1
|
Polakowski M, Panfil M. Quantum features of the transport through ion channels in the soft knock-on model. Phys Biol 2024; 22:016007. [PMID: 39727186 DOI: 10.1088/1478-3975/ad9cde] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Ion channels are protein structures that facilitate the selective passage of ions across the membrane cells of living organisms. They are known for their high conductance and high selectivity. The precise mechanism between these two seemingly contradicting features is not yet firmly established. One possible candidate is the quantum coherence. In this work we study the quantum model of the soft knock-on conduction using the Lindblad equation taking into account the non-hermiticity of the model. We show that the model exhibits a regime in which high conductance coexists with high coherence. Our findings second the role of quantum effects in the transport properties of the ion channels.
Collapse
Affiliation(s)
- Mateusz Polakowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Miłosz Panfil
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
2
|
Seifi M, Soltanmanesh A, Shafiee A. Mimicking classical noise in ion channels by quantum decoherence. Sci Rep 2024; 14:16130. [PMID: 38997398 PMCID: PMC11245528 DOI: 10.1038/s41598-024-67106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
The mechanism of selectivity in ion channels is still an open question in biology. Recent studies suggest that the selectivity filter may exhibit quantum coherence, which could help explain how ions are selected and conducted. However, environmental noise causes decoherence and loss of quantum effects. It is hoped that the effect of classical noise on ion channels can be modeled using the framework provided by quantum decoherence theory. In this paper, the behavior of the ion channel system was simulated using two models: the Spin-Boson model and the stochastic Hamiltonian model under classical noise. Additionally, using a different approach, the system's evolution was modeled as a two-level Spin-Boson model with tunneling, interacting with a bath of harmonic oscillators, based on decoherence theory. We investigated under what conditions the decoherence model approaches and deviates from the noise model. Specifically, we examined Gaussian noise and Ornstein-Uhlenbeck noise in our model. Gaussian noise shows a very good agreement with the decoherence model. By examining the results, it was found that the Spin-Boson model at a high hopping rate of potassium ions can simulate the behavior of the system in the classical noise approach for Gaussian noise.
Collapse
Affiliation(s)
- Mina Seifi
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Ali Soltanmanesh
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
- Philosophy of Science Group, Sharif University of Technology, Tehran, Iran
| | - Afshin Shafiee
- Research Group on Foundations of Quantum Theory and Information, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
3
|
Nsasra E, Peretz G, Orr I, Yifrach O. Regulating Shaker Kv channel clustering by hetero-oligomerization. Front Mol Biosci 2023; 9:1050942. [PMID: 36699695 PMCID: PMC9868669 DOI: 10.3389/fmolb.2022.1050942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Scaffold protein-mediated voltage-dependent ion channel clustering at unique membrane sites, such as nodes of Ranvier or the post-synaptic density plays an important role in determining action potential properties and information coding. Yet, the mechanism(s) by which scaffold protein-ion channel interactions lead to channel clustering and how cluster ion channel density is regulated are mostly unknown. This molecular-cellular gap in understanding channel clustering can be bridged in the case of the prototypical Shaker voltage-activated potassium channel (Kv), as the mechanism underlying the interaction of this channel with its PSD-95 scaffold protein partner is known. According to this mechanism, changes in the length of the intrinsically disordered channel C-terminal chain, brought about by alternative splicing to yield the short A and long B chain subunit variants, dictate affinity to PSD-95 and further controls cluster homo-tetrameric Kv channel density. These results raise the hypothesis that heteromeric subunit assembly serves as a means to regulate Kv channel clustering. Since both clustering variants are expressed in similar fly tissues, it is reasonable to assume that hetero-tetrameric channels carrying different numbers of high- (A) and low-affinity (B) subunits could assemble, thereby giving rise to distinct cluster Kv channel densities. Here, we tested this hypothesis using high-resolution microscopy, combined with quantitative clustering analysis. Our results reveal that the A and B clustering variants can indeed assemble to form heteromeric channels and that controlling the number of the high-affinity A subunits within the hetero-oligomer modulates cluster Kv channel density. The implications of these findings for electrical signaling are discussed.
Collapse
|
4
|
Kacher YG, Karlova MG, Glukhov GS, Zhang H, Zaklyazminskaya EV, Loussouarn G, Sokolova OS. The Integrative Approach to Study of the Structure and Functions of Cardiac Voltage-Dependent Ion Channels. CRYSTALLOGR REP+ 2021. [DOI: 10.1134/s1063774521050072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Jepps TA. Kv7 channel trafficking by the microtubule network in vascular smooth muscle. Acta Physiol (Oxf) 2021; 232:e13692. [PMID: 34021973 PMCID: PMC8365713 DOI: 10.1111/apha.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
Abstract
In arterial smooth muscle cells, changes in availability of integral membrane proteins influence the regulation of blood flow and blood pressure, which is critical for human health. However, the mechanisms that coordinate the trafficking and membrane expression of specific receptors and ion channels in vascular smooth muscle are poorly understood. In the vasculature, very little is known about microtubules, which form a road network upon which proteins can be transported to and from the cell membrane. This review article summarizes the impact of the microtubule network on arterial contractility, highlighting the importance of the network, with an emphasis on our recent findings regarding the trafficking of the voltage‐dependent Kv7 channels.
Collapse
Affiliation(s)
- Thomas A Jepps
- Vascular Biology Group Department of Biomedical Sciences University of Copenhagen Blegdamsvej 3 2200 Copenhagen N Denmark
| |
Collapse
|
6
|
Chen H, Pan J, Gandhi DM, Dockendorff C, Cui Q, Chanda B, Henzler-Wildman KA. NMR Structural Analysis of Isolated Shaker Voltage-Sensing Domain in LPPG Micelles. Biophys J 2019; 117:388-398. [PMID: 31301804 DOI: 10.1016/j.bpj.2019.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 11/25/2022] Open
Abstract
The voltage-sensing domain (VSD) is a conserved structural module that regulates the gating of voltage-dependent ion channels in response to a change in membrane potential. Although the structures of many VSD-containing ion channels are now available, our understanding of the structural dynamics associated with gating transitions remains limited. To probe dynamics with site-specific resolution, we utilized NMR spectroscopy to characterize the VSD derived from Shaker potassium channel in 1-palmitoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) (LPPG) micelles. The backbone dihedral angles predicted based on secondary chemical shifts using torsion angle likeliness obtained from shift (TALOS+) showed that the Shaker-VSD shares many structural features with the homologous Kv1.2/2.1 chimera, including a transition from α-helix to 310 helix in the C-terminal portion of the fourth transmembrane helix. Nevertheless, there are clear differences between the Shaker-VSD and Kv1.2/2.1 chimera in the S2-S3 linker and S3 transmembrane region, where the organization of secondary structure elements in Shaker-VSD appears to more closely resemble the KvAP-VSD. Comparison of microsecond-long molecular dynamics simulations of Kv 1.2-VSD in LPPG micelles and a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) bilayer showed that LPPG micelles do not induce significant structural distortion in the isolated voltage sensor. To assess the integrity of the tertiary fold, we directly probed the binding of BrMT analog 2-[2-({[3-(2-amino-ethyl)-6-bromo-1H-indol-2-yl]methoxy}k7methyl)-6-bromo-1H-indol-3-yl]ethan-1-amine (BrET), a gating modifier toxin, and identified the location of the putative binding site. Our results suggest that the Shaker-VSD in LPPG micelles is in a native-like fold and is likely to provide valuable insights into the dynamics of voltage-gating and its regulation.
Collapse
Affiliation(s)
- Hongbo Chen
- Graduate Program in Biophysics, Madison, Wisconsin; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Junkun Pan
- Department of Neuroscience, Madison, Wisconsin; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Disha M Gandhi
- Departments of Chemistry, Marquette University, Milwaukee, Wisconsin
| | - Chris Dockendorff
- Departments of Chemistry, Marquette University, Milwaukee, Wisconsin
| | - Qiang Cui
- Departments of Chemistry, Physics, Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Baron Chanda
- Graduate Program in Biophysics, Madison, Wisconsin; Department of Neuroscience, Madison, Wisconsin; Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin.
| | - Katherine A Henzler-Wildman
- Graduate Program in Biophysics, Madison, Wisconsin; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
7
|
Detergent-free solubilization of human Kv channels expressed in mammalian cells. Chem Phys Lipids 2019; 219:50-57. [DOI: 10.1016/j.chemphyslip.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
|
8
|
Modeling squid axon K + channel by a nucleation and growth kinetic mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:505-514. [PMID: 29155211 DOI: 10.1016/j.bbamem.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
A kinetic model accounting for all salient features of the K+ channel of the squid giant axon, including the rising phase of the ON gating charge and the Cole-Moore effect, is provided. Upon accounting for a significant feature distinguishing K+, Na+ and Ca2+ channels from channel-forming peptides modeled in our previous 2016 BBA paper, the nucleation-and-growth kinetic model developed therein is extended to simulate ON ionic and gating currents of the K+ channel of the squid giant axon at different depolarization potentials by the use of only two free parameters. K+ channel opening is considered to proceed by progressive aggregation of single subunits, while they are moving their gating charge outward under depolarizing conditions within their tetrameric structure; K+ channel closing proceeds in the opposite direction, by repolarization-induced disaggregation of subunits, accompanied by inward movement of their gating charge.
Collapse
|
9
|
Unravelling the complexities of vascular smooth muscle ion channels: Fine tuning of activity by ancillary subunits. Pharmacol Ther 2017; 178:57-66. [PMID: 28336473 DOI: 10.1016/j.pharmthera.2017.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Which ion channel is the most important for regulating vascular tone? Which one is responsible for controlling the resting membrane potential or repolarization? Which channels are recruited by different intracellular signalling pathways or change in certain vascular diseases? Many different ion channels have been identified in the vasculature over the years and claimed as future therapeutic targets. Unfortunately, several of these ion channels are not just found in the vasculature, with many of them also found to have prominent functional roles in different organs of the body, which then leads to off-target effects. As cardiovascular diseases are expected to increase worldwide to epidemic proportions, ion channel research and the hunt for the next major therapeutic target to treat different vascular diseases has never been more important. However, I believe that the question we should now be asking is: which ancillary subunits are involved in regulating specific ion channels in the vasculature and do they have the potential to be new therapeutic targets?
Collapse
|
10
|
Glukhov GS, Popinako AV, Grizel AV, Shaitan KV, Sokolova OS. The structure of a human voltage-gated potassium Kv10.2 channel which lacks a cytoplasmic PAS domain. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916040102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
12
|
Domain Structure and Conformational Changes in rat KV2.1 ion Channel. J Neuroimmune Pharmacol 2014; 9:727-39. [DOI: 10.1007/s11481-014-9565-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 09/03/2014] [Indexed: 01/26/2023]
|
13
|
Abstract
Transient receptor potential (TRP) channels are cellular sensors for a wide spectrum of physical and chemical stimuli. They are involved in the formation of sight, hearing, touch, smell, taste, temperature, and pain sensation. TRP channels also play fundamental roles in cell signaling and allow the host cell to respond to benign or harmful environmental changes. As TRP channel activation is controlled by very diverse processes and, in many cases, exhibits complex polymodal properties, understanding how each TRP channel responds to its unique forms of activation energy is both crucial and challenging. The past two decades witnessed significant advances in understanding the molecular mechanisms that underlie TRP channels activation. This review focuses on our current understanding of the molecular determinants for TRP channel activation.
Collapse
Affiliation(s)
- Jie Zheng
- Department of Physiology and Membrane Biology, University of California School of Medicine, Davis, California, USA.
| |
Collapse
|
14
|
Martínez-Mármol R, Pérez-Verdaguer M, Roig SR, Vallejo-Gracia A, Gotsi P, Serrano-Albarrás A, Bahamonde MI, Ferrer-Montiel A, Fernández-Ballester G, Comes N, Felipe A. A non-canonical di-acidic signal at the C-terminus of Kv1.3 determines anterograde trafficking and surface expression. J Cell Sci 2013; 126:5681-91. [PMID: 24144698 DOI: 10.1242/jcs.134825] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Impairment of Kv1.3 expression at the cell membrane in leukocytes and sensory neuron contributes to the pathophysiology of autoimmune diseases and sensory syndromes. Molecular mechanisms underlying Kv1.3 channel trafficking to the plasma membrane remain elusive. We report a novel non-canonical di-acidic signal (E483/484) at the C-terminus of Kv1.3 essential for anterograde transport and surface expression. Notably, homologous motifs are conserved in neuronal Kv1 and Shaker channels. Biochemical analysis revealed interactions with the Sec24 subunit of the coat protein complex II. Disruption of this complex retains the channel at the endoplasmic reticulum. A molecular model of the Kv1.3-Sec24a complex suggests salt-bridges between the di-acidic E483/484 motif in Kv1.3 and the di-basic R750/752 sequence in Sec24. These findings identify a previously unrecognized motif of Kv channels essential for their expression on the cell surface. Our results contribute to our understanding of how Kv1 channels target to the cell membrane, and provide new therapeutic strategies for the treatment of pathological conditions.
Collapse
Affiliation(s)
- Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The spatial distribution of ion channels is an important determinant of neuronal excitability. However, there are currently no quantitative techniques to map endogenous ion channels with single-channel resolution in living cells. Here, we demonstrate that integration of pharmacology with single-molecule atomic force microscopy (AFM) allows for the high-resolution mapping of native potassium channels in living neurons. We focus on calcium-activated small conductance (SK) potassium channels, which play a critical role in brain physiology. By linking apamin, a toxin that specifically binds to SK channels, to the tip of an AFM cantilever, we are able to detect binding events between the apamin and SK channels. We find that native SK channels from rat hippocampal neurons reside primarily in dendrites as single entities and in pairs. We also show that SK channel dendritic distribution is dynamic and under the control of protein kinase A. Our study demonstrates that integration of toxin pharmacology with single-molecule AFM can be used to quantitatively map individual native ion channels in living cells, and thus provides a new tool for the study of ion channels in cellular physiology.
Collapse
|
16
|
Sokolova OS, Shaitan KV, Grizel AV, Popinako AV, Karlova MG, Kirpichnikov MP. Three-dimensional structure of human voltage-gated ion channel Kv10.2 studied by electron microscopy of macromolecules and molecular modeling. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012; 38:177-84. [DOI: 10.1134/s1068162012020100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Barros F, Domínguez P, de la Peña P. Cytoplasmic domains and voltage-dependent potassium channel gating. Front Pharmacol 2012; 3:49. [PMID: 22470342 PMCID: PMC3311039 DOI: 10.3389/fphar.2012.00049] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 12/20/2022] Open
Abstract
The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered.
Collapse
Affiliation(s)
- Francisco Barros
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo Oviedo, Asturias, Spain
| | | | | |
Collapse
|
18
|
Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J Biol Chem 2011; 286:38168-38176. [PMID: 21908607 DOI: 10.1074/jbc.m111.288993] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a non-selective ion channel, which is expressed in nociceptor sensory neurons and transduces chemical, inflammatory, and neuropathic pain signals. Numerous non-reactive compounds and electrophilic compounds, such as endogenous inflammatory mediators and exogenous pungent chemicals, can activate TRPA1. Here we report a 16-Å resolution structure of purified, functional, amphipol-stabilized TRPA1 analyzed by single-particle EM. Molecular models of the N and C termini of the channel were generated using the I-TASSER protein structure prediction server and docked into the EM density to provide insight into the TRPA1 subunit organization. This structural analysis suggests a location for critical N-terminal cysteine residues involved in electrophilic activation at the interface between neighboring subunits. Our results indicate that covalent modifications within this pocket may alter interactions between subunits and promote conformational changes that lead to channel activation.
Collapse
Affiliation(s)
- Teresa L Cvetkov
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Kevin W Huynh
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Matthew R Cohen
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
19
|
Kroemer JA, Nusawardani T, Rausch MA, Moser SE, Hellmich RL. Transcript analysis and comparative evaluation of shaker and slowmo gene homologues from the European corn borer, Ostrinia nubilalis. INSECT MOLECULAR BIOLOGY 2011; 20:493-506. [PMID: 21672063 DOI: 10.1111/j.1365-2583.2011.01080.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The movement and dispersal of larval Lepidoptera impact their survival and distribution within the natural landscape. Homologues of the Drosophila behaviour-linked genes shaker (shkr) and slowmo (slmo) were identified from Ostrinia nubilalis (Lepidoptera: Crambidae). Onshkr was isolated as a 1610-nucleotide (nt) constitutively expressed transcript encoding a membrane-localized 469-amino-acid (aa) protein with a conserved tetramerization domain and the six-domain architecture necessary for the molecule to fold into an active K(+) channel. Three expressed splice variants of 682, 970 and 1604 nt were identified for the Onslmo gene, and encode predicted 141 and 228 aa proteins with a conserved protein of relevant evolutionary and lymphoid interest (PRELI) domain that may function in mitochondrial protein sorting and perinuclear protein localization. Onshkr and Onslmo protein sequences aligned within monophyletic lepidopteran groups.
Collapse
Affiliation(s)
- J A Kroemer
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Genetics Laboratory, Iowa State University, Ames, IA 50011-3140, USA.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Structural studies on TRP channels, while limited, are poised for a quickened pace and rapid expansion. As of yet, no high-resolution structure of a full length TRP channel exists, but low-resolution electron cryomicroscopy structures have been obtained for 4 TRP channels, and high-resolution NMR and X-ray crystal structures have been obtained for the cytoplasmic domains, including an atypical protein kinase domain, ankyrin repeats, coiled coil domains and a Ca(2+)-binding domain, of 6 TRP channels. These structures enhance our understanding of TRP channel assembly and regulation. Continued technical advances in structural approaches promise a bright outlook for TRP channel structural biology.
Collapse
|
21
|
Abstract
Since the first discovery of Kvbeta-subunits more than 15 years ago, many more ancillary Kv channel subunits were characterized, for example, KChIPs, KCNEs, and BKbeta-subunits. The ancillary subunits are often integral parts of native Kv channels, which, therefore, are mostly multiprotein complexes composed of voltage-sensing and pore-forming Kvalpha-subunits and of ancillary or beta-subunits. Apparently, Kv channels need the ancillary subunits to fulfill their many different cell physiological roles. This is reflected by the large structural diversity observed with ancillary subunit structures. They range from proteins with transmembrane segments and extracellular domains to purely cytoplasmic proteins. Ancillary subunits modulate Kv channel gating but can also have a great impact on channel assembly, on channel trafficking to and from the cellular surface, and on targeting Kv channels to different cellular compartments. The importance of the role of accessory subunits is further emphasized by the number of mutations that are associated in both humans and animals with diseases like hypertension, epilepsy, arrhythmogenesis, periodic paralysis, and hypothyroidism. Interestingly, several ancillary subunits have in vitro enzymatic activity; for example, Kvbeta-subunits are oxidoreductases, or modulate enzymatic activity, i.e., KChIP3 modulates presenilin activity. Thus different modes of beta-subunit association and of functional impact on Kv channels can be delineated, making it difficult to extract common principles underlying Kvalpha- and beta-subunit interactions. We critically review present knowledge on the physiological role of ancillary Kv channel subunits and their effects on Kv channel properties.
Collapse
Affiliation(s)
- Olaf Pongs
- Institut für Neurale Signalverarbeitung, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Universität Hamburg, Hamburg, Germany.
| | | |
Collapse
|
22
|
Murata K, Nishimura S, Kuniyasu A, Nakayama H. Three-dimensional structure of the alpha1-beta complex in the skeletal muscle dihydropyridine receptor by single-particle electron microscopy. JOURNAL OF ELECTRON MICROSCOPY 2009; 59:215-226. [PMID: 19995890 DOI: 10.1093/jmicro/dfp059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dihydropyridine receptor (DHPR) is a protein complex that consists of five distinct subunits of alpha(1), alpha(2), beta, gamma and delta and functions as a voltage-dependent L-type Ca(2+) channel. Here we purified the alpha(1)-beta complex (approximately 250 kDa) from the rabbit skeletal muscle DHPR and reconstructed its three-dimensional (3D) structure to 38 A resolution by single particle analysis of negative staining electron microscopy. The alpha(1)-beta structure exhibited two unique regions: a pseudo-4-fold petaloid region and an elongated region. X-ray crystallographic models of a homologous voltage-dependent K(+) channel and the beta subunit fit well into the individual regions of the alpha(1)-beta structure, revealing that the two regions correspond to the transmembrane alpha(1) and the cytoplasmic beta subunits, respectively. In addition, 3D reconstruction and immuno-electron microscopic analysis performed on the independently purified DHPR demonstrated that the alpha(1)-beta complex was located in the large globular portion of the DHPR, and the N-terminal region of the beta subunit was extended to the leg-shaped protrusion of the DHPR, which includes the alpha(2)delta subunits. Our results propose a model in which the beta subunit may regulate ion channel function by acting as a hinge between alpha(1) and alpha(2)delta subunits of the DHPR.
Collapse
Affiliation(s)
- Kazuyoshi Murata
- Japan Biological Information Research Center, AIST Tokyo Waterfront, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan.
| | | | | | | |
Collapse
|
23
|
Sankaranarayanan K, Usman H, Mathew MK. Fast inactivation in potassium channels: an interplay of cytoplasmic domains. Biochem Biophys Res Commun 2009; 388:490-5. [PMID: 19665007 DOI: 10.1016/j.bbrc.2009.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 08/02/2009] [Indexed: 11/27/2022]
Abstract
Fast inactivation in voltage-gated potassium channels has traditionally been associated exclusively with the N-terminus. Here, we explore the role of the T1 domain using a series of chimeric channels. A chimeric channel, 4N/2, (N-terminus from the rapidly inactivating hKv1.4, and the channel body from the non-inactivating hKv1.2), exhibited slower and incomplete inactivation as compared to the wild-type hKv1.4. Replacing the T1 domain of 4N2 with that from hKv1.2 (4N/2T1/2), restored inactivation, while that from hKv1.1 (4N/1T1/2) completely abolished inactivation. Based on these observations, we hypothesize a correlation between the tetramerization domain and the putative inactivation domain receptor in the process of rapid inactivation of hKv1 channels.
Collapse
Affiliation(s)
- Kavitha Sankaranarayanan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, GKVK P.O., Bangalore 560065, India
| | | | | |
Collapse
|
24
|
Everitt AB, Seymour VAL, Curmi J, Laver DR, Gage PW, Tierney ML. Protein interactions involving the gamma2 large cytoplasmic loop of GABA(A) receptors modulate conductance. FASEB J 2009; 23:4361-9. [PMID: 19703932 DOI: 10.1096/fj.09-137042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Native GABA(A) channels display a single-channel conductance ranging between approximately 10 and 90 pS. Diazepam increases the conductance of some of these native channels but never those of recombinant receptors, unless they are coexpressed with GABARAP. This trafficking protein clusters recombinant receptors in the membrane, suggesting that high-conductance channels arise from receptors that are at locally high concentrations. The amphipathic (MA) helix that is present in the large cytoplasmic loop of every subunit of all ligand-gated ion channels mediates protein-protein interactions. Here we report that when applied to inside-out patches, a peptide mimicking the MA helix of the gamma2 subunit (gamma(381-403)) of the GABA(A) receptor abrogates the potentiating effect of diazepam on both endogenous receptors and recombinant GABA(A) receptors coexpressed with GABARAP, by substantially reducing their conductance. The protein interaction disrupted by the peptide did not involve GABARAP, because a shorter peptide (gamma(386-403)) known to compete with the gamma2-GABARAP interaction did not affect the conductance of recombinant alphabetagamma receptors coexpressed with GABARAP. The requirement for receptor clustering and the fact that the gamma2 MA helix is able to self-associate support a mechanism whereby adjacent GABA(A) receptors interact via their gamma2-subunit MA helices, altering ion permeation through each channel. Alteration of ion-channel function arising from dynamic interactions between ion channels of the same family has not been reported previously and highlights a novel way in which inhibitory neurotransmission in the brain may be differentially modulated.
Collapse
Affiliation(s)
- Andrea B Everitt
- Structural Biology Programme, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Sankaranarayanan K, Varshney A, Mathew MK. N type rapid inactivation in human Kv1.4 channels: functional role of a putative C-terminal helix. Mol Membr Biol 2009; 22:389-400. [PMID: 16308273 DOI: 10.1080/09687860500190663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Voltage gated potassium channels are tetrameric membrane proteins, which have a central role in cellular excitability. Human Kv1.4 channels open on membrane depolarization and inactivate rapidly by a 'ball and chain' mechanism whose molecular determinants have been mapped to the cytoplasmic N terminus of the channel. Here we show that the other terminal end of the channel also plays a role in channel inactivation. Swapping the C-terminal residues of hKv1.4 with those from two non-inactivating channels (hKv1.1 and hKv1.2) affects the rates of inactivation, as well as the recovery of the channel from the inactivated state. Secondary structure predictions of the hKv1.4 sequence reveal a helical structure at its distal C-terminal. Complete removal or partial disruption of this helical region results in channels with remarkably slowed inactivation kinetics. The ionic selectivity and voltage-dependence of channel opening were similar to hKv1.4, indicative of an unperturbed channel pore. These results demonstrate that fast inactivation is modulated by structural elements in the C-terminus, suggesting that the process involves the concerted action of the N- and C-termini.
Collapse
|
26
|
Prince-Carter A, Pfaffinger PJ. Multiple intermediate states precede pore block during N-type inactivation of a voltage-gated potassium channel. ACTA ACUST UNITED AC 2009; 134:15-34. [PMID: 19528261 PMCID: PMC2712980 DOI: 10.1085/jgp.200910219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-type inactivation of voltage-gated potassium channels is an autoinhibitory process that occurs when the N terminus binds within the channel pore and blocks conduction. N-type inactivation and recovery occur with single-exponential kinetics, consistent with a single-step reaction where binding and block occur simultaneously. However, recent structure-function studies have suggested the presence of a preinactivated state whose formation and loss regulate inactivation and recovery kinetics. Our studies on N-type inactivation of the Shaker-type AKv1 channel support a multiple-step inactivation process involving a series of conformational changes in distinct regions of the N terminus that we have named the polar, flex, and latch regions. The highly charged polar region forms interactions with the surface of the channel leading up to the side window openings between the T1 domain and the channel transmembrane domains, before the rate-limiting step occurs. This binding culminates with a specific electrostatic interaction between R18 and EDE161-163 located at the entrance to the side windows. The latch region appears to work together with the flex region to block the pore after polar region binding occurs. Analysis of tail currents for a latch region mutant shows that both blocked and unblocked states exist after the rate-limiting transition is passed. Our results suggest that at least two intermediate states exist for N-type inactivation: a polar region-bound state that is formed before the rate-limiting step, and a pre-block state that is formed by the flex and latch regions during the rate-limiting step.
Collapse
|
27
|
Thompson J, Begenisich T. Mechanistic details of BK channel inhibition by the intermediate conductance, Ca2+-activated K channel. Channels (Austin) 2009; 3:194-204. [PMID: 19574736 DOI: 10.4161/chan.3.3.9043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Salivary gland acinar cells have two types of Ca(2+)-activated K channels required for fluid secretion: the intermediate conductance (IK1) channel and the large conductance (BK) channel. Activation of IK1 inhibits BK channels including in small, cell-free, excised membrane patches. As a first step toward understanding the mechanism underlying this interaction, we examined its voltage sensitivity. We found that the IK1-induced inhibition of BK channels was only weakly voltage dependent and not accompanied by alteration in BK gating kinetics. These actions of IK1 on BK channels are not consistent with a mechanism whereby activation of IK1 causes a shift of the BK channel's voltage dependence as occurs for many BK modulatory processes. In a search for other clues about the interaction mechanism, we noted that the N-terminus of the IK1 channel shares some chemical features with the N-terminal regions of two BK subunits known to inhibit BK activity by blocking the cytoplasmic end of the BK pore. Thus, we tested the idea that the N-terminus of IK1 channels may act similarly. We found that a peptide derived from the N-terminal region of the IK1 protein blocked BK channels. Significantly, we also found that the activation of IK1 channels competed with block by the N-terminus peptide. Thus, the activation of IK1 channels inhibits BK channels by a mechanism that involves block of the cytoplasmic pore, not an alteration in the voltage dependence of BK gating. The mediator of this cytoplasmic pore block may be the IK1 N-terminus.
Collapse
Affiliation(s)
- Jill Thompson
- Department of Pharmacology and Physiology and the Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | |
Collapse
|
28
|
Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev 2008; 88:1407-47. [PMID: 18923186 DOI: 10.1152/physrev.00002.2008] [Citation(s) in RCA: 352] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The intrinsic electrical properties and the synaptic input-output relationships of neurons are governed by the action of voltage-dependent ion channels. The localization of specific populations of ion channels with distinct functional properties at discrete sites in neurons dramatically impacts excitability and synaptic transmission. Molecular cloning studies have revealed a large family of genes encoding voltage-dependent ion channel principal and auxiliary subunits, most of which are expressed in mammalian central neurons. Much recent effort has focused on determining which of these subunits coassemble into native neuronal channel complexes, and the cellular and subcellular distributions of these complexes, as a crucial step in understanding the contribution of these channels to specific aspects of neuronal function. Here we review progress made on recent studies aimed to determine the cellular and subcellular distribution of specific ion channel subunits in mammalian brain neurons using in situ hybridization and immunohistochemistry. We also discuss the repertoire of ion channel subunits in specific neuronal compartments and implications for neuronal physiology. Finally, we discuss the emerging mechanisms for determining the discrete subcellular distributions observed for many neuronal ion channels.
Collapse
Affiliation(s)
- Helene Vacher
- Department of Neurobiology, Physiology, and Behavior, College of Biological Sciences, University of California, Davis, California 95616-8519, USA
| | | | | |
Collapse
|
29
|
The Domain and Conformational Organization in Potassium Voltage-Gated Ion Channels. J Neuroimmune Pharmacol 2008; 4:71-82. [DOI: 10.1007/s11481-008-9130-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 09/10/2008] [Indexed: 11/26/2022]
|
30
|
Soh H, Goldstein SAN. I SA channel complexes include four subunits each of DPP6 and Kv4.2. J Biol Chem 2008; 283:15072-7. [PMID: 18364354 PMCID: PMC2397469 DOI: 10.1074/jbc.m706964200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2007] [Indexed: 11/06/2022] Open
Abstract
Kv4 potassium channels produce rapidly inactivating currents that regulate excitability of muscles and nerves. To reconstitute the neuronal A-type current I(SA), Kv4 subunits assemble with DPP6, a single transmembrane domain accessory subunit. DPP6 alters function-accelerating activation, inactivation, and recovery from inactivation-and increases surface expression. We sought here to determine the stoichiometry of Kv4 and DPP6 in complexes using functional and biochemical methods. First, wild type channels formed from subunit monomers were compared with channels carrying subunits linked in tandem to enforce 4:4 and 4:2 assemblies (Kv4.2-DPP6 and Kv4.2-Kv4.2-DPP6). Next, channels were overexpressed and purified so that the molar ratio of subunits in complexes could be assessed by direct amino acid analysis. Both biophysical and biochemical methods indicate that I(SA) channels carry four subunits each of Kv4.2 and DPP6.
Collapse
Affiliation(s)
| | - Steve A. N. Goldstein
- Department of Pediatrics and Institute for Molecular Pediatric Sciences, Pritzker School of Medicine, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
31
|
Abstract
The transient receptor potential (TRP) family of ion channels participate in many signaling pathways. TRPV1 functions as a molecular integrator of noxious stimuli, including heat, low pH, and chemical ligands. Here, we report the 3D structure of full-length rat TRPV1 channel expressed in the yeast Saccharomyces cerevisiae and purified by immunoaffinity chromatography. We demonstrate that the recombinant purified TRPV1 channel retains its structural and functional integrity and is suitable for structural analysis. The 19-A structure of TRPV1 determined by using single-particle electron cryomicroscopy exhibits fourfold symmetry and comprises two distinct regions: a large open basket-like domain, likely corresponding to the cytoplasmic N- and C-terminal portions, and a more compact domain, corresponding to the transmembrane portion. The assignment of transmembrane and cytoplasmic regions was supported by fitting crystal structures of the structurally homologous Kv1.2 channel and isolated TRPV1 ankyrin repeats into the TRPV1 structure.
Collapse
|
32
|
Abstract
Kv2.1 channels are widely expressed in neuronal and endocrine cells and generate slowly activating K+ currents, which contribute to repolarization in these cells. Kv2.1 is expressed at high levels in the mammalian brain and is a major component of the delayed rectifier current in the hippocampus. In addition, Kv2.1 channels have been implicated in the regulation of membrane repolarization, cytoplasmic calcium levels, and insulin secretion in pancreatic beta-cells. They are therefore an important drug target for the treatment of Type II diabetes mellitus. We used electron microscopy and single particle image analysis to derive a three-dimensional density map of recombinant human Kv2.1. The tetrameric channel is egg-shaped with a diameter of approximately 80 A and a long axis of approximately 120 A. Comparison to known crystal structures of homologous domains allowed us to infer the location of the cytoplasmic and transmembrane assemblies. There is a very good fit of the Kv1.2 crystal structure to the assigned transmembrane assembly of Kv2.1. In other low-resolution maps of K+ channels, the cytoplasmic N-terminal and transmembrane domains form separate rings of density. In contrast, Kv2.1 displays contiguous density that connects the rings, such that there are no large windows between the channel interior and the cytoplasmic space. The crystal structure of KcsA is thought to be in a closed conformation, and the good fit of the KcsA crystal structure to the Kv2.1 map suggests that our preparations of Kv2.1 may also represent a closed conformation. Substantial cytoplasmic density is closely associated with the T1 tetramerization domain and is ascribed to the approximately 184 kDa C-terminal regulatory domains within each tetramer.
Collapse
|
33
|
Midgett CR, Madden DR. Breaking the bottleneck: Eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 2007; 160:265-74. [PMID: 17702603 DOI: 10.1016/j.jsb.2007.07.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/26/2007] [Accepted: 07/06/2007] [Indexed: 10/23/2022]
Abstract
The recombinant expression of eukaryotic membrane proteins has been a major stumbling block in efforts to determine their structures. In the last two years, however, five such proteins have yielded high-resolution X-ray or electron diffraction data, opening the prospect of increased throughput for eukaryotic membrane protein structure determination. Here, we summarize the major expression systems available, and highlight technical advances that should facilitate more systematic screening of expression conditions for this physiologically important class of targets.
Collapse
Affiliation(s)
- Charles R Midgett
- Department of Biochemistry, Dartmouth Medical School, 7200 Vail Building, Hanover, NH 03755, USA
| | | |
Collapse
|
34
|
Chiu PL, Pagel MD, Evans J, Chou HT, Zeng X, Gipson B, Stahlberg H, Nimigean CM. The structure of the prokaryotic cyclic nucleotide-modulated potassium channel MloK1 at 16 A resolution. Structure 2007; 15:1053-64. [PMID: 17850745 PMCID: PMC2000844 DOI: 10.1016/j.str.2007.06.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/11/2007] [Accepted: 06/14/2007] [Indexed: 11/24/2022]
Abstract
The gating ring of cyclic nucleotide-modulated channels is proposed to be either a two-fold symmetric dimer of dimers or a four-fold symmetric tetramer based on high-resolution structure data of soluble cyclic nucleotide-binding domains and functional data on intact channels. We addressed this controversy by obtaining structural data on an intact, full-length, cyclic nucleotide-modulated potassium channel, MloK1, from Mesorhizobium loti, which also features a putative voltage-sensor. We present here the 3D single-particle structure by transmission electron microscopy and the projection map of membrane-reconstituted 2D crystals of MloK1 in the presence of cAMP. Our data show a four-fold symmetric arrangement of the CNBDs, separated by discrete gaps. A homology model for full-length MloK1 suggests a vertical orientation for the CNBDs. The 2D crystal packing in the membrane-embedded state is compatible with the S1-S4 domains in the vertical "up" state.
Collapse
Affiliation(s)
- Po-Lin Chiu
- Molecular and Cellular Biology, College of Biological Sciences, University of California-Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
The MscS Cytoplasmic Domain and Its Conformational Changes on the Channel Gating. CURRENT TOPICS IN MEMBRANES 2007. [DOI: 10.1016/s1063-5823(06)58011-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Zhang Z, Zhou Y, Ding JP, Xia XM, Lingle CJ. A limited access compartment between the pore domain and cytosolic domain of the BK channel. J Neurosci 2006; 26:11833-43. [PMID: 17108156 PMCID: PMC6674862 DOI: 10.1523/jneurosci.3812-06.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cytosolic N-terminal segments of many K+ channel subunits mediate rapid blockade of ion permeation by physical occlusion of the ion-conducting pore. For some channels with large cytosolic structures, access to the channel pore by inactivation domains may occur through lateral entry pathways or "side portals" that separate the pore domain and associated cytosolic structures covering the axis of the permeation pathway. However, the extent to which side portals control access of molecules to the channel or influence channel gating is unknown. Here we use removal of inactivation by trypsin as a tool to examine basic residue accessibility in both the N terminus of the native auxiliary beta2 subunit of Ca2+-activated, BK-type K+ channels and beta2 subunits with artificial inactivating N termini. The results show that, for BK channels, side portals define a protected space that precedes the channel permeation pathway and excludes small proteins such as trypsin but allows inactivation domains to enter. When channels are closed, inactivation domains readily pass through side portals, with a central antechamber preceding the permeation pathway occupied by an inactivation domain approximately half of the time under resting conditions. The restricted volume of the pathway through side portals is likely to influence kinetic properties of inactivation mechanisms, blockade by large pharmacological probes, and accessibility of modulatory factors to surfaces of the channel within the protected space.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Yu Zhou
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jiu-Ping Ding
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Xiao-Ming Xia
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Christopher J. Lingle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
37
|
Sack JT, Aldrich RW. Binding of a gating modifier toxin induces intersubunit cooperativity early in the Shaker K channel's activation pathway. ACTA ACUST UNITED AC 2006; 128:119-32. [PMID: 16801385 PMCID: PMC2151558 DOI: 10.1085/jgp.200609492] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Potassium currents from voltage-gated Shaker K channels activate with a sigmoid rise. The degree of sigmoidicity in channel opening kinetics confirms that each subunit of the homotetrameric Shaker channel undergoes more than one conformational change before the channel opens. We have examined effects of two externally applied gating modifiers that reduce the sigmoidicity of channel opening. A toxin from gastropod mucus, 6-bromo-2-mercaptotryptamine (BrMT), and divalent zinc are both found to slow the same conformational changes early in Shaker's activation pathway. Sigmoidicity measurements suggest that zinc slows a conformational change independently in each channel subunit. Analysis of activation in BrMT reveals cooperativity among subunits during these same early steps. A lack of competition with either agitoxin or tetraethylammonium indicates that BrMT binds channel subunits outside of the external pore region in an allosterically cooperative fashion. Simulations including negatively cooperative BrMT binding account for its ability to induce gating cooperativity during activation. We conclude that cooperativity among K channel subunits can be greatly altered by experimental conditions.
Collapse
Affiliation(s)
- Jon T Sack
- Howard Hughes Medical Institute and Department of Molecular and Cellular Physiology, Stanford University School of Medicine, CA 94305, USA
| | | |
Collapse
|
38
|
Sousa D, Grigorieff N. Ab initio resolution measurement for single particle structures. J Struct Biol 2006; 157:201-10. [PMID: 17029845 DOI: 10.1016/j.jsb.2006.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 08/03/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
A computational method is described that allows the measurement of the signal-to-noise ratio and resolution of a three-dimensional structure obtained by single particle electron microscopy and reconstruction. The method does not rely on the availability of the original image data or the calculation of several structures from different parts of the data that are needed for the commonly used Fourier Shell Correlation criterion. Instead, the correlation between neighboring Fourier pixels is calculated and used to distinguish signal from noise. The new method has been conveniently implemented in a computer program called RMEASURE and is available to the microscopy community.
Collapse
Affiliation(s)
- Duncan Sousa
- Howard Hughes Medical Institute and Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
39
|
Abstract
Cyclic nucleotide-activated ion channels play a fundamental role in a variety of physiological processes. By opening in response to intracellular cyclic nucleotides, they translate changes in concentrations of signaling molecules to changes in membrane potential. These channels belong to two families: the cyclic nucleotide-gated (CNG) channels and the hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. The two families exhibit high sequence similarity and belong to the superfamily of voltage-gated potassium channels. Whereas HCN channels are activated by voltage and CNG channels are virtually voltage independent, both channels are activated by cyclic nucleotide binding. Furthermore, the channels are thought to have similar channel structures, leading to similar mechanisms of activation by cyclic nucleotides. However, although these channels are structurally and behaviorally similar, they have evolved to perform distinct physiological functions. This review describes the physiological roles and biophysical behavior of CNG and HCN channels. We focus on how similarities in structure and activation mechanisms result in common biophysical models, allowing CNG and HCN channels to be viewed as a single genre.
Collapse
Affiliation(s)
- Kimberley B Craven
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
40
|
Kobrinsky E, Stevens L, Kazmi Y, Wray D, Soldatov NM. Molecular rearrangements of the Kv2.1 potassium channel termini associated with voltage gating. J Biol Chem 2006; 281:19233-40. [PMID: 16690619 DOI: 10.1074/jbc.m601231200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The voltage-gated Kv2.1 channel is composed of four identical subunits folded around the central pore and does not inactivate appreciably during short depolarizing pulses. To study voltage-induced relative molecular rearrangements of the channel, Kv2.1 subunits were genetically fused with enhanced cyan fluorescent protein and/or enhanced yellow fluorescent protein, expressed in COS1 cells, and investigated using fluorescence resonance energy transfer (FRET) microscopy combined with patch clamp. Fusion of fluorophores to either or both termini of the Kv2.1 monomer did not significantly affect the gating properties of the channel. FRET between the N- and C-terminal tags fused to the same or different Kv2.1 monomers decreased upon activation of the channel by depolarization from -80 to +60 mV, suggesting voltage-gated relative rearrangement between the termini. Because FRET between the Kv2.1 N- or C-terminal tags and the membrane-trapped EYFP(N)-PH pleckstrin homology domains did not change on depolarization, voltage-gated relative movements between the Kv2.1 termini occurred in a plane parallel to the plasma membrane, within a distance of 1-10 nm. FRET between the N-terminal tags did not change upon depolarization, indicating that the N termini do not rearrange relative to each other, but they could either move cooperatively with the Kv2.1 tetramer or not move at all. No FRET was detected between the C-terminal tags. Assuming their randomized orientation in the symmetrically arranged Kv2.1 subunits, C termini may move outwards in order to produce relative rearrangements between N and C termini upon depolarization.
Collapse
Affiliation(s)
- Evgeny Kobrinsky
- NIA, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
41
|
Baker KA, Hilty C, Peti W, Prince A, Pfaffinger PJ, Wider G, Wüthrich K, Choe S. NMR-derived dynamic aspects of N-type inactivation of a Kv channel suggest a transient interaction with the T1 domain. Biochemistry 2006; 45:1663-72. [PMID: 16460013 PMCID: PMC3508000 DOI: 10.1021/bi0516430] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Some eukaryotic voltage-gated K+ (Kv) channels contain an N-terminal inactivation peptide (IP), which mediates a fast inactivation process that limits channel function during membrane depolarization and thus shapes the action potential. We obtained sequence-specific nuclear magnetic resonance (NMR) assignments for the polypeptide backbone of a tetrameric N-terminal fragment (amino acids 1-181) of the Aplysia Kv1.1 channel. Additional NMR measurements show that the tetramerization domain 1 (T1) has the same globular structure in solution as previously determined by crystallography and that the IP (residues 1-20) and the linker (residues 21-65) are in a flexibly disordered, predominantly extended conformation. A potential contact site between the T1 domain and the flexible tail (residues 1-65) has been identified on the basis of chemical-shift changes of individual T1 domain amino acids, which map to the T1 surface near the interface between adjacent subunits. Paramagnetic perturbation experiments further indicate that, in the ensemble of solution conformers, there is at least a small population of species with the IP localized in close proximity to the proposed interacting residues of the T1 tetramer. Electrophysiological measurements show that all three mutations in this pocket that we tested slow the rate of inactivation and speed up recovery, as predicted from the preinactivation site model. These results suggest that specific, short-lived transient interactions between the T1 domain and the IP or the linker segment may play a role in defining the regulatory kinetics of fast channel inactivation.
Collapse
Affiliation(s)
- Kent A. Baker
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
| | - Christian Hilty
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Wolfgang Peti
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alison Prince
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul J. Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gerhard Wider
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
| | - Kurt Wüthrich
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Zürich, 8093 Zürich, Switzerland
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Senyon Choe
- Structural Biology Laboratory, The Salk Institute, La Jolla, CA 92037, USA
- For correspondence: , phone (858)453-4100, fax (858) 452-3683
| |
Collapse
|
42
|
Nechyporuk-Zloy V, Stock C, Schillers H, Oberleithner H, Schwab A. Single plasma membrane K+ channel detection by using dual-color quantum dot labeling. Am J Physiol Cell Physiol 2006; 291:C266-9. [PMID: 16554404 DOI: 10.1152/ajpcell.00633.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
K+ channels are widely expressed in eukaryotic and prokaryotic cells, where one of their key functions is to set the membrane potential. Many K+ channels are tetramers that share common architectural properties. The crystal structure of bacterial and mammalian K+ channels has been resolved and provides the basis for modeling their three-dimensional structure in different functional states. This wealth of information on K+ channel structure contrasts with the difficulties to visualize single K+ channel proteins in their physiological environment. We describe a method to identify single Ca2+-activated K+ channel molecules in the plasma membrane of migrating cells. Our method is based on dual-color labeling with quantum dots. We show that >90% of the observed quantum dots correspond to single K+ channel proteins. We anticipate that our method can be adopted to label any other ion channel in the plasma membrane on the single molecule level.
Collapse
|
43
|
Khakh BS, Fisher JA, Nashmi R, Bowser DN, Lester HA. An angstrom scale interaction between plasma membrane ATP-gated P2X2 and alpha4beta2 nicotinic channels measured with fluorescence resonance energy transfer and total internal reflection fluorescence microscopy. J Neurosci 2006; 25:6911-20. [PMID: 16033901 PMCID: PMC6725363 DOI: 10.1523/jneurosci.0561-05.2005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Structurally distinct nicotinic and P2X channels interact functionally, such that coactivation results in cross-inhibition of one or both channel types. It is hypothesized, but not yet proven, that nicotinic and P2X channels interact at the plasma membrane. Here, we show that plasma membrane alpha4beta2 nicotinic and P2X2 channels form a molecular scale partnership and also influence each other when coactivated, resulting in nonadditive cross-inhibitory responses. Total internal reflection fluorescence and fluorescence resonance energy transfer microscopy between fluorescently labeled P2X2 and alpha4beta2 nicotinic channels demonstrated close spatial arrangement of the channels in human embryonic kidney cells and in hippocampal neuron membranes. The data suggest that P2X2 and alpha4beta2 channels may form a dimer, with the channels approximately 80 A apart. The measurements also show that P2X2 subunits interact specifically and robustly with the beta2 subunits in alpha4beta2 channels. The data provide direct evidence for the close spatial apposition of full-length P2X2 and alpha4beta2 channels within 100 nm of the plasma membrane of living cells.
Collapse
Affiliation(s)
- Baljit S Khakh
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 2QH, United Kingdom.
| | | | | | | | | |
Collapse
|
44
|
Li ZB, Lehar M, Samlan R, Flint PW. Proteomic analysis of rat laryngeal muscle following denervation. Proteomics 2005; 5:4764-76. [PMID: 16281258 DOI: 10.1002/pmic.200401329] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laryngeal muscle atrophy induced by nerve injury is a major factor contributing to the disabling symptoms associated with laryngeal paralysis. Alterations of global proteins in rat laryngeal muscle following denervation were, therefore, studied using proteomic techniques. Twenty-eight adult Sprague-Dawley rats were divided into normal control and denervated groups. The thyroarytenoid (TA) muscle was excised 60 days after right recurrent laryngeal nerve was resected. Protein separation and identification were preformed using 2-DE and MALDI-MS with database search. Forty-four proteins were found to have significant alteration in expression level after denervation. The majority of these proteins (57%), most of them associated with energy metabolism, cellular proliferation and differentiation, signal transduction and stress reaction, were decreased levels of expression in denervated TA muscle. The remaining 43% of the proteins, most of them involved with protein degradation, immunoreactivity, injury repair, contraction, and microtubular formation, were found to have increased levels of expression. The protein modification sites by phosphorylation were detected in 22% of the identified proteins that presented multiple-spot patterns on 2-D gel. Significant changes in protein expression in denervated laryngeal muscle may provide potential therapeutic strategies for the treatment of laryngeal paralysis.
Collapse
Affiliation(s)
- Zhao-Bo Li
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Johns Hopkins University, 601 N. Caroline Street, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
45
|
Patel SP, Campbell DL. Transient outward potassium current, 'Ito', phenotypes in the mammalian left ventricle: underlying molecular, cellular and biophysical mechanisms. J Physiol 2005; 569:7-39. [PMID: 15831535 PMCID: PMC1464208 DOI: 10.1113/jphysiol.2005.086223] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/07/2005] [Accepted: 04/13/2005] [Indexed: 11/08/2022] Open
Abstract
At least two functionally distinct transient outward K(+) current (I(to)) phenotypes can exist across the free wall of the left ventricle (LV). Based upon their voltage-dependent kinetics of recovery from inactivation, these two phenotypes are designated 'I(to,fast)' (recovery time constants on the order of tens of milliseconds) and 'I(to,slow)' (recovery time constants on the order of thousands of milliseconds). Depending upon species, either I(to,fast), I(to,slow) or both current phenotypes may be expressed in the LV free wall. The expression gradients of these two I(to) phenotypes across the LV free wall are typically heterogeneous and, depending upon species, may consist of functional phenotypic gradients of both I(to,fast) and I(to,slow) and/or density gradients of either phenotype. We review the present evidence (molecular, biophysical, electrophysiological and pharmacological) for Kv4.2/4.3 alpha subunits underlying LV I(to,fast) and Kv1.4 alpha subunits underlying LV I(to,slow) and speculate upon the potential roles of each of these currents in determining frequency-dependent action potential characteristics of LV subepicardial versus subendocardial myocytes in different species. We also review the possible functional implications of (i) ancillary subunits that regulate Kv1.4 and Kv4.2/4.3 (Kvbeta subunits, DPPs), (ii) KChIP2 isoforms, (iii) spider toxin-mediated block of Kv4.2/4.3 (Heteropoda toxins, phrixotoxins), and (iv) potential mechanisms of modulation of I(to,fast) and I(to,slow) by cellular redox state, [Ca(2)(+)](i) and kinase-mediated phosphorylation. I(to) phenotypic activation and state-dependent gating models and molecular structure-function relationships are also discussed.
Collapse
Affiliation(s)
- Sangita P Patel
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, NY 14214-3078, USA.
| | | |
Collapse
|
46
|
Kurata HT, Fedida D. A structural interpretation of voltage-gated potassium channel inactivation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 92:185-208. [PMID: 16316679 DOI: 10.1016/j.pbiomolbio.2005.10.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
After channel activation, and in some cases with sub-threshold depolarizing stimuli, Kv channels undergo a time-dependent loss of conductivity by a family of mechanisms termed inactivation. To date, all identified inactivation mechanisms underlying loss of conduction in Kv channels appear to be distinct from deactivation, i.e. closure of the voltage-operated activation gate by changes in transmembrane voltage. Instead, Kv channel inactivation entails entry of channels into a stable, non-conducting state, and thereby functionally reduces the availability of channels for opening. That is, if a channel has inactivated, some time must expire after repolarization of the membrane voltage to allow the channel to recover and become available to open again. Dramatic differences between Kv channel types in the time course of inactivation and recovery underlie various roles in regulating cellular excitability and repolarization of action potentials. Therefore, the range of inactivation mechanisms exhibited by different Kv channels provides important physiological means by which the duration of action potentials in many excitable tissues can be regulated at different frequencies and potentials. In this review, we provide a detailed discussion of recent work characterizing structural and functional aspects of Kv channel gating, and attempt to reconcile these recent results with classical experimental work carried out throughout the 1990s that identified and characterized the basic mechanisms and properties of Kv channel inactivation. We identify and discuss numerous gaps in our understanding of inactivation, and review them in the light of new structural insights into channel gating.
Collapse
Affiliation(s)
- Harley T Kurata
- Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
47
|
Mio K, Ogura T, Hara Y, Mori Y, Sato C. The non-selective cation-permeable channel TRPC3 is a tetrahedron with a cap on the large cytoplasmic end. Biochem Biophys Res Commun 2005; 333:768-77. [PMID: 15964551 DOI: 10.1016/j.bbrc.2005.05.181] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
TRPC3 plays important roles in neuronal differentiation and immune cell maturation by mediating the cationic current in response to phospholipase C activation, Ca2+ depletion, and diacylglycerol stimulation. Here, we purified the TRPC3 channel using a glycosylated tetramer and observed the structure using electron microscopy. Negatively stained specimens demonstrate homogeneous protein particles containing an internal cavity-like structure. These particle images were picked up by automated pick-up programs, aligned, and classified by the growing neural gas network method. Similarly oriented projections were averaged to decrease the signal-to-noise ratio. The averaged images progress from the top view to the side views, which are representative of their raw images. The top view confirmed the hypothesis of a four-domain structure, and the side view demonstrates a large cytoplasmic domain with a capped structure at the bottom, which is near a predicted locus of ion release. The total image of the protein is a blunt-edged trapezoid of 200 x 200 x 235 A. This large dimension of TRPC3 is also supported by the Stokes radius (92 A) obtained from gel filtration chromatography.
Collapse
Affiliation(s)
- Kazuhiro Mio
- Neuroscience Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Umezono 1-1-4, Tsukuba, Ibaraki 305-8568, Japan
| | | | | | | | | |
Collapse
|
48
|
Li B, Gallin WJ. Computational identification of residues that modulate voltage sensitivity of voltage-gated potassium channels. BMC STRUCTURAL BIOLOGY 2005; 5:16. [PMID: 16111489 PMCID: PMC1208917 DOI: 10.1186/1472-6807-5-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2005] [Accepted: 08/19/2005] [Indexed: 01/29/2023]
Abstract
Background Studies of the structure-function relationship in proteins for which no 3D structure is available are often based on inspection of multiple sequence alignments. Many functionally important residues of proteins can be identified because they are conserved during evolution. However, residues that vary can also be critically important if their variation is responsible for diversity of protein function and improved phenotypes. If too few sequences are studied, the support for hypotheses on the role of a given residue will be weak, but analysis of large multiple alignments is too complex for simple inspection. When a large body of sequence and functional data are available for a protein family, mature data mining tools, such as machine learning, can be applied to extract information more easily, sensitively and reliably. We have undertaken such an analysis of voltage-gated potassium channels, a transmembrane protein family whose members play indispensable roles in electrically excitable cells. Results We applied different learning algorithms, combined in various implementations, to obtain a model that predicts the half activation voltage of a voltage-gated potassium channel based on its amino acid sequence. The best result was obtained with a k-nearest neighbor classifier combined with a wrapper algorithm for feature selection, producing a mean absolute error of prediction of 7.0 mV. The predictor was validated by permutation test and evaluation of independent experimental data. Feature selection identified a number of residues that are predicted to be involved in the voltage sensitive conformation changes; these residues are good target candidates for mutagenesis analysis. Conclusion Machine learning analysis can identify new testable hypotheses about the structure/function relationship in the voltage-gated potassium channel family. This approach should be applicable to any protein family if the number of training examples and the sequence diversity of the training set that are necessary for robust prediction are empirically validated. The predictor and datasets can be found at the VKCDB web site [1].
Collapse
Affiliation(s)
- Bin Li
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
- Partners AIDS Research Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street 6th floor, Charlestown MA USA 02129
| | - Warren J Gallin
- Department of Biological Sciences, University of Alberta, Edmonton, Canada T6G 2E9
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
49
|
Long SB, Campbell EB, Mackinnon R. Crystal Structure of a Mammalian Voltage-Dependent Shaker Family K+ Channel. Science 2005; 309:897-903. [PMID: 16002581 DOI: 10.1126/science.1116269] [Citation(s) in RCA: 1694] [Impact Index Per Article: 84.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voltage-dependent potassium ion (K+) channels (Kv channels) conduct K+ ions across the cell membrane in response to changes in the membrane voltage, thereby regulating neuronal excitability by modulating the shape and frequency of action potentials. Here we report the crystal structure, at a resolution of 2.9 angstroms, of a mammalian Kv channel, Kv1.2, which is a member of the Shaker K+ channel family. This structure is in complex with an oxido-reductase beta subunit of the kind that can regulate mammalian Kv channels in their native cell environment. The activation gate of the pore is open. Large side portals communicate between the pore and the cytoplasm. Electrostatic properties of the side portals and positions of the T1 domain and beta subunit are consistent with electrophysiological studies of inactivation gating and with the possibility of K+ channel regulation by the beta subunit.
Collapse
Affiliation(s)
- Stephen B Long
- Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
50
|
Drolet B, Simard C, Mizoue L, Roden DM. Human cardiac potassium channel DNA polymorphism modulates access to drug-binding site and causes drug resistance. J Clin Invest 2005; 115:2209-13. [PMID: 16025157 PMCID: PMC1174915 DOI: 10.1172/jci23741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2004] [Accepted: 05/24/2005] [Indexed: 12/19/2022] Open
Abstract
Expression of voltage-gated K channel, shaker-related subfamily, member 5 (KCNA5) underlies the human atrial ultra-rapid delayed rectifier K current (I(Kur)). The KCNA5 polymorphism resulting in P532L in the C terminus generates I(Kur) that is indistinguishable from wild type at baseline but strikingly resistant to drug block. In the present study, truncating the C terminus of KCNA5 generated a channel with wild-type drug sensitivity, which indicated that P532 is not a drug-binding site. Secondary structure prediction algorithms identified a probable alpha-helix in P532L that is absent in wild-type channels. We therefore assessed drug sensitivity of I(Kur) generated in vitro in CHO and HEK cells by channels predicted to exhibit or lack this C-terminal alpha-helix. All constructs displayed near-identical I(Kur) in the absence of drug challenge. However, those predicted to lack the C-terminal alpha-helix generated quinidine-sensitive currents (43-51% block by 10 microM quinidine), while the currents generated by those constructs predicted to generate a C-terminal alpha-helix were inhibited less than 12%. Circular dichroism spectroscopy revealed an alpha-helical signature with peptides derived from drug-resistant channels and no organized structure in those associated with wild-type drug sensitivity. In conclusion, we found that this secondary structure in the KCNA5 C terminus, absent in wild-type channels but generated by a naturally occurring DNA polymorphism, does not alter baseline currents but renders the channel drug resistant. Our data support a model in which this structure impairs access of the drug to a pore-binding site.
Collapse
Affiliation(s)
- Benoit Drolet
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|