1
|
Jin KY, Wang XP, Di YQ, Zhao YM, Wang JX, Zhao XF. The transcription factor RUNT-like regulates pupal cuticle development via promoting a pupal cuticle protein transcription. PLoS Genet 2024; 20:e1011393. [PMID: 39264939 PMCID: PMC11392391 DOI: 10.1371/journal.pgen.1011393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024] Open
Abstract
Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.
Collapse
Affiliation(s)
- Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Ullah H, Zhang B, Sharma NK, McCrea PD, Srivastava Y. In-silico probing of AML related RUNX1 cancer-associated missense mutations: Predicted relationships to DNA binding and drug interactions. Front Mol Biosci 2022; 9:981020. [PMID: 36090034 PMCID: PMC9454315 DOI: 10.3389/fmolb.2022.981020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
The molecular consequences of cancer associated mutations in Acute myeloid leukemia (AML) linked factors are not very well understood. Here, we interrogated the COSMIC database for missense mutations associated with the RUNX1 protein, that is frequently mis-regulated in AML, where we sought to identify recurrently mutated positions at the DNA-interacting interface. Indeed, six of the mutated residues, out of a total 417 residues examined within the DNA binding domain, evidenced reduced DNA association in in silico predictions. Further, given the prominence of RUNX1’s compromised function in AML, we asked the question if the mutations themselves might alter RUNX1’s interaction (off-target) with known FDA-approved drug molecules, including three currently used in treating AML. We identified several AML-associated mutations in RUNX1 that were calculated to enhance RUNX1’s interaction with specific drugs. Specifically, we retrieved data from the COSMIC database for cancer-associated mutations of RUNX1 by using R package “data.table” and “ggplot2” modules. In the presence of DNA and/or drug, we used docking scores and energetics of the complexes as tools to evaluate predicted interaction strengths with RUNX1. For example, we performed predictions of drug binding pockets involving Enasidenib, Giltertinib, and Midostaurin (AML associated), as well as ten different published cancer associated drug compounds. Docking of wild type RUNX1 with these 13 different cancer-associated drugs indicates that wild-type RUNX1 has a lower efficiency of binding while RUNX1 mutants R142K, D171N, R174Q, P176H, and R177Q suggested higher affinity of drug association. Literature evidence support our prediction and suggests the mutation R174Q affects RUNX1 DNA binding and could lead to compromised function. We conclude that specific RUNX1 mutations that lessen DNA binding facilitate the binding of a number of tested drug molecules. Further, we propose that molecular modeling and docking studies for RUNX1 in the presence of DNA and/or drugs enables evaluation of the potential impact of RUNX1 cancer associated mutations in AML.
Collapse
Affiliation(s)
- Hanif Ullah
- Guangxi Key Laboratory for Genomics and Personalized Medicine, Guangxi Collaborative Innovation Center for Genomics and Personalized Medicine, Guangxi Medical University, Nanning, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baoyun Zhang
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Banasthali, Tonk, Rajasthan, India
| | - Pierre D. McCrea
- University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yogesh Srivastava
- University of Chinese Academy of Sciences, Beijing, China
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Genome Regulation Laboratory; Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Yogesh Srivastava,
| |
Collapse
|
3
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
4
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
5
|
Amaya C, Cameron CJF, Devarkar SC, Seager SJH, Gerstein MB, Xiong Y, Schlieker C. Nodal modulator (NOMO) is required to sustain endoplasmic reticulum morphology. J Biol Chem 2021; 297:100937. [PMID: 34224731 PMCID: PMC8327139 DOI: 10.1016/j.jbc.2021.100937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
The endoplasmic reticulum (ER) is a membrane-bound organelle responsible for protein folding, lipid synthesis, and calcium homeostasis. Maintenance of ER structural integrity is crucial for proper function, but much remains to be learned about the molecular players involved. To identify proteins that support the structure of the ER, we performed a proteomic screen and identified nodal modulator (NOMO), a widely conserved type I transmembrane protein of unknown function, with three nearly identical orthologs specified in the human genome. We found that overexpression of NOMO1 imposes a sheet morphology on the ER, whereas depletion of NOMO1 and its orthologs causes a collapse of ER morphology concomitant with the formation of membrane-delineated holes in the ER network positive for the lysosomal marker lysosomal-associated protein 1. In addition, the levels of key players of autophagy including microtubule-associated protein light chain 3 and autophagy cargo receptor p62/sequestosome 1 strongly increase upon NOMO depletion. In vitro reconstitution of NOMO1 revealed a "beads on a string" structure likely representing consecutive immunoglobulin-like domains. Extending NOMO1 by insertion of additional immunoglobulin folds results in a correlative increase in the ER intermembrane distance. Based on these observations and a genetic epistasis analysis including the known ER-shaping proteins Atlastin2 and Climp63, we propose a role for NOMO1 in the functional network of ER-shaping proteins.
Collapse
Affiliation(s)
- Catherine Amaya
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christopher J F Cameron
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Swapnil C Devarkar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Sebastian J H Seager
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Mark B Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA; Department of Computer Science, Yale University, New Haven, Connecticut, USA; Department of Statistics and Data Science, Yale University, New Haven, Connecticut, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Christian Schlieker
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
6
|
Russo ET, Laio A, Punta M. Density Peak clustering of protein sequences associated to a Pfam clan reveals clear similarities and interesting differences with respect to manual family annotation. BMC Bioinformatics 2021; 22:121. [PMID: 33711918 PMCID: PMC7955657 DOI: 10.1186/s12859-021-04013-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The identification of protein families is of outstanding practical importance for in silico protein annotation and is at the basis of several bioinformatic resources. Pfam is possibly the most well known protein family database, built in many years of work by domain experts with extensive use of manual curation. This approach is generally very accurate, but it is quite time consuming and it may suffer from a bias generated from the hand-curation itself, which is often guided by the available experimental evidence. RESULTS We introduce a procedure that aims to identify automatically putative protein families. The procedure is based on Density Peak Clustering and uses as input only local pairwise alignments between protein sequences. In the experiment we present here, we ran the algorithm on about 4000 full-length proteins with at least one domain classified by Pfam as belonging to the Pseudouridine synthase and Archaeosine transglycosylase (PUA) clan. We obtained 71 automatically-generated sequence clusters with at least 100 members. While our clusters were largely consistent with the Pfam classification, showing good overlap with either single or multi-domain Pfam family architectures, we also observed some inconsistencies. The latter were inspected using structural and sequence based evidence, which suggested that the automatic classification captured evolutionary signals reflecting non-trivial features of protein family architectures. Based on this analysis we identified a putative novel pre-PUA domain as well as alternative boundaries for a few PUA or PUA-associated families. As a first indication that our approach was unlikely to be clan-specific, we performed the same analysis on the P53 clan, obtaining comparable results. CONCLUSIONS The clustering procedure described in this work takes advantage of the information contained in a large set of pairwise alignments and successfully identifies a set of putative families and family architectures in an unsupervised manner. Comparison with the Pfam classification highlights significant overlap and points to interesting differences, suggesting that our new algorithm could have potential in applications related to automatic protein classification. Testing this hypothesis, however, will require further experiments on large and diverse sequence datasets.
Collapse
Affiliation(s)
| | | | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG UK
- Present Address: Center for Omics Sciences, IRCCS San Raffaele Hospital, 20132 Milan, Italy
| |
Collapse
|
7
|
Samarakkody AS, Shin NY, Cantor AB. Role of RUNX Family Transcription Factors in DNA Damage Response. Mol Cells 2020; 43:99-106. [PMID: 32024352 PMCID: PMC7057837 DOI: 10.14348/molcells.2019.0304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 01/06/2023] Open
Abstract
Cells are constantly exposed to endogenous and exogenous stresses that can result in DNA damage. In response, they have evolved complex pathways to maintain genomic integrity. RUNX family transcription factors (RUNX1, RUNX2, and RUNX3 in mammals) are master regulators of development and differentiation, and are frequently dysregulated in cancer. A growing body of research also implicates RUNX proteins as regulators of the DNA damage response, often acting in conjunction with the p53 and Fanconi anemia pathways. In this review, we discuss the functional role and mechanisms involved in RUNX factor mediated response to DNA damage and other cellular stresses. We highlight the impact of these new findings on our understanding of cancer predisposition associated with RUNX factor dysregulation and their implications for designing novel approaches to prevent cancer formation in affected individuals.
Collapse
Affiliation(s)
- Ann Sanoji Samarakkody
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Nah-Young Shin
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
| | - Alan B. Cantor
- Department of Pediatric Hematology-Oncology, Boston Children’s Hospital and Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 025, USA
- Harvard Stem Cell Institute, Cambridge, MA 0138, USA
| |
Collapse
|
8
|
Kamikubo Y. Genetic compensation of RUNX family transcription factors in leukemia. Cancer Sci 2018; 109:2358-2363. [PMID: 29883054 PMCID: PMC6113440 DOI: 10.1111/cas.13664] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022] Open
Abstract
Runt (Runt domain)‐related transcription factor 1 (RUNX1) is a transcription factor belonging to the core‐binding factor (CBF) family. It is considered to be a master regulator of hematopoiesis and has been regarded as a tumor suppressor because it is essential for definitive hematopoiesis in vertebrates. It is one of the most frequent target genes of chromosomal translocation in leukemia, and germ line mutation of RUNX1 causes familial platelet disorder with associated myeloid malignancies. Somatic cell mutations and chromosomal abnormalities, including those of RUNX1, are observed in myelodysplastic syndrome, acute myeloid leukemia, acute lymphoblastic leukemia, and chronic myelomonocytic leukemia at a high frequency. In addition, recent studies reported by us and other groups suggested that WT RUNX1 is needed for survival and proliferation of certain types of leukemia. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in hematological malignancies based on recent findings such as “Genetic compensation of RUNX family transcription factors in leukemia,” “RUNX1 inhibition‐induced inhibitory effects on leukemia cells through p53 activation” and our novel promising theory “Cluster regulation of RUNX (CROX)” through the RUNX gene switch method using pyrrole‐imidazole polyamides as a new technique that could contribute to the next generation of leukemia treatment strategies.
Collapse
Affiliation(s)
- Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells. Sci Rep 2017; 7:16604. [PMID: 29192243 PMCID: PMC5709397 DOI: 10.1038/s41598-017-16799-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023] Open
Abstract
Although runt-related transcription factor 1 (RUNX1) and its associating core binding factor-β (CBFB) play pivotal roles in leukemogenesis, and inhibition of RUNX1 has now been widely recognized as a novel strategy for anti-leukemic therapies, it has been elusive how leukemic cells could acquire the serious resistance against RUNX1-inhibition therapies and also whether CBFB could participate in this process. Here, we show evidence that p53 (TP53) and CBFB are sequentially up-regulated in response to RUNX1 depletion, and their mutual interaction causes the physiological resistance against chemotherapy for acute myeloid leukemia (AML) cells. Mechanistically, p53 induced by RUNX1 gene silencing directly binds to CBFB promoter and stimulates its transcription as well as its translation, which in turn acts as a platform for the stabilization of RUNX1, thereby creating a compensative RUNX1-p53-CBFB feedback loop. Indeed, AML cells derived from relapsed cases exhibited higher CBFB expression levels compared to those from primary AML cells at diagnosis, and these CBFB expressions were positively correlated to those of p53. Our present results underscore the importance of RUNX1-p53-CBFB regulatory loop in the development and/or maintenance of AML cells, which could be targeted at any sides of this triangle in strategizing anti-leukemia therapies.
Collapse
|
10
|
Stengel A, Kern W, Meggendorfer M, Nadarajah N, Perglerovà K, Haferlach T, Haferlach C. Number of RUNX1 mutations, wild-type allele loss and additional mutations impact on prognosis in adult RUNX1-mutated AML. Leukemia 2017; 32:295-302. [DOI: 10.1038/leu.2017.239] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 06/22/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
|
11
|
Morita K, Suzuki K, Maeda S, Matsuo A, Mitsuda Y, Tokushige C, Kashiwazaki G, Taniguchi J, Maeda R, Noura M, Hirata M, Kataoka T, Yano A, Yamada Y, Kiyose H, Tokumasu M, Matsuo H, Tanaka S, Okuno Y, Muto M, Naka K, Ito K, Kitamura T, Kaneda Y, Liu PP, Bando T, Adachi S, Sugiyama H, Kamikubo Y. Genetic regulation of the RUNX transcription factor family has antitumor effects. J Clin Invest 2017; 127:2815-2828. [PMID: 28530640 DOI: 10.1172/jci91788] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
Runt-related transcription factor 1 (RUNX1) is generally considered to function as a tumor suppressor in the development of leukemia, but a growing body of evidence suggests that it has pro-oncogenic properties in acute myeloid leukemia (AML). Here we have demonstrated that the antileukemic effect mediated by RUNX1 depletion is highly dependent on a functional p53-mediated cell death pathway. Increased expression of other RUNX family members, including RUNX2 and RUNX3, compensated for the antitumor effect elicited by RUNX1 silencing, and simultaneous attenuation of all RUNX family members as a cluster led to a much stronger antitumor effect relative to suppression of individual RUNX members. Switching off the RUNX cluster using alkylating agent-conjugated pyrrole-imidazole (PI) polyamides, which were designed to specifically bind to consensus RUNX-binding sequences, was highly effective against AML cells and against several poor-prognosis solid tumors in a xenograft mouse model of AML without notable adverse events. Taken together, these results identify a crucial role for the RUNX cluster in the maintenance and progression of cancer cells and suggest that modulation of the RUNX cluster using the PI polyamide gene-switch technology is a potential strategy to control malignancies.
Collapse
Affiliation(s)
- Ken Morita
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Kensho Suzuki
- Department of Human Health Sciences, Graduate School of Medicine
| | - Shintaro Maeda
- Department of Human Health Sciences, Graduate School of Medicine
| | - Akihiko Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | | | - Chieko Tokushige
- Department of Human Health Sciences, Graduate School of Medicine
| | - Gengo Kashiwazaki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Rina Maeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mina Noura
- Department of Human Health Sciences, Graduate School of Medicine
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Tatsuki Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Ayaka Yano
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yoshimi Yamada
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hiroki Kiyose
- Department of Human Health Sciences, Graduate School of Medicine
| | - Mayu Tokumasu
- Department of Human Health Sciences, Graduate School of Medicine
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine
| | - Sunao Tanaka
- Department of Human Health Sciences, Graduate School of Medicine
| | - Yasushi Okuno
- Department of Human Health Sciences, Graduate School of Medicine
| | - Manabu Muto
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhito Naka
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosei Ito
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy and Division of Stem Cell Signaling, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasufumi Kaneda
- Division of Gene Therapy Science, Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Paul P Liu
- Oncogenesis and Development Section, National Human Genome Research Institute, NIH, Bethesda, Maryland, USA
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine.,Department of Pediatrics, Graduate School of Medicine, and
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
12
|
Tahirov TH, Bushweller J. Structure and Biophysics of CBFβ/RUNX and Its Translocation Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:21-31. [PMID: 28299648 DOI: 10.1007/978-981-10-3233-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The core binding factor (CBF) transcription factor is somewhat unique in that it is composed of a DNA binding RUNX subunit (RUNX1, 2, or 3) and a non-DNA binding CBFβ subunit, which modulates RUNX protein activity by modulating the auto-inhibition of the RUNX subunits. Since the discovery of this fascinating transcription factor more than 20 years ago, there has been a robust effort to characterize the structure as well as the biochemical properties of CBF. More recently, these efforts have also extended to the fusion proteins that arise from the subunits of CBF in leukemia. This chapter highlights the work of numerous labs which has provided a detailed understanding of the structure and function of this transcription factor and its fusion proteins.
Collapse
Affiliation(s)
- Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - John Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
13
|
New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins. ACTA ACUST UNITED AC 2016; 11:285-304. [PMID: 28261265 DOI: 10.1007/s11515-016-1415-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Nearly 15% of acute myeloid leukemia (AML) cases are caused by aberrant expression of AML1-ETO, a fusion protein generated by the t(8;21) chromosomal translocation. Since its discovery, AML1-ETO has served as a prototype to understand how leukemia fusion proteins deregulate transcription to promote leukemogenesis. Another leukemia fusion protein, E2A-Pbx1, generated by the t(1;19) translocation, is involved in acute lymphoblastic leukemias (ALLs). While AML1-ETO and E2A-Pbx1 are structurally unrelated fusion proteins, we have recently shown that a common axis, the ETO/E-protein interaction, is involved in the regulation of both fusion proteins, underscoring the importance of studying protein-protein interactions in elucidating the mechanisms of leukemia fusion proteins. OBJECTIVE In this review, we aim to summarize these new developments while also providing a historic overview of the related early studies. METHODS A total of 218 publications were reviewed in this article, a majority of which were published after 2004.We also downloaded 3D structures of AML1-ETO domains from Protein Data Bank and provided a systematic summary of their structures. RESULTS By reviewing the literature, we summarized early and recent findings on AML1-ETO, including its protein-protein interactions, transcriptional and leukemogenic mechanisms, as well as the recently reported involvement of ETO family corepressors in regulating the function of E2A-Pbx1. CONCLUSION While the recent development in genomic and structural studies has clearly demonstrated that the fusion proteins function by directly regulating transcription, a further understanding of the underlying mechanisms, including crosstalk with other transcription factors and cofactors, and the protein-protein interactions in the context of native proteins, may be necessary for the development of highly targeted drugs for leukemia therapy.
Collapse
|
14
|
Liongue C, Ward AC. Evolution of the JAK-STAT pathway. JAKSTAT 2014; 2:e22756. [PMID: 24058787 PMCID: PMC3670263 DOI: 10.4161/jkst.22756] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 11/02/2012] [Indexed: 01/08/2023] Open
Abstract
The JAK-STAT pathway represents a finely tuned orchestra capable of rapidly facilitating an exquisite symphony of responses from a complex array of extracellular signals. This review explores the evolution of the JAK-STAT pathway: the origins of the individual domains from which it is constructed, the formation of individual components from these basic building blocks, the assembly of the components into a functional pathway, and the subsequent reiteration of this basic template to fulfill a variety of roles downstream of cytokine receptors.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine and Strategic Research Centre in Molecular & Medical Research; Deakin University; Geelong, VIC Australia
| | | |
Collapse
|
15
|
Soung DY, Talebian L, Matheny CJ, Guzzo R, Speck ME, Lieberman JR, Speck NA, Drissi H. Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. J Bone Miner Res 2012; 27:1585-97. [PMID: 22431360 PMCID: PMC3377839 DOI: 10.1002/jbmr.1601] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Runx1 is expressed in skeletal elements, but its role in fracture repair has not been analyzed. We created mice with a hypomorphic Runx1 allele (Runx1(L148A) ) and generated Runx1(L148A/-) mice in which >50% of Runx1 activity was abrogated. Runx1(L148A/-) mice were viable but runted. Their growth plates had extended proliferating and hypertrophic zones, and the percentages of Sox9-, Runx2-, and Runx3-positive cells were decreased. Femoral fracture experiments revealed delayed cartilaginous callus formation, and the expression of chondrogenic markers was decreased. Conditional ablation of Runx1 in the mesenchymal progenitor cells of the limb with Prx1-Cre conferred no obvious limb phenotype; however, cartilaginous callus formation was delayed following fracture. Embryonic limb bud-derived mesenchymal cells showed delayed chondrogenesis when the Runx1 allele was deleted ex vivo with adenoviral-expressed Cre. Collectively, our data suggest that Runx1 is required for commitment and differentiation of chondroprogenitor cells into the chondrogenic lineage.
Collapse
Affiliation(s)
- Do Y Soung
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06034, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mangan JK, Speck NA. RUNX1 mutations in clonal myeloid disorders: from conventional cytogenetics to next generation sequencing, a story 40 years in the making. Crit Rev Oncog 2012; 16:77-91. [PMID: 22150309 DOI: 10.1615/critrevoncog.v16.i1-2.80] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Translocations and mutations in the core binding factor genes, RUNX1 or CBFB, are found in acute myeloid and lymphocytic leukemia, therapy-related myeloid leukemia, myelodysplastic syndrome, chronic myelomonocytic leukemia, and in familial platelet disorder with predisposition to acute myeloid leukemia. Here we review the biochemical and biological properties of the normal Runx1 protein, discuss the nature of RUNX1 mutations in myeloid leukemia, their prognostic significance, and the mutations that cooperate or co-exist with them in these various diseases.
Collapse
Affiliation(s)
- James K Mangan
- Department of Internal Medicine, Division of Hematology-Oncology and the Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
17
|
Lam K, Zhang DE. RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Front Biosci (Landmark Ed) 2012; 17:1120-39. [PMID: 22201794 DOI: 10.2741/3977] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RUNX1 is a transcription factor that regulates critical processes in many aspects of hematopoiesis. RUNX1 is also integral in defining the definitive hematopoietic stem cell. In addition, many hematological diseases like myelodysplastic syndrome and myeloproliferative neoplasms have been associated with mutations in RUNX1. Located on chromosomal 21, the RUNX1 gene is involved in many forms of chromosomal translocations in leukemia. t(8;21) is one of the most common chromosomal translocations found in acute myeloid leukemia (AML), where it results in a fusion protein between RUNX1 and ETO. The RUNX1-ETO fusion protein is found in approximately 12% of all AML patients. In this review, we detail the structural features, functions, and models used to study both RUNX1 and RUNX1-ETO in hematopoiesis over the past two decades.
Collapse
Affiliation(s)
- Kentson Lam
- Moores Cancer Center, Department of Pathology and Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
18
|
Wang S, Kim SY, Jung KH, Ladizhansky V, Brown LS. A Eukaryotic-Like Interaction of Soluble Cyanobacterial Sensory Rhodopsin Transducer with DNA. J Mol Biol 2011; 411:449-62. [DOI: 10.1016/j.jmb.2011.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 11/28/2022]
|
19
|
Bowers SR, Calero-Nieto FJ, Valeaux S, Fernandez-Fuentes N, Cockerill PN. Runx1 binds as a dimeric complex to overlapping Runx1 sites within a palindromic element in the human GM-CSF enhancer. Nucleic Acids Res 2010; 38:6124-34. [PMID: 20483917 PMCID: PMC2952845 DOI: 10.1093/nar/gkq356] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Runx1 is a developmentally regulated transcription factor that is essential for haemopoiesis. Runx1 can bind as a monomer to the core consensus sequence TGTGG, but binds more efficiently as a hetero-dimer together with the non-DNA binding protein CBFβ as a complex termed core binding factor (CBF). Here, we demonstrated that CBF can also assemble as a dimeric complex on two overlapping Runx1 sites within the palindromic sequence TGTGGCTGCCCACA in the human granulocyte macrophage colony-stimulating factor enhancer. Furthermore, we demonstrated that binding of Runx1 to the enhancer is rigidly controlled at the level of chromatin accessibility, and is dependent upon prior induction of NFAT and AP-1, which disrupt a positioned nucleosome in this region. We employed in vivo footprinting to demonstrate that, upon activation of the enhancer, both sites are efficiently occupied. In vitro binding assays confirmed that two CBF complexes can bind this site simultaneously, and transfection assays demonstrated that both sites contribute significantly to enhancer function. Computer modelling based on the Runx1/CBFβ/DNA crystal structure further revealed that two molecules of CBF could potentially bind to this class of palindromic sequence as a dimeric complex in a conformation whereby both Runx1 and CBFβ within the two CBF complexes are closely aligned.
Collapse
Affiliation(s)
- Sarion R Bowers
- Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | | | | | | | | |
Collapse
|
20
|
Engel ME, Hiebert SW. Proleukemic RUNX1 and CBFbeta mutations in the pathogenesis of acute leukemia. Cancer Treat Res 2009; 145:127-47. [PMID: 20306249 DOI: 10.1007/978-0-387-69259-3_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The existence of non-random mutations in critical regulators of cell growth and differentiation is a recurring theme in cancer pathogenesis and provides the basis for our modern, molecular approach to the study and treatment of malignant diseases. Nowhere is this more true than in the study of leukemogenesis, where research has converged upon a critical group of genes involved in hematopoietic stem and progenitor cell self-renewal and fate specification. Prominent among these is the heterodimeric transcriptional regulator, RUNX1/CBFbeta. RUNX1 is a site-specific DNA-binding protein whose consensus response element is found in the promoters of many hematopoietically relevant genes. CBFbeta interacts with RUNX1, stabilizing its interaction with DNA to promote the actions of RUNX1/CBFbeta in transcriptional control. Both the RUNX1 and the CBFbeta genes participate in proleukemic chromosomal alterations. Together they contribute to approximately one-third of acute myelogenous leukemia (AML) and one-quarter of acute lymphoblastic leukemia (ALL) cases, making RUNX1 and CBFbeta the most frequently affected genes known in the pathogenesis of acute leukemia. Investigating the mechanisms by which RUNX1, CBFbeta, and their proleukemic fusion proteins influence leukemogenesis has contributed greatly to our understanding of both normal and malignant hematopoiesis. Here we present an overview of the structural features of RUNX1/CBFbeta and their derivatives, their roles in transcriptional control, and their contributions to normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Michael E Engel
- Department of Pediatrics, Monroe Carell Jr. Children's Hospital, Nashville, TN, USA.
| | | |
Collapse
|
21
|
|
22
|
Fernandes AD, Atchley WR. Site-specific evolutionary rates in proteins are better modeled as non-independent and strictly relative. ACTA ACUST UNITED AC 2008; 24:2177-83. [PMID: 18662926 DOI: 10.1093/bioinformatics/btn395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION In a nucleotide or amino acid sequence, not all sites evolve at the same rate, due to differing selective constraints at each site. Currently in computational molecular evolution, models incorporating rate heterogeneity always share two assumptions. First, the rate of evolution at each site is assumed to be independent of every other site. Second, the values of these rates are assumed to be drawn from a known prior distribution. Although often assumed to be small, the actual effect of these assumptions has not been previously quantified in the literature. RESULTS Herein we describe an algorithm to simultaneously infer the set of n-1 relative rates that parameterize the likelihood of an n-site alignment. Unlike previous work (a) these relative rates are completely identifiable and distinct from the branch-length parameters, and (b) a far more general class of rate priors can be used, and their effects quantified. Although described in a Bayesian framework, we discuss a future maximum likelihood extension. CONCLUSIONS Using both synthetic data and alignments from the Myc, Max and p53 protein families, we find that inferring relative rather than absolute rates has several advantages. First, both empirical likelihoods and Bayes factors show strong preference for the relative-rate model, with a mean Delta ln P=-0.458 per alignment site. Second, the computed likelihoods and Bayes factors were essentially independent of the relative-rate prior, indicating that good estimates of the posterior rate distribution are not required a priori. Third, a novel finding is that rates can be accurately inferred even when up to approximately 4 substitutions per site have occurred. Thus biologically relevant putative hypervariable sites can be identified as easily as conserved sites. Lastly, our model treats rates and tree branch-lengths as completely identifiable, allowing for the first time coherent simultaneous inference of branch-lengths and site-specific evolutionary rates. AVAILABILITY Source code for the utility described is available under a BSD-style license at http://www.fernandes.org/txp/article/9/site-specific-relative-evolutionary-rates.
Collapse
Affiliation(s)
- Andrew D Fernandes
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A5C1, Canada.
| | | |
Collapse
|
23
|
Fernandes AD, Atchley WR. Biochemical and functional evidence of p53 homology is inconsistent with molecular phylogenetics for distant sequences. J Mol Evol 2008; 67:51-67. [PMID: 18560747 DOI: 10.1007/s00239-008-9124-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/11/2008] [Accepted: 05/12/2008] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is mutated in approximately 50% of all human cancer cases worldwide. It is commonly assumed that the phylogenetic history of this important tumor suppressor has been thoroughly studied; however, few detailed studies of the entire extended p53 protein family have been reported, and none comprehensively and simultaneously consider functional, molecular, and phylogenetic data. Herein we examine a diverse collection of reported p53-like protein sequences, including representatives from the arthropods, nematodes, and protists, with the goal of answering several important questions. First, what evidence supports these highly divergent proteins being true homologues to the p53 family? Second, is the inferred overall family phylogeny concordant with known structures and functions? Third, does the extended p53 family possess recognizable conserved sites outside of the within-chordate, highly-conserved DNA-binding domain? Our study shows that the biochemical and functional evidence of p53 homology for nematodes, arthropods, and protists is inconsistent with their implied phylogenetic relationship within the overall family. Although these divergent sequences are always reported as functionally similar to human p53, our results confirm and extend the hypothesis that p63 is a far more appropriate protein for comparison. Within these divergent sequences, we find minimal conservation within the DNA-binding domain, and no conservation elsewhere. Taken together, our findings suggest that these sequences are not bona fide homologues of the extended p53 family and provide baseline criteria for the future identification and characterization of distant p53-family homologues.
Collapse
Affiliation(s)
- Andrew D Fernandes
- Graduate Program in Biomathematics, North Carolina State University, Raleigh, NC 27695-7614, USA.
| | | |
Collapse
|
24
|
Abstract
This overview provides an illustrated, comprehensive survey of some commonly observed protein‐fold families and structural motifs, chosen for their functional significance. It opens with descriptions and definitions of the various elements of protein structure and associated terminology. Following is an introduction into web‐based structural bioinformatics that includes surveys of interactive web servers for protein fold or domain annotation, protein‐structure databases, protein‐structure‐classification databases, structural alignments of proteins, and molecular graphics programs available for personal computers. The rest of the overview describes selected families of protein folds in terms of their secondary, tertiary, and quaternary structural arrangements, including ribbon‐diagram examples, tables of representative structures with references, and brief explanations pointing out their respective biological and functional significance.
Collapse
Affiliation(s)
- Peter D Sun
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | | | | |
Collapse
|
25
|
Bermejo GA, Llinás M. Deuterated protein folds obtained directly from unassigned nuclear overhauser effect data. J Am Chem Soc 2008; 130:3797-805. [PMID: 18318535 DOI: 10.1021/ja074836e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate the feasibility of determining the global fold of a highly deuterated protein from unassigned experimental NMR nuclear Overhauser effect (NOE) data only. The method relies on the calculation of a spatial configuration of covalently unconnected protons-a "cloud"-directly from unassigned distance restraints derived from 13C- and 15N-edited NOESY spectra. Each proton in the cloud, labeled by its chemical shift and that of the directly bound 13C or 15N, is subsequently mapped to specific atoms in the protein. This is achieved via graph-theoretical protocols that search for connectivities in graphs that encode the structural information within the cloud. The peptidyl HN chain is traced by seeking for all possible routes and selecting the one that yields the minimal sum of sequential distances. Complete proton identification in the cloud is achieved by linking the side-chain protons to proximal main-chain HNs via bipartite graph matching. The identified protons automatically yield the NOE assignments, which in turn are used for structure calculation with RosettaNMR, a protocol that incorporates structural bias derived from protein databases. The method, named Sparse-Constraint CLOUDS, was applied to experimental NOESY data on the 58-residue Z domain of staphylococcal protein A. The generated structures are of similar accuracy to those previously reported, which were derived via a conventional approach involving a larger NMR data set. Additional tests were performed on seven reported protein structures of various folds, using restraint lists simulated from the known atomic coordinates.
Collapse
Affiliation(s)
- Guillermo A Bermejo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
26
|
Matheny CJ, Speck ME, Cushing PR, Zhou Y, Corpora T, Regan M, Newman M, Roudaia L, Speck CL, Gu TL, Griffey SM, Bushweller JH, Speck NA. Disease mutations in RUNX1 and RUNX2 create nonfunctional, dominant-negative, or hypomorphic alleles. EMBO J 2007; 26:1163-75. [PMID: 17290219 PMCID: PMC1852839 DOI: 10.1038/sj.emboj.7601568] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Accepted: 01/02/2007] [Indexed: 12/29/2022] Open
Abstract
Monoallelic RUNX1 mutations cause familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML). Sporadic mono- and biallelic mutations are found at high frequencies in AML M0, in radiation-associated and therapy-related myelodysplastic syndrome and AML, and in isolated cases of AML M2, M5a, M3 relapse, and chronic myelogenous leukemia in blast phase. Mutations in RUNX2 cause the inherited skeletal disorder cleidocranial dysplasia (CCD). Most hematopoietic missense mutations in Runx1 involve DNA-contacting residues in the Runt domain, whereas the majority of CCD mutations in Runx2 are predicted to impair CBFbeta binding or the Runt domain structure. We introduced different classes of missense mutations into Runx1 and characterized their effects on DNA and CBFbeta binding by the Runt domain, and on Runx1 function in vivo. Mutations involving DNA-contacting residues severely inactivate Runx1 function, whereas mutations that affect CBFbeta binding but not DNA binding result in hypomorphic alleles. We conclude that hypomorphic RUNX2 alleles can cause CCD, whereas hematopoietic disease requires more severely inactivating RUNX1 mutations.
Collapse
Affiliation(s)
| | - Maren E Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Patrick R Cushing
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Yunpeng Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Takeshi Corpora
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Michael Regan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Miki Newman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Liya Roudaia
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Caroline L Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Ting-Lei Gu
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Stephen M Griffey
- Comparative Pathology Laboratory, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Nancy A Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
27
|
Li Z, Lukasik SM, Liu Y, Grembecka J, Bielnicka I, Bushweller JH, Speck NA. A mutation in the S-switch region of the Runt domain alters the dynamics of an allosteric network responsible for CBFbeta regulation. J Mol Biol 2006; 364:1073-83. [PMID: 17059830 PMCID: PMC1783549 DOI: 10.1016/j.jmb.2006.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 08/26/2006] [Accepted: 10/02/2006] [Indexed: 02/03/2023]
Abstract
The Runt domain is the DNA binding domain of the core binding factor (CBF) Runx subunits. The CBFs are transcription factors that play critical roles in hematopoiesis, bone, and neuron development in mammals. A common non-DNA binding CBFbeta subunit heterodimerizes with the Runt domain of the Runx proteins and allosterically regulates its affinity for DNA. Previous NMR dynamics studies suggested a model whereby CBFbeta allosterically regulates DNA binding by quenching conformational exchange in the Runt domain, particularly in the S-switch region and the betaE'-F loop. We sought to test this model, and to this end introduced all possible single amino acid substitutions into the S-switch region and the betaE'-F loop, and screened for mutations that enhanced DNA-binding. We demonstrate that one Runt domain mutant, R164N, binds both DNA and CBFbeta with higher affinity, but it is less sensitive to allosteric regulation by CBFbeta. Analysis of NMR relaxation data shows that the chemical exchange exhibited by the wild-type Runt domain is largely quenched by the R164N substitution. These data support a model in which the dynamic behavior of a network of residues connecting the CBFbeta and DNA binding sites on the Runt domain plays a critical role in the mechanism of allosteric regulation. This study provides an important functional link between dynamic behavior and protein allosteric function, consistent with results on other allosterically regulated proteins.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover,
New Hampshire 03755
| | - Steven M. Lukasik
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Yizhou Liu
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Jolanta Grembecka
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - Izabela Bielnicka
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
| | - John H. Bushweller
- Department of Molecular Physiology and Biological Physics,
University of Virginia, Charlottesville, Virginia 22906-0011
- Corresponding authors: Nancy A. Speck, Phone:
603-650-1159, Fax: 603-650-1128, , John
H. Bushweller, Phone: 434-243-6409, Fax: 434-982-1616,
| | - Nancy A. Speck
- Department of Biochemistry, Dartmouth Medical School, Hanover,
New Hampshire 03755
- Corresponding authors: Nancy A. Speck, Phone:
603-650-1159, Fax: 603-650-1128, , John
H. Bushweller, Phone: 434-243-6409, Fax: 434-982-1616,
| |
Collapse
|
28
|
Habtemariam B, Anisimov VM, MacKerell AD. Cooperative binding of DNA and CBFbeta to the Runt domain of the CBFalpha studied via MD simulations. Nucleic Acids Res 2005; 33:4212-22. [PMID: 16049027 PMCID: PMC1180745 DOI: 10.1093/nar/gki724] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Runt domain (RD) is the DNA-binding region of the Runx genes. A related protein, known as core binding factor beta (CBFbeta) also binds to the RD to enhance RD-DNA interaction by 6- to 10-fold. Here, we report results from molecular dynamics (MD) simulations of RD alone, as a dimer in complexes with DNA and CBFbeta and in a ternary complex with DNA and CBFbeta. Consistent with the experimental findings, in the presence of CBFbeta the estimated free energy of binding of RD to the DNA is more favorable, which is shown to be due to more favorable intermolecular interactions and desolvation contributions. Also contributing to the enhanced binding are favorable intramolecular interactions between the 'wing' residues (RD residues 139-145) and the 'wing1' residues (RD residues 104-116). The simulation studies also indicate that the RD-CBFbeta binding is more favorable in the presence of DNA due to a more favorable RD-CBFbeta interaction energy. In addition, it is predicted that long-range interactions involving ionic residues contribute to binding cooperativity. Results from the MD calculations are used to interpret a variety of experimental mutagenesis data. A novel role for RD Glu116 to the RD-CBFbeta interaction is predicted.
Collapse
Affiliation(s)
| | | | - Alexander D. MacKerell
- To whom correspondence should be addressed at 20 Penn Street, Baltimore, MD 21201, USA. Tel: +1 706 410 7442; Fax: +1 410 706 5017;
| |
Collapse
|
29
|
Inman CK, Li N, Shore P. Oct-1 counteracts autoinhibition of Runx2 DNA binding to form a novel Runx2/Oct-1 complex on the promoter of the mammary gland-specific gene beta-casein. Mol Cell Biol 2005; 25:3182-93. [PMID: 15798204 PMCID: PMC1069618 DOI: 10.1128/mcb.25.8.3182-3193.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The transcription factor Runx2 is essential for the expression of a number of bone-specific genes and is primarily considered a master regulator of bone development. Runx2 is also expressed in mammary epithelial cells, but its role in the mammary gland has not been established. Here we show that Runx2 forms a novel complex with the ubiquitous transcription factor Oct-1 to regulate the expression of the mammary gland-specific gene beta-casein. The Runx2/Oct-1 complex forms on a Runx/octamer element which is highly conserved in casein promoters. Chromatin immunoprecipitation, RNA interference, promoter mutagenesis, and transient expression analyses were used to demonstrate that the Runx2/Oct-1 complex contributes to the transcriptional regulation of the beta-casein gene. Analysis of the complex revealed autoinhibitory domains for DNA binding in both the N-terminal and the C-terminal regions of Runx2. Oct-1 stimulates the recruitment of Runx2 to the beta-casein promoter by interacting with the C-terminal region of Runx2, suggesting that Oct-1 stimulates Runx2 recruitment by relieving the autoinhibition of Runx2 DNA binding. These findings demonstrate that Runx2 collaborates with Oct-1 and contributes to the expression of a mammary gland-specific gene.
Collapse
Affiliation(s)
- Claire K Inman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Rd., Manchester M13 9PT, United Kingdom
| | | | | |
Collapse
|
30
|
Jackson Behan K, Fair J, Singh S, Bogwitz M, Perry T, Grubor V, Cunningham F, Nichols CD, Cheung TL, Batterham P, Pollock JA. Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development. Dev Genes Evol 2005; 215:423-35. [PMID: 15868204 DOI: 10.1007/s00427-005-0490-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Physical and functional characteristics of the RUNX family of transcription factors are conserved between vertebrates and the Drosophila protein Lozenge. The runt-homology domain responsible for DNA binding and also the C-terminus are both nearly identical between the two proteins. The mammalian and fly proteins heterodimerize with a non-DNA binding partner protein to form a core binding factor essential for gene regulation during cell differentiation. The mammalian protein RUNX1 (AML1/PEBP2alphaB) interacts with the transcription factor Ets-1 to increase DNA binding and transactivation potential. Alternative splicing of the mammalian RUNX1 removes a domain required for this cooperative transactivation. In this work we determine the structure of the lozenge transcription unit and map 21 mutations. We show that the lozenge transcript is alternatively spliced during eye development to remove an Ets interaction domain. Emphasis is placed on Pointed the Drosophila homolog of the vertebrate Ets-1 protein; both Lozenge and Pointed proteins are needed for the activation of prospero expression. We use site-directed mutagenesis and yeast two-hybrid analysis to show that conserved amino acids within the alternate Lozenge exon are important for interaction with Pointed. Furthermore, the ectopic expression of Lozenge is sufficient to rescue Prospero expression in the presence of the Pointed competitor, Yan(ACT). We show that both lozenge isoforms are expressed during eye development and that the relative ratio of the transcripts for the two isoforms is sensitive to changes in Ras activity. We suggest that during eye development, Lozenge isoforms function in divergent roles, either interacting with Pointed on downstream targets or by functioning independently to establish distinct cell fates.
Collapse
|
31
|
Yoshida N, Ogata T, Tanabe K, Li S, Nakazato M, Kohu K, Takafuta T, Shapiro S, Ohta Y, Satake M, Watanabe T. Filamin A-bound PEBP2beta/CBFbeta is retained in the cytoplasm and prevented from functioning as a partner of the Runx1 transcription factor. Mol Cell Biol 2005; 25:1003-12. [PMID: 15657428 PMCID: PMC543995 DOI: 10.1128/mcb.25.3.1003-1012.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The heterodimeric transcription factor PEBP2/CBF is composed of a DNA-binding subunit, called Runx1, and a non-DNA-binding subunit, called PEBP2beta/CBFbeta. The Runx1 protein is detected exclusively in the nuclei of most cells and tissues, whereas PEBP2beta is located in the cytoplasm. We addressed the mechanism by which PEBP2beta localizes to the cytoplasm and found that it is associated with filamin A, an actin-binding protein. Filamin A retains PEBP2beta in the cytoplasm, thereby hindering its engagement as a Runx1 partner. The interaction with filamin A is mediated by a region within PEBP2beta that includes amino acid residues 68 to 93. The deletion of this region or the repression of filamin A enables PEBP2beta to translocate to the nucleus. Based on these observations, we propose that PEBP2beta has two distinct domains, a newly defined regulatory domain that interacts with filamin A and the previously identified Runx1-binding domain.
Collapse
Affiliation(s)
- Naomi Yoshida
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yan J, Liu Y, Lukasik SM, Speck NA, Bushweller JH. CBFbeta allosterically regulates the Runx1 Runt domain via a dynamic conformational equilibrium. Nat Struct Mol Biol 2004; 11:901-6. [PMID: 15322525 DOI: 10.1038/nsmb819] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 06/18/2004] [Indexed: 11/09/2022]
Abstract
Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBFalpha subunit and non-DNA-binding CBFbeta subunit. The CBFbeta subunit increases the affinity of the DNA-binding Runt domain of CBFalpha for DNA while making no direct contacts to the DNA. We present evidence for conformational exchange in the S-switch region in a Runt domain-DNA complex that is quenched upon CBFbeta binding. Analysis of (15)N backbone relaxation parameters shows that binding of CBFbeta reduces the backbone dynamics in the microsecond-to-millisecond time frame for several regions of the Runt domain that make energetically important contacts with the DNA. The DNA also undergoes conformational exchange in the Runt domain-DNA complex that is quenched in the presence of CBFbeta. Our results indicate that allosteric regulation by the CBFbeta subunit is mediated by a shift in an existing dynamic conformational equilibrium of both the Runt domain and DNA.
Collapse
Affiliation(s)
- Jiangli Yan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22906, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Runt-related (RUNX) gene family is composed of three members, RUNX1/AML1, RUNX2 and RUNX3, and encodes the DNA-binding (alpha) subunits of the Runt domain transcription factor polyomavirus enhancer-binding protein 2 (PEBP2)/core-binding factor (CBF), which is a heterodimeric transcription factor. RUNX1 is most frequently involved in human acute leukemia. RUNX2 shows oncogenic potential in mouse experimental system. RUNX3 is a strong candidate as a gastric cancer tumor suppressor. The beta subunit gene of PEBP2/CBF is also frequently involved in chromosome rearrangements associated with human leukemia. In this Overview, I will summarize how this growing field has been formed and what are the challenging new frontiers for better understanding of the oncogenic potential of this gene family.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology and Oncology Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Singapore.
| |
Collapse
|
34
|
Harada H, Harada Y, Niimi H, Kyo T, Kimura A, Inaba T. High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 2003; 103:2316-24. [PMID: 14615365 DOI: 10.1182/blood-2003-09-3074] [Citation(s) in RCA: 235] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A high incidence of somatically acquired point mutations in the AML1/RUNX1 gene has been reported in poorly differentiated acute myeloid leukemia (AML, M0) and in radiation-associated and therapy-related myelodysplastic syndrome (MDS) or AML. The vast majority of AML1 mutations identified in these diseases were localized in the amino (N)-terminal region, especially in the DNA-binding Runt homology domain. In this report, we show that AML1 point mutations were found in 26 (23.6%) of 110 patients with refractory anemia with excess blasts (RAEB), RAEB in transformation (RAEBt), and AML following MDS (defined these 3 disease categories as MDS/AML). Among them, 9 (8.2%) mutations occurred in the carboxy (C)-terminal region, which were exclusively found in MDS/AML and were strongly correlated with sporadic MDS/AML. All patients with MDS/AML with an AML1 mutation expressed wild-type AML1 protein and had a significantly worse prognosis than those without AML1 mutations. Most AML1 mutants lost trans-activation potential, regardless of their DNA binding potential. These data suggested that AML1 point mutation is one of the major driving forces of MDS/AML, and these mutations may represent a distinct clinicopathologic-genetic entity.
Collapse
Affiliation(s)
- Hironori Harada
- Department of Molecular Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| | | | | | | | | | | |
Collapse
|
35
|
Zhang L, Li Z, Yan J, Pradhan P, Corpora T, Cheney MD, Bravo J, Warren AJ, Bushweller JH, Speck NA. Mutagenesis of the Runt domain defines two energetic hot spots for heterodimerization with the core binding factor beta subunit. J Biol Chem 2003; 278:33097-104. [PMID: 12807883 DOI: 10.1074/jbc.m303972200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways and in human disease. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancers. CBFs consist of a DNA-binding CBF alpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBF beta subunit. CBF alpha binds DNA in a sequence-specific manner, whereas CBF beta enhances DNA binding by CBF alpha. Both DNA binding and heterodimerization with CBF beta are mediated by a single domain in the CBF alpha subunits known as the "Runt domain." We analyzed the energetic contribution of amino acids in the Runx1 Runt domain to heterodimerization with CBF beta. We identified two energetic "hot spots" that were also found in a similar analysis of CBF beta (Tang, Y.-Y., Shi, J., Zhang, L., Davis, A., Bravo, J., Warren, A. J., Speck, N. A., and Bushweller, J. H. (2000) J. Biol. Chem. 275, 39579-39588). The importance of the hot spot residues for Runx1 function was demonstrated in in vivo transient transfection assays. These data refine the structural analyses and further our understanding of the Runx1-CBF beta interface.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ, Bushweller JH, Speck NA. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 2003; 278:33088-96. [PMID: 12807882 DOI: 10.1074/jbc.m303973200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in hematopoiesis and in the development of bone, stomach epithelium, and proprioceptive neurons. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancer. CBFs consist of a DNA-binding CBF alpha subunit and a non-DNA-binding CBF beta subunit. DNA binding and heterodimerization with CBF beta are mediated by the Runt domain in CBF alpha. Here we report an alanine-scanning mutagenesis study of the Runt domain that targeted amino acids identified by structural studies to reside at the DNA or CBF beta interface, as well as amino acids mutated in human disease. We determined the energy contributed by each of the DNA-contacting residues in the Runt domain to DNA binding both in the absence and presence of CBF beta. We propose mechanisms by which mutations in the Runt domain found in hematopoietic and bone disorders affect its affinity for DNA.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zheng D, Huang YJ, Moseley HNB, Xiao R, Aramini J, Swapna GVT, Montelione GT. Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci 2003; 12:1232-46. [PMID: 12761394 PMCID: PMC2323888 DOI: 10.1110/ps.0300203] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 03/11/2003] [Accepted: 03/12/2003] [Indexed: 10/27/2022]
Abstract
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.
Collapse
Affiliation(s)
- Deyou Zheng
- Center for Advanced Biotechnology and Medicine (CABM), Northeast Structural Genomics Consortium, and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Zhang L, Lukasik SM, Speck NA, Bushweller JH. Structural and functional characterization of Runx1, CBF beta, and CBF beta-SMMHC. Blood Cells Mol Dis 2003; 30:147-56. [PMID: 12732176 DOI: 10.1016/s1079-9796(03)00022-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Core binding factors (CBFs) are heterodimeric transcription factors consisting of a DNA-binding CBF alpha subunit and non-DNA-binding CBF beta subunit. DNA binding and heterodimerization is mediated by a single domain in the CBF alpha subunit called the Runt domain, while sequences flanking the Runt domain confer other biochemical activities such as transactivation. On the other hand, the heterodimerization domain in CBF beta is the only functional domain that has been identified in this subunit. The biophysical properties of the Runt domain and the CBF beta heterodimerization domain, and the structures of the isolated domains as well as of the Runt domain-DNA, Runt domain-CBF beta, and ternary Runt domain-CBF beta-DNA complexes, have been characterized over the past several years, and are summarized in this review.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
39
|
Yoshida T, Kanegane H, Osato M, Yanagida M, Miyawaki T, Ito Y, Shigesada K. Functional analysis of RUNX2 mutations in cleidocranial dysplasia: novel insights into genotype-phenotype correlations. Blood Cells Mol Dis 2003; 30:184-93. [PMID: 12732182 DOI: 10.1016/s1079-9796(03)00020-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cleidocranial dysplasia (CCD) is an inherited autosomal-dominant skeletal disease caused by heterozygous mutations in the osteoblast-specific transcription factor, RUNX2. We have performed mutational analysis of RUNX2 on 24 unrelated patients with CCD. In 17 patients, 16 distinct mutations were detected in the coding region of RUNX2: 4 frameshift, 3 nonsense, 6 missense, and 2 splicing mutations alongside one polymorphism. The missense mutations were all clustered within the Runt domain and their protein products showed neither DNA binding nor transactivation. On the other hand, some mutant RUNX2 had the Runt domain intact and remained partially competent for transactivation. Coincidentally, one important phenotype of CCD, the short stature, was significantly milder in the patients with the intact Runt domain than those without. Furthermore, a remarkable correlation was found between the short stature and the number of supernumerary teeth. On the other hand, the classic CCD phenotype, hypoplastic clavicles or open fontanelles, was invariably observed regardless of the degree of short stature or supernumerary teeth. Overall, these results suggest that CCD could result from a much smaller loss in the RUNX2 function than envisioned on the basis of the conventional haploinsufficiency model. This makes an interesting contrast to the case of familial and sporadic leukemias mediated by RUNX1 mutations, in which mutants acting in a dominant negative manner have been suggested to confer a higher propensity to develop leukemia.
Collapse
Affiliation(s)
- Taketoshi Yoshida
- Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama 930-0194, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Harada H, Harada Y, Tanaka H, Kimura A, Inaba T. Implications of somatic mutations in the AML1 gene in radiation-associated and therapy-related myelodysplastic syndrome/acute myeloid leukemia. Blood 2003; 101:673-80. [PMID: 12393679 DOI: 10.1182/blood-2002-04-1010] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Somatically acquired point mutations of AML1/RUNX1 gene have been recently identified in rare cases of acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Moreover, germ line mutations of AML1 were found in an autosomal dominant disease, familial platelet disorder with predisposition to AML (FPD/AML), suggesting that AML1 mutants, as well as AML1 chimeras, contribute to the transformation of hematopoietic progenitors. In this report, we showed that AML1 point mutations were found in 6 (46%) of 13 MDS patients among atomic bomb (A-bomb) survivors in Hiroshima. Unlike acute or chronic leukemia patients among A-bomb survivors, MDS patients exposed relatively low-dose radiation and developed the disease after a long latency period. AML1 mutations also were found in 5 (38%) of 13 therapy-related AML/MDS patients who were treated with alkylating agents with or without local radiation therapy. In contrast, frequency of AML1 mutation in sporadic MDS patients was 2.7% (2 of 74). Among AML1 mutations identified in this study, truncated-type mutants lost DNA binding potential and trans-activation activity. All missense mutations with one exception (Gly42Arg) lacked DNA binding ability and down-regulated the trans-activation potential of wild-type AML1 in a dominant-negative fashion. The Gly42Arg mutation that was shared by 2 patients bound DNA even more avidly than wild-type AML1 and enhanced the trans-activation potential of normal AML1. These results suggest that AML1 point mutations are related to low-dose radiation or alkylating agents and play a role distinct from that of leukemogenic chimeras as a result of chromosomal translocations caused by sublethal radiation or topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Hironori Harada
- Department of Molecular Oncology and the Department of Hematology/Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Japan.
| | | | | | | | | |
Collapse
|
41
|
Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, Groner Y, Shakked Z. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure 2002; 10:1395-407. [PMID: 12377125 DOI: 10.1016/s0969-2126(02)00853-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Runt domain proteins are transcription regulators of major developmental pathways. Here we present the crystal structures of the Runt domain (RD) of the human protein RUNX1 and its DNA binding site in their free states and compare them with the published crystal structures of RD bound to DNA and to the partner protein CBFbeta. We demonstrate that (1) RD undergoes an allosteric transition upon DNA binding, which is further stabilized by CBFbeta, and that (2) the free DNA target adopts a bent-helical conformation compatible with that of the complex. These findings elucidate the mechanism by which CBFbeta enhances RD binding to DNA as well as the role of the intrinsic conformation of the DNA target in the recognition process.
Collapse
Affiliation(s)
- Deborah Bartfeld
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bäckström S, Wolf-Watz M, Grundström C, Härd T, Grundström T, Sauer UH. The RUNX1 Runt domain at 1.25A resolution: a structural switch and specifically bound chloride ions modulate DNA binding. J Mol Biol 2002; 322:259-72. [PMID: 12217689 DOI: 10.1016/s0022-2836(02)00702-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The evolutionarily conserved Runt homology domain is characteristic of the RUNX family of heterodimeric eukaryotic transcription factors, including RUNX1, RUNX2 and RUNX3. The genes for RUNX1, also termed acute myeloid leukemia protein 1, AML1, and its dimerization partner core-binding factor beta, CBFbeta, are essential for hematopoietic development and are together the most common targets for gene rearrangements in acute human leukemias. Here, we describe the crystal structure of the uncomplexed RUNX1 Runt domain at 1.25A resolution and compare its conformation to previously published structures in complex with DNA, CBFbeta or both. We find that complex formation induces significant structural rearrangements in this immunoglobulin (Ig)-like DNA-binding domain. Most pronounced is the movement of loop L11, which changes from a closed conformation in the free Runt structure to an open conformation in the CBFbeta-bound and DNA-bound forms. This transition, which we refer to as the S-switch, and accompanying structural movements that affect other parts of the Runt domain are crucial for sustained DNA binding. The closed to open transition can be induced by CBFbeta alone; suggesting that one role of CBFbeta is to trigger the S-switch and to stabilize the Runt domain in a conformation enhanced for DNA binding.A feature of the Runt domain hitherto unobserved in any Ig-like DNA-binding domain is the presence of two specifically bound chloride ions. One chloride ion is coordinated by amino acid residues that make direct DNA contact. In a series of electrophoretic mobility-shift analyses, we demonstrate a chloride ion concentration-dependent stimulation of the DNA-binding activity of Runt in the physiological range. A comparable DNA-binding stimulation was observed for negatively charged amino acid residues. This suggests a regulatory mechanism of RUNX proteins through acidic amino acid residues provided by activation domains during cooperative interaction with other transcription factors.
Collapse
Affiliation(s)
- Stefan Bäckström
- Biocrystallography Group, Umeå Centre for Molecular Pathogenesis (UCMP), Umeå University, SE-901 87 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Nancy A Speck
- Department of Biochemisty, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | |
Collapse
|
44
|
Langabeer SE, Gale RE, Rollinson SJ, Morgan GJ, Linch DC. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosomes Cancer 2002; 34:24-32. [PMID: 11921279 DOI: 10.1002/gcc.10031] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The AML1 gene encodes a transcription factor that, together with its heterodimeric partner CBFB, regulates a number of target genes that are essential for normal hemopoiesis. In acute myeloid leukemia (AML), AML1 is disrupted not only by chromosomal translocations but also by mutations in the runt domain, which binds both DNA and CBFB. Acquired mutations have been described predominantly in the AML FAB type M0. To date, most patients appear to have biallelic disease, suggesting a complete lack of normal AML1 function. Inherited loss of function mutations thought to lead to haploinsufficiency also have been described in patients who have a familial disorder with predisposition to AML (FPD/AML), indicating the role of AML1 in megakaryopoiesis. Using single-strand conformation polymorphism analysis, we studied the AML1 runt domain in 41 patients with M0 AML and identified potentially pathologic mutations in five (12%). Biallelic disease could be confirmed in only one patient, using loss of heterozygosity studies. At least three of the mutations would lead to truncated proteins similar to those reported in FPD/AML, suggesting that haploinsufficiency plays a role in the pathogenesis of this minimally differentiated type of leukemia. The incidence of acquired mutations in AML patients with acute megakaryoblastic leukemia (FAB type M7) was the same as that reported in other non-M0 patients, with only one mutation detected in 20 (5%) patients studied.
Collapse
MESH Headings
- Adult
- Aged
- Core Binding Factor Alpha 2 Subunit
- DNA Mutational Analysis
- DNA-Binding Proteins/genetics
- Female
- Humans
- Leukemia, Megakaryoblastic, Acute/classification
- Leukemia, Megakaryoblastic, Acute/genetics
- Leukemia, Megakaryoblastic, Acute/immunology
- Leukemia, Myeloid, Acute/classification
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Loss of Heterozygosity/genetics
- Male
- Middle Aged
- Molecular Sequence Data
- Mutation/genetics
- Proto-Oncogene Proteins
- Recurrence
- Remission Induction
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Stephen E Langabeer
- Department of Haematology, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Buijs A, Poddighe P, van Wijk R, van Solinge W, Borst E, Verdonck L, Hagenbeek A, Pearson P, Lokhorst H. A novel CBFA2 single-nucleotide mutation in familial platelet disorder with propensity to develop myeloid malignancies. Blood 2001; 98:2856-8. [PMID: 11675361 DOI: 10.1182/blood.v98.9.2856] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hereditary mutations associated with hematologic malignancies are rare. Heterozygous mutations affecting the hematopoietic transcription factor CBFA2 (also AML1/RUNX1) were recently reported to be associated with familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML, MIM 601399). A new 3-generation family with FPD/AML with a novel CBFA2 mutation is described. In this family, AML was diagnosed in a second-generation male. After allogeneic stem cell transplantation from his human leukocyte antigen-identical sister, a donor-derived, genetically identical leukemia developed in the recipient and the donor. Sequencing analysis identified a G-to-T transition within the CBFA2 gene, which involves codon 198, encoding a conserved aspartic acid within the DNA- binding Runt domain. Three of 5 siblings affected with the FPD/AML trait harbored the mutation in a heterozygous form. This experience underscores the necessity of performing mutation analysis of the CBFA2 gene before sibling allogeneic transplantation in families with FPD/AML.
Collapse
Affiliation(s)
- A Buijs
- Division of Medical Genetics and the Departments of Hematology, Immunology, and Clinical Chemistry, University Medical Center Utrecht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Chromosomal translocations are one of the hallmarks of human leukemias. These structural abnormalities result in the generation of genetic mutations that play a direct role in the transformation of hematopoietic stem cells. Some of the most common targets of these chromosomal rearrangements are the genes that encode the AML1/CBFbeta transcription factor complex. The AML1/CBFbeta complex plays a critical role in normal hematopoiesis, controlling the initiation of a transcriptional cascade required for the formation of definitive hematopoietic stem cells. Understanding how alterations in the normal biologic activity of this transcription factor complex lead to the initiation of leukemia will provide critical insights in the molecular pathogenesis of this disease. These insights in turn are likely to lead to the development of more rational approaches to the treatment of acute leukemia. In this review, we will summarize our current understanding of the mechanisms by which alterations in the activity of AML1/CBFbeta contribute to the development of leukemia.
Collapse
Affiliation(s)
- R B Lorsbach
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
47
|
MESH Headings
- Animals
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Models, Genetic
- Multigene Family
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Structure-Activity Relationship
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- J D Licht
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
48
|
Yan J, Bushweller JH. An optimized PCR-based procedure for production of 13C/15N-labeled DNA. Biochem Biophys Res Commun 2001; 284:295-300. [PMID: 11394876 DOI: 10.1006/bbrc.2001.4979] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have substantially improved a procedure that we previously described for producing 13C/15N-labeled DNA (Chen et al., FEBS Lett. 436, 372-376, 1998) to provide an economical and straightforward approach to the preparation of labeled DNA. The conditions for the PCR reactions have been optimized to permit the use of low concentrations of the costly labeled dNTPs (50 microM for each). In addition, a rapid and high-yield purification procedure has been developed that allows us to obtain a high yield of very pure labeled DNA. These modifications to our original procedure permit us to obtain 1.9 mg of an 18 bp DNA oligomer from 20 mg of dNTPs (ca. 10% yield from the starting dNTPs). This is sufficient material for the preparation of 0.4 mM sample in a volume of 400 microl. In summary, this procedure is a cost-effective, time-efficient procedure for the production of labeled DNA for NMR studies.
Collapse
Affiliation(s)
- J Yan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908-0736, USA
| | | |
Collapse
|
49
|
Nagata T, Werner MH. Functional mutagenesis of AML1/RUNX1 and PEBP2 beta/CBF beta define distinct, non-overlapping sites for DNA recognition and heterodimerization by the Runt domain. J Mol Biol 2001; 308:191-203. [PMID: 11327761 DOI: 10.1006/jmbi.2001.4596] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Runt domain family of transcription factors play key roles in transcriptional regulation of definitive hematopoiesis and osteogenesis. This transcription factor family is characterized by a DNA-binding alpha-subunit harboring the Runt domain and a secondary subunit, beta, which binds to the Runt domain and enhances its interaction with DNA. Missense mutations in the Runt domain from either the blood or bone-related gene product are associated with the onset of acute human leukemia as well as a disease of skeletal patterning known as cleidocranial dysplasia. NMR "footprinting" analysis of Runt domain/beta/DNA ternary complexes in solution previously identified the likely residues that form the heterodimerization and DNA-binding surfaces of the Runt domain. Functional mutagenesis at 37 positions in the Runt domain or beta confirms the original identification of these interaction surfaces and reveals that the heterodimerization and DNA-binding surfaces of the Runt domain occur at distinct, non-overlapping sites within the domain. The analysis of an additional 21 disease-related missense mutations identified from patients with either blood or bone disease demonstrates that the primary defect in these patients is a failure in DNA-recognition by the Runt domain. The molecular basis for the DNA-binding defect is analyzed in the context of the three-dimensional structure of the Runt domain in binary and ternary protein/DNA complexes.
Collapse
Affiliation(s)
- T Nagata
- The Rockefeller University, 1230 York Avenue, Box 42, New York, NY 10021, USA
| | | |
Collapse
|
50
|
Tahirov TH, Inoue-Bungo T, Morii H, Fujikawa A, Sasaki M, Kimura K, Shiina M, Sato K, Kumasaka T, Yamamoto M, Ishii S, Ogata K. Structural analyses of DNA recognition by the AML1/Runx-1 Runt domain and its allosteric control by CBFbeta. Cell 2001; 104:755-67. [PMID: 11257229 DOI: 10.1016/s0092-8674(01)00271-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The core binding factor (CBF) heterodimeric transcription factors comprised of AML/CBFA/PEBP2alpha/Runx and CBFbeta/PEBP2beta subunits are essential for differentiation of hematopoietic and bone cells, and their mutation is intimately related to the development of acute leukemias and cleidocranial dysplasia. Here, we present the crystal structures of the AML1/Runx-1/CBFalpha(Runt domain)-CBFbeta(core domain)-C/EBPbeta(bZip)-DNA, AML1/Runx-1/CBFalpha(Runt domain)-C/EBPbeta(bZip)-DNA, and AML1/Runx-1/CBFalpha(Runt domain)-DNA complexes. The hydrogen bonding network formed among CBFalpha(Runt domain) and CBFbeta, and CBFalpha(Runt domain) and DNA revealed the allosteric regulation mechanism of CBFalpha(Runt domain)-DNA binding by CBFbeta. The point mutations of CBFalpha related to the aforementioned diseases were also mapped and their effect on DNA binding is discussed.
Collapse
Affiliation(s)
- T H Tahirov
- Kanagawa Academy of Science and Technology (KAST), Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama 236-0004, Kanazawa-ku, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|