1
|
Bagdeli S, Abbasi Kajani A, Taheri-Kafrani A. Bioinspired amino acid-functionalized cobalt ferrite nanocomposite: A nanozyme-based colorimetric sensor for sensitive and selective quantification of phenolic compounds and ascorbic acid antioxidant capacity. Food Chem 2024; 457:140144. [PMID: 38901351 DOI: 10.1016/j.foodchem.2024.140144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
The escalating oxidative stress has heightened the daily human demand for diverse antioxidants. Therefore, development of the novel approaches to assess the total antioxidant capacity (TAC) of various nutrients is essential. In this study, drawing inspiration from the active site of native peroxidase enzymes, a novel peroxidase (POD)-like nanozyme was developed based on the cobalt ferrite (CoFe2O4) nanoparticles functionalized with different catalytic amino acids. Based on the TMB/H2O2 colorimetric system, the most substantial enhancement in POD-like activity was obtained by the glutamic acid coating among different charged amino acids studied, with more than 74% increase in specific activity compared to the bare CoFe2O4. A signal-off colorimetric sensing platform based on the obtained nanobiocatalyst was developed for the accurate quantification of the antioxidant capacity of phenolic compounds and vitamin C. The sensitive and selective quantification of ascorbic acid, tannic acid, gallic acid, cyanidin-3-glucoside, and quercetin was obtained by this colorimetric method.
Collapse
Affiliation(s)
- Samira Bagdeli
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Abolghasem Abbasi Kajani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
2
|
Engbers S, van Langevelde PH, Hetterscheid DGH, Klein JEM. Discussing the Terms Biomimetic and Bioinspired within Bioinorganic Chemistry. Inorg Chem 2024; 63:20057-20067. [PMID: 39307983 PMCID: PMC11523218 DOI: 10.1021/acs.inorgchem.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
The terms biomimetic and bioinspired are very relevant in the field of bioinorganic chemistry and have been widely applied. Although they were defined by the International Organization for Standardization in 2015, these terms have at times been used rather ambiguously in the literature. This may be due to the inherent complexity of bioinorganic systems where, for example, a structural model of an enzyme active site may not replicate its function. Conversely, the function of an enzyme may be reproduced in a system where the structure does not resemble the enzyme's active site. To address this, we suggest definitions for the terms biomimetic and bioinspired wherein structure and function have been decoupled. With the help of some representative case studies we have outlined the challenges that may arise and make suggestions on how to apply terminology with careful intention.
Collapse
Affiliation(s)
- Silène Engbers
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, (The Netherlands)
| | - Phebe H. van Langevelde
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Johannes E. M.
N. Klein
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, (The Netherlands)
| |
Collapse
|
3
|
Zhang S, He B, Qu-Bie A, Li M, Luo M, Feng M, Yan X, Sheng H, Li W, Gou Y, Liu Y. Endoperoxidases in biosynthesis of endoperoxide bonds. Int J Biol Macromol 2024; 282:136806. [PMID: 39447789 DOI: 10.1016/j.ijbiomac.2024.136806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Endoperoxides are important sources of ideas for drug discovery. Endoperoxide bonds are considered to be the cause of the interesting biological activities of endoperoxides, but there is limited knowledge regarding the biosynthetic mechanisms of most endoperoxide bonds. In this minireview, we summarize current knowledge about the biosynthesis of endoperoxides in nature and focus our discussion on plant-derived endoperoxides. In short, plants have evolved two systems, photocatalysis and enzyme catalysis, to catalyse the synthesis of endoperoxide bonds. Iron-dependent oxygenases, represented by the α-ketoglutarate (α-KG)-dependent dioxygenase (2-ODD) family, are most likely involved in the enzyme-catalysed reactions of endoperoxides in plants. Moreover, Nardostachys jatamansi (D.Don) DC, a plant native to the Himalayan alpine region, is strongly recommended for use in the discovery of plant-derived endoperoxidases.
Collapse
Affiliation(s)
- Shaoshan Zhang
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Bin He
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Axiang Qu-Bie
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Min Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Mengting Luo
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Mingkang Feng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China
| | - Xinjia Yan
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Huachun Sheng
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Wenbing Li
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Yan Gou
- Sichuan Provincial Institute for Drug Control/NMAP Key Laboratory of Quality Evaluation of Chinese Patent Medicine (Traditional Chinese Patent Medicine), Chengdu 611731, China.
| | - Yuan Liu
- Tibetan Plateau Ethnic Medicinal Resources Protection and Utilization Key Laboratory of National Ethnic Affairs Commission of the People's Republic of China, Chengdu 610225, China; Sichuan Provincial Qiang-Yi Medicinal Resources Protection and Utilization Technology and Engineering Laboratory, Chengdu 610225, China; Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
4
|
Lin YW. Functional metalloenzymes based on myoglobin and neuroglobin that exploit covalent interactions. J Inorg Biochem 2024; 257:112595. [PMID: 38759262 DOI: 10.1016/j.jinorgbio.2024.112595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
Globins, such as myoglobin (Mb) and neuroglobin (Ngb), are ideal protein scaffolds for the design of functional metalloenzymes. To date, numerous approaches have been developed for enzyme design. This review presents a summary of the progress made in the design of functional metalloenzymes based on Mb and Ngb, with a focus on the exploitation of covalent interactions, including coordination bonds and covalent modifications. These include the construction of a metal-binding site, the incorporation of a non-native metal cofactor, the formation of Cys/Tyr-heme covalent links, and the design of disulfide bonds, as well as other Cys-covalent modifications. As exemplified by recent studies from our group and others, the designed metalloenzymes have potential applications in biocatalysis and bioconversions. Furthermore, we discuss the current trends in the design of functional metalloenzymes and highlight the importance of covalent interactions in the design of functional metalloenzymes.
Collapse
Affiliation(s)
- Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Jiang Y, Yao M, Feng J, Niu H, Qiao B, Li B, Wang B, Xiao W, Dong M, Yuan Y. Molecular Insights into Converting Hydroxide Adenosyltransferase into Halogenase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12685-12695. [PMID: 38771136 DOI: 10.1021/acs.jafc.4c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Halogenation plays a unique role in the design of agrochemicals. Enzymatic halogenation reactions have attracted great attention due to their excellent specificity and mild reaction conditions. S-adenosyl-l-methionine (SAM)-dependent halogenases mediate the nucleophilic attack of halide ions (X-) to SAM to produce 5'-XDA. However, only 11 SAM-dependent fluorinases and 3 chlorinases have been reported, highlighting the desire for additional halogenases. SAM-dependent hydroxide adenosyltransferase (HATase) has a similar reaction mechanism as halogenases but uses water as a substrate instead of halide ions. Here, we explored a HATase from the thermophile Thermotoga maritima MSB8 and transformed it into a halogenase. We identified a key dyad W8L/V71T for the halogenation reaction. We also obtained the best performing mutants for each halogenation reaction: M1, M2 and M4 for Cl-, Br- and I-, respectively. The M4 mutant retained the thermostability of HATase in the iodination reaction at 80 °C, which surpasses the natural halogenase SalL. QM/MM revealed that these mutants bind halide ions with more suitable angles for nucleophilic attack of C5' of SAM, thus conferring halogenation capabilities. Our work achieved the halide ion specificity of halogenases and generated thermostable halogenases for the first time, which provides new opportunities to expand the halogenase repertoire from hydroxylase.
Collapse
Affiliation(s)
- Yixun Jiang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Niu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Bingzhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wenhai Xiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Min Dong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Zhu X, Ding Y, Li S, Jiang Y, Chen Y. Electroenzymatic cascade reaction on a biohybrid boosts the chiral epoxidation reaction. Sci Bull (Beijing) 2024; 69:483-491. [PMID: 38123433 DOI: 10.1016/j.scib.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/11/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The chiral epoxidation of styrene and its derivatives is an important transformation that has attracted considerable scientific interest in the chemical industry. Herein, we integrate enzymatic catalysis and electrocatalysis to propose a new route for the chiral epoxidation of styrene and its derivatives. Chloroperoxidase (CPO) functionalized with 1-ethyl-3-methylimidazolium bromide (ILEMB) was loaded onto cobalt nitrogen-doped carbon nanotubes (CoN@CNT) to form a biohybrid (CPO-ILEMB/CoN@CNT). H2O2 species were generated in situ through a two-electron oxygen reduction reaction (2e-ORR) at CoN@CNT to initiate the following enzymatic epoxidation of styrene by CPO. CoN@CNT had high electroactivity for the ORR to produce H2O2 at a more positive potential, prohibiting the conversion of FeIII to FeII in the heme of CPO to maintain enzymatic activity. Meanwhile, CoN@CNT could serve as an ideal carrier for the immobilization of CPO-ILEMB. Hence, the coimmobilization of CPO-ILEMB and CoN@CNT could facilitate the diffusion of intermediate H2O2, which achieved 17 times higher efficiency than the equivalent amounts of free CPO-ILEMB in bulk solution for styrene epoxidation. Notably, an enhancement (∼45%) of chiral selectivity for the epoxidation of styrene was achieved.
Collapse
Affiliation(s)
- Xuefang Zhu
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Ding
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shuni Li
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China
| | - Yucheng Jiang
- School of Chemistry & Chemical Engineering, Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi'an 710119, China.
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
7
|
Liu D, Zhu X, Sun J, Wang P, Chen Y, Jiang Y. Electroenzymatic tandem catalysis for the conversion of nitrate into ammonia. Chem Commun (Camb) 2024; 60:2224-2227. [PMID: 38314638 DOI: 10.1039/d3cc05557d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
A porous silver nanostructure-supported ionic liquid-modified chloroperoxidase nanohybrid was successfully used in electroenzymatic tandem catalysis to achieve an efficient, mild, and stable approach for the conversion of nitrate into ammonia.
Collapse
Affiliation(s)
- Dongqi Liu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.
| | - Xuefang Zhu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.
| | - Jiawei Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.
| | - Pengfei Wang
- Key laboratory of Micro-Nano Powder and Advanced Energy Materials of Anhui Higher Education Instituts, School of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui, 247000, P.R. China.
| | - Yu Chen
- School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.
| | - Yucheng Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P.R. China.
| |
Collapse
|
8
|
Barreiro DS, Oliveira RN, Pauleta SR. Bacterial peroxidases – Multivalent enzymes that enable the use of hydrogen peroxide for microaerobic and anaerobic proliferation. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
9
|
Wang J, Yang J, Huang W, Huang W, Jia R. A mutant R70V/E166A of short manganese peroxidase showing Mn 2+-independent dye decolorization. Appl Microbiol Biotechnol 2023; 107:2303-2319. [PMID: 36843195 DOI: 10.1007/s00253-023-12438-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/28/2023]
Abstract
Il-MnP1, a short-type manganese peroxidase from Irpex lacteus F17, can oxidize some substrates in the absence of Mn2+, but the catalysis was much lower than in the presence of Mn2+. Here, we report a mutant R70V/E166A of Il-MnP1 with some unique properties, which possessed clearly higher catalysis for the decolorization of anthraquinone and azo dyes in the absence of Mn2+ than that of Il-MnP1. Importantly, the optimum pH of R70V/E166A for decolorization of anthraquinone dyes (Reactive Blue 19, RB19) was 6.5, and the mutant achieved high decolorization activities in the range of pH 4.0-7.0, whereas Il-MnP1 only showed decolorization for RB19 at pH 3.5-4.0. In addition, the optimum H2O2 concentration of R70V/E166A for RB19 decolorization was eight times that of Il-MnP1 and the H2O2 stability has improved 1.4 times compared with Il-MnP1. Furthermore, Mn2+ competitively inhibited the oxidation of RB19 by R70V/E166A, explaining the higher catalytic activity of the mutant R70V/E166A in the absence of Mn2+. Molecular docking results suggested that RB19 binds to the distal side of the heme plane in mutant R70V/E166A, which extended from the heme δ-side to the heme γ-side, and close to the mutated residues of R70V and E166A, whereas RB19 could not access the heme pocket of Il-MnP1 due to the steric hindrance of the side-chain group of Arg 70. Thus, this study constructed a useful mutant R70V/E166A and analyzed its higher Mn2+-independent activity, which is very important for better understanding the Mn2+-independent catalytic mechanism for short manganese peroxidases. KEY POINTS: • The mutant R70V/E166A of atypical MnP1 of I. lacteus F17 shows unique catalytic properties. • At pH 6.5, the R70V/E166A had a strong ability to decolorize anthraquinone dyes in the absence of Mn2+. • The binding sites of Reactive Blue 19 in mutant R70V/E166A were elucidated.
Collapse
Affiliation(s)
- Junli Wang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Jun Yang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenhan Huang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Wenting Huang
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China
| | - Rong Jia
- School of Life Science, Anhui University, 111 Jiulong Road, Economic and Technology Development Zone, Hefei, Anhui Province, People's Republic of China, 230601.
- Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
10
|
Zhou J, Wang Z, Bian H, Jiang Y, Zhang R, Wang X. Structure of the Green Heme Isolated from Allylbenzene-Modified Chloroperoxidase: A Novel Heme Architecture Implicating the Mechanisms of CPO Inactivation and Epoxidation. Comput Struct Biotechnol J 2023; 21:2365-2372. [PMID: 37066123 PMCID: PMC10090953 DOI: 10.1016/j.csbj.2023.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The chemical identification of the modified heme (the green heme) during chloroperoxidase catalyzed epoxidation of allylbenzene remains unestablished due to its high instability within the protein matrix, the absence of paramagnetically shifted signals, and the difficulty in obtaining crystals of the modified enzyme. We have established the unambiguous structure of the modified prosthetic heme group, which was extracted from the protein matrix using 2D NMR spectroscopy and LC-MS spectrometry. The modified heme was isolated as a µ-oxo dimer that can be quantitatively converted to the corresponding monomer. The depolymerized green heme displayed characteristic NMR signatures of iron porphyrin complexes, but no Nuclear Overhauser Effect was observable to assist in signal assignment. An alternative strategy was applied by removing the iron center of the green heme, resulting in a stable demetallated green porphyrin species. Complete assignment of all the NMR resonances in the demetallated green heme allowed us to establish the molecular architecture of the modified species as a novel N-alkylated heme. Decisive space correlations between the propyl protons of allylbenzene and the γ meso proton coupled with clear dipolar connectivities between the propyl-2H of the substrate and the β proton in the side chain of the propionic acid at carbon-6 of the porphyrin ring, clearly indicate that allylbenzene was covalently attached to the nitrogen atom of the pyrrole ring III of the prosthetic heme. In this study, the mechanism of green CPO formation and its relation to CPO catalyzed chiral transformations are also discussed. It is concluded that the double-phenyl clamp formed by two phenylalanine residues at the distal heme pocket plays a critical role in fine-tuning substrate orientation that determines the outcome of CPO catalyzed epoxidation of substituted styrenes.
Collapse
Affiliation(s)
- Jieying Zhou
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Zhonghua Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Hedong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products (State Ethnic Affairs Commission), Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning, Guangxi 530006, PR China
| | - Yucheng Jiang
- School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, PR China
| | - Rui Zhang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Xiaotang Wang
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
- Corresponding author.
| |
Collapse
|
11
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
12
|
Rajakumara E, Saniya D, Bajaj P, Rajeshwari R, Giri J, Davari MD. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis. Int J Mol Sci 2022; 24:ijms24010214. [PMID: 36613657 PMCID: PMC9820634 DOI: 10.3390/ijms24010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. Different substrates also affect the properties of P450s by binding to its catalytic pocket. Modulating the redox potential of the heme by substituting iron-coordinating residues changes the chemical reaction, the type of cofactor requirement, and the stereoselectivity of P450s. Around hundreds of P450s are experimentally characterized, therefore, a mechanistic understanding of the factors affecting their catalysis is increasingly vital in the age of synthetic biology and biotechnology. Engineering P450s can enable them to catalyze a variety of chemical reactions viz. oxygenation, peroxygenation, cyclopropanation, epoxidation, nitration, etc., to synthesize high-value chiral organic molecules with exceptionally high stereo- and regioselectivity and catalytic efficiency. This review will focus on recent studies of the mechanistic understandings of the modulation of heme redox potential in the engineered P450 variants, and the effect of small decoy molecules, dual function small molecules, and substrate mimetics on the type of chemical reaction and the catalytic cycle of the P450 enzymes.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
- Correspondence: (E.R.); (M.D.D.)
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Priyanka Bajaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Rajanna Rajeshwari
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot Campus, GKVK, Bengaluru 560064, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Correspondence: (E.R.); (M.D.D.)
| |
Collapse
|
13
|
Immobilization of a Bienzymatic System via Crosslinking to a Metal‐Organic Framework. Catalysts 2022. [DOI: 10.3390/catal12090969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A leading biotechnological advancement in the field of biocatalysis is the immobilization of enzymes on solid supports to create more stable and recyclable systems. Metal-organic frameworks (MOFs) are porous materials that have been explored as solid supports for enzyme immobilization. Composed of organic linkers and inorganic nodes, MOFs feature empty void space with large surface areas and have the ability to be modified post-synthesis. Our target enzyme system for immobilization is glucose oxidase (GOx) and chloroperoxidase (CPO). Glucose oxidase catalyzes the oxidation of glucose and is used for many applications in biosensing, biofuel cells, and food production. Chloroperoxidase is a fungal heme enzyme that catalyzes peroxide-dependent halogenation, oxidation, and hydroxylation. These two enzymes work sequentially in this enzyme system by GOx producing peroxide, which activates CPO that reacts with a suitable substrate. This study focuses on using a zirconium-based MOF, UiO-66-NH2, to immobilize the enzyme system via crosslinking with the MOF’s amine group on the surface of the MOF. This study investigates two different crosslinkers: disuccinimidyl glutarate (DSG) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/N-hydroxysuccinidimide (NHS), providing stable crosslinking of the MOF to the enzymes. The two crosslinkers are used to covalently bond CPO and GOx onto UiO-66-NH2, and a comparison of the recyclability and enzymatic activity of the single immobilization of CPO and the doubly immobilized CPO and GOx is discussed through assays and characterization analyses. The DSG-crosslinked composites displayed enhanced activity relative to the free enzyme, and all crosslinked enzyme/MOF composites demonstrated recyclability, with at least 30% of the activity being retained after four catalytic cycles. The results of this report will aid researchers in utilizing CPO as a biocatalyst that is more active and has greater recyclability.
Collapse
|
14
|
Bhandari Y, Sajwan H, Pandita P, Koteswara Rao V. Chloroperoxidase applications in chemical synthesis of industrial relevance. BIOCATAL BIOTRANSFOR 2022. [DOI: 10.1080/10242422.2022.2107919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Yogesh Bhandari
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Hemlata Sajwan
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Parul Pandita
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
| | - Vamkudoth Koteswara Rao
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
15
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
16
|
Van Stappen C, Deng Y, Liu Y, Heidari H, Wang JX, Zhou Y, Ledray AP, Lu Y. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chem Rev 2022; 122:11974-12045. [PMID: 35816578 DOI: 10.1021/acs.chemrev.2c00106] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metalloenzymes catalyze a variety of reactions using a limited number of natural amino acids and metallocofactors. Therefore, the environment beyond the primary coordination sphere must play an important role in both conferring and tuning their phenomenal catalytic properties, enabling active sites with otherwise similar primary coordination environments to perform a diverse array of biological functions. However, since the interactions beyond the primary coordination sphere are numerous and weak, it has been difficult to pinpoint structural features responsible for the tuning of activities of native enzymes. Designing artificial metalloenzymes (ArMs) offers an excellent basis to elucidate the roles of these interactions and to further develop practical biological catalysts. In this review, we highlight how the secondary coordination spheres of ArMs influence metal binding and catalysis, with particular focus on the use of native protein scaffolds as templates for the design of ArMs by either rational design aided by computational modeling, directed evolution, or a combination of both approaches. In describing successes in designing heme, nonheme Fe, and Cu metalloenzymes, heteronuclear metalloenzymes containing heme, and those ArMs containing other metal centers (including those with non-native metal ions and metallocofactors), we have summarized insights gained on how careful controls of the interactions in the secondary coordination sphere, including hydrophobic and hydrogen bonding interactions, allow the generation and tuning of these respective systems to approach, rival, and, in a few cases, exceed those of native enzymes. We have also provided an outlook on the remaining challenges in the field and future directions that will allow for a deeper understanding of the secondary coordination sphere a deeper understanding of the secondary coordintion sphere to be gained, and in turn to guide the design of a broader and more efficient variety of ArMs.
Collapse
Affiliation(s)
- Casey Van Stappen
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yunling Deng
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yiwei Liu
- Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hirbod Heidari
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Jing-Xiang Wang
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yu Zhou
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Aaron P Ledray
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.,Department of Chemistry, University of Illinois, Urbana-Champaign, 505 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Zámocký M, Harichová J. Evolution of Heme Peroxygenases: Ancient Roots and Later Evolved Branches. Antioxidants (Basel) 2022; 11:antiox11051011. [PMID: 35624873 PMCID: PMC9138132 DOI: 10.3390/antiox11051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 12/02/2022] Open
Abstract
We reconstructed the molecular phylogeny of heme containing peroxygenases that are known as very versatile biocatalysts. These oxidoreductases capable of mainly oxyfunctionalizations constitute the peroxidase–peroxygenase superfamily. Our representative reconstruction revealed a high diversity but also well conserved sequence motifs within rather short protein molecules. Corresponding genes coding for heme thiolate peroxidases with peroxygenase activity were detected only among various lower eukaryotes. Most of them originate in the kingdom of fungi. However, it seems to be obvious that these htp genes are present not only among fungal Dikarya but they are distributed also in the clades of Mucoromycota and Chytridiomycota with deep ancient evolutionary origins. Moreover, there is also a distinct clade formed mainly by phytopathogenic Stramenopiles where even HTP sequences from Amoebozoa can be found. The phylogenetically older heme peroxygenases are mostly intracellular, but the later evolution gave a preference for secretory proteins mainly among pathogenic fungi. We also analyzed the conservation of typical structural features within various resolved clades of peroxygenases. The presented output of our phylogenetic analysis may be useful in the rational design of specifically modified peroxygenases for various future biotech applications.
Collapse
Affiliation(s)
- Marcel Zámocký
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, SK-84551 Bratislava, Slovakia;
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, A-1190 Vienna, Austria
- Correspondence: ; Tel.: +421-2-5930-7481
| | - Jana Harichová
- Laboratory for Phylogenomic Ecology, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, SK-84551 Bratislava, Slovakia;
| |
Collapse
|
18
|
Engbers S, Hage R, Klein JEMN. Toward Environmentally Benign Electrophilic Chlorinations: From Chloroperoxidase to Bioinspired Isoporphyrins. Inorg Chem 2022; 61:8105-8111. [PMID: 35574587 PMCID: PMC9157495 DOI: 10.1021/acs.inorgchem.2c00602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Silène Engbers
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen , The Netherlands
| | - Ronald Hage
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen , The Netherlands
- Catexel BV, BioPartner Center Leiden, Galileiweg 8, Leiden 2333 BD, The Netherlands
| | - Johannes E. M. N. Klein
- Molecular Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen , The Netherlands
| |
Collapse
|
19
|
Cochereau B, Meslet-Cladière L, Pouchus YF, Grovel O, Roullier C. Halogenation in Fungi: What Do We Know and What Remains to Be Discovered? Molecules 2022; 27:3157. [PMID: 35630634 PMCID: PMC9144378 DOI: 10.3390/molecules27103157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
In nature, living organisms produce a wide variety of specialized metabolites to perform many biological functions. Among these specialized metabolites, some carry halogen atoms on their structure, which can modify their chemical characteristics. Research into this type of molecule has focused on how organisms incorporate these atoms into specialized metabolites. Several families of enzymes have been described gathering metalloenzymes, flavoproteins, or S-adenosyl-L-methionine (SAM) enzymes that can incorporate these atoms into different types of chemical structures. However, even though the first halogenation enzyme was discovered in a fungus, this clade is still lagging behind other clades such as bacteria, where many enzymes have been discovered. This review will therefore focus on all halogenation enzymes that have been described in fungi and their associated metabolites by searching for proteins available in databases, but also by using all the available fungal genomes. In the second part of the review, the chemical diversity of halogenated molecules found in fungi will be discussed. This will allow the highlighting of halogenation mechanisms that are still unknown today, therefore, highlighting potentially new unknown halogenation enzymes.
Collapse
Affiliation(s)
- Bastien Cochereau
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Laurence Meslet-Cladière
- Laboratoire Universitaire de Biodiversité et Écologie Microbienne, INRAE, University Brest, F-29280 Plouzané, France;
| | - Yves François Pouchus
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Olivier Grovel
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, ISOMer, UR 2160, Nantes Université, F-44000 Nantes, France; (B.C.); (Y.F.P.); (O.G.)
| |
Collapse
|
20
|
Structural Characterization of Two Short Unspecific Peroxygenases: Two Different Dimeric Arrangements. Antioxidants (Basel) 2022; 11:antiox11050891. [PMID: 35624755 PMCID: PMC9137552 DOI: 10.3390/antiox11050891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are extracellular fungal enzymes of biotechnological interest as self-sufficient (and more stable) counterparts of cytochrome P450 monooxygenases, the latter being present in most living cells. Expression hosts and structural information are crucial for exploiting UPO diversity (over eight thousand UPO-type genes were identified in sequenced genomes) in target reactions of industrial interest. However, while many thousands of entries in the Protein Data Bank include molecular coordinates of P450 enzymes, only 19 entries correspond to UPO enzymes, and UPO structures from only two species (Agrocybe aegerita and Hypoxylon sp.) have been published to date. In the present study, two UPOs from the basidiomycete Marasmius rotula (rMroUPO) and the ascomycete Collariella virescens (rCviUPO) were crystallized after sequence optimization and Escherichia coli expression as active soluble enzymes. Crystals of rMroUPO and rCviUPO were obtained at sufficiently high resolution (1.45 and 1.95 Å, respectively) and the corresponding structures were solved by molecular replacement. The crystal structures of the two enzymes (and two mutated variants) showed dimeric proteins. Complementary biophysical and molecular biology studies unveiled the diverse structural bases of the dimeric nature of the two enzymes. Intermolecular disulfide bridge and parallel association between two α-helices, among other interactions, were identified at the dimer interfaces. Interestingly, one of the rCviUPO variants incorporated the ability to produce fatty acid diepoxides—reactive compounds with valuable cross-linking capabilities—due to removal of the enzyme C-terminal tail located near the entrance of the heme access channel. In conclusion, different dimeric arrangements could be described in (short) UPO crystal structures.
Collapse
|
21
|
Wang Z, Fu Z, Jian Y, Han Y, Xia M, Zhang S, Yan B, Jiang G, Lu D, Wu J, Liu Z. Glucose Induces Heme Leakage and Suppresses H2O2 Uptake of Chloroperoxidase in the Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2022. [DOI: 10.1002/cctc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheyu Wang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Zhongwang Fu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yupei Jian
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yilei Han
- Tsinghua University Department of Chemical Engineering CHINA
| | - Meng Xia
- Tsinghua University Department of Chemical Engineering CHINA
| | - Shuiwei Zhang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Binhang Yan
- Tsinghua University Department of Chemical Engineering CHINA
| | - Guoqiang Jiang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Diannan Lu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Jianzhong Wu
- University of California Riverside Department of Chemical and Environmental and Engineering CHINA
| | - Zheng Liu
- Tsinghua University Chemical Engineering Qinghua Yuan 1 100084 Beijing CHINA
| |
Collapse
|
22
|
Structural and Functional Insights into a Nonheme Iron- and α-Ketoglutarate-Dependent Halogenase That Catalyzes Chlorination of Nucleotide Substrates. Appl Environ Microbiol 2022; 88:e0249721. [PMID: 35435717 DOI: 10.1128/aem.02497-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Nonheme iron- and α-ketoglutarate (αKG)-dependent halogenases (NHFeHals), which catalyze the regio- and stereoselective halogenation of the unactivated C(sp3)-H bonds, exhibit tremendous potential in the challenging asymmetric halogenation. AdeV from Actinomadura sp. ATCC 39365 is the first identified carrier protein-free NHFeHal that catalyzes the chlorination of nucleotide 2'-deoxyadenosine-5'-monophosphate (2'-dAMP) to afford 2'-chloro-2'-deoxyadenosine-5'-monophosphate. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG at resolutions of 1.76 and 1.74 Å, respectively. AdeV possesses a typical β-sandwich topology with H194, H252, αKG, chloride, and one water molecule coordinating FeII in the active site. Molecular docking, mutagenesis, and biochemical analyses reveal that the hydrophobic interactions and hydrogen bond network between the substrate-binding pocket and the adenine, deoxyribose, and phosphate moieties of 2'-dAMP are essential for substrate recognition. Residues H111, R177, and H192 might play important roles in the second-sphere interactions that control reaction partitioning. This study provides valuable insights into the catalytic selectivity of AdeV and will facilitate the rational engineering of AdeV and other NHFeHals for synthesis of halogenated nucleotides. IMPORTANCE Halogenated nucleotides are a group of important antibiotics and are clinically used as antiviral and anticancer drugs. AdeV is the first carrier protein-independent nonheme iron- and α-ketoglutarate (αKG)-dependent halogenase (NHFeHal) that can selectively halogenate nucleotides and exhibits restricted substrate specificity toward several 2'-dAMP analogues. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG. Molecular docking, mutagenesis, and biochemical analyses provide important insights into the catalytic selectivity of AdeV. This study will facilitate the rational engineering of AdeV and other carrier protein-independent NHFeHals for synthesis of halogenated nucleotides.
Collapse
|
23
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
24
|
Enzymatic biosensor for nitrite detection based on direct electron transfer by CPO-ILEMB/Au@MoS2/GC. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Paik A, Paul S, Bhowmik S, Das R, Naveen T, Rana S. Recent Advances in First Row Transition Metal Mediated C‐H Halogenation of (Hetero)arenes and Alkanes. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Aniruddha Paik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabarni Paul
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Sabyasachi Bhowmik
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Rahul Das
- University of North Bengal Department of Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India - 734013 734013 Siliguri INDIA
| | - Togati Naveen
- Sardar Vallabhbhai National Institute of Technology Department of Chemistry 395007 Surat INDIA
| | - Sujoy Rana
- University of North Bengal Chemistry Raja Rammohunpur, DarjeelingWest Bengal, India, 734013 734013 Siliguri INDIA
| |
Collapse
|
26
|
Mondal P, Rajapakse S, Wijeratne GB. Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. J Am Chem Soc 2022; 144:3843-3854. [PMID: 35112858 DOI: 10.1021/jacs.1c11068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pathways for direct conversion of indoles to oxindoles have accumulated considerable interest in recent years due to their significance in the clear comprehension of various pathogenic processes in humans and the multipotent therapeutic value of oxindole pharmacophores. Heme enzymes are predominantly responsible for this conversion in biology and are thought to proceed with a compound-I active oxidant. These heme-enzyme-mediated indole monooxygenation pathways are rapidly emerging therapeutic targets; however, a clear mechanistic understanding is still lacking. Additionally, such knowledge holds promise in the rational design of highly specific indole monooxygenation synthetic protocols that are also cost-effective and environmentally benign. We herein report the first examples of synthetic compound-I and activated compound-II species that can effectively monooxygenate a diverse array of indoles with varied electronic and steric properties to exclusively produce the corresponding 2-oxindole products in good to excellent yields. Rigorous kinetic, thermodynamic, and mechanistic interrogations clearly illustrate an initial rate-limiting epoxidation step that takes place between the heme oxidant and indole substrate, and the resulting indole epoxide intermediate undergoes rearrangement driven by a 2,3-hydride shift on indole ring to ultimately produce 2-oxindole. The complete elucidation of the indole monooxygenation mechanism of these synthetic heme models will help reveal crucial insights into analogous biological systems, directly reinforcing drug design attempts targeting those heme enzymes. Moreover, these bioinspired model compounds are promising candidates for the future development of better synthetic protocols for the selective, efficient, and sustainable generation of 2-oxindole motifs, which are already known for a plethora of pharmacological benefits.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Shanuk Rajapakse
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| | - Gayan B Wijeratne
- Department of Chemistry and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35205, United States
| |
Collapse
|
27
|
Liu J, Xu JK, Yuan H, Wang XJ, Gao SQ, Wen GB, Tan XS, Lin YW. Engineering globins for efficient biodegradation of malachite green: two case studies of myoglobin and neuroglobin. RSC Adv 2022; 12:18654-18660. [PMID: 35873322 PMCID: PMC9229271 DOI: 10.1039/d2ra02795j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/20/2022] [Indexed: 11/21/2022] Open
Abstract
Engineered globins such as H64D Mb and A15C/H64D Ngb were efficient in the degradation of malachite green, with activities much higher than those of some native enzymes.
Collapse
Affiliation(s)
- Jiao Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Hong Yuan
- Department of Chemistry, Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiang-Shi Tan
- Department of Chemistry, Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
28
|
He Q, Song J, Li H, Zhao B, Zhang Y, Wang N, Liu B, Chen J, Nie Z, Liang T, Zhong W. Chloroperoxidase-catalyzed oxidative degradation of sulfur mustard. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112715. [PMID: 34500382 DOI: 10.1016/j.ecoenv.2021.112715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
As a natural heme protein catalyzing the oxidation of sulfides to sulfoxides without sulfone formation, chloroperoxidase (CPO) is well suited for the degradation of sulfur mustard (HD), a persistent chemical warfare agent that has been widely disposed since World War II and continuously leaks into aquatic environments. Herein, we report the first systematic investigation of CPO-catalyzed degradation of HD and the potential application of CPO in destroying chemical weapons under mild conditions. The related Michaelis-Menten parameters (Km=0.17 mM, Vmax=0.06 mM s-1 (R2 =0.935), and kcat= 2717 s-1) indicated nearly a prominent enzymatic efficiency. Under optimal conditions, 80% of HD was transformed to bis(2-chloroethyl) sulfoxide as identified by mass spectroscopy and nuclear magnetic resonance (NMR) spectroscopy. Other metabolites were also generated during the decontamination process. A plausible oxidation mechanism was proposed based on the degradation products, NMR titration experiments, and molecular dynamics simulations. CPO also promoted the degradation of other chemical weapon agents, namely, Lewisite (L) and venomous agent X (VX), thereby exhibiting a broad substrate scope. The high potential of the developed system for the decontamination of aquatic environments was demonstrated by the successful hatching of zebrafish embryos after HD degradation and the survival of zebrafish (Danio rerio, AB strain) larvae after the degradation of Agent Yellow (L+HD).
Collapse
Affiliation(s)
- Qinghao He
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Jian Song
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Hongwei Li
- Beijing Nuclear Magnetic Resonance Center; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Baoquan Zhao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yanjin Zhang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Na Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Bo Liu
- The Institute of NBC Defense, Chinese PLA Army, Beijing 102205, China
| | | | - Zhiyong Nie
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Ting Liang
- The Institute of NBC Defense, Chinese PLA Army, Beijing 102205, China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
29
|
Crowe C, Molyneux S, Sharma SV, Zhang Y, Gkotsi DS, Connaris H, Goss RJM. Halogenases: a palette of emerging opportunities for synthetic biology-synthetic chemistry and C-H functionalisation. Chem Soc Rev 2021; 50:9443-9481. [PMID: 34368824 PMCID: PMC8407142 DOI: 10.1039/d0cs01551b] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The enzymatic generation of carbon-halogen bonds is a powerful strategy used by both nature and synthetic chemists to tune the bioactivity, bioavailability and reactivity of compounds, opening up the opportunity for selective C-H functionalisation. Genes encoding halogenase enzymes have recently been shown to transcend all kingdoms of life. These enzymes install halogen atoms into aromatic and less activated aliphatic substrates, achieving selectivities that are often challenging to accomplish using synthetic methodologies. Significant advances in both halogenase discovery and engineering have provided a toolbox of enzymes, enabling the ready use of these catalysts in biotransformations, synthetic biology, and in combination with chemical catalysis to enable late stage C-H functionalisation. With a focus on substrate scope, this review outlines the mechanisms employed by the major classes of halogenases, while in parallel, it highlights key advances in the utilisation of the combination of enzymatic halogenation and chemical catalysis for C-H activation and diversification.
Collapse
Affiliation(s)
- Charlotte Crowe
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Samuel Molyneux
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Sunil V. Sharma
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Ying Zhang
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Danai S. Gkotsi
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Helen Connaris
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| | - Rebecca J. M. Goss
- School of Chemistry, and BSRC, University of St Andrews, North HaughSt Andrews KY16 9STUK
| |
Collapse
|
30
|
Thompson MK, Shay MR, de Serrano V, Dumarieh R, Ghiladi RA, Franzen S. A new inhibition mechanism in the multifunctional catalytic hemoglobin dehaloperoxidase as revealed by the DHP A(V59W) mutant: A spectroscopic and crystallographic study. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
As multifunctional catalytic hemoglobins, dehaloperoxidase isoenzymes A and B (DHP A and B) are among the most versatile hemoproteins in terms of activities displayed. The ability of DHP to bind over twenty different substrates in the distal pocket might appear to resemble the promiscuousness of monooxygenase enzymes, yet there are identifiable substrate-specific interactions that can steer the type of oxidation (O-atom vs. electron transfer) that occurs inside the DHP distal pocket. Here, we have investigated the DHP A(V59W) mutant in order to probe the limits of conformational flexibility in the distal pocket as it relates to the genesis of this substrate-dependent activity differentiation. The X-ray crystal structure of the metaquo DHP A(V59W) mutant (PDB 3K3U) and the V59W mutant in complex with fluoride [denoted as DHP A(V59W-F)] (PDB 7MNH) show significant mobility of the tryptophan in the distal pocket, with two parallel conformations having W59-N[Formula: see text] H-bonded to a heme-bound ligand (H2O or F[Formula: see text], and another conformation [observed only in DHP A(V59W-F)] that brings W59 sufficiently close to the heme as to preclude axial ligand binding. UV-vis and resonance Raman spectroscopic studies show that DHP A(V59W) is 5-coordinate high spin (5cHS) at pH 5 and 6-coordinate high spin (6cHS) at pH 7, whereas DHP A(V59W-F) is 6cHS from pH 5 to 7. Enzyme assays confirm robust peroxidase activity at pH 5, but complete loss of activity at pH 7. We find no evidence that tryptophan plays a role in the oxidation mechanism ([Formula: see text]. radical formation). Instead, the data reveal a new mechanism of DHP inhibition, namely a shift towards a non-reactive form by OH[Formula: see text] ligation to the heme-Fe that is strongly stabilized (presumably through H-bonding interactions) by the presence of W59 in the distal cavity.
Collapse
Affiliation(s)
- Matthew K. Thompson
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Madeline R. Shay
- Department of Chemistry & Biochemistry, University of Alabama, 250 Hackberry Lane, Tuscaloosa, AL 35487, USA
| | - Vesna de Serrano
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Rania Dumarieh
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Reza A. Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
31
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
32
|
Kinner A, Rosenthal K, Lütz S. Identification and Expression of New Unspecific Peroxygenases - Recent Advances, Challenges and Opportunities. Front Bioeng Biotechnol 2021; 9:705630. [PMID: 34307325 PMCID: PMC8293615 DOI: 10.3389/fbioe.2021.705630] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
In 2004, the fungal heme-thiolate enzyme subfamily of unspecific peroxygenases (UPOs) was first described in the basidiomycete Agrocybe aegerita. As UPOs naturally catalyze a broad range of oxidative transformations by using hydrogen peroxide as electron acceptor and thus possess a great application potential, they have been extensively studied in recent years. However, despite their versatility to catalyze challenging selective oxyfunctionalizations, the availability of UPOs for potential biotechnological applications is restricted. Particularly limiting are the identification of novel natural biocatalysts, their production, and the description of their properties. It is hence of great interest to further characterize the enzyme subfamily as well as to identify promising new candidates. Therefore, this review provides an overview of the state of the art in identification, expression, and screening approaches of fungal UPOs, challenges associated with current protein production and screening strategies, as well as potential solutions and opportunities.
Collapse
Affiliation(s)
- Alina Kinner
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Katrin Rosenthal
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Stephan Lütz
- Chair for Bioprocess Engineering, Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
33
|
Rai A, Klare JP, Reinke PYA, Englmaier F, Fohrer J, Fedorov R, Taft MH, Chizhov I, Curth U, Plettenburg O, Manstein DJ. Structural and Biochemical Characterization of a Dye-Decolorizing Peroxidase from Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms22126265. [PMID: 34200865 PMCID: PMC8230527 DOI: 10.3390/ijms22126265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 12/23/2022] Open
Abstract
A novel cytoplasmic dye-decolorizing peroxidase from Dictyostelium discoideum was investigated that oxidizes anthraquinone dyes, lignin model compounds, and general peroxidase substrates such as ABTS efficiently. Unlike related enzymes, an aspartate residue replaces the first glycine of the conserved GXXDG motif in Dictyostelium DyPA. In solution, Dictyostelium DyPA exists as a stable dimer with the side chain of Asp146 contributing to the stabilization of the dimer interface by extending the hydrogen bond network connecting two monomers. To gain mechanistic insights, we solved the Dictyostelium DyPA structures in the absence of substrate as well as in the presence of potassium cyanide and veratryl alcohol to 1.7, 1.85, and 1.6 Å resolution, respectively. The active site of Dictyostelium DyPA has a hexa-coordinated heme iron with a histidine residue at the proximal axial position and either an activated oxygen or CN- molecule at the distal axial position. Asp149 is in an optimal conformation to accept a proton from H2O2 during the formation of compound I. Two potential distal solvent channels and a conserved shallow pocket leading to the heme molecule were found in Dictyostelium DyPA. Further, we identified two substrate-binding pockets per monomer in Dictyostelium DyPA at the dimer interface. Long-range electron transfer pathways associated with a hydrogen-bonding network that connects the substrate-binding sites with the heme moiety are described.
Collapse
Affiliation(s)
- Amrita Rai
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, D-44227 Dortmund, Germany
| | - Johann P. Klare
- Department of Physics, University of Osnabrueck, Barbarastrasse 7, D-49076 Osnabrück, Germany;
| | - Patrick Y. A. Reinke
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- Center for Free-Electron Laser Science, German Electron Synchrotron (DESY), Notkestr. 85, D-22607 Hamburg, Germany
| | - Felix Englmaier
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Jörg Fohrer
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
- NMR Department of the Department of Chemistry, Technical University Darmstadt, Clemens Schöpf Institute for Organic Chemistry and Biochemistry, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Roman Fedorov
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Manuel H. Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
| | - Igor Chizhov
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Ute Curth
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
| | - Oliver Plettenburg
- Institute of Medicinal Chemistry, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany; (F.E.); (O.P.)
- Center of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1b, D-30167 Hannover, Germany;
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Fritz Hartmann Centre for Medical Research Carl Neuberg Str. 1, D-30625 Hannover, Germany; (A.R.); (P.Y.A.R.); (M.H.T.); (I.C.); (U.C.)
- Division for Structural Biochemistry, Hannover Medical School, Carl Neuberg Str. 1, D-30625 Hannover, Germany;
- RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, D-30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-5323700
| |
Collapse
|
34
|
Ghorbani SM, Housaindokht MR, Bozorgmehr MR. Investigating the effect of 1-Butyl-3-methylimidazolium bromide and 1-Butyl-3-methylimidazolium methyl sulfate ionic liquids on structure and function of Chloroproxidase by molecular dynamics simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Lin YW. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213774] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Uchida T, Omura I, Umetsu S, Ishimori K. Radical transfer but not heme distal residues is essential for pH dependence of dye-decolorizing activity of peroxidase from Vibrio cholerae. J Inorg Biochem 2021; 219:111422. [PMID: 33756393 DOI: 10.1016/j.jinorgbio.2021.111422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 02/02/2021] [Accepted: 03/07/2021] [Indexed: 02/08/2023]
Abstract
Dye-decolorizing peroxidase (DyP) is a heme-containing enzyme that catalyzes the degradation of anthraquinone dyes. A main feature of DyP is the acidic optimal pH for dye-decolorizing activity. In this study, we constructed several mutant DyP enzymes from Vibrio cholerae (VcDyP), with a view to identifying the decisive factor of the low pH preference of DyP. Initially, distal Asp144, a conserved residue, was replaced with His, which led to significant loss of dye-decolorizing activity. Introduction of His into a position slightly distant from heme resulted in restoration of activity but no shift in optimal pH, indicating that distal residues do not contribute to the pH dependence of catalytic activity. His178, an essential residue for dye decolorization, is located near heme and forms hydrogen bonds with Asp138 and Thr278. While Trp and Tyr mutants of His178 were inactive, the Phe mutant displayed ~35% activity of wild-type VcDyP, indicating that this position is a potential radical transfer route from heme to the active site on the protein surface. The Thr278Val mutant displayed similar enzymatic properties as WT VcDyP, whereas the Asp138Val mutant displayed significantly increased activity at pH 6.5. On the basis of these findings, we propose that neither distal amino acid residues, including Asp144, nor hydrogen bonds between His178 and Thr278 are responsible while the hydrogen bond between His178 and Asp138 plays a key role in the pH dependence of activity.
Collapse
Affiliation(s)
- Takeshi Uchida
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan.
| | - Issei Omura
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Sayaka Umetsu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Koichiro Ishimori
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
37
|
Chen SF, Liu XC, Xu JK, Li L, Lang JJ, Wen GB, Lin YW. Conversion of Human Neuroglobin into a Multifunctional Peroxidase by Rational Design. Inorg Chem 2021; 60:2839-2845. [PMID: 33539081 DOI: 10.1021/acs.inorgchem.0c03777] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein design has received much attention in the last decades. With an additional disulfide bond to enhance the protein stability, human A15C neuroglobin (Ngb) is an ideal protein scaffold for heme enzyme design. In this study, we rationally converted A15C Ngb into a multifunctional peroxidase by replacing the heme axial His64 with an Asp residue, where Asp64 and the native Lys67 at the heme distal site were proposed to act as an acid-base catalytic couple for H2O2 activation. Kinetic studies showed that the catalytic efficiency of A15C/H64D Ngb was much higher (∼50-80-fold) than that of native dehaloperoxidase, which even exceeds (∼3-fold) that of the most efficient native horseradish peroxidase. Moreover, the dye-decolorizing peroxidase activity was also comparable to that of some native enzymes. Electron paramagnetic resonance, molecular docking, and isothermal titration calorimetry studies provided valuable information for the substrate-protein interactions. Therefore, this study presents the rational design of an efficient multifunctional peroxidase based on Ngb with potential applications such as in bioremediation for environmental sustainability.
Collapse
Affiliation(s)
- Shun-Fa Chen
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xi-Chun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Jia-Kun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jia-Jia Lang
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ge-Bo Wen
- Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| |
Collapse
|
38
|
Halogenases: structures and functions. Curr Opin Struct Biol 2020; 65:51-60. [DOI: 10.1016/j.sbi.2020.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 11/23/2022]
|
39
|
Sarparast M, Dattmore D, Alan J, Lee KSS. Cytochrome P450 Metabolism of Polyunsaturated Fatty Acids and Neurodegeneration. Nutrients 2020; 12:E3523. [PMID: 33207662 PMCID: PMC7696575 DOI: 10.3390/nu12113523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Due to the aging population in the world, neurodegenerative diseases have become a serious public health issue that greatly impacts patients' quality of life and adds a huge economic burden. Even after decades of research, there is no effective curative treatment for neurodegenerative diseases. Polyunsaturated fatty acids (PUFAs) have become an emerging dietary medical intervention for health maintenance and treatment of diseases, including neurodegenerative diseases. Recent research demonstrated that the oxidized metabolites, particularly the cytochrome P450 (CYP) metabolites, of PUFAs are beneficial to several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease; however, their mechanism(s) remains unclear. The endogenous levels of CYP metabolites are greatly affected by our diet, endogenous synthesis, and the downstream metabolism. While the activity of omega-3 (ω-3) CYP PUFA metabolites and omega-6 (ω-6) CYP PUFA metabolites largely overlap, the ω-3 CYP PUFA metabolites are more active in general. In this review, we will briefly summarize recent findings regarding the biosynthesis and metabolism of CYP PUFA metabolites. We will also discuss the potential mechanism(s) of CYP PUFA metabolites in neurodegeneration, which will ultimately improve our understanding of how PUFAs affect neurodegeneration and may identify potential drug targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Morteza Sarparast
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
| | - Devon Dattmore
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Jamie Alan
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| | - Kin Sing Stephen Lee
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|
40
|
Menon BRK, Richmond D, Menon N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1823788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binuraj R. K. Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Daniel Richmond
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| | - Navya Menon
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
41
|
Peidro-Guzmán H, Pérez-Llano Y, González-Abradelo D, Fernández-López MG, Dávila-Ramos S, Aranda E, Hernández DRO, García AO, Lira-Ruan V, Pliego OR, Santana MA, Schnabel D, Jiménez-Gómez I, Mouriño-Pérez RR, Aréchiga-Carvajal ET, Del Rayo Sánchez-Carbente M, Folch-Mallol JL, Sánchez-Reyes A, Vaidyanathan VK, Cabana H, Gunde-Cimerman N, Batista-García RA. Transcriptomic analysis of polyaromatic hydrocarbon degradation by the halophilic fungus Aspergillus sydowii at hypersaline conditions. Environ Microbiol 2020; 23:3435-3459. [PMID: 32666586 DOI: 10.1111/1462-2920.15166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 01/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are among the most persistent xenobiotic compounds, with high toxicity effects. Mycoremediation with halophilic Aspergillus sydowii was used for their removal from a hypersaline medium (1 M NaCl). A. sydowii metabolized PAHs as sole carbon sources, resulting in the removal of up to 90% for both PAHs [benzo [a] pyrene (BaP) and phenanthrene (Phe)] after 10 days. Elimination of Phe and BaP was almost exclusively due to biotransformation and not adsorption by dead mycelium and did not correlate with the activity of lignin modifying enzymes (LME). Transcriptomes of A. sydowii grown on PAHs, or on glucose as control, both at hypersaline conditions, revealed 170 upregulated and 76 downregulated genes. Upregulated genes were related to starvation, cell wall remodelling, degradation and metabolism of xenobiotics, DNA/RNA metabolism, energy generation, signalling and general stress responses. Changes of LME expression levels were not detected, while the chloroperoxidase gene, possibly related to detoxification processes in fungi, was strongly upregulated. We propose that two parallel metabolic pathways (mitochondrial and cytosolic) are involved in degradation and detoxification of PAHs in A. sydowii resulting in intracellular oxidation of PAHs. To the best of our knowledge, this is the most comprehensive transcriptomic analysis on fungal degradation of PAHs.
Collapse
Affiliation(s)
- Heidy Peidro-Guzmán
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Deborah González-Abradelo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Maikel Gilberto Fernández-López
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Sonia Dávila-Ramos
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Elisabet Aranda
- Instituto Universitario de Investigación del Agua, Universidad de Granada, Granada, Spain
| | | | - Angélica Ortega García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Verónica Lira-Ruan
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Oscar Ramírez Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - María Angélica Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Denhi Schnabel
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Rosa R Mouriño-Pérez
- Centro de Investigación Cientifica y Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Elva T Aréchiga-Carvajal
- Facultad de Ciencias Biológicas, Unidad de Manipulación Genética, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, Mexico
| | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt - Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | - Hubert Cabana
- Faculté de Genié, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Nina Gunde-Cimerman
- Departament of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
42
|
Exploring the Role of Phenylalanine Residues in Modulating the Flexibility and Topography of the Active Site in the Peroxygenase Variant PaDa-I. Int J Mol Sci 2020; 21:ijms21165734. [PMID: 32785123 PMCID: PMC7460833 DOI: 10.3390/ijms21165734] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are fungal heme-thiolate enzymes able to catalyze a wide range of oxidation reactions, such as peroxidase-like, catalase-like, haloperoxidase-like, and, most interestingly, cytochrome P450-like. One of the most outstanding properties of these enzymes is the ability to catalyze the oxidation a wide range of organic substrates (both aromatic and aliphatic) through cytochrome P450-like reactions (the so-called peroxygenase activity), which involves the insertion of an oxygen atom from hydrogen peroxide. To catalyze this reaction, the substrate must access a channel connecting the bulk solution to the heme group. The composition, shape, and flexibility of this channel surely modulate the catalytic ability of the enzymes in this family. In order to gain an understanding of the role of the residues comprising the channel, mutants derived from PaDa-I, a laboratory-evolved UPO variant from Agrocybe aegerita, were obtained. The two phenylalanine residues at the surface of the channel, which regulate the traffic towards the heme active site, were mutated by less bulky residues (alanine and leucine). The mutants were experimentally characterized, and computational studies (i.e., molecular dynamics (MD)) were performed. The results suggest that these residues are necessary to reduce the flexibility of the region and maintain the topography of the channel.
Collapse
|
43
|
Biswas JP, Guin S, Maiti D. Highvalent 3d metal-oxo mediated C–H halogenation: Biomimetic approaches. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213174] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Two New Unspecific Peroxygenases from Heterologous Expression of Fungal Genes in Escherichia coli. Appl Environ Microbiol 2020; 86:AEM.02899-19. [PMID: 31980430 PMCID: PMC7082571 DOI: 10.1128/aem.02899-19] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/17/2020] [Indexed: 12/22/2022] Open
Abstract
UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts. Unspecific peroxygenases (UPOs) constitute a new family of fungal heme-thiolate enzymes in which there is high biotechnological interest. Although several thousand genes encoding hypothetical UPO-type proteins have been identified in sequenced fungal genomes and other databases, only a few UPO enzymes have been experimentally characterized to date. Therefore, gene screening and heterologous expression from genetic databases are a priority in the search for ad hoc UPOs for oxyfunctionalization reactions of interest. Very recently, Escherichia coli production of a previously described basidiomycete UPO (as a soluble and active enzyme) has been reported. Here, we explored this convenient heterologous expression system to obtain the protein products from available putative UPO genes. In this way, two UPOs from the ascomycetes Collariella virescens (syn., Chaetomium virescens) and Daldinia caldariorum were successfully obtained, purified, and characterized. Comparison of their kinetic constants for oxidation of model substrates revealed 10- to 20-fold-higher catalytic efficiency of the latter enzyme in oxidizing simple aromatic compounds (such as veratryl alcohol, naphthalene, and benzyl alcohol). Homology molecular models of these enzymes showed three conserved and two differing residues in the distal side of the heme (the latter representing two different positions of a phenylalanine residue). Interestingly, replacement of the C. virescens UPO Phe88 by the homologous residue in the D. caldariorum UPO resulted in an F88L variant with 5- to 21-fold-higher efficiency in oxidizing these aromatic compounds. IMPORTANCE UPOs catalyze regio- and stereoselective oxygenations of both aromatic and aliphatic compounds. Similar reactions were previously described for cytochrome P450 monooxygenases, but UPOs have the noteworthy biotechnological advantage of being stable enzymes requiring only H2O2 to be activated. Both characteristics are related to the extracellular nature of UPOs as secreted proteins. In the present study, the limited repertoire of UPO enzymes available for organic synthesis and other applications is expanded with the description of two new ascomycete UPOs obtained by Escherichia coli expression of the corresponding genes as soluble and active enzymes. Moreover, directed mutagenesis in E. coli, together with enzyme molecular modeling, provided relevant structure-function information on aromatic substrate oxidation by these two new biocatalysts.
Collapse
|
45
|
Ghorbani Sangoli M, Housaindokht MR, Bozorgmehr MR. Effects of the deglycosylation on the structure and activity of chloroperoxidase: Molecular dynamics simulation approach. J Mol Graph Model 2020; 97:107570. [PMID: 32097885 DOI: 10.1016/j.jmgm.2020.107570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 10/25/2022]
Abstract
Chloroperoxidase (CPO) is a versatile fungal heme-thiolate protein that catalyzes a variety of one electron and two-electron oxidations. Chloroperoxidase is a versatile fungal heme-thiolate protein that catalyzes a variety of oxidations. CPO enzyme contains thirteen sugars, including five N-acetyl D-glucosamines (NAG) and eight mannoses (MAN), which are attached to the protein via the glycosidic bonds. Removal of the sugars from CPO leads to increase the hydrophobicity of the enzyme, as well as the reduction of the alkylation reactions. However, due to the lack of the proper force field for the sugars, they are ignored in the theoretical studies. The present study aims to assess the effects of the sugar segments on the structure and activity of CPO through the simulation of the halo structure and the structures without the sugar segment. Despite the difficulty of the process and being time-consuming, the suitable force field is introduced successfully for the sugars. According to molecular dynamics simulation (MD), seven channels and fifteen cavities are identified in the CPO structure. Two of the channels provide the substrate access to the active site. The MD simulation results reveal that the removal of NAG decreases the number of the cavities from fifteen to eleven. Besides, the removal of NAG is associated with removing the channel providing the substrate access. The number of the cavities decreases from fifteen to fourteen through the removal of MAN; however, channel providing the substrate access to the active site is partly preserved. The MD simulation results indicate that the structures without the sugar units are more compact in comparison with the halo structures. The removal of the sugar segments induces the significant changes in the flexibility of the residues that affect the catalytic activity of the enzyme. As a result, the enzyme activities, such as the oxidation, alkylation, halogenation, and epoxidation cannot occur when the sugar segments of the enzyme are removed.
Collapse
Affiliation(s)
| | - Mohammad Reza Housaindokht
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Research and Technology Center of Biomolecules, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | | |
Collapse
|
46
|
Bhunia S, Rana A, Dey SG, Ivancich A, Dey A. A designed second-sphere hydrogen-bond interaction that critically influences the O-O bond activation for heterolytic cleavage in ferric iron-porphyrin complexes. Chem Sci 2020; 11:2681-2695. [PMID: 34084327 PMCID: PMC8157560 DOI: 10.1039/c9sc04388h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/26/2020] [Indexed: 12/18/2022] Open
Abstract
Heme hydroperoxidases catalyze the oxidation of substrates by H2O2. The catalytic cycle involves the formation of a highly oxidizing species known as Compound I, resulting from the two-electron oxidation of the ferric heme in the active site of the resting enzyme. This high-valent intermediate is formed upon facile heterolysis of the O-O bond in the initial FeIII-OOH complex. Heterolysis is assisted by the histidine and arginine residues present in the heme distal cavity. This chemistry has not been successfully modeled in synthetic systems up to now. In this work, we have used a series of iron(iii) porphyrin complexes (FeIIIL2(Br), FeIIIL3(Br) and FeIIIMPh(Br)) with covalently attached pendent basic groups (pyridine and primary amine) mimicking the histidine and arginine residues in the distal-pocket of natural heme enzymes. The presence of pendent basic groups, capable of 2nd sphere hydrogen bonding interactions, leads to almost 1000-fold enhancement in the rate of Compound I formation from peracids relative to analogous complexes without these residues. The short-lived Compound I intermediate formed at cryogenic temperatures could be detected using UV-vis electronic absorption spectroscopy and also trapped to be unequivocally identified by 9 GHz EPR spectroscopy at 4 K. The broad (2000 G) and axial EPR spectrum of an exchange-coupled oxoferryl-porphyrin radical species, [FeIV[double bond, length as m-dash]O Por˙+] with g eff ⊥ = 3.80 and g eff ‖ = 1.99, was observed upon a reaction of the FeIIIL3(Br) porphyrin complex with m-CPBA. The characterization of the reactivity of the FeIII porphyrin complexes with a substrate in the presence of an oxidant like m-CPBA by UV-vis electronic absorption spectroscopy showed that they are capable of oxidizing two equivalents of inorganic and organic substrate(s) like ferrocene, 2,4,6-tritertiary butyl phenol and o-phenylenediamine. These oxidations are catalytic with a turnover number (TON) as high as 350. Density Functional Theory (DFT) calculations show that the mechanism of O-O bond activation by 2nd sphere hydrogen bonding interaction from these pendent basic groups, which are protonated by a peracid, involves polarization of the O-O σ-bond, leading to lowering of the O-O σ*-orbital allowing enhanced back bonding from the iron center. These results demonstrate how inclusion of 2nd sphere hydrogen bonding interaction can play a critical role in O-O bond heterolysis.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Atanu Rana
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Somdatta Ghosh Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| | - Anabella Ivancich
- CNRS, Aix-Marseille Univ, Laboratoire de Bioénergétique et Ingénierie des Protéines (UMR 7281), IMM FR3479 Marseille France
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
47
|
Zhang P, Yuan H, Xu J, Wang XJ, Gao SQ, Tan X, Lin YW. A Catalytic Binding Site Together with a Distal Tyr in Myoglobin Affords Catalytic Efficiencies Similar to Natural Peroxidases. ACS Catal 2019. [DOI: 10.1021/acscatal.9b05080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ping Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Shu-Qin Gao
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai 200433, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Lab of Protein Structure and Function, University of South China, Hengyang 421001, China
| |
Collapse
|
48
|
Abstract
Fungi dominate the turnover of wood, Earth’s largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot “shortcut” often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches. Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among “white rot” fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates—“brown rot.” The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of “decay-stage-dependent” ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.
Collapse
|
49
|
Wang K, Huang X, Lin K. Multiple catalytic roles of chloroperoxidase in the transformation of phenol: Products and pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:96-103. [PMID: 31026755 DOI: 10.1016/j.ecoenv.2019.04.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Chloroperoxidase (CPO) is a hybrid of two different families of enzymes, peroxidases and P450s. However, it is poorly understood on CPO's multiple catalytic functions. Herein, phenol was selected as a model substrate to investigate the multiple catalytic roles of CPO. Results showed that phenol was readily transformed into a variety of brominated organic compounds (BOCs) via the CPO-mediated oxidative process. A total of 16 BOCs were identified using gas and liquid chromatography coupled with mass spectrometry. Possible reaction pathways could be attributable to four CPO-mediated processes, including bromination, radical coupling, intramolecular cyclization and debromination. Higher bromide concentrations and lower pH conditions both facilitated the formation of brominated products. While a higher bromination capacity was observed in pH 3.0 solutions, CPO-mediated radical couplings were more favorable at pH 5.0 and 6.0. Although CPO might catalyze chlorination when chloride and bromide coexisted in the solution, BOCs were the dominant products of CPO-mediated phenol oxidation. Results of this study suggest that various catalytic roles of CPO may contribute to the biotic formation of BOCs in the natural environment.
Collapse
Affiliation(s)
- Kun Wang
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xinwen Huang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Kunde Lin
- The Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
50
|
Xu S, Draksharapu A, Rasheed W, Que L. Acid pKa Dependence in O–O Bond Heterolysis of a Nonheme FeIII–OOH Intermediate To Form a Potent FeV═O Oxidant with Heme Compound I-Like Reactivity. J Am Chem Soc 2019; 141:16093-16107. [DOI: 10.1021/jacs.9b08442] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shuangning Xu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Waqas Rasheed
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|