indexed: 11/19/2022]
Abstract
Recently, we reported potent and small-sized BACE1 inhibitors KMI-358 and KMI-370 in which the Glu residue is replaced by a beta-N-oxalyl-DAP (l-alpha,beta-diaminopropionyl) residue at the P(4) position. The beta-N-oxalyl-DAP group is important for enhancing BACE1 inhibitory activity, but these inhibitors isomerized to alpha-N-oxalyl-DAP derivatives in solvents. Hence, we used a tetrazole moiety as a bioisostere of the free carboxylic acid of the oxalyl group. KMI-420 and KMI-429, containing a tetrazole ring, showed improved stability and potent enzyme inhibitory activity.
Collapse
Affiliation(s)
- Tooru Kimura
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sohma Y, Hayashi Y, Kimura M, Chiyomori Y, Taniguchi A, Sasaki M, Kimura T, Kiso Y. The ‘O-acyl isopeptide method’ for the synthesis of difficult sequence-containing peptides: application to the synthesis of Alzheimer's disease-related amyloid β peptide (Aβ) 1-42. J Pept Sci 2005; 11:441-51. [PMID: 15761877 DOI: 10.1002/psc.649] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An efficient 'O-acyl isopeptide method' for the synthesis of difficult sequence-containing peptides was applied successfully to the synthesis of amyloid beta peptide (Abeta) 1-42 via a water-soluble O-acyl isopeptide of Abeta1-42, i.e. '26-O-acyl isoAbeta1-42' (6). This paper describes the detailed synthesis of Abeta1-42 focusing on the importance of resin selection and the analysis of side reactions in the O-acyl isopeptide method. Protected '26-O-acyl isoAbeta1-42' peptide resin was synthesized using 2-chlorotrityl chloride resin with minimum side reactions in comparison with other resins and deprotected crude 26-O-acyl isoAbeta1-42 was easily purified by HPLC due to its relatively good purity and narrow elution with reasonable water solubility. This suggests that only one insertion of the isopeptide structure into the sequence of the 42-residue peptide can suppress the unfavourable nature of its difficult sequence. The migration of O-acyl isopeptide to intact Abeta1-42 under physiological conditions (pH 7.4) via O--N intramolecular acyl migration reaction was very rapid and no other by-product formation was observed while 6 was stable under storage conditions. These results concluded that our strategy not only overcomes the solubility problem in the synthesis of Abeta1-42 and can provide intact Abeta1-42 efficiently, but is also applicable in the synthesis of large difficult sequence-containing peptides at least up to 50 amino acids. This synthesis method would provide a biological evaluation system in Alzheimer's disease research, in which 26-O-acyl isoAbeta1-42 can be stored in a solubilized form before use and then rapidly produces intact Abeta1-42 in situ during biological experiments.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-Ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Carpino LA, Krause E, Sferdean CD, Schümann M, Fabian H, Bienert M, Beyermann M. Synthesis of ‘difficult’ peptide sequences: application of a depsipeptide technique to the Jung–Redemann 10- and 26-mers and the amyloid peptide Aβ(1–42). Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.07.162] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Sohma Y, Sasaki M, Hayashi Y, Kimura T, Kiso Y. Design and synthesis of a novel water-soluble Aβ1-42 isopeptide: an efficient strategy for the preparation of Alzheimer's disease-related peptide, Aβ1-42, via O–N intramolecular acyl migration reaction. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.06.059] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Hamada Y, Matsumoto H, Yamaguchi S, Kimura T, Hayashi Y, Kiso Y. Water-soluble prodrugs of dipeptide HIV protease inhibitors based on O→N intramolecular acyl migration: Design, synthesis and kinetic study. Bioorg Med Chem 2004; 12:159-70. [PMID: 14697781 DOI: 10.1016/j.bmc.2003.10.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To improve the low water-solubility of HIV protease inhibitors, we synthesized water-soluble prodrugs of KNI-727, a potent small-sized dipeptide-type HIV-1 protease inhibitor consisting of an Apns-Dmt core (Apns; allophenylnorstatine, Dmt; (R)-5,5-dimethyl-1,3-thiazolidine-4-carboxylic acid) as inhibitory machinery. These prodrugs contained an O-acyl peptidomimetic structure with an ionized amino group leading to an increase in water-solubility, and were designed to regenerate the corresponding parent drugs based on the O-->N intramolecular acyl migration reaction via a five-membered ring intermediate at the alpha-hydroxy-beta-amino acid residue, that is Apns. The synthetic prodrug 3a improved the water-solubility (13 mg/mL) more than 8000-fold in comparison with the parent compound, which is the practically acceptable value as water-soluble drug. Furthermore, to understand the structural effects of the O-acyl moiety on the migration rate, we evaluated several phenylacetyl-type and benzoyl-type prodrugs. These prodrugs were stable as an HCl salt and in a strongly acidic solution corresponding to gastric juice (pH 2.0), and could be converted to the parent compounds promptly under aqueous conditions from slightly acidic to basic pH at 37 degrees C.
Collapse
Affiliation(s)
- Yoshio Hamada
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-Ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Sohma Y, Hayashi Y, Skwarczynski M, Hamada Y, Sasaki M, Kimura T, Kiso Y. O?N intramolecular acyl migration reaction in the development of prodrugs and the synthesis of difficult sequence-containing bioactive peptides. Biopolymers 2004; 76:344-56. [PMID: 15386265 DOI: 10.1002/bip.20136] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
N-Ointramolecular acyl migration in Ser- or Thr-containing peptides is a well-known side reaction in peptide chemistry. It results in the mutual conversion of ester and amide bonds. Our medicinal chemistry study focused on the fact that the O-acyl product can be readily converted to the original N-acyl form under neutral or slightly basic conditions in an aqueous buffer and the liberated ionized amino group enhances the water solubility of O-acyl products. Because of this, we have developed a novel class of "O-N intramolecular acyl migration"-type water-soluble prodrugs of HIV-1 protease inhibitors. These prodrugs released the parent drugs via a simple chemical mechanism with no side reaction. In this study, we applied this strategy to important cancer chemotherapeutic agents, paclitaxel and its derivatives, to develop water-soluble taxoid prodrugs, and found that these prodrugs, 2'-O-isoform of taxoids, showed promising results with higher water solubility and proper kinetics in their parent drug formation by a simple pH-dependent chemical mechanism with O-N intramolecular acyl migration. These results suggest that this strategy would be useful in toxicology and medical economics. After the successful application of O-N intramolecular acyl migration in medicinal chemistry, this concept was recently used in peptide chemistry for the synthesis of "difficult sequence-containing peptides." The strategy was based on hydrophilic O-acyl isopeptide synthesis followed by the O-N intramolecular acyl migration reaction, leading to the desired peptide. In a model study with small, difficult sequence-containing peptides, synthesized "O-acyl isopeptides" not only improved the solubility in various media and efficiently performed the high performance liquid chromatography purification, but also altered the nature of the difficult sequence during SPPS, resulting in the efficient synthesis of O-acyl isopeptides with no complications. The subsequent O-N intramolecular acyl migration of purified O-acyl isopeptides afforded the desired peptides as precipitates with high yield and purity. Further study of the synthesis of a larger difficult sequence-containing peptide, Alzheimer's disease-related peptide (A beta 1-42), surprisingly showed that only one insertion of the O-acyl group drastically improved the unfavorable nature of the difficult sequence in A beta 1-42, and achieved efficient synthesis of 26-O-acyl isoA beta 1-42 and subsequent complete conversion to A beta 1-42 via the O-N intramolecular acyl migration reaction of 26-O-acyl isoA beta 1-42. This suggests that our new method based on O-N intramolecular acyl migration is an important method for the synthesis of difficult sequence-containing bioactive peptides.
Collapse
Affiliation(s)
- Youhei Sohma
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Skwarczynski M, Sohma Y, Kimura M, Hayashi Y, Kimura T, Kiso Y. O–N Intramolecular acyl migration strategy in water-soluble prodrugs of taxoids. Bioorg Med Chem Lett 2003; 13:4441-4. [PMID: 14643342 DOI: 10.1016/j.bmcl.2003.09.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We synthesized a highly water-soluble canadensol prodrug 6 that formed canadensol 3 by a simple pH-dependent chemical mechanism via the O-N intramolecular acyl migration of the isobutyryl group. This prodrug, a 2'-O-isobutyryl isoform of 3, has no additional functional auxiliaries released during the conversion to 3. This is a significant advantage in toxicology and medical economics, since the potential side effects of reported water-soluble auxiliaries and the use of detergent for solubilization can be avoided. The solubility of 6 was 2.26 mg mL(-1) and only the parent drug 3 was released under physiological conditions (pH=7.4) while, in acidic medium, the release of 3 slowed until migration was completely obstructed at pH=2. In further consideration of this strategy, we elucidated the use of an 'O-N acyl-like' migration reaction of the Boc group in the design of a docetaxel prodrug. Both O-N migration and undesired hydrolysis of the Boc group occurred under physiological conditions, although no oxazolidinone formation was observed, suggesting the limitation of our water-soluble prodrug strategy to docetaxel.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-Ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Hayashi Y, Skwarczynski M, Hamada Y, Sohma Y, Kimura T, Kiso Y. A novel approach of water-soluble paclitaxel prodrug with no auxiliary and no byproduct: design and synthesis of isotaxel. J Med Chem 2003; 46:3782-4. [PMID: 12930140 DOI: 10.1021/jm034112n] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel water-soluble paclitaxel prodrug, isotaxel 2, that realizes a higher water-solubility and the formation of paclitaxel through a simple pH-dependent chemical mechanism via the O-N acyl migration was synthesized and showed promising results in water-solubility and kinetics. This prodrug, a 2'-O-benzoyl isoform of paclitaxel, has no additional functional auxiliaries released during conversion to paclitaxel, which would be a great advantage in toxicology and medical economics.
Collapse
Affiliation(s)
- Yoshio Hayashi
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-Ku, Kyoto 607-8412 Japan
| | | | | | | | | | | |
Collapse
|
37
|
Hamada Y, Matsumoto H, Kimura T, Hayashi Y, Kiso Y. Effect of the acyl groups on O-->N acyl migration in the water-soluble prodrugs of HIV-1 protease inhibitor. Bioorg Med Chem Lett 2003; 13:2727-30. [PMID: 12873502 DOI: 10.1016/s0960-894x(03)00576-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To improve the low water-solubility of HIV-1 protease inhibitors KNI-272, -279 and -727, we previously reported the water-soluble prodrugs of these inhibitors based on O-->N intramolecular acyl migration reaction. These prodrugs were rapidly converted to the corresponding parent drugs under physiological conditions. To understand the steric and electrostatic effects of O-acyl moiety on the migration rate, we examined several types of prodrug. A remarkably slow migration was observed in the benzoyl-type prodrugs, and Hammett plot of migration rate constants of p-substituted benzoyl-type prodrugs gave a linear free energy relationship.
Collapse
Affiliation(s)
- Yoshio Hamada
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | |
Collapse
|
38
|
Kazmierski WM, Bevans P, Furfine E, Spaltenstein A, Yang H. Novel prodrug approach to amprenavir-based HIV-1 protease inhibitors via O-->N acyloxy migration of P1 moiety. Bioorg Med Chem Lett 2003; 13:2523-6. [PMID: 12852957 DOI: 10.1016/s0960-894x(03)00463-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have developed a new approach to prodrugs, which utilizes a pH-induced intramolecular O-->N migration of an acyloxy group in carbonate moiety to a free amino moiety at neutral pH. This method is exemplified by facile rearrangement of highly water-soluble prodrug 3 to carbamate 4, a close analogue of HIV-1 protease inhibitor Amprenavir. The O-->N acyloxy migration is unprecedented in the context of prodrugs and it enables a high atom economy due to recycling of the 'pro' moiety.
Collapse
|