1
|
Kam CS, Ho DWH, Ming VSI, Tian L, Sze KMF, Zhang VX, Tsui YM, Husain A, Lee JMF, Wong CCL, Chan ACY, Cheung TT, Chan LK, Ng IOL. PFKFB4 Drives the Oncogenicity in TP53-Mutated Hepatocellular Carcinoma in a Phosphatase-Dependent Manner. Cell Mol Gastroenterol Hepatol 2023; 15:1325-1350. [PMID: 36806581 PMCID: PMC10140800 DOI: 10.1016/j.jcmgh.2023.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND & AIMS Metabolic reprogramming is recognized as a cancer hallmark intimately linked to tumor hypoxia, which supports rapid tumor growth and mitigates the consequential oxidative stress. Phosphofructokinase-fructose bisphosphatase (PFKFB) is a family of bidirectional glycolytic enzymes possessing both kinase and phosphatase functions and has emerged as important oncogenes in multiple types of cancer. However, its clinical relevance, functional significance, and underlying mechanistic insights in hepatocellular carcinoma (HCC), the primary malignancy that develops in the most important metabolic organ, has never been addressed. METHODS PFKFB4 expression was examined by RNA sequencing in The Cancer Genome Atlas and our in-house HCC cohort. The up-regulation of PFKFB4 expression was confirmed further by quantitative polymerase chain reaction in an expanded hepatitis B virus-associated HCC cohort followed by clinicopathologic correlation analysis. CRISPR/Cas9-mediated PFKFB4 knockout cells were generated for functional characterization in vivo, targeted metabolomic profiling, as well as RNA sequencing analysis to comprehensively examine the impact of PFKFB4 loss in HCC. RESULTS PFKFB4 expression was up-regulated significantly in HCC and correlated positively with TP53 and TSC2 loss-of-function mutations. In silico transcriptome-based analysis further revealed PFKFB4 functions as a critical hypoxia-inducible gene. Clinically, PFKFB4 up-regulation was associated with more aggressive tumor behavior. Functionally, CRISPR/Cas9-mediated PFKFB4 knockout significantly impaired in vivo HCC development. Targeted metabolomic profiling revealed that PFKFB4 functions as a phosphatase in HCC and its ablation caused an accumulation of metabolites in downstream glycolysis and the pentose phosphate pathway. In addition, PFKFB4 loss induced hypoxia-responsive genes in glycolysis and reactive oxygen species detoxification. Conversely, ectopic PFKFB4 expression conferred sorafenib resistance. CONCLUSIONS PFKFB4 up-regulation supports HCC development and posed therapeutic implications.
Collapse
Affiliation(s)
- Charles Shing Kam
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Vanessa Sheung-In Ming
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Lu Tian
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Vanilla Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Abdullah Husain
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong; Department of Surgery, The University of Hong Kong, Hong Kong
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong.
| |
Collapse
|
2
|
Teixeira CSS, Sousa SF. Current Status of the Use of Multifunctional Enzymes as Anti-Cancer Drug Targets. Pharmaceutics 2021; 14:pharmaceutics14010010. [PMID: 35056904 PMCID: PMC8780674 DOI: 10.3390/pharmaceutics14010010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022] Open
Abstract
Fighting cancer is one of the major challenges of the 21st century. Among recently proposed treatments, molecular-targeted therapies are attracting particular attention. The potential targets of such therapies include a group of enzymes that possess the capability to catalyze at least two different reactions, so-called multifunctional enzymes. The features of such enzymes can be used to good advantage in the development of potent selective inhibitors. This review discusses the potential of multifunctional enzymes as anti-cancer drug targets along with the current status of research into four enzymes which by their inhibition have already demonstrated promising anti-cancer effects in vivo, in vitro, or both. These are PFK-2/FBPase-2 (involved in glucose homeostasis), ATIC (involved in purine biosynthesis), LTA4H (involved in the inflammation process) and Jmjd6 (involved in histone and non-histone posttranslational modifications). Currently, only LTA4H and PFK-2/FBPase-2 have inhibitors in active clinical development. However, there are several studies proposing potential inhibitors targeting these four enzymes that, when used alone or in association with other drugs, may provide new alternatives for preventing cancer cell growth and proliferation and increasing the life expectancy of patients.
Collapse
Affiliation(s)
- Carla S. S. Teixeira
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
| | - Sérgio F. Sousa
- Associate Laboratory i4HB, Faculty of Medicine, Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4051-401 Porto, Portugal
- Correspondence:
| |
Collapse
|
3
|
Flores-Sauceda M, Camacho-Jiménez L, Peregrino-Uriarte AB, Leyva-Carrillo L, Arvizu-Flores A, Yepiz-Plascencia G. The bifunctional 6-phosphofructokinase-2/fructose-2,6-bisphosphatase from the shrimp Litopenaeus vannamei: Molecular characterization and down-regulation of expression in response to severe hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111095. [PMID: 34655741 DOI: 10.1016/j.cbpa.2021.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
Hypoxia is a frequent stressor in marine environments with multiple adverse effects on marine species. The white shrimp Litopenaeus vannamei withstands hypoxic conditions by activating anaerobic metabolism with tissue-specific changes in glycolytic and gluconeogenic enzymes. In animal cells, glycolytic/gluconeogenic fluxes are highly controlled by the levels of fructose-2,6-bisphosphate (F-2,6-P2), a signal metabolite synthesized and degraded by the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2). PFK-2/FBPase-2 has been studied in vertebrates and some invertebrates, but as far as we know, there are no reports on PFK-2/FBPase-2 from crustaceans. In the present work, we obtained cDNA nucleotide sequences corresponding to two mRNAs for PFK-2/FBPase-2 and named them PFKFBP1 (1644 bp) and PFKFBP2 (1566 bp), from the white shrimp L. vannamei. The deduced PFKFBP1 and PFKFBP2 are 547 and 521 amino acids long, respectively. Both proteins share 99.23% of identity, and only differ in 26 additional amino acids present in the kinase domain of the PFKFBP1. The kinase and phosphatase domains are highly conserved in sequence and structure between both isoforms and other proteins from diverse taxa. Total expression of PFKFBP1-2 is tissue-specific, more abundant in gills than in hepatopancreas and undetectable in muscle. Moreover, severe hypoxia (1 mg/L of DO) decreased expression of PFKFBP1-2 in gills while anaerobic glycolysis was induced, as indicated by accumulation of cellular lactate. These results suggest that negative regulation of PFKFBP1-2 at expression level is necessary to set up anaerobic glycolysis in the cells during the response to hypoxia.
Collapse
Affiliation(s)
- Marissa Flores-Sauceda
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico.
| | - Alma B Peregrino-Uriarte
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Lilia Leyva-Carrillo
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Aldo Arvizu-Flores
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Rosales y Blvd. Luis Encinas s/n, Hermosillo, Sonora 83000, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
4
|
Trojan SE, Dudzik P, Totoń-Żurańska J, Laidler P, Kocemba-Pilarczyk KA. Expression of Alternative Splice Variants of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase-4 in Normoxic and Hypoxic Melanoma Cells. Int J Mol Sci 2021; 22:8848. [PMID: 34445551 PMCID: PMC8396304 DOI: 10.3390/ijms22168848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer-specific isoenzyme of phosphofructokinase II (PFKFB4), as our previous research has shown, may be one of the most important enzymes contributing to the intensification of glycolysis in hypoxic malignant melanoma cells. Although the PFKFB4 gene seems to play a crucial role in the progression of melanoma, so far there are no complete data on the expression of PFKFB4 at the isoform level and the influence of hypoxia on alternative splicing. Using RT-qPCR and semi-quantitative RT-PCR, we presented the PFKFB4 gene expression profile at the level of six isoforms described in the OMIM NCBI database in normoxic and hypoxic melanoma cells. Additionally, using VMD software, we analyzed the structure of isoforms at the protein level, concluding about the catalytic activity of individual isoforms. Our research has shown that five isoforms of PFKFB4 are expressed in melanoma cells, of which the D and F isoforms are highly constitutive, while the canonical B isoform seems to be the main isoform induced in hypoxia. Our results also indicate that the expression profile at the level of the PFKFB4 gene does not reflect the expression at the level of individual isoforms. Our work clearly indicates that the PFKFB4 gene expression profile should be definitely analyzed at the level of individual isoforms. Moreover, the analysis at the protein level allowed the selection of those isoforms whose functional validation should be performed to fully understand the importance of PFKFB4 expression in the metabolic adaptation of malignant melanoma cells.
Collapse
Affiliation(s)
- Sonia E. Trojan
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Paulina Dudzik
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Justyna Totoń-Żurańska
- Jagiellonian University Medical College, Center for Medical Genomics-OMICRON, 31-034 Krakow, Poland;
| | - Piotr Laidler
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| | - Kinga A. Kocemba-Pilarczyk
- Jagiellonian University Medical College, Faculty of Medicine, Chair of Medical Biochemistry, 31-034 Krakow, Poland; (S.E.T.); (P.D.); (P.L.)
| |
Collapse
|
5
|
Uyeda K. Short- and Long-Term Adaptation to Altered Levels of Glucose: Fifty Years of Scientific Adventure. Annu Rev Biochem 2021; 90:31-55. [PMID: 34153217 DOI: 10.1146/annurev-biochem-070820-125228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My graduate and postdoctoral training in metabolism and enzymology eventually led me to study the short- and long-term regulation of glucose and lipid metabolism. In the early phase of my career, my trainees and I identified, purified, and characterized a variety of phosphofructokinase enzymes from mammalian tissues. These studies led us to discover fructose 2,6-P2, the most potent activator of phosphofructokinase and glycolysis. The discovery of fructose 2,6-P2 led to the identification and characterization of the tissue-specific bifunctional enzyme 6-phosphofructo-2-kinase:fructose 2,6-bisphosphatase. We discovered a glucose signaling mechanism by which the liver maintains glucose homeostasis by regulating the activities of this bifunctional enzyme. With a rise in glucose, a signaling metabolite, xylulose 5-phosphate, triggers rapid activation of a specific protein phosphatase (PP2ABδC), which dephosphorylates the bifunctional enzyme, thereby increasing fructose 2,6-P2 levels and upregulating glycolysis. These endeavors paved the way for us to initiate the later phase of my career in which we discovered a new transcription factor termed the carbohydrate response element binding protein (ChREBP). Now ChREBP is recognized as the masterregulator controlling conversion of excess carbohydrates to storage of fat in the liver. ChREBP functions as a central metabolic coordinator that responds to nutrients independently of insulin. The ChREBP transcription factor facilitates metabolic adaptation to excess glucose, leading to obesity and its associated diseases.
Collapse
Affiliation(s)
- Kosaku Uyeda
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
| |
Collapse
|
6
|
Sellem CH, Humbert A, Sainsard-Chanet A. Mutations in the phosphatase domain of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase result in the transcriptional activation of the alternative oxidase and gluconeogenic pathways in Podospora anserina. Fungal Genet Biol 2019; 130:1-10. [PMID: 30980907 DOI: 10.1016/j.fgb.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
By screening suppressors of a respiratory mutant lacking a functional cytochrome pathway in the filamentous fungus Podospora anserina, we isolated a mutation located in the phosphatase domain of the bi-functional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2/FBPase-2). We show that the inactivation of the phosphatase but not of the kinase domain is responsible for the suppressor effect that results from the activation of the RSEs transcription factors that control expression of AOX, an alternative oxidase able to bypass the mitochondria cytochrome pathway of respiration. Remarkably, activation of the RSEs also stimulates the expression of the gluconeogenic enzymes, fructose-1,6 bi-phosphatase (FBPase-1) and phosphoenolpyruvate carboxykinase (PCK-1). We thus reveal in P. anserina an apparently paradoxical situation where the inactivation of the phosphatase domain of PFK-2/FBPase-2, supposed to stimulate glycolysis, is correlated with the transcriptional induction of the gluconeogenic enzymes. Phylogenic analysis revealed the presence of multiple presumed PFK-2/FBPase-2 isoforms in all the species of tested Ascomycetes.
Collapse
Affiliation(s)
- Carole H Sellem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Adeline Humbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Annie Sainsard-Chanet
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
7
|
Baburina Y, Odinokova I, Azarashvili T, Akatov V, Sotnikova L, Krestinina O. Possible Involvement of 2',3'-Cyclic Nucleotide-3'-Phosphodiesterase in the Protein Phosphorylation-Mediated Regulation of the Permeability Transition Pore. Int J Mol Sci 2018; 19:ijms19113499. [PMID: 30405014 PMCID: PMC6274948 DOI: 10.3390/ijms19113499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Calcium as a secondary messenger regulates the phosphorylation of several membrane-bound proteins in brain and liver mitochondria. Regulation of the activity of different protein kinases and phosphatases by Ca2+ occurs through its binding with calmodulin. The protein phosphorylation is strongly dependent on the Ca2+-induced mitochondrial permeability transition pore (mPTP) opening. 2′,3′-Cyclic nucleotide-3′-phosphodiesterase (CNPase) was phosphorylated by protein kinases A and C. CNPase and melatonin (MEL) might interact with calmodulin. The effects of the calmodulin antagonist calmidazolium and the inhibitor of protein kinase A H89 on mPTP opening in rat brain mitochondria of male Wistar rats were investigated. In addition, the role of CNPase, serine/threonine kinases, and MEL in the mPTP opening was examined. The anti-CNPase antibody added to rat brain mitochondria (RBM) reduced the content of CNPase in mitochondria. The threshold [Ca2+] decreased, and mitochondrial swelling was accelerated in the presence of the anti-CNPase antibody. H89 enhanced the effect of anti-CNPase antibody and accelerated the swelling of mitochondria, while CmZ abolished the effect of anti-CNPase antibody under mPTP opening. The levels of phospho-Akt and phospho-GSK3β increased, while the MEL content did not change. It can be assumed that CNPase may be involved in the regulation of these kinases, which in turn plays an important role in mPTP functioning.
Collapse
Affiliation(s)
- Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Tamara Azarashvili
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Linda Sotnikova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia.
| |
Collapse
|
8
|
Bartrons R, Rodríguez-García A, Simon-Molas H, Castaño E, Manzano A, Navarro-Sabaté À. The potential utility of PFKFB3 as a therapeutic target. Expert Opin Ther Targets 2018; 22:659-674. [PMID: 29985086 DOI: 10.1080/14728222.2018.1498082] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION It has been known for over half a century that tumors exhibit an increased demand for nutrients to fuel their rapid proliferation. Interest in targeting cancer metabolism to treat the disease has been renewed in recent years with the discovery that many cancer-related pathways have a profound effect on metabolism. Considering the recent increase in our understanding of cancer metabolism and the enzymes and pathways involved, the question arises as to whether metabolism is cancer's Achilles heel. Areas covered: This review summarizes the role of 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in glycolysis, cell proliferation, and tumor growth, discussing PFKFB3 gene and isoenzyme regulation and the changes that occur in cancer and inflammatory diseases. Pharmacological options currently available for selective PFKFB3 inhibition are also reviewed. Expert opinion: PFKFB3 plays an important role in sustaining the development and progression of cancer and might represent an attractive target for therapeutic strategies. Nevertheless, clinical trials are needed to follow up on the promising results from preclinical studies with PFKFB3 inhibitors. Combination therapies with PFKFB3 inhibitors, chemotherapeutic drugs, or radiotherapy might improve the efficacy of cancer treatments targeting PFKFB3.
Collapse
Affiliation(s)
- Ramon Bartrons
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Ana Rodríguez-García
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Helga Simon-Molas
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Esther Castaño
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Anna Manzano
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| | - Àurea Navarro-Sabaté
- a Unitat de Bioquímica, Departament de Ciències Fisiològiques , Universitat de Barcelona, IDIBELL , Catalunya , Spain
| |
Collapse
|
9
|
Abstract
Glycolysis is prudently regulated and coupled to cell growth. Phosphofructokinase 2 controls glycolytic flux by generating fructose 2,6-bisphosphate, an allosteric activator of phosphofructokinase 1. In a recent paper in Nature, Dasgupta et al. address the novel role of PFKFB4, an isoform of phosphofructokinase 2, in regulating gene expression to promote tumor growth.
Collapse
|
10
|
Crochet RB, Kim JD, Lee H, Yim YS, Kim SG, Neau D, Lee YH. Crystal structure of heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) and the inhibitory influence of citrate on substrate binding. Proteins 2016; 85:117-124. [PMID: 27802586 DOI: 10.1002/prot.25204] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/23/2016] [Accepted: 10/26/2016] [Indexed: 11/09/2022]
Abstract
The heart-specific isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) is an important regulator of glycolytic flux in cardiac cells. Here, we present the crystal structures of two PFKFB2 orthologues, human and bovine, at resolutions of 2.0 and 1.8 Å, respectively. Citrate, a TCA cycle intermediate and well-known inhibitor of PFKFB2, co-crystallized in the 2-kinase domains of both orthologues, occupying the fructose-6-phosphate binding-site and extending into the γ-phosphate binding pocket of ATP. This steric and electrostatic occlusion of the γ-phosphate site by citrate proved highly consequential to the binding of co-complexed ATP analogues. The bovine structure, which co-crystallized with ADP, closely resembled the overall structure of other PFKFB isoforms, with ADP mimicking the catalytic binding mode of ATP. The human structure, on the other hand, co-complexed with AMPPNP, which, unlike ADP, contains a γ-phosphate. The presence of this γ-phosphate made adoption of the catalytic ATP binding mode impossible for AMPPNP, forcing the analogue to bind atypically with concomitant conformational changes to the ATP binding-pocket. Inhibition kinetics were used to validate the structural observations, confirming citrate's inhibition mechanism as competitive for F6P and noncompetitive for ATP. Together, these structural and kinetic data establish a molecular basis for citrate's negative feed-back loop of the glycolytic pathway via PFKFB2. Proteins 2016; 85:117-124. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert B Crochet
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Jeong-Do Kim
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Herie Lee
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Young-Sun Yim
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| | - Song-Gun Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, 305-806, Korea
| | - David Neau
- NE-CAT, Cornell University, Argonne, Illinois, 60439
| | - Yong-Hwan Lee
- Departments of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803
| |
Collapse
|
11
|
Chesney J, Clark J, Lanceta L, Trent JO, Telang S. Targeting the sugar metabolism of tumors with a first-in-class 6-phosphofructo-2-kinase (PFKFB4) inhibitor. Oncotarget 2016. [PMID: 26221874 PMCID: PMC4627231 DOI: 10.18632/oncotarget.4534] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Human tumors exhibit increased glucose uptake and metabolism as a result of high demand for ATP and anabolic substrates and this metabolotype is a negative prognostic indicator for survival. Recent studies have demonstrated that cancer cells from several tissue origins and genetic backgrounds require the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), a regulatory enzyme that synthesizes an allosteric activator of glycolysis, fructose-2,6-bisphosphate. We report the discovery of a first-in-class PFKFB4 inhibitor, 5-(n-(8-methoxy-4-quinolyl)amino)pentyl nitrate (5MPN), using structure-based virtual computational screening. We find that 5MPN is a selective inhibitor of PFKFB4 that suppresses the glycolysis and proliferation of multiple human cancer cell lines but not non-transformed epithelial cells in vitro. Importantly, 5MPN has high oral bioavailability and per os administration of a non-toxic dose of 5MPN suppresses the glucose metabolism and growth of tumors in mice.
Collapse
Affiliation(s)
- Jason Chesney
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Jennifer Clark
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Lilibeth Lanceta
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - John O Trent
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Sucheta Telang
- Division of Hematology/Oncology, Department of Medicine, J. Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA.,Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA.,Department of Pediatrics, University of Louisville, Louisville, KY, USA
| |
Collapse
|
12
|
Myllykoski M, Seidel L, Muruganandam G, Raasakka A, Torda AE, Kursula P. Structural and functional evolution of 2',3'-cyclic nucleotide 3'-phosphodiesterase. Brain Res 2015; 1641:64-78. [PMID: 26367445 DOI: 10.1016/j.brainres.2015.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) is an abundant membrane-associated enzyme within the vertebrate myelin sheath. While the physiological function of CNPase still remains to be characterized in detail, it is known - in addition to its in vitro enzymatic activity - to interact with other proteins, small molecules, and membrane surfaces. From an evolutionary point of view, it can be deduced that CNPase is not restricted to myelin-forming cells or vertebrate tissues. Its evolution has involved gene fusion, addition of other small segments with distinct functions, such as membrane attachment, and possibly loss of function at the polynucleotide kinase-like domain. Currently, it is unclear whether the enzymatic function of the conserved phosphodiesterase domain in vertebrate myelin has a physiological role, or if CNPase could actually function - like many other classical myelin proteins - in a more structural role. This article is part of a Special Issue entitled SI: Myelin Evolution.
Collapse
Affiliation(s)
- Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland
| | - Leonie Seidel
- Centre for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | | | - Arne Raasakka
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Andrew E Torda
- Centre for Bioinformatics, University of Hamburg, Bundesstraße 43, 20146 Hamburg, Germany
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Aapistie 7, 90220 Oulu, Finland; German Electron Synchrotron, Notkestraße 85, 22607 Hamburg, Germany; Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
13
|
Summerton JC, Martin GM, Evanseck JD, Chapman MS. Common hydrogen bond interactions in diverse phosphoryl transfer active sites. PLoS One 2014; 9:e108310. [PMID: 25238155 PMCID: PMC4169622 DOI: 10.1371/journal.pone.0108310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 08/27/2014] [Indexed: 11/18/2022] Open
Abstract
Phosphoryl transfer reactions figure prominently in energy metabolism, signaling, transport and motility. Prior detailed studies of selected systems have highlighted mechanistic features that distinguish different phosphoryl transfer enzymes. Here, a top-down approach is developed for comparing statistically the active site configurations between populations of diverse structures in the Protein Data Bank, and it reveals patterns of hydrogen bonding that transcend enzyme families. Through analysis of large samples of structures, insights are drawn at a level of detail exceeding the experimental precision of an individual structure. In phosphagen kinases, for example, hydrogen bonds with the O3β of the nucleotide substrate are revealed as analogous to those in unrelated G proteins. In G proteins and other enzymes, interactions with O3β have been understood in terms of electrostatic favoring of the transition state. Ground state quantum mechanical calculations on model compounds show that the active site interactions highlighted in our database analysis can affect substrate phosphate charge and bond length, in ways that are consistent with prior experimental observations, by modulating hyperconjugative orbital interactions that weaken the scissile bond. Testing experimentally the inference about the importance of O3β interactions in phosphagen kinases, mutation of arginine kinase Arg280 decreases kcat, as predicted, with little impact upon KM.
Collapse
Affiliation(s)
- Jean C. Summerton
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Gregory M. Martin
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Jeffrey D. Evanseck
- Center for Computational Sciences and the Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Michael S. Chapman
- Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health and Science University, Portland, Oregon, United States of America
| |
Collapse
|
14
|
Role of astrocytic glycolytic metabolism in Alzheimer's disease pathogenesis. Biogerontology 2014; 15:579-86. [PMID: 25106114 DOI: 10.1007/s10522-014-9525-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/24/2014] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) has historically been considered to arise due to the specific dysfunction and pathology of neurons in brain areas related to cognition. Recent progress indicates that astrocytes play an important role in neurodegenerative processes underlying AD. In this review, we focus on the different glucose metabolism profiles between astrocytes and neurons. In AD, a variety of CNS insults, such as the presence of amyloid protein, trigger reactive astrogliosis, which disrupts normal glycolytic activity in these cells. The compromise of the astrocytic metabolism in turn weakens the integrity of astrocytic-neuronal partnership, damages the normal brain homeostasis, impairs clearance of amyloid, promotes cytokine release and other inflammatory mediators, and over time, leads to neurodegeneration.
Collapse
|
15
|
New insights into the catalytic mechanism of histidine phosphatases revealed by a functionally essential arginine residue within the active site of the Sts phosphatases. Biochem J 2013; 453:27-35. [PMID: 23565972 DOI: 10.1042/bj20121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sts (suppressor of T-cell receptor signalling)-1 and Sts-2 are HPs (histidine phosphatases) that negatively regulate TCR (T-cell receptor) signalling pathways, including those involved in cytokine production. HPs play key roles in such varied biological processes as metabolism, development and intracellular signalling. They differ considerably in their primary sequence and substrate specificity, but possess a catalytic core formed by an invariant quartet of active-site residues. Two histidine and two arginine residues cluster together within the HP active site and are thought to participate in a two-step dephosphorylation reaction. To date there has been little insight into any additional residues that might play an important functional role. In the present study, we identify and characterize an additional residue within the Sts phosphatases (Sts-1 Arg383 or Sts-2 Arg369) that is critical for catalytic activity and intracellular function. Mutation of Sts-1 Arg383 to an alanine residue compromises the enzyme's activity and renders Sts-1 unable to suppress TCR-induced cytokine induction. Of the multiple amino acids substituted for Arg383, only lysine partially rescues the catalytic activity of Sts-1. Although Sts-1 Arg383 is conserved in all Sts homologues, it is only conserved in one of the two sub-branches of HPs. The results of the present study highlight an essential role for Sts-1 phosphatase activity in regulating T-cell activation and add a new dimension of complexity to our understanding of HP catalytic activity.
Collapse
|
16
|
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 2013; 92:80-109. [PMID: 23603109 DOI: 10.1016/j.jprot.2013.03.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12840 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
17
|
Langer S, Okar DA, Schultz J, Lenzen S, Baltrusch S. Dimer interface rearrangement of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase rat liver isoenzyme by cAMP-dependent Ser-32 phosphorylation. FEBS Lett 2012; 586:1419-25. [PMID: 22668829 DOI: 10.1016/j.febslet.2012.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/07/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) is a key regulator of carbohydrate metabolism in liver. The goal of this study was to elucidate the regulatory role of Ser-32 phosphorylation on the kinase domain mediated dimerization of PFK-2/FBPase-2. Fluorescence-based mammalian two-hybrid and sensitized emission fluorescence resonance energy transfer analyses in cells revealed preferential binding within homodimers in contrast to heterodimers. Using isolated proteins a close proximity of two PFK-2/FBPase-2 monomers was only detectable in the phosphorylated enzyme dimer. Thus, a flexible kinase interaction mode exists, suggesting dimer conformation mediated coupling of hormonal and posttranslational enzyme regulation to the metabolic response in liver.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
18
|
Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism. PLoS One 2012; 7:e34036. [PMID: 22532827 PMCID: PMC3332096 DOI: 10.1371/journal.pone.0034036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/21/2012] [Indexed: 12/29/2022] Open
Abstract
Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis.
Collapse
|
19
|
Lavy T, Kumar PR, He H, Joshua-Tor L. The Gal3p transducer of the GAL regulon interacts with the Gal80p repressor in its ligand-induced closed conformation. Genes Dev 2012; 26:294-303. [PMID: 22302941 DOI: 10.1101/gad.182691.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A wealth of genetic information and some biochemical analysis have made the GAL regulon of the yeast Saccharomyces cerevisiae a classic model system for studying transcriptional activation in eukaryotes. Galactose induces this transcriptional switch, which is regulated by three proteins: the transcriptional activator Gal4p, bound to DNA; the repressor Gal80p; and the transducer Gal3p. We showed previously that NADP appears to act as a trigger to kick the repressor off the activator. Sustained activation involves a complex of the transducer Gal3p and Gal80p mediated by galactose and ATP. We solved the crystal structure of the complex of Gal3p-Gal80p with α-D-galactose and ATP to 2.1 Å resolution. The interaction between the proteins occurs only when Gal3p is in a "closed" state induced by ligand binding. The structure of the complex provides a rationale for the phenotypes of several well-known Gal80p and Gal3p mutants as well as the lack of galactokinase activity of Gal3p.
Collapse
Affiliation(s)
- Tali Lavy
- Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | |
Collapse
|
20
|
Egli M, Mori T, Pattanayek R, Xu Y, Qin X, Johnson CH. Dephosphorylation of the core clock protein KaiC in the cyanobacterial KaiABC circadian oscillator proceeds via an ATP synthase mechanism. Biochemistry 2012; 51:1547-58. [PMID: 22304631 PMCID: PMC3293397 DOI: 10.1021/bi201525n] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The circadian clock of the cyanobacterium Synechococcus elongatus can be reconstituted in vitro from three proteins, KaiA, KaiB, and KaiC in the presence of ATP, to tick in a temperature-compensated manner. KaiC, the central cog of this oscillator, forms a homohexamer with 12 ATP molecules bound between its N- and C-terminal domains and exhibits unusual properties. Both the N-terminal (CI) and C-terminal (CII) domains harbor ATPase activity, and the subunit interfaces between CII domains are the sites of autokinase and autophosphatase activities. Hydrolysis of ATP correlates with phosphorylation at threonine and serine sites across subunits in an orchestrated manner, such that first T432 and then S431 are phosphorylated, followed by dephosphorylation of these residues in the same order. Although structural work has provided insight into the mechanisms of ATPase and kinase, the location and mechanism of the phosphatase have remained enigmatic. From the available experimental data based on a range of approaches, including KaiC crystal structures and small-angle X-ray scattering models, metal ion dependence, site-directed mutagenesis (i.e., E318, the general base), and measurements of the associated clock periods, phosphorylation patterns, and dephosphorylation courses as well as a lack of sequence motifs in KaiC that are typically associated with known phosphatases, we hypothesized that KaiCII makes use of the same active site for phosphorylation and dephosphorlyation. We observed that wild-type KaiC (wt-KaiC) exhibits an ATP synthase activity that is significantly reduced in the T432A/S431A mutant. We interpret the first observation as evidence that KaiCII is a phosphotransferase instead of a phosphatase and the second that the enzyme is capable of generating ATP, both from ADP and P(i) (in a reversal of the ATPase reaction) and from ADP and P-T432/P-S431 (dephosphorylation). This new concept regarding the mechanism of dephosphorylation is also supported by the strikingly similar makeups of the active sites at the interfaces between α/β heterodimers of F1-ATPase and between monomeric subunits in the KaiCII hexamer. Several KaiCII residues play a critical role in the relative activities of kinase and ATP synthase, among them R385, which stabilizes the compact form and helps kinase action reach a plateau, and T426, a short-lived phosphorylation site that promotes and affects the order of dephosphorylation.
Collapse
Affiliation(s)
- Martin Egli
- Department of Biochemistry, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232, United States.
| | | | | | | | | | | |
Collapse
|
21
|
Cavalier MC, Kim SG, Neau D, Lee YH. Molecular basis of the fructose-2,6-bisphosphatase reaction of PFKFB3: transition state and the C-terminal function. Proteins 2012; 80:1143-53. [PMID: 22275052 DOI: 10.1002/prot.24015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/30/2011] [Accepted: 12/07/2011] [Indexed: 11/08/2022]
Abstract
The molecular basis of fructose-2,6-bisphosphatase (F-2,6-P(2)ase) of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB) was investigated using the crystal structures of the human inducible form (PFKFB3) in a phospho-enzyme intermediate state (PFKFB3-P•F-6-P), in a transition state-analogous complex (PFKFB3•AlF(4)), and in a complex with pyrophosphate (PFKFB3•PP(i)) at resolutions of 2.45, 2.2, and 2.3 Å, respectively. Trapping the PFKFB3-P•F-6-P intermediate was achieved by flash cooling the crystal during the reaction, and the PFKFB3•AlF(4) and PFKFB3•PP(i) complexes were obtained by soaking. The PFKFB3•AlF(4) and PFKFB3•PP(i) complexes resulted in removing F-6-P from the catalytic pocket. With these structures, the structures of the Michaelis complex and the transition state were extrapolated. For both the PFKFB3-P formation and break down, the phosphoryl donor and the acceptor are located within ~5.1 Å, and the pivotal point 2-P is on the same line, suggesting an "in-line" transfer with a direct inversion of phosphate configuration. The geometry suggests that NE2 of His253 undergoes a nucleophilic attack to form a covalent N-P bond, breaking the 2O-P bond in the substrate. The resulting high reactivity of the leaving group, 2O of F-6-P, is neutralized by a proton donated by Glu322. Negative charges on the equatorial oxygen of the transient bipyramidal phosphorane formed during the transfer are stabilized by Arg252, His387, and Asn259. The C-terminal domain (residues 440-446) was rearranged in PFKFB3•PP(i), implying that this domain plays a critical role in binding of substrate to and release of product from the F-2,6-P(2) ase catalytic pocket. These findings provide a new insight into the understanding of the phosphoryl transfer reaction.
Collapse
Affiliation(s)
- Michael C Cavalier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
22
|
Chen WM, Prell J, James EK, Sheu DS, Sheu SY. Effect of phosphoglycerate mutase and fructose 1,6-bisphosphatase deficiency on symbiotic Burkholderia phymatum. MICROBIOLOGY-SGM 2012; 158:1127-1136. [PMID: 22282515 DOI: 10.1099/mic.0.055095-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia phymatum STM815 is a β-rhizobial strain that can effectively nodulate several species of the large legume genus Mimosa. Two Tn5-induced mutants of this strain, KM16-22 and KM51, failed to form root nodules on Mimosa pudica, but still caused root hair deformation, which is one of the early steps of rhizobial infection. Both mutants grew well in a complex medium. However, KM16-22 could not grow on minimal medium unless a sugar and a metabolic intermediate such as pyruvate were provided, and KM51 also could not grow on minimal medium unless a sugar was added. The Tn5-interrupted genes of the mutants showed strong homologies to pgm, which encodes 2,3-biphosphoglycerate-dependent phosphoglycerate mutase (dPGM), and fbp, which encodes fructose 1,6-bisphosphatase (FBPase). Both enzymes are known to be involved in obligate steps in carbohydrate metabolism. Enzyme assays confirmed that KM16-22 and KM51 had indeed lost dPGM and FBPase activity, respectively, whilst the activities of these enzymes were expressed normally in both free-living bacteria and symbiotic bacteroids of the parental strain STM815. Both mutants recovered their enzyme activity after the introduction of wild-type pgm or fbp genes, were subsequently able to use carbohydrate as a carbon source, and were able to form root nodules on M. pudica and to fix nitrogen as efficiently as the parental strain. We conclude that the enzymes dPGM and FBPase are essential for the formation of a symbiosis with the host plant.
Collapse
Affiliation(s)
- Wen-Ming Chen
- Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Jurgen Prell
- Soil Ecology, Department of Botany, RWTH Aachen, 52056 Aachen, Germany
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Der-Shyan Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| | - Shih-Yi Sheu
- Department of Marine Biotechnology, National Kaohsiung Marine University, No. 142, Hai-Chuan Rd, Nan-Tzu, Kaohsiung City 811, Taiwan, ROC
| |
Collapse
|
23
|
Jiang CJ, Chen G, Huang J, Huang Q, Jin K, Shen PH, Li JF, Wu B. A novel β-glucosidase with lipolytic activity from a soil metagenome. Folia Microbiol (Praha) 2011; 56:563-70. [PMID: 22116645 DOI: 10.1007/s12223-011-0083-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
Abstract
Moonlighting proteins have two different functions within a single polypeptide chain. Exploring moonlighting enzymes from the environment using the metagenomic approach is interesting. In the present study, a novel β-glucosidase gene, designated as bgl1D, with lipolytic activity (renamed Lip1C) was cloned through function-based screening of a metagenomic library from uncultured soil microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis also indicated that Lip1C and other putative lipases are closely related. Biochemical characterization demonstrated that the maximum activity of the recombinant Lip1C protein occurs at pH 8.0 and 30°C using 4-nitrophenyl butyrate as substrate. The putative lipase had an apparent K(m) value of 0.88 mmol/L, a k(cat) value of 212/min, and a k(cat)/K(m) value of 241 L/mmol/min. Lip1C exhibited habitat-specific characteristics with 5 mmol/L AlCl(3), CuCl(2), and LiCl. The characterization of the biochemical properties of Lip1C enhances our understanding of this novel moonlighting enzyme isolated from a soil metagenome.
Collapse
Affiliation(s)
- Cheng-Jian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of a new phosphatase from Plasmodium. Mol Biochem Parasitol 2011; 179:69-79. [DOI: 10.1016/j.molbiopara.2011.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 06/01/2011] [Accepted: 06/03/2011] [Indexed: 11/21/2022]
|
25
|
|
26
|
Watanabe F, Furuya E. Quantitative image analysis reveals that phosphorylation of liver-type isozyme of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase does not affect nuclear translocation of glucokinase in rat primary hepatocytes. J Biochem 2010; 148:713-9. [PMID: 20843823 DOI: 10.1093/jb/mvq107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have developed a new quantification method to measure translocation of glucokinase between nucleus and cytoplasm in primary hepatocytes. The method is robust, reliable and sensitive with the use of a high content fluorescence microscope, which can analyse more than 20,000 hepatocytes under each experimental condition. Frequency distributions of the nuclear and cytoplasmic contents of glucokinase did not exhibit a Gaussian distribution. Moreover, the distributions have large standard deviation values compared with their average values. These results indicate that a large number of cells must be analysed for the accurate quantification. Glucose and sorbitol promoted the translocation of glucokinase from nucleus to cytoplasm. These results show good agreement with previous reports. However, glucagon did not affect the localization of glucokinase. Under the same conditions, liver-type isozyme of fructose-6-phosphate 2-kinase/fructose-2,6-bisphosphatase (F6P2K), whose dephosphorylated form has been proposed as a cytoplasmic binding protein with glucokinase, was completely phosphorylated. These results indicate that the phosphorylation and dephosphorylation of F6P2K does not have any appreciable effect on the intracellular localization of glucokinase.
Collapse
Affiliation(s)
- Fusao Watanabe
- Department of Chemistry, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, Japan.
| | | |
Collapse
|
27
|
A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol. Proc Natl Acad Sci U S A 2010; 107:12040-5. [PMID: 20551224 DOI: 10.1073/pnas.0914149107] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The first step in assembly of membrane and storage glycerolipids is acylation of glycerol-3-phosphate (G3P). All previously characterized membrane-bound, eukaryotic G3P acyltransferases (GPATs) acylate the sn-1 position to produce lysophosphatidic acid (1-acyl-LPA). Cutin is a glycerolipid with omega-oxidized fatty acids and glycerol as integral components. It occurs as an extracellular polyester on the aerial surface of all plants, provides a barrier to pathogens and resistance to stress, and maintains organ identity. We have determined that Arabidopsis acyltransferases GPAT4 and GPAT6 required for cutin biosynthesis esterify acyl groups predominantly to the sn-2 position of G3P. In addition, these acyltransferases possess a phosphatase domain that results in sn-2 monoacylglycerol (2-MAG) rather than LPA as the major product. Such bifunctional activity has not been previously described in any organism. The possible roles of 2-MAGs as intermediates in cutin synthesis are discussed. GPAT5, which is essential for the accumulation of suberin aliphatics, also exhibits a strong preference for sn-2 acylation. However, phosphatase activity is absent and 2-acyl-LPA is the major product. Clearly, plant GPATs can catalyze more reactions than the sn-1 acylation by which they are currently categorized. Close homologs of GPAT4-6 are present in all land plants, but not in animals, fungi or microorganisms (including algae). Thus, these distinctive acyltransferases may have been important for evolution of extracellular glycerolipid polymers and adaptation of plants to a terrestrial environment. These results provide insight into the biosynthetic assembly of cutin and suberin, the two most abundant glycerolipid polymers in nature.
Collapse
|
28
|
Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 2008; 284:1748-54. [PMID: 19015259 DOI: 10.1074/jbc.m807821200] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of the p53 tumor suppressor by cellular stress leads to variable responses ranging from growth inhibition to apoptosis. TIGAR is a novel p53-inducible gene that inhibits glycolysis by reducing cellular levels of fructose-2,6-bisphosphate, an activator of glycolysis and inhibitor of gluconeogenesis. Here we describe structural and biochemical studies of TIGAR from Danio rerio. The overall structure forms a histidine phosphatase fold with a phosphate molecule coordinated to the catalytic histidine residue and a second phosphate molecule in a position not observed in other phosphatases. The recombinant human and zebra fish enzymes hydrolyze fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate but not fructose 6-phosphate in vitro. The TIGAR active site is open and positively charged, consistent with its enzymatic function as bisphosphatase. The closest related structures are the bacterial broad specificity phosphatase PhoE and the fructose-2,6-bisphosphatase domain of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The structural comparison shows that TIGAR combines an accessible active site as observed in PhoE with a charged substrate-binding pocket as seen in the fructose-2,6-bisphosphatase domain of the bifunctional enzyme.
Collapse
Affiliation(s)
- Hua Li
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
29
|
Abstract
The histidine phosphatase superfamily is a large functionally diverse group of proteins. They share a conserved catalytic core centred on a histidine which becomes phosphorylated during the course of the reaction. Although the superfamily is overwhelmingly composed of phosphatases, the earliest known and arguably best-studied member is dPGM (cofactor-dependent phosphoglycerate mutase). The superfamily contains two branches sharing very limited sequence similarity: the first containing dPGM, fructose-2,6-bisphosphatase, PhoE, SixA, TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator], Sts-1 and many other activities, and the second, smaller, branch composed mainly of acid phosphatases and phytases. Human representatives of both branches are of considerable medical interest, and various parasites contain superfamily members whose inhibition might have therapeutic value. Additionally, several phosphatases, notably the phytases, have current or potential applications in agriculture. The present review aims to draw together what is known about structure and function in the superfamily. With the benefit of an expanding set of histidine phosphatase superfamily structures, a clearer picture of the conserved elements is obtained, along with, conversely, a view of the sometimes surprising variation in substrate-binding and proton donor residues across the superfamily. This analysis should contribute to correcting a history of over- and mis-annotation in the superfamily, but also suggests that structural knowledge, from models or experimental structures, in conjunction with experimental assays, will prove vital for the future description of function in the superfamily.
Collapse
|
30
|
Stingo S, Masullo M, Polverini E, Laezza C, Ruggiero I, Arcone R, Ruozi E, Dal Piaz F, Malfitano AM, D'Ursi AM, Bifulco M. The N-terminal domain of 2',3'-cyclic nucleotide 3'-phosphodiesterase harbors a GTP/ATP binding site. Chem Biol Drug Des 2007; 70:502-10. [PMID: 17986204 DOI: 10.1111/j.1747-0285.2007.00592.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between 2',3'-cyclic nucleotide 3'-phosphodiesterase and guanine/adenine nucleotides was investigated. The binding of purine nucleotides to 2',3'-cyclic nucleotide 3'-phosphodiesterase was revealed by both direct and indirect methods. In fact, surface plasmon resonance experiments, triphosphatase activity measurements, and fluorescence experiments revealed that 2',3'-cyclic nucleotide 3'-phosphodiesterase binds purine nucleotide triphosphates with an affinity higher than that displayed for diphosphates; on the contrary, the affinity for both purine monophosphates and pyrimidine nucleotides was negligible. An interpretation of biological experimental data was achieved by a building of 2',3'-cyclic nucleotide 3'-phosphodiesterase N-terminal molecular model. The structural elements responsible for nucleotide binding were identified and potential complexes between the N-terminal domain of CNP-ase and nucleotide were analyzed by docking simulations. Therefore, our findings suggest new functional and structural property of the N-terminal domain of CNPase.
Collapse
Affiliation(s)
- Stefania Stingo
- Dipartimento di Scienze Farmaceutiche, Università di Salerno, Via Ponte Don Melillo, Fisciano (SA) 84084, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Davies L, Anderson IP, Turner PC, Shirras AD, Rees HH, Rigden DJ. An unsuspected ecdysteroid/steroid phosphatase activity in the key T-cell regulator, Sts-1: surprising relationship to insect ecdysteroid phosphate phosphatase. Proteins 2007; 67:720-31. [PMID: 17348005 DOI: 10.1002/prot.21357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The insect enzyme ecdysteroid phosphate phosphatase (EPP) mobilizes active ecdysteroids from an inactive phosphorylated pool. Previously assigned to a novel class, it is shown here that it resides in the large histidine phosphatase superfamily related to cofactor-dependent phosphoglycerate mutase, a superfamily housing notably diverse catalytic activities. Molecular modeling reveals a plausible substrate-binding mode for EPP. Analysis of genomic and transcript data for a number of insect species shows that EPP may exist in both the single domain form previously characterized and in a longer, multidomain form. This latter form bears a quite unexpected relationship in sequence and domain architecture to vertebrate proteins, including Sts-1, characterized as a key regulator of T-cell activity. Long form Drosophila melanogaster EPP, human Sts-1, and a related protein from Caenorhabditis elegans have all been cloned, assayed, and shown to catalyse the hydrolysis of ecdysteroid and steroid phosphates. The surprising relationship described and explored here between EPP and Sts-1 has implications for our understanding of the function(s) of both.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- Binding Sites
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Chromatography, High Pressure Liquid
- Cloning, Molecular
- Computational Biology
- Databases, Protein
- Evolution, Molecular
- Humans
- Hydrophobic and Hydrophilic Interactions
- Insect Proteins/chemistry
- Insect Proteins/genetics
- Insect Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Open Reading Frames/genetics
- Phosphoric Monoester Hydrolases/chemistry
- Phosphoric Monoester Hydrolases/genetics
- Phosphoric Monoester Hydrolases/metabolism
- Phylogeny
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatases
- Sequence Homology, Amino Acid
- Transfection
Collapse
Affiliation(s)
- Lyndsay Davies
- School of Biological Sciences, University of Liverpool, Biosciences Building, Liverpool L69 7ZB, United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Bashton M, Chothia C. The generation of new protein functions by the combination of domains. Structure 2007; 15:85-99. [PMID: 17223535 DOI: 10.1016/j.str.2006.11.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/21/2006] [Accepted: 11/21/2006] [Indexed: 11/21/2022]
Abstract
During evolution, many new proteins have been formed by the process of gene duplication and combination. The genes involved in this process usually code for whole domains. Small proteins contain one domain; medium and large proteins contain two or more domains. We have compared homologous domains that occur in both one-domain proteins and multidomain proteins. We have determined (1) how the functions of the individual domains in the multidomain proteins combine to produce their overall functions and (2) the extent to which these functions are similar to those in the one-domain homologs. We describe how domain combinations increase the specificity of enzymes; act as links between domains that have functional roles; regulate activity; combine within one chain functions that can act either independently, in concert or in new contexts; and provide the structural framework for the evolution of entirely new functions.
Collapse
Affiliation(s)
- Matthew Bashton
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| | | |
Collapse
|
33
|
Kim SG, Cavalier M, El-Maghrabi MR, Lee YH. A direct substrate-substrate interaction found in the kinase domain of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Mol Biol 2007; 370:14-26. [PMID: 17499765 DOI: 10.1016/j.jmb.2007.03.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 11/24/2022]
Abstract
To understand the molecular basis of a phosphoryl transfer reaction catalyzed by the 6-phosphofructo-2-kinase domain of the hypoxia-inducible bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), the crystal structures of PFKFB3AMPPCPfructose-6-phosphate and PFKFB3ADPphosphoenolpyruvate complexes were determined to 2.7 A and 2.25 A resolution, respectively. Kinetic studies on the wild-type and site-directed mutant proteins were carried out to confirm the structural observations. The experimentally varied liganding states in the active pocket cause no significant conformational changes. In the pseudo-substrate complex, a strong direct interaction between AMPPCP and fructose-6-phosphate (Fru-6-P) is found. By virtue of this direct substrate-substrate interaction, Fru-6-P is aligned with AMPPCP in an orientation and proximity most suitable for a direct transfer of the gamma-phosphate moiety to 2-OH of Fru-6-P. The three key atoms involved in the phosphoryl transfer, the beta,gamma-phosphate bridge oxygen atom, the gamma-phosphorus atom, and the 2-OH group are positioned in a single line, suggesting a direct phosphoryl transfer without formation of a phosphoenzyme intermediate. In addition, the distance between 2-OH and gamma-phosphorus allows the gamma-phosphate oxygen atoms to serve as a general base catalyst to induce an "associative" phosphoryl transfer mechanism. The site-directed mutant study and inhibition kinetics suggest that this reaction will be catalyzed most efficiently by the protein when the substrates bind to the active pocket in an ordered manner in which ATP binds first.
Collapse
Affiliation(s)
- Song-Gun Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
34
|
Abstract
Fructose 2,6-bisphosphate is a potent metabolic regulator in eukaryotic organisms; it affects the activity of key enzymes of the glycolytic and gluconeogenic pathways. The enzymes responsible for its synthesis and hydrolysis, 6-phosphofructo-2-kinase (PFK-2) and fructose-2,6-bisphosphatase (FBPase-2) are present in representatives of all major eukaryotic taxa. Results from a bioinformatics analysis of genome databases suggest that very early in evolution, in a common ancestor of all extant eukaryotes, distinct genes encoding PFK-2 and FBPase-2, or related enzymes with broader substrate specificity, fused resulting in a bifunctional enzyme both domains of which had, or later acquired, specificity for fructose 2,6-bisphosphate. Subsequently, in different phylogenetic lineages duplications of the gene of the bifunctional enzyme occurred, allowing the development of distinct isoenzymes for expression in different tissues, at specific developmental stages or under different nutritional conditions. Independently in different lineages of many unicellular eukaryotes one of the domains of the different PFK-2/FBPase-2 isoforms has undergone substitutions of critical catalytic residues, or deletions rendering some enzymes monofunctional. In a considerable number of other unicellular eukaryotes, mainly parasitic organisms, the enzyme seems to have been lost altogether. Besides the catalytic core, the PFK-2/FBPase-2 has often N- and C-terminal extensions which show little sequence conservation. The N-terminal extension in particular can vary considerably in length, and seems to have acquired motifs which, in a lineage-specific manner, may be responsible for regulation of catalytic activities, by phosphorylation or ligand binding, or for mediating protein-protein interactions.
Collapse
Affiliation(s)
- Paul A M Michels
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université Catholique de Louvain, Brussels, Belgium.
| | | |
Collapse
|
35
|
Kim SG, Manes NP, El-Maghrabi MR, Lee YH. Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a possible new target for cancer therapy. J Biol Chem 2005; 281:2939-44. [PMID: 16316985 DOI: 10.1074/jbc.m511019200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3) plays a crucial role in the progression of cancerous cells by enabling their glycolytic pathways even under severe hypoxic conditions. To understand its structural architecture and to provide a molecular scaffold for the design of new cancer therapeutics, the crystal structure of the human form was determined. The structure at 2.1 A resolution shows that the overall folding and functional dimerization are very similar to those of the liver (PFKFB1) and testis (PFKFB4) forms, as expected from sequence homology. However, in this structure, the N-terminal regulatory domain is revealed for the first time among the PFKFB isoforms. With a beta-hairpin structure, the N terminus interacts with the 2-Pase domain to secure binding of fructose-6-phosphate to the active pocket, slowing down the release of fructose-6-phosphate from the phosphoenzyme intermediate product complex. The C-terminal regulatory domain is mostly disordered, leaving the active pocket of the fructose-2,6-bisphosphatase domain wide open. The active pocket of the 6-phosphofructo-2-kinase domain has a more rigid conformation, allowing independent bindings of substrates, fructose-6-phosphate and ATP, with higher affinities than other isoforms. Intriguingly, the structure shows an EDTA molecule bound to the fructose-6-phosphate site of the 6-phosphofructo-2-kinase active pocket despite its unfavorable liganding concentration, suggesting a high affinity. EDTA is not removable from the site with fructose-6-P alone but is with both ATP and fructose-6-P or with fructose-2,6-bisphosphate. This finding suggests that a molecule in which EDTA is covalently linked to ADP is a good starting molecule for the development of new cancer-therapeutic molecules.
Collapse
Affiliation(s)
- Song-Gun Kim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
36
|
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PAM. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS J 2005; 272:3542-60. [PMID: 16008555 DOI: 10.1111/j.1742-4658.2005.04774.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.
Collapse
Affiliation(s)
- Nathalie Chevalier
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Bhaduri A, Sowdhamini R. Genome-wide Survey of Prokaryotic O-protein Phosphatases. J Mol Biol 2005; 352:736-52. [PMID: 16095610 DOI: 10.1016/j.jmb.2005.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2005] [Revised: 06/16/2005] [Accepted: 07/04/2005] [Indexed: 10/25/2022]
Abstract
Complex and diverse signal transduction circuits are responsible for the efficient functioning of cellular network. Protein kinases and O-protein phosphatases are primarily responsible for propagating such stimuli within a eukaryotic cell. However, there is limited understanding of O-protein phosphatases in the prokaryotic genomes. The availability of complete genome sequence information for several prokaryotes permits a genome-wide survey of O-protein phosphatases. The distribution of the various protein phosphatase families has been observed to be mosaic, with the exception of the members of the phospho protein family P (PPP), which is consistent with previous studies. The PPP family is ubiquitous in the prokaryotic world and undergoes the highest sequence divergence within a genome amongst phosphatases studied. The co-occurrence of low molecular mass tyrosine phosphatase (LMWPc) and PPP domain in a single polypeptide suggests that the protein present in Archaeoglobus fulgidus might represent the progenitor for all protein phosphatases. The curation of data on prokaryotic protein phosphatases provides a convenient framework for the analysis of domain architectures and for characterising structural and functional properties of this important family of signalling proteins.
Collapse
Affiliation(s)
- Anirban Bhaduri
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bangalore 560065, India
| | | |
Collapse
|
38
|
Manes NP, El-Maghrabi MR. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 2005; 438:125-36. [PMID: 15896703 DOI: 10.1016/j.abb.2005.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 12/31/2022]
Abstract
The two enzymatic activities of the highly conserved catalytic core of 6PF2K/Fru-2,6-P(2)ase are thought to be reciprocally regulated by the amino- and carboxy-terminal regions unique to each isoform. In this study, we describe the recombinant expression, purification, and kinetic characterization of two human brain 6PF2K/Fru-2,6-P(2)ase splice variants, HBP1 and HBP2. Interestingly, both lack an arginine which is highly conserved among other tissue isoforms, and which is understood to be critical to the fructose-2,6-bisphosphatase mechanism. As a result, the phosphatase activity of both HBP isoforms is negligible, but we found that it could be recovered by restoration of the arginine by site directed mutagenesis. We also found that AMP activated protein kinase and protein kinases A, B, and C catalyzed the phosphorylation of Ser-460 of HBP1, and that in addition both isoforms are phosphorylated at a second, as yet undetermined site by protein kinase C. However, none of the phosphorylations had any effect on the intrinsic kinetic characteristics of either enzymatic activity, and neither did point mutation (mimicking phosphorylation), deletion, and alternative-splice modification of the HBP1 carboxy-terminal region. Instead, these phosphorylations and mutations decreased the sensitivity of the 6PF2K to a potent allosteric inhibitor, phosphoenolpyruvate, which appears to be the major regulatory mechanism.
Collapse
Affiliation(s)
- Nathan P Manes
- Department of Physiology and Biophysics, Stony Brook University, NY 11794-8661, USA
| | | |
Collapse
|
39
|
Harjes S, Bayer P, Scheidig AJ. The crystal structure of human PAPS synthetase 1 reveals asymmetry in substrate binding. J Mol Biol 2005; 347:623-35. [PMID: 15755455 DOI: 10.1016/j.jmb.2005.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 12/23/2004] [Accepted: 01/03/2005] [Indexed: 11/23/2022]
Abstract
The high energy sulfate donor 3'-phosphoadenosine-5-phosphosulfate (PAPS) is used for sulfate conjugation of extracellular matrix, hormones and drugs. Human PAPS synthetase 1 catalyzes two subsequent reactions starting from ATP and sulfate. First the ATP sulfurylase domain forms APS, then the APS kinase domain phosphorylates the APS intermediate to PAPS. Up to now the interaction between the two enzymatic activities remained elusive, mainly because of missing structural information. Here we present the crystal structure of human PAPSS1 at 1.8 angstroms resolution. The structure reveals a homodimeric, asymmetric complex with the shape of a chair. The two kinase domains adopt different conformational states, with only one being able to bind its two substrates. The asymmetric binding of ADP to the APS kinase is not only observed in the crystal structure, but can also be detected in solution, using an enzymatic assay. These observations strongly indicate structural changes during the reaction cycle. Furthermore crystals soaked with ADP and APS could be prepared and the corresponding structures could be solved.
Collapse
Affiliation(s)
- Stefan Harjes
- Molekulare und Strukturelle Biophysik, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, and Interdisciplinary Center of Magnetic Resonance (IZMR), 44227 Dortmund, Germany.
| | | | | |
Collapse
|
40
|
Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Genes Cells 2004; 10:1-11. [PMID: 15670209 DOI: 10.1111/j.1365-2443.2005.00817.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The multiple histidine-aspartate phosphorelay system plays a crucial role in cellular adaptation to environments in microorganisms and plants. Like kinase-phosphatase systems in higher eukaryotes, the multiple steps provide additional regulatory checkpoints with phosphatases. The Escherichia coli phosphatase SixA exhibits protein phosphatase activity against the histidine-containing phosphotransfer (HPt) domain located in the C-terminus of the histidine kinase ArcB engaged in anaerobic responses. We have determined the crystal structures of the free and tungstate-bound forms of SixA at 2.06 A and 1.90 A resolution, respectively. The results provide the first three-dimensional view of a bacterial protein histidine phosphatase, revealing a compact alpha/beta architecture related to a family of phosphatases containing the arginine-histidine-glycine (RHG) motif at their active sites. Compared with these RHG phosphatases, SixA lacks an extra alpha-helical subdomain as a lid over the active site, thereby forming a relatively shallow groove important for the accommodation of the HPt domain of ArcB. The tungstate ion, which mimics the substrate phosphate group, is located at the centre of the active site where the active residue, His8, points to the tungsten atom in the mode of in-line nucleophilic attack.
Collapse
Affiliation(s)
- Keisuke Hamada
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J 2004; 381:561-79. [PMID: 15170386 PMCID: PMC1133864 DOI: 10.1042/bj20040752] [Citation(s) in RCA: 286] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/01/2004] [Indexed: 12/21/2022]
Abstract
Fru-2,6-P2 (fructose 2,6-bisphosphate) is a signal molecule that controls glycolysis. Since its discovery more than 20 years ago, inroads have been made towards the understanding of the structure-function relationships in PFK-2 (6-phosphofructo-2-kinase)/FBPase-2 (fructose-2,6-bisphosphatase), the homodimeric bifunctional enzyme that catalyses the synthesis and degradation of Fru-2,6-P2. The FBPase-2 domain of the enzyme subunit bears sequence, mechanistic and structural similarity to the histidine phosphatase family of enzymes. The PFK-2 domain was originally thought to resemble bacterial PFK-1 (6-phosphofructo-1-kinase), but this proved not to be correct. Molecular modelling of the PFK-2 domain revealed that, instead, it has the same fold as adenylate kinase. This was confirmed by X-ray crystallography. A PFK-2/FBPase-2 sequence in the genome of one prokaryote, the proteobacterium Desulfovibrio desulfuricans, could be the result of horizontal gene transfer from a eukaryote distantly related to all other organisms, possibly a protist. This, together with the presence of PFK-2/FBPase-2 genes in trypanosomatids (albeit with possibly only one of the domains active), indicates that fusion of genes initially coding for separate PFK-2 and FBPase-2 domains might have occurred early in evolution. In the enzyme homodimer, the PFK-2 domains come together in a head-to-head like fashion, whereas the FBPase-2 domains can function as monomers. There are four PFK-2/FBPase-2 isoenzymes in mammals, each coded by a different gene that expresses several isoforms of each isoenzyme. In these genes, regulatory sequences have been identified which account for their long-term control by hormones and tissue-specific transcription factors. One of these, HNF-6 (hepatocyte nuclear factor-6), was discovered in this way. As to short-term control, the liver isoenzyme is phosphorylated at the N-terminus, adjacent to the PFK-2 domain, by PKA (cAMP-dependent protein kinase), leading to PFK-2 inactivation and FBPase-2 activation. In contrast, the heart isoenzyme is phosphorylated at the C-terminus by several protein kinases in different signalling pathways, resulting in PFK-2 activation.
Collapse
Affiliation(s)
- Mark H Rider
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, 75, Avenue Hippocrate, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
42
|
Guerra DG, Vertommen D, Fothergill-Gilmore LA, Opperdoes FR, Michels PAM. Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification. ACTA ACUST UNITED AC 2004; 271:1798-810. [PMID: 15096219 DOI: 10.1111/j.1432-1033.2004.04097.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphoglycerate mutase (PGAM) activity in promastigotes of the protozoan parasite Leishmania mexicana is found only in the cytosol. It corresponds to a cofactor-independent PGAM as it is not stimulated by 2,3-bisphosphoglycerate and is susceptible to EDTA and resistant to vanadate. We have cloned and sequenced the gene and developed a convenient bacterial expression system and a high-yield purification protocol. Kinetic properties of the bacterially produced protein have been determined (3-phosphoglycerate: K(m) = 0.27 +/- 0.02 mm, k(cat) = 434 +/- 54 s(-1); 2-phosphoglycerate: K(m) = 0.11 +/- 0.03 mm, k(cat) = 199 +/- 24 s(-1)). The activity is inhibited by phosphate but is resistant to Cl(-) and SO(4) (2-). Inactivation by EDTA is almost fully reversed by incubation with CoCl(2) but not with MnCl(2), FeSO(4), CuSO(4), NiCl(2) or ZnCl(2). Alkylation by diethyl pyrocarbonate resulted in irreversible inhibition, but saturating concentrations of substrate provided full protection. Kinetics of the inhibitory reaction showed the modification of a new group of essential residues only after removal of metal ions by EDTA. The modified residues were identified by MS analysis of peptides generated by trypsin digestion. Two substrate-protected histidines in the proximity of the active site were identified (His136, His467) and, unexpectedly, also a distant one (His160), suggesting a conformational change in its environment. Partial protection of His467 was observed by the addition of 25 micro m CoCl(2) to the EDTA treated enzyme but not of 125 micro m MnCl(2), suggesting that the latter metal ion cannot be accommodated in the active site of Leishmania PGAM.
Collapse
Affiliation(s)
- Daniel G Guerra
- Research Unit for Tropical Diseases,Universite, Catholique de Louvain, Brussels, Belgium
| | | | | | | | | |
Collapse
|
43
|
Li de La Sierra-Gallay I, Collinet B, Graille M, Quevillon-Cheruel S, Liger D, Minard P, Blondeau K, Henckes G, Aufrère R, Leulliot N, Zhou CZ, Sorel I, Ferrer JL, Poupon A, Janin J, van Tilbeurgh H. Crystal structure of the YGR205w protein from Saccharomyces cerevisiae: close structural resemblance to E. coli pantothenate kinase. Proteins 2004; 54:776-83. [PMID: 14997573 DOI: 10.1002/prot.10596] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein product of the YGR205w gene of Saccharomyces cerevisiae was targeted as part of our yeast structural genomics project. YGR205w codes for a small (290 amino acids) protein with unknown structure and function. The only recognizable sequence feature is the presence of a Walker A motif (P loop) indicating a possible nucleotide binding/converting function. We determined the three-dimensional crystal structure of Se-methionine substituted protein using multiple anomalous diffraction. The structure revealed a well known mononucleotide fold and strong resemblance to the structure of small metabolite phosphorylating enzymes such as pantothenate and phosphoribulo kinase. Biochemical experiments show that YGR205w binds specifically ATP and, less tightly, ADP. The structure also revealed the presence of two bound sulphate ions, occupying opposite niches in a canyon that corresponds to the active site of the protein. One sulphate is bound to the P-loop in a position that corresponds to the position of beta-phosphate in mononucleotide protein ATP complex, suggesting the protein is indeed a kinase. The nature of the phosphate accepting substrate remains to be determined.
Collapse
Affiliation(s)
- Ines Li de La Sierra-Gallay
- Laboratoire d'Enzymologie et Biochimie Structurales (CNRS-UPR 9063), Bât. 34, 1 Av. de la Terrasse, 91198 Gif sur Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Eastberg JH, Pelletier J, Stoddard BL. Recognition of DNA substrates by T4 bacteriophage polynucleotide kinase. Nucleic Acids Res 2004; 32:653-60. [PMID: 14754987 PMCID: PMC373337 DOI: 10.1093/nar/gkh212] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/11/2003] [Accepted: 12/11/2003] [Indexed: 01/08/2023] Open
Abstract
T4 phage polynucleotide kinase (PNK) displays 5'-hydroxyl kinase, 3'-phosphatase and 2',3'-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5' hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences. In these structures, the 5' ribose hydroxyl is buried in the kinase active site in proper alignment for phosphoryl transfer. Depending on the ssDNA length, the first two or three nucleotide bases are well ordered. Numerous contacts are made both to the phosphoribosyl backbone and to the ordered bases. The position, side chain contacts and internucleotide stacking interactions of the ordered bases are strikingly different for a 5'-GT DNA end than for a 5'-TG end. The base preferences displayed at those positions by PNK are attributable to differences in the enzyme binding interactions and in the DNA conformation for each unique substrate molecule.
Collapse
Affiliation(s)
- Jennifer H Eastberg
- Fred Hutchinson Cancer Research Center and the Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98109, USA
| | | | | |
Collapse
|
45
|
Okar DA, Wu C, Lange AJ. Regulation of the regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. ACTA ACUST UNITED AC 2004; 44:123-54. [PMID: 15581487 DOI: 10.1016/j.advenzreg.2003.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- David A Okar
- Veterans Administration Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA
| | | | | |
Collapse
|
46
|
Leipe DD, Koonin EV, Aravind L. Evolution and classification of P-loop kinases and related proteins. J Mol Biol 2003; 333:781-815. [PMID: 14568537 DOI: 10.1016/j.jmb.2003.08.040] [Citation(s) in RCA: 227] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sequences and structures of all P-loop-fold proteins were compared with the aim of reconstructing the principal events in the evolution of P-loop-containing kinases. It is shown that kinases and some related proteins comprise a monophyletic assemblage within the P-loop NTPase fold. An evolutionary classification of these proteins was developed using standard phylogenetic methods, analysis of shared sequence and structural signatures, and similarity-based clustering. This analysis resulted in the identification of approximately 40 distinct protein families within the P-loop kinase class. Most of these enzymes phosphorylate nucleosides and nucleotides, as well as sugars, coenzyme precursors, adenosine 5'-phosphosulfate and polynucleotides. In addition, the class includes sulfotransferases, amide bond ligases, pyrimidine and dihydrofolate reductases, and several other families of enzymes that have acquired new catalytic capabilities distinct from the ancestral kinase reaction. Our reconstruction of the early history of the P-loop NTPase fold includes the initial split into the common ancestor of the kinase and the GTPase classes, and the common ancestor of ATPases. This was followed by the divergence of the kinases, which primarily phosphorylated nucleoside monophosphates (NMP), but could have had broader specificity. We provide evidence for the presence of at least two to four distinct P-loop kinases, including distinct forms specific for dNMP and rNMP, and related enzymes in the last universal common ancestor of all extant life forms. Subsequent evolution of kinases seems to have been dominated by the emergence of new bacterial and, to a lesser extent, archaeal families. Some of these enzymes retained their kinase activity but evolved new substrate specificities, whereas others acquired new activities, such as sulfate transfer and reduction. Eukaryotes appear to have acquired most of their kinases via horizontal gene transfer from Bacteria, partly from the mitochondrial and chloroplast endosymbionts and partly at later stages of evolution. A distinct superfamily of kinases, which we designated DxTN after its sequence signature, appears to have evolved in selfish replicons, such as bacteriophages, and was subsequently widely recruited by eukaryotes for multiple functions related to nucleic acid processing and general metabolism. In the course of this analysis, several previously undetected groups of predicted kinases were identified, including widespread archaeo-eukaryotic and archaeal families. The results could serve as a framework for systematic experimental characterization of new biochemical and biological functions of kinases.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
47
|
Bahadur RP, Chakrabarti P, Rodier F, Janin J. Dissecting subunit interfaces in homodimeric proteins. Proteins 2003; 53:708-19. [PMID: 14579361 DOI: 10.1002/prot.10461] [Citation(s) in RCA: 228] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The subunit interfaces of 122 homodimers of known three-dimensional structure are analyzed and dissected into sets of surface patches by clustering atoms at the interface; 70 interfaces are single-patch, the others have up to six patches, often contributed by different structural domains. The average interface buries 1,940 A2 of the surface of each monomer, contains one or two patches burying 600-1,600 A2, is 65% nonpolar and includes 18 hydrogen bonds. However, the range of size and of hydrophobicity is wide among the 122 interfaces. Each interface has a core made of residues with atoms buried in the dimer, surrounded by a rim of residues with atoms that remain accessible to solvent. The core, which constitutes 77% of the interface on average, has an amino acid composition that resembles the protein interior except for the presence of arginine residues, whereas the rim is more like the protein surface. These properties of the interfaces in homodimers, which are permanent assemblies, are compared to those of protein-protein complexes where the components associate after they have independently folded. On average, subunit interfaces in homodimers are twice larger than in complexes, and much less polar due to the large fraction belonging to the core, although the amino acid compositions of the cores are similar in the two types of interfaces.
Collapse
|
48
|
Rigden DJ. Unexpected catalytic site variation in phosphoprotein phosphatase homologues of cofactor-dependent phosphoglycerate mutase. FEBS Lett 2003; 536:77-84. [PMID: 12586342 DOI: 10.1016/s0014-5793(03)00014-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cofactor-dependent phosphoglycerate mutase (dPGM) superfamily contains, besides mutases, a variety of phosphatases, both broadly and narrowly substrate-specific. Distant dPGM homologues, conspicuously abundant in microbial genomes, represent a challenge for functional annotation based on sequence comparison alone. Here we carry out sequence analysis and molecular modelling of two families of bacterial dPGM homologues, one the SixA phosphoprotein phosphatases, the other containing various proteins of no known molecular function. The models show how SixA proteins have adapted to phosphoprotein substrate and suggest that the second family may also encode phosphoprotein phosphatases. Unexpected variation in catalytic and substrate-binding residues is observed in the models.
Collapse
Affiliation(s)
- Daniel J Rigden
- Embrapa Genetic Resources and Biotechnology, Cenargen/Embrapa, Parque Estação Biológica, Final W3 Norte, 70770-900 Brasília, Brazil.
| |
Collapse
|
49
|
Singh B, Schwartz NB. Identification and functional characterization of the novel BM-motif in the murine phosphoadenosine phosphosulfate (PAPS) synthetase. J Biol Chem 2003; 278:71-5. [PMID: 12414806 DOI: 10.1074/jbc.m206688200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PAPS synthetase (SK) catalyzes the two sequential reactions of phosphoadenosine phosphosulfate (PAPS) synthesis. A functional motif in the kinase domain of mouse SK, designated the BM-motif ((86) LDGDNhRxhh(N/S)(K/R)(97)), was defined in the course of identifying the brachymorphic (bm) defect. Sequence comparison and the secondary structure predicted for APS kinase suggest that the BM-motif consists of a DGD-turn sequence flanked by other conserved residues. Mutational analysis of the DGD-turn revealed that a flexible and neutral amino acid is preferred at residue 88, that negatively charged residues are strictly required at positions 87 and 89, and that the active site is rigid. The reduction in kinase activity for all DGD-turn mutants, except G88A, was much less severe than the reduction in overall activity, indicating that the BM-motif may also be playing a role in adenosine phosphosulfate (APS) channeling. Two switch mutations, LD86DL and DN89ND, designed to test the positional constraints of Asp(87) and Asp(89), exhibited complete loss of both kinase and overall activities, while LD86DL also exhibited a significant (60%) loss of reverse sulfurylase activity, suggesting that this peptide region is interacting with the sulfurylase domain as well as functioning in the kinase reaction. Other residues targeted for mutational analysis were the highly conserved flanking Asn(90), Arg(92), and Lys(97). N90A resulted in a partial (30%) loss in kinase and overall activities, R92A exhibited total loss of kinase and overall activities, and K97A had no effect on any of the three activities. The complexity of the bifunctional SK in catalyzing the kinase reaction and channeling APS is illustrated by the strict requirements of this novel structural motif in the kinase active site.
Collapse
Affiliation(s)
- Bhawani Singh
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
50
|
Lee YH, Li Y, Uyeda K, Hasemann CA. Tissue-specific structure/function differentiation of the liver isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 2003; 278:523-30. [PMID: 12379646 DOI: 10.1074/jbc.m209105200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structures of the human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in three different liganding states were determined and compared with those of the rat testis isozyme. A set of amino acid sequence heterogeneity from the two distinct genes encoding the two different tissue isozymes leads to both global and local conformational differences that may cause the differences in catalytic properties of the two isozymes. The sequence differences in a beta-hairpin loop in the kinase domain causes a translational shift of several hydrophobic interactions in the dimeric contact region, and its propagation to the domains interface results in a 5 degrees twist of the entire bisphosphatase domain relative to the kinase domain. The bisphosphatase domain twist allows the dimeric interactions between the bisphosphatase domains, which are negligible in the testis enzyme, and as a result, the conformational stability of the domain is increased. Sequence polymorphisms also confer small but significant structural dissimilarities in the substrate-binding loops, allowing the differentiated catalytic properties between the two different tissue-type isozymes. Whereas the polymorphic sequence at the bisphosphatase-active pocket suggests a more suitable substrate binding, a similar extent of sequence differences at the kinase-active pocket confers a different mechanism of substrates bindings to the kinase-active pocket. It includes the ATP-sensitive unwinding of the switch helix alpha5, which is a characteristic ATP-dependent conformational change in the testis form. The sequence-dependent structural difference disallows the liver kinase to follow the ATP-switch mechanism. Altogether these suggest that the liver isoform has structural features more appropriate for an elevated bisphosphatase activity, compared with that of the testis form. The structural predisposition for bisphosphatase activity in the liver isozyme is consistent with the liver-unique glucose metabolic pathway, gluconeogenesis.
Collapse
Affiliation(s)
- Yong-Hwan Lee
- Structural Biology Core, Molecular Biology, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | |
Collapse
|