1
|
Liu S, Su T, Xia X, Zhou ZH. Native DGC structure rationalizes muscular dystrophy-causing mutations. Nature 2025; 637:1261-1271. [PMID: 39663457 PMCID: PMC11936492 DOI: 10.1038/s41586-024-08324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disorder marked by progressive muscle wasting leading to premature mortality1,2. Discovery of the DMD gene encoding dystrophin both revealed the cause of DMD and helped identify a family of at least ten dystrophin-associated proteins at the muscle cell membrane, collectively forming the dystrophin-glycoprotein complex (DGC)3-9. The DGC links the extracellular matrix to the cytoskeleton, but, despite its importance, its molecular architecture has remained elusive. Here we determined the native cryo-electron microscopy structure of rabbit DGC and conducted biochemical analyses to reveal its intricate molecular configuration. An unexpected β-helix comprising β-, γ- and δ-sarcoglycan forms an extracellular platform that interacts with α-dystroglycan, β-dystroglycan and α-sarcoglycan, allowing α-dystroglycan to contact the extracellular matrix. In the membrane, sarcospan anchors β-dystroglycan to the β-, γ- and δ-sarcoglycan trimer, while in the cytoplasm, β-dystroglycan's juxtamembrane fragment binds dystrophin's ZZ domain. Through these interactions, the DGC links laminin 2 to intracellular actin. Additionally, dystrophin's WW domain, along with its EF-hand 1 domain, interacts with α-dystrobrevin. A disease-causing mutation mapping to the WW domain weakens this interaction, as confirmed by deletion of the WW domain in biochemical assays. Our findings rationalize more than 110 mutations affecting single residues associated with various muscular dystrophy subtypes and contribute to ongoing therapeutic developments, including protein restoration, upregulation of compensatory genes and gene replacement.
Collapse
Affiliation(s)
- Shiheng Liu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tiantian Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xian Xia
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Cheng M, Hou X, Huang Z, Chen Z, Ni D, Zhang W, Rao Y, Mu W. Structural Insights into the Catalytic Cycle of Inulin Fructotransferase: From Substrate Anchoring to Product Releasing. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17030-17040. [PMID: 39034843 DOI: 10.1021/acs.jafc.4c03615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Carbohydrate degradation is crucial for living organisms due to their essential functions in providing energy and composing various metabolic pathways. Nevertheless, in the catalytic cycle of polysaccharide degradation, the details of how the substrates bind and how the products release need more case studies. Here, we choose an inulin fructotransferase (SpIFTase) as a model system, which can degrade inulin into functionally difructose anhydride I. At first, the crystal structures of SpIFTase in the absence of carbohydrates and complex with fructosyl-nystose (GF4), difructose anhydride I, and fructose are obtained, giving the substrate trajectory and product path of SpIFTase, which are further supported by steered molecular dynamics simulations (MDSs) along with mutagenesis. Furthermore, structural topology variations at the active centers of inulin fructotransferases are suggested as the structural base for product release, subsequently proven by substitution mutagenesis and MDSs. Therefore, this study provides a case in point for a deep understanding of the catalytic cycle with substrate trajectory and product path.
Collapse
Affiliation(s)
- Mei Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
3
|
Li J, Peng C, Mao A, Zhong M, Hu Z. An overview of microbial enzymatic approaches for pectin degradation. Int J Biol Macromol 2024; 254:127804. [PMID: 37913880 DOI: 10.1016/j.ijbiomac.2023.127804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/21/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Pectin, a complex natural macromolecule present in primary cell walls, exhibits high structural diversity. Pectin is composed of a main chain, which contains a high amount of partly methyl-esterified galacturonic acid (GalA), and numerous types of side chains that contain almost 17 different monosaccharides and over 20 different linkages. Due to this peculiar structure, pectin exhibits special physicochemical properties and a variety of bioactivities. For example, pectin exhibits strong bioactivity only in a low molecular weight range. Many different degrading enzymes, including hydrolases, lyases and esterases, are needed to depolymerize pectin due to its structural complexity. Pectin degradation involves polygalacturonases/rhamnogalacturonases and pectate/pectin lyases, which attack the linkages in the backbone via hydrolytic and β-elimination modes, respectively. Pectin methyl/acetyl esterases involved in the de-esterification of pectin also play crucial roles. Many α-L-rhamnohydrolases, unsaturated rhamnogalacturonyl hydrolases, arabinanases and galactanases also contribute to heterogeneous pectin degradation. Although numerous microbial pectin-degrading enzymes have been described, the mechanisms involved in the coordinated degradation of pectin through these enzymes remain unclear. In recent years, the degradation of pectin by Bacteroides has received increasing attention, as Bacteroides species contain a unique genetic structure, polysaccharide utilization loci (PULs). The specific PULs of pectin degradation in Bacteroides species are a new field to study pectin metabolism in gut microbiota. This paper reviews the scientific information available on pectin structural characteristics, pectin-degrading enzymes, and PULs for the specific degradation of pectin.
Collapse
Affiliation(s)
- Jin Li
- College of Life Sciences, China West Normal University, Nanchong 637002, China; Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| | - Chao Peng
- College of Life Sciences, China West Normal University, Nanchong 637002, China
| | - Aihua Mao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China.
| |
Collapse
|
4
|
Safran J, Tabi W, Ung V, Lemaire A, Habrylo O, Bouckaert J, Rouffle M, Voxeur A, Pongrac P, Bassard S, Molinié R, Fontaine JX, Pilard S, Pau-Roblot C, Bonnin E, Larsen DS, Morel-Rouhier M, Girardet JM, Lefebvre V, Sénéchal F, Mercadante D, Pelloux J. Plant polygalacturonase structures specify enzyme dynamics and processivities to fine-tune cell wall pectins. THE PLANT CELL 2023; 35:3073-3091. [PMID: 37202370 PMCID: PMC10396364 DOI: 10.1093/plcell/koad134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Polygalacturonases (PGs) fine-tune pectins to modulate cell wall chemistry and mechanics, impacting plant development. The large number of PGs encoded in plant genomes leads to questions on the diversity and specificity of distinct isozymes. Herein, we report the crystal structures of 2 Arabidopsis thaliana PGs, POLYGALACTURONASE LATERAL ROOT (PGLR), and ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2), which are coexpressed during root development. We first determined the amino acid variations and steric clashes that explain the absence of inhibition of the plant PGs by endogenous PG-inhibiting proteins (PGIPs). Although their beta helix folds are highly similar, PGLR and ADPG2 subsites in the substrate binding groove are occupied by divergent amino acids. By combining molecular dynamic simulations, analysis of enzyme kinetics, and hydrolysis products, we showed that these structural differences translated into distinct enzyme-substrate dynamics and enzyme processivities: ADPG2 showed greater substrate fluctuations with hydrolysis products, oligogalacturonides (OGs), with a degree of polymerization (DP) of ≤4, while the DP of OGs generated by PGLR was between 5 and 9. Using the Arabidopsis root as a developmental model, exogenous application of purified enzymes showed that the highly processive ADPG2 had major effects on both root cell elongation and cell adhesion. This work highlights the importance of PG processivity on pectin degradation regulating plant development.
Collapse
Affiliation(s)
- Josip Safran
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Wafae Tabi
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Vanessa Ung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Adrien Lemaire
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Olivier Habrylo
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Julie Bouckaert
- UMR 8576 Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), 50 Avenue de Halley, Villeneuve d’Ascq 59658, France
| | - Maxime Rouffle
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles 78000, France
| | - Paula Pongrac
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Solène Bassard
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Roland Molinié
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Jean-Xavier Fontaine
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie, 33, Rue St Leu, Amiens 80039, France
| | - Corinne Pau-Roblot
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Estelle Bonnin
- INRAE, UR 1268 Biopolymers, Interactions Assemblies, CS 71627, Nantes Cedex 3 44316, France
| | - Danaé Sonja Larsen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | - Valérie Lefebvre
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Fabien Sénéchal
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jérôme Pelloux
- UMRT INRAE 1158 BioEcoAgro—BIOPI Biologie des Plantes et Innovation, Université de Picardie, 33 Rue St Leu, Amiens 80039, France
| |
Collapse
|
5
|
Safran J, Ung V, Bouckaert J, Habrylo O, Molinié R, Fontaine JX, Lemaire A, Voxeur A, Pilard S, Pau-Roblot C, Mercadante D, Pelloux J, Sénéchal F. The specificity of pectate lyase VdPelB from Verticilium dahliae is highlighted by structural, dynamical and biochemical characterizations. Int J Biol Macromol 2023; 231:123137. [PMID: 36639075 DOI: 10.1016/j.ijbiomac.2023.123137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/12/2023]
Abstract
Pectins, complex polysaccharides and major components of the plant primary cell wall, can be degraded by pectate lyases (PLs). PLs cleave glycosidic bonds of homogalacturonans (HG), the main pectic domain, by β-elimination, releasing unsaturated oligogalacturonides (OGs). To understand the catalytic mechanism and structure/function of these enzymes, we characterized VdPelB from Verticillium dahliae. We first solved the crystal structure of VdPelB at 1.2 Å resolution showing that it is a right-handed parallel β-helix structure. Molecular dynamics (MD) simulations further highlighted the dynamics of the enzyme in complex with substrates that vary in their degree of methylesterification, identifying amino acids involved in substrate binding and cleavage of non-methylesterified pectins. We then biochemically characterized wild type and mutated forms of VdPelB. Pectate lyase VdPelB was most active on non-methylesterified pectins, at pH 8.0 in presence of Ca2+ ions. The VdPelB-G125R mutant was most active at pH 9.0 and showed higher relative activity compared to native enzyme. The OGs released by VdPelB differed to that of previously characterized PLs, showing its peculiar specificity in relation to its structure. OGs released from Verticillium-partially tolerant and sensitive flax cultivars differed which could facilitate the identification VdPelB-mediated elicitors of defence responses.
Collapse
Affiliation(s)
- Josip Safran
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Vanessa Ung
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Julie Bouckaert
- Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), UMR8576 CNRS, Université de Lille, Campus CNRS Haute Borne, Avenue de Halley, 59658, Villeneuve d'Ascq, France
| | - Olivier Habrylo
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Roland Molinié
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Jean-Xavier Fontaine
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Adrien Lemaire
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Aline Voxeur
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Serge Pilard
- Plateforme Analytique, Université de Picardie Jules Verne, 33 Rue St Leu, 80039 Amiens, France
| | - Corinne Pau-Roblot
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France
| | - Davide Mercadante
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jérôme Pelloux
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| | - Fabien Sénéchal
- UMR INRAE 1158 BioEcoAgro - Biologie des Plantes et Innovation, Université de Picardie Jules Verne, UFR des Sciences, 33 Rue St Leu, 80039 Amiens, France.
| |
Collapse
|
6
|
Evseev P, Lukianova A, Tarakanov R, Tokmakova A, Popova A, Kulikov E, Shneider M, Ignatov A, Miroshnikov K. Prophage-Derived Regions in Curtobacterium Genomes: Good Things, Small Packages. Int J Mol Sci 2023; 24:1586. [PMID: 36675099 PMCID: PMC9862828 DOI: 10.3390/ijms24021586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Curtobacterium is a genus of Gram-positive bacteria within the order Actinomycetales. Some Curtobacterium species (C. flaccumfaciens, C. plantarum) are harmful pathogens of agricultural crops such as soybean, dry beans, peas, sugar beet and beetroot, which occur throughout the world. Bacteriophages (bacterial viruses) are considered to be potential curative agents to control the spread of harmful bacteria. Temperate bacteriophages integrate their genomes into bacterial chromosomes (prophages), sometimes substantially influencing bacterial lifestyle and pathogenicity. About 200 publicly available genomes of Curtobacterium species, including environmental metagenomic sequences, were inspected for the presence of sequences of possible prophage origin using bioinformatic methods. The comparison of the search results with several ubiquitous bacterial groups showed the relatively low level of the presence of prophage traces in Curtobacterium genomes. Genomic and phylogenetic analyses were undertaken for the evaluation of the evolutionary and taxonomic positioning of predicted prophages. The analyses indicated the relatedness of Curtobacterium prophage-derived sequences with temperate actinophages of siphoviral morphology. In most cases, the predicted prophages can represent novel phage taxa not described previously. One of the predicted temperate phages was induced from the Curtobacterium genome. Bioinformatic analysis of the modelled proteins encoded in prophage-derived regions led to the discovery of some 100 putative glycopolymer-degrading enzymes that contained enzymatic domains with predicted cell-wall- and cell-envelope-degrading activity; these included glycosidases and peptidases. These proteins can be considered for the experimental design of new antibacterials against Curtobacterium phytopathogens.
Collapse
Affiliation(s)
- Peter Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Anna Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Rashit Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Anna Tokmakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
| | - Anastasia Popova
- State Research Center for Applied Microbiology and Biotechnology, 142279 Obolensk, Russia
| | - Eugene Kulikov
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology National Research University, Institutskiy Per, 9, 141701 Dolgoprudny, Russia
- Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prosp. 60-letia Oktyabrya, 7-2, 117312 Moscow, Russia
| | - Mikhail Shneider
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| | - Alexander Ignatov
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Konstantin Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 117997 Moscow, Russia
| |
Collapse
|
7
|
Kognole AA, Aytenfisu AH, MacKerell AD. Extension of the CHARMM Classical Drude Polarizable Force Field to N- and O-Linked Glycopeptides and Glycoproteins. J Phys Chem B 2022; 126:6642-6653. [PMID: 36005290 PMCID: PMC9463114 DOI: 10.1021/acs.jpcb.2c04245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular dynamic simulations are an effective tool to study complex molecular systems and are contingent upon the availability of an accurate and reliable molecular mechanics force field. The Drude polarizable force field, which allows for the explicit treatment of electronic polarization in a computationally efficient fashion, has been shown to reproduce experimental properties that were difficult or impossible to reproduce with the CHARMM additive force field, including peptide folding cooperativity, RNA hairpin structures, and DNA base flipping. Glycoproteins are essential components of glycoconjugate vaccines, antibodies, and many pharmaceutically important molecules, and an accurate polarizable force field that includes compatibility between the protein and carbohydrate aspect of the force field is essential to study these types of systems. In this work, we present an extension of the Drude polarizable force field to glycoproteins, including both N- and O-linked species. Parameter optimization focused on the dihedral terms using a reweighting protocol targeting NMR solution J-coupling data for model glycopeptides. Validation of the model include eight model glycopeptides and four glycoproteins with multiple N- and O-linked glycosylations. The new glycoprotein carbohydrate force field can be used in conjunction with the remainder of Drude polarizable force field through a variety of MD simulation programs including GROMACS, OPENMM, NAMD, and CHARMM and may be accessed through the Drude Prepper module in the CHARMM-GUI.
Collapse
Affiliation(s)
| | | | - Alexander D. MacKerell
- Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
8
|
Identification of Potential IgE-Binding Epitopes Contributing to the Cross-Reactivity of the Major Cupressaceae Pectate-Lyase Pollen Allergens (Group 1). ALLERGIES 2022. [DOI: 10.3390/allergies2030010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pectate-lyase allergens, the group 1 of allergens from Cupressaceae pollen, consist of glycoproteins exhibiting an extremely well-conserved three-dimensional structure and sequential IgE-binding epitopes. Up to 10 IgE-binding epitopic regions were identified on the molecular surface, which essentially cluster at both extremities of the long, curved β-prism-shaped allergens. Most of these IgE-binding epitopes possess very similar conformations that provide insight into the IgE-binding cross-reactivity and cross-allergenicity commonly observed among Cupressaceae pollen allergens. Some of these epitopic regions coincide with putative N-glycosylation sites that most probably consist of glycotopes or cross-reactive carbohydrate determinants, recognized by the corresponding IgE antibodies from allergic patients. Pectate-lyase allergens of Cupressaceae pollen offer a nice example of structurally conserved allergens that are widely distributed in closely-related plants (Chamæcyparis, Cryptomeria, Cupressus, Hesperocyparis, Juniperus, Thuja) and responsible for frequent cross-allergenicity.
Collapse
|
9
|
Wang J, Liu Z, Pan X, Wang N, Li L, Du Y, Li J, Li M. Structural and Biochemical Analysis Reveals Catalytic Mechanism of Fucoidan Lyase from Flavobacterium sp. SA-0082. Mar Drugs 2022; 20:md20080533. [PMID: 36005536 PMCID: PMC9410043 DOI: 10.3390/md20080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/24/2022] Open
Abstract
Fucoidans represent a type of polyanionic fucose-containing sulfated polysaccharides (FCSPs) that are cleaved by fucoidan-degrading enzymes, producing low-molecular-weight fucoidans with multiple biological activities suitable for pharmacological use. Most of the reported fucoidan-degrading enzymes are glycoside hydrolases, which have been well studied for their structures and catalytic mechanisms. Little is known, however, about the rarer fucoidan lyases, primarily due to the lack of structural information. FdlA from Flavobacterium sp. SA-0082 is an endo-type fucoidan-degrading enzyme that cleaves the sulfated fuco-glucuronomannan (SFGM) through a lytic mechanism. Here, we report nine crystal structures of the catalytic N-terminal domain of FdlA (FdlA-NTD), in both its wild type (WT) and mutant forms, at resolutions ranging from 1.30 to 2.25 Å. We show that the FdlA-NTD adopts a right-handed parallel β-helix fold, and possesses a substrate binding site composed of a long groove and a unique alkaline pocket. Our structural, biochemical, and enzymological analyses strongly suggest that FdlA-NTD utilizes catalytic residues different from other β-helix polysaccharide lyases, potentially representing a novel polysaccharide lyase family.
Collapse
Affiliation(s)
- Juanjuan Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zebin Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Xiaowei Pan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Legong Li
- College of Life Science, Capital Normal University, Beijing 100101, China
| | - Yuguang Du
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (J.L.); (M.L.)
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (J.L.); (M.L.)
| |
Collapse
|
10
|
Functional Classification and Characterization of the Fungal Glycoside Hydrolase 28 Protein Family. J Fungi (Basel) 2022; 8:jof8030217. [PMID: 35330219 PMCID: PMC8952511 DOI: 10.3390/jof8030217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Pectin is a major constituent of the plant cell wall, comprising compounds with important industrial applications such as homogalacturonan, rhamnogalacturonan and xylogalacturonan. A large array of enzymes is involved in the degradation of this amorphous substrate. The Glycoside Hydrolase 28 (GH28) family includes polygalacturonases (PG), rhamnogalacturonases (RG) and xylogalacturonases (XG) that share a structure of three to four pleated β-sheets that form a rod with the catalytic site amidst a long, narrow groove. Although these enzymes have been studied for many years, there has been no systematic analysis. We have collected a comprehensive set of GH28 encoding sequences to study their evolution in fungi, directed at obtaining a functional classification, as well as at the identification of substrate specificity as functional constraint. Computational tools such as Alphafold, Consurf and MEME were used to identify the subfamilies’ characteristics. A hierarchic classification defines the major classes of endoPG, endoRG and endoXG as well as three exoPG classes. Ascomycete endoPGs are further classified in two subclasses whereas we identify four exoRG subclasses. Diversification towards exomode is explained by loops that appear inserted in a number of turns. Substrate-driven diversification can be identified by various specificity determining positions that appear to surround the binding groove.
Collapse
|
11
|
Tang XD, Dong FY, Zhang QH, Lin L, Wang P, Xu XY, Wei W, Wei DZ. Protein engineering of a cold-adapted rhamnogalacturonan acetylesterase: In vivo functional expression and cinnamyl acetate synthesis. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Karataş E, Tülek A, Çakar MM, Tamtürk F, Aktaş F, Binay B. From secretion in Pichia pastoris to application in apple juice processing: Exo-polygalacturonase from Sporothrix schenckii 1099-18. Protein Pept Lett 2021; 28:817-830. [PMID: 33413052 DOI: 10.2174/1871530321666210106110400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Polygalacturonases are a group of enzymes under pectinolytic enzymes related to enzymes that hydrolyse pectic substances. Polygalacturonases have been used in various industrial applications such as fruit juice clarification, retting of plant fibers, wastewater treatment drinks fermentation, and oil extraction. OBJECTIVES The study was evaluated at the heterologous expression, purification, biochemical characterization, computational modeling, and performance in apple juice clarification of a new exo-polygalacturonase from Sporothrix schenckii 1099-18 (SsExo-PG) in Pichia pastoris. METHODS Recombinant DNA technology was used in this study. Two different pPIC9K plasmids were constructed with native signal sequence-ssexo-pg and alpha signal sequence-ssexo-pg separately. Protein expression and purification performed after plasmids transformed into the Pichia pastoris. Biochemical and structural analyses were performed by using pure SsExo-PG. RESULTS The purification of SsExo-PG was achieved using a Ni-NTA chromatography system. The enzyme was found to have a molecular mass of approximately 52 kDa. SsExo-PG presented as stable at a wide range of temperature and pH values, and to be more storage stable than other commercial pectinolytic enzyme mixtures. Structural analysis revealed that the catalytic residues of SsExo-PG are somewhat similar to other Exo-PGs. The KM and kcat values for the degradation of polygalacturonic acid (PGA) by the purified enzyme were found to be 0.5868 µM and 179 s-1, respectively. Cu2+ was found to enhance SsExo-PG activity while Ag2+ and Fe2+ almost completely inhibited enzyme activity. The enzyme reduced turbidity up to 80% thus enhanced the clarification of apple juice. SsExo-PG showed promising performance when compared with other commercial pectinolytic enzyme mixtures. CONCLUSION The clarification potential of SsExo-PG was revealed by comparing it with commercial pectinolytic enzymes. The following parameters of the process of apple juice clarification processes showed that SsExo-PG is highly stable and has a novel performance.
Collapse
Affiliation(s)
- Ersin Karataş
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Ahmet Tülek
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Mehmet Mervan Çakar
- Department of Molecular Biology and Genetics, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| | - Faruk Tamtürk
- Döhler Food & Beverage Ingredients, 70100 Merkez, Karaman. Turkey
| | - Fatih Aktaş
- Department of Environment Engineering, Duzce University, Konuralp 81100, Düzce. Turkey
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze 41400, Kocaeli. Turkey
| |
Collapse
|
13
|
Uehara R, Iwamoto R, Aoki S, Yoshizawa T, Takano K, Matsumura H, Tanaka S. Crystal structure of a GH1 β-glucosidase from Hamamotoa singularis. Protein Sci 2020; 29:2000-2008. [PMID: 32713015 PMCID: PMC7454551 DOI: 10.1002/pro.3916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
A GH1 β-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Riki Iwamoto
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Sayaka Aoki
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Kazufumi Takano
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Shun‐ichi Tanaka
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
14
|
Kanungo A, Bag BP. Structural insights into the molecular mechanisms of pectinolytic enzymes. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00027-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Comparative study of Fourier transform infrared spectroscopy (FTIR) analysis of natural fibres treated with chemical, physical and biological methods. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02824-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Non-waste technology through the enzymatic hydrolysis of agro-industrial by-products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Structural basis for the role of serine-rich repeat proteins from Lactobacillus reuteri in gut microbe-host interactions. Proc Natl Acad Sci U S A 2018; 115:E2706-E2715. [PMID: 29507249 PMCID: PMC5866549 DOI: 10.1073/pnas.1715016115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Gut bacteria play a key role in health and disease, but the molecular mechanisms underpinning their interaction with the host remain elusive. The serine-rich repeat proteins (SRRPs) are a family of adhesins identified in many Gram-positive pathogenic bacteria. We previously showed that beneficial bacterial species found in the gut also express SRRPs and that SRRP was required for the ability of Lactobacillus reuteri strain to colonize mice. Here, our structural and biochemical data reveal that L. reuteri SRRP adopts a β-solenoid fold not observed in other structurally characterized SRRPs and functions as an adhesin via a pH-dependent mechanism, providing structural insights into the role of these adhesins in biofilm formation of gut symbionts. Lactobacillus reuteri, a Gram-positive bacterial species inhabiting the gastrointestinal tract of vertebrates, displays remarkable host adaptation. Previous mutational analyses of rodent strain L. reuteri 100-23C identified a gene encoding a predicted surface-exposed serine-rich repeat protein (SRRP100-23) that was vital for L. reuteri biofilm formation in mice. SRRPs have emerged as an important group of surface proteins on many pathogens, but no structural information is available in commensal bacteria. Here we report the 2.00-Å and 1.92-Å crystal structures of the binding regions (BRs) of SRRP100-23 and SRRP53608 from L. reuteri ATCC 53608, revealing a unique β-solenoid fold in this important adhesin family. SRRP53608-BR bound to host epithelial cells and DNA at neutral pH and recognized polygalacturonic acid (PGA), rhamnogalacturonan I, or chondroitin sulfate A at acidic pH. Mutagenesis confirmed the role of the BR putative binding site in the interaction of SRRP53608-BR with PGA. Long molecular dynamics simulations showed that SRRP53608-BR undergoes a pH-dependent conformational change. Together, these findings provide mechanistic insights into the role of SRRPs in host–microbe interactions and open avenues of research into the use of biofilm-forming probiotics against clinically important pathogens.
Collapse
|
18
|
Ma G, Zhu W, Liu Y. QM/MM studies on the calcium-assisted β-elimination mechanism of pectate lyase from bacillus subtilis. Proteins 2016; 84:1606-1615. [DOI: 10.1002/prot.25103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 07/06/2016] [Accepted: 07/15/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Guangcai Ma
- Key Laboratory of Colloid and Interface Chemistry; Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University; Shandong Jinan 250100 China
| | - Wenyou Zhu
- Key Laboratory of Colloid and Interface Chemistry; Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University; Shandong Jinan 250100 China
- College of Chemistry and Chemical Engineering; Xuzhou Institute of Technology; Xuzhou Jiangsu 221111 China
| | - Yongjun Liu
- Key Laboratory of Colloid and Interface Chemistry; Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University; Shandong Jinan 250100 China
| |
Collapse
|
19
|
Rajdeo K, Harini T, Lavanya K, Fadnavis NW. Immobilization of pectinase on reusable polymer support for clarification of apple juice. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Systematic Exploration of an Efficient Amino Acid Substitution Matrix: MIQS. Methods Mol Biol 2016. [PMID: 27115635 DOI: 10.1007/978-1-4939-3572-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Amino acid sequence comparisons to find similarities between proteins are fundamental sequence information analyses for inferring protein structure and function. In this study, we improve amino acid substitution matrices to identify distantly related proteins. We systematically sampled and benchmarked substitution matrices generated from the principal component analysis (PCA) subspace based on a set of typical existing matrices. Based on the benchmark results, we identified a region of highly sensitive matrices in the PCA subspace using kernel density estimation (KDE). Using the PCA subspace, we were able to deduce a novel sensitive matrix, called MIQS, which shows better detection performance for detecting distantly related proteins than those of existing matrices. This approach to derive an efficient amino acid substitution matrix might influence many fields of protein sequence analysis. MIQS is available at http://csas.cbrc.jp/Ssearch/ .
Collapse
|
21
|
Insights into the Activity and Substrate Binding of Xylella fastidiosa Polygalacturonase by Modification of a Unique QMK Amino Acid Motif Using Protein Chimeras. PLoS One 2015; 10:e0142694. [PMID: 26571265 PMCID: PMC4646678 DOI: 10.1371/journal.pone.0142694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/26/2015] [Indexed: 11/30/2022] Open
Abstract
Polygalacturonases (EC 3.2.1.15) catalyze the random hydrolysis of 1, 4-alpha-D-galactosiduronic linkages in pectate and other galacturonans. Xylella fastidiosa possesses a single polygalacturonase gene, pglA (PD1485), and X. fastidiosa mutants deficient in the production of polygalacturonase are non-pathogenic and show a compromised ability to systemically infect grapevines. These results suggested that grapevines expressing sufficient amounts of an inhibitor of X. fastidiosa polygalacturonase might be protected from disease. Previous work in our laboratory and others have tried without success to produce soluble active X. fastidiosa polygalacturonase for use in inhibition assays. In this study, we created two enzymatically active X. fastidiosa / A. vitis polygalacturonase chimeras, AX1A and AX2A to explore the functionality of X. fastidiosa polygalacturonase in vitro. The AX1A chimera was constructed to specifically test if recombinant chimeric protein, produced in Escherichia coli, is soluble and if the X. fastidiosa polygalacturonase catalytic amino acids are able to hydrolyze polygalacturonic acid. The AX2A chimera was constructed to evaluate the ability of a unique QMK motif of X. fastidiosa polygalacturonase, most polygalacturonases have a R(I/L)K motif, to bind to and allow the hydrolysis of polygalacturonic acid. Furthermore, the AX2A chimera was also used to explore what effect modification of the QMK motif of X. fastidiosa polygalacturonase to a conserved RIK motif has on enzymatic activity. These experiments showed that both the AX1A and AX2A polygalacturonase chimeras were soluble and able to hydrolyze the polygalacturonic acid substrate. Additionally, the modification of the QMK motif to the conserved RIK motif eliminated hydrolytic activity, suggesting that the QMK motif is important for the activity of X. fastidiosa polygalacturonase. This result suggests X. fastidiosa polygalacturonase may preferentially hydrolyze a different pectic substrate or, alternatively, it has a different mechanism of substrate binding than other polygalacturonases characterized to date.
Collapse
|
22
|
Ali S, Søndergaard CR, Teixeira S, Pickersgill RW. Structural insights into the loss of catalytic competence in pectate lyase activity at low pH. FEBS Lett 2015; 589:3242-6. [PMID: 26420545 DOI: 10.1016/j.febslet.2015.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/20/2015] [Indexed: 10/23/2022]
Abstract
Pectate lyase, a family 1 polysaccharide lyase, catalyses cleavage of the α-1,4 linkage of the polysaccharide homogalacturonan via an anti β-elimination reaction. In the Michaelis complex two calcium ions bind between the C6 carboxylate of the d-galacturonate residue and enzyme aspartates at the active centre (+1 subsite), they withdraw electrons acidifying the C5 proton facilitating its abstraction by the catalytic arginine. Here we show that activity is lost at low pH because protonation of aspartates results in the loss of the two catalytic calcium-ions causing a profound failure to correctly organise the Michaelis complex.
Collapse
Affiliation(s)
- Salyha Ali
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; School of Biological and Chemical Sciences, Queen Mary University of London, Department of Chemistry & Biochemistry, Mile End Road, London E1 4NS, United Kingdom
| | | | - Susana Teixeira
- Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France; EPSAM, Keele University, Staffordshire ST5 5BG, United Kingdom
| | - Richard W Pickersgill
- School of Biological and Chemical Sciences, Queen Mary University of London, Department of Chemistry & Biochemistry, Mile End Road, London E1 4NS, United Kingdom.
| |
Collapse
|
23
|
Rhamnogalacturonan I modifying enzymes: an update. N Biotechnol 2015; 33:41-54. [PMID: 26255130 DOI: 10.1016/j.nbt.2015.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022]
Abstract
Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found to be able to catalyse the degradation of the RGI backbone, an endo-hydrolase (EC 3.2.1.171) derived from Aspergillus aculeatus, was discovered 25 years ago. Today the group of RGI modifying enzymes encompasses endo- and exo-hydrolases as well as lyases. The RGI hydrolases, EC 3.2.1.171-EC 3.2.1.174, have been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23-EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11. This review brings together the available knowledge of the RGI modifying enzymes and provides a detailed overview of biocatalytic reaction characteristics, classification, structure-function traits, and analyses the protein properties of these enzymes by multiple sequence alignments in neighbour-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes is important for understanding microbial plant cell wall degradation and for advancing enzymatic processing and biorefining of pectinaceous plant biomass.
Collapse
|
24
|
Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger. Appl Biochem Biotechnol 2015; 176:2314-27. [PMID: 26142900 DOI: 10.1007/s12010-015-1720-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
Abstract
The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.
Collapse
|
25
|
Baelen S, Dewitte F, Clantin B, Villeret V. Structure of the secretion domain of HxuA from Haemophilus influenzae. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1322-7. [PMID: 24316822 PMCID: PMC3855712 DOI: 10.1107/s174430911302962x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/28/2013] [Indexed: 12/25/2022]
Abstract
Haemophilus influenzae HxuA is a cell-surface protein with haem-haemopexin binding activity which is key to haem acquisition from haemopexin and thus is one of the potential sources of haem for this microorganism. HxuA is secreted by its specific transporter HxuB. HxuA/HxuB belongs to the so-called two-partner secretion systems (TPSs) that are characterized by a conserved N-terminal domain in the secreted protein which is essential for secretion. Here, the 1.5 Å resolution structure of the secretion domain of HxuA, HxuA301, is reported. The structure reveals that HxuA301 folds into a β-helix domain with two extra-helical motifs, a four-stranded β-sheet and an N-terminal cap. Comparisons with other structures of TpsA secretion domains are reported. They reveal that despite limited sequence identity, strong structural similarities are found between the β-helix motifs, consistent with the idea that the TPS domain plays a role not only in the interaction with the specific TpsB partners but also as the scaffold initiating progressive folding of the TpsA proteins at the bacterial surface.
Collapse
Affiliation(s)
- Stéphanie Baelen
- Institut de Recherche Interdisciplinaire, IRI USR 3078 CNRS–Université Lille Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| | - Frédérique Dewitte
- Institut de Recherche Interdisciplinaire, IRI USR 3078 CNRS–Université Lille Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| | - Bernard Clantin
- Institut de Recherche Interdisciplinaire, IRI USR 3078 CNRS–Université Lille Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| | - Vincent Villeret
- Institut de Recherche Interdisciplinaire, IRI USR 3078 CNRS–Université Lille Nord de France, Parc CNRS de la Haute Borne, 50 Avenue de Halley, 59658 Villeneuve d’Ascq, France
| |
Collapse
|
26
|
Mercadante D, Melton LD, Jameson GB, Williams MAK, De Simone A. Substrate dynamics in enzyme action: rotations of monosaccharide subunits in the binding groove are essential for pectin methylesterase processivity. Biophys J 2013; 104:1731-9. [PMID: 23601320 DOI: 10.1016/j.bpj.2013.02.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/13/2013] [Accepted: 02/25/2013] [Indexed: 01/31/2023] Open
Abstract
The dynamical behavior of biomacromolecules is a fundamental property regulating a large number of biological processes. Protein dynamics have been widely shown to play a role in enzyme catalysis; however, the interplay between substrate dynamics and enzymatic activity is less understood. We report insights into the role of dynamics of substrates in the enzymatic activity of PME from Erwinia chrysanthemi, a processive enzyme that catalyzes the hydrolysis of methylester groups from the galacturonic acid residues of homogalacturonan chains, the major component of pectin. Extensive molecular dynamics simulations of this PME in complex with decameric homogalacturonan chains possessing different degrees and patterns of methylesterification show how the carbohydrate substitution pattern governs the dynamics of the substrate in the enzyme's binding cleft, such that substrate dynamics represent a key prerequisite for the PME biological activity. The analyses reveal that correlated rotations around glycosidic bonds of monosaccharide subunits at and immediately adjacent to the active site are a necessary step to ensure substrate processing. Moreover, only substrates with the optimal methylesterification pattern attain the correct dynamical behavior to facilitate processive catalysis. This investigation is one of the few reported examples of a process where the dynamics of a substrate are vitally important.
Collapse
|
27
|
Rozeboom HJ, Beldman G, Schols HA, Dijkstra BW. Crystal structure of endo-xylogalacturonan hydrolase fromAspergillus tubingensis. FEBS J 2013; 280:6061-9. [DOI: 10.1111/febs.12524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/10/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Henriëtte J. Rozeboom
- Laboratory of Biophysical Chemistry; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Gerrit Beldman
- Laboratory of Food Chemistry; Wageningen University; The Netherlands
| | - Henk A. Schols
- Laboratory of Food Chemistry; Wageningen University; The Netherlands
| | - Bauke W. Dijkstra
- Laboratory of Biophysical Chemistry; Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| |
Collapse
|
28
|
Crystal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus. Biochem J 2013; 452:211-21. [DOI: 10.1042/bj20130054] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
GH3 (glycoside hydrolase family 3) BGLs (β-glucosidases) from filamentous fungi have been widely and commercially used for the supplementation of cellulases. AaBGL1 (Aspergillus aculeatus BGL1) belongs to the GH3 and shows high activity towards cellooligosaccharides up to high degree of polymerization. In the present study we determined the crystal structure of AaBGL1. In addition to the substrate-free structure, the structures of complexes with glucose and various inhibitors were determined. The structure of AaBGL1 is highly glycosylated with 88 monosaccharides (18 N-glycan chains) in the dimer. The largest N-glycan chain comprises ten monosaccharides and is one of the largest glycans ever observed in protein crystal structures. A prominent insertion region exists in a fibronectin type III domain, and this region extends to cover a wide surface area of the enzyme. The subsite +1 of AaBGL1 is highly hydrophobic. Three aromatic residues are present at subsite +1 and are located in short loop regions that are uniquely present in this enzyme. There is a long cleft extending from subsite +1, which appears to be suitable for binding long cellooligosaccharides. The crystal structures of AaBGL1 from the present study provide an important structural basis for the technical improvement of enzymatic cellulosic biomass conversion.
Collapse
|
29
|
Khan M, Nakkeeran E, Umesh-Kumar S. Potential Application of Pectinase in Developing Functional Foods. Annu Rev Food Sci Technol 2013. [DOI: 10.1146/annurev-food-030212-182525] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The understanding that enzymatic degradation of fruit pectin can clarify juices and improve juice yields resulted in the search for microbial pectinases and application in vegetable- and fruit-processing industries. Identified enzymes were classified on the basis of their catalytic activity to pectin or its derivatives and in terms of industrial use. Discovery of gene sequences that coded the enzymes, protein engineering, and molecular biology tools resulted in defined microbial strains that over-produced the enzymes for cost-effective technologies. Recent perspectives on the use of pectin and its derivatives as dietary fibers suggest enzymatic synthesis of the right oligomers from pectin for use in human nutrition. While summarizing the activities of pectin-degrading enzymes, their industrial applications, and gene sources, this review projects another application for pectinases, which is the use of enzymatically derived pectin moieties in functional food preparation.
Collapse
Affiliation(s)
- Mahejibin Khan
- Department of Food Microbiology, Central Food Technological Research Institute (CSIR), Mysore 570020, India
| | - Ekambaram Nakkeeran
- School of Biosciences and Technology, Vellore Institute of Technology University, Vellore 632014, India
| | - Sukumaran Umesh-Kumar
- Department of Food Microbiology, Central Food Technological Research Institute (CSIR), Mysore 570020, India
| |
Collapse
|
30
|
YOSHINO-YASUDA S, KARITA S, KATO M, KITAMOTO N. Sequence Analysis and Heterologous Expression of Rhamnogalacturonan Lyase A Gene (AsrglA) from Shoyu Koji Mold, Aspergillus sojae KBN1340. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2012. [DOI: 10.3136/fstr.18.901] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Normand J, Bonnin E, Delavault P. Cloning and expression in Pichia pastoris of an Irpex lacteus rhamnogalacturonan hydrolase tolerant to acetylated rhamnogalacturonan. Appl Microbiol Biotechnol 2011; 94:1543-52. [PMID: 22101785 DOI: 10.1007/s00253-011-3705-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 10/19/2011] [Accepted: 11/02/2011] [Indexed: 12/01/2022]
Abstract
In order to produce a recombinant rhamnogalacturonase from the basidiomycete Irpex lacteus using a molecular approach, PCR primers were designed based on a sequence alignment of four known ascomycete rhamnogalacturonases. Using 5' and 3' rapid amplification of cDNA ends (RACE) experiments, a 1,437-bp full-length cDNA containing an open reading frame of 1,329 bp was isolated. The corresponding putative protein sequence is of 443 amino acids and contains a secretion signal sequence of 22 amino acids. The theoretical mass of this protein is 44.6 kDa with a theoretical isoelectric point of 6.2. The amino acid sequence shared not only significant identities with ascomycete and basidiomycete putative rhamnogalacturonases but also complete similarity with peptides obtained from a recently purified rhamnogalacturonase from I. lacteus. The recombinant protein was successfully expressed in active form in Pichia pastoris. SDS-PAGE assay demonstrated that the recombinant enzyme was secreted in the culture medium and had a molar mass of 56 kDa. This recombinant rhamnogalacturonan hydrolase exhibited a pH optimum between 4.5 and 5 and a temperature optimum between 40°C and 50°C, which correspond to that of the native rhamnogalacturonase from I. lacteus. The study of its specificity through reaction products analysis showed that it was highly tolerant to the presence of acetyl groups on its substrate, even more than the native enzyme.
Collapse
Affiliation(s)
- J Normand
- INRA, Unité de Recherche Biopolymères, Interactions, Assemblages, BP 71627, 44316 Nantes Cedex 03, France
| | | | | |
Collapse
|
32
|
Khan S, Mian HS, Sandercock LE, Chirgadze NY, Pai EF. Crystal structure of the passenger domain of the Escherichia coli autotransporter EspP. J Mol Biol 2011; 413:985-1000. [PMID: 21964244 DOI: 10.1016/j.jmb.2011.09.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/08/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal "passenger domain" responsible for the specific effector functions of the molecule and a C-terminal "β-domain" responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-Å crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel β-helix preceded by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this β-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the β-helix within SPATEs.
Collapse
Affiliation(s)
- Shekeb Khan
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, University Health Network, Toronto Medical Discovery Tower, Toronto, Ontario, Canada M5G 1L7
| | | | | | | | | |
Collapse
|
33
|
Jensen MH, Otten H, Christensen U, Borchert TV, Christensen LL, Larsen S, Leggio LL. Structural and Biochemical Studies Elucidate the Mechanism of Rhamnogalacturonan Lyase from Aspergillus aculeatus. J Mol Biol 2010; 404:100-11. [DOI: 10.1016/j.jmb.2010.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 11/24/2022]
|
34
|
Massa C, Guarnaccia C, Lamba D, Anselmi C. Insight into the structure of an endopolygalacturonase from the phytopathogen Burkholderia cepacia: a biochemical and computational study. Biochimie 2010; 92:1445-53. [PMID: 20637827 DOI: 10.1016/j.biochi.2010.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 07/07/2010] [Indexed: 11/30/2022]
Abstract
We have recently investigated and characterized the mode of action of BcPeh28A, an endopolygalacturonase (endoPG) from the phytopathogen Burkholderia cepacia. EndoPGs belong to glycoside hydrolase family 28 and are responsible for the hydrolysis of the non-esterified regions of pectins. Here we report a 3-D structural model of BcPeh28A by combining mass spectrometry (MS) analysis, aimed at disulphide bridges mapping, and computational modelling tools. MS analyses have revealed the complete pattern of disulphide bridges in BcPeh28A, pointing out the presence of three disulphide bonds, defined as Cys3-25, Cys216-244 and Cys309-421. A 3-D model of BcPeh28A was generated by computational methods based on profile-profile sequence alignments and fold recognition algorithms. The final model exhibits a right-handed β-helix fold with eleven β-helical coils and includes the disulphide bonds as additional spatial restraints. Molecular dynamics simulations have been performed to test the conformational stability of the model. Finally, the structural analysis of the BcPeh28A model allows defining the architecture and the amino acid topology of the subsites involved in the catalysis and in the substrate binding specificity.
Collapse
Affiliation(s)
- Claudia Massa
- Structural Biology Laboratory, Sincrotrone Trieste S.C.p.A., AREA Science Park - Basovizza Strada Statale 14, km 163,5, I-34149 Trieste, Italy.
| | | | | | | |
Collapse
|
35
|
Seyedarabi A, To TT, Ali S, Hussain S, Fries M, Madsen R, Clausen MH, Teixteira S, Brocklehurst K, Pickersgill RW. Structural insights into substrate specificity and the anti beta-elimination mechanism of pectate lyase. Biochemistry 2010; 49:539-46. [PMID: 20000851 DOI: 10.1021/bi901503g] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pectate lyases harness anti beta-elimination chemistry to cleave the alpha-1,4 linkage in the homogalacturonan region of plant cell wall pectin. We have studied the binding of five pectic oligosaccharides to Bacillus subtilis pectate lyase in crystals of the inactive enzyme in which the catalytic base is substituted with alanine (R279A). We discover that the three central subsites (-1, +1, and +2) have a profound preference for galacturonate but that the distal subsites can accommodate methylated galacturonate. It is reasonable to assume therefore that pectate lyase can cleave pectin with three consecutive galacturonate residues. The enzyme in the absence of substrate binds a single calcium ion, and we show that two additional calcium ions bind between enzyme and substrate carboxylates occupying the +1 subsite in the Michaelis complex. The substrate binds less intimately to the enzyme in a complex made with a catalytic base in place but in the absence of the calcium ions and an adjacent lysine. In this complex, the catalytic base is correctly positioned to abstract the C5 proton, but there are no calcium ions binding the carboxylate at the +1 subsite. It is clear, therefore, that the catalytic calcium ions and adjacent lysine promote catalysis by acidifying the alpha-proton, facilitating its abstraction by the base. There is also clear evidence that binding distorts the relaxed 2(1) or 3(1) helical conformation of the oligosaccharides in the region of the scissile bond.
Collapse
Affiliation(s)
- Arefeh Seyedarabi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Fabi JP, Cordenunsi BR, Seymour GB, Lajolo FM, do Nascimento JRO. Molecular cloning and characterization of a ripening-induced polygalacturonase related to papaya fruit softening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:1075-81. [PMID: 19703778 DOI: 10.1016/j.plaphy.2009.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2009] [Revised: 07/16/2009] [Accepted: 08/06/2009] [Indexed: 05/02/2023]
Abstract
Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silico analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening.
Collapse
Affiliation(s)
- João Paulo Fabi
- Laboratório de Química, Bioquímica e Biologia Molecular de Alimentos, Departamento de Alimentos e Nutrição Experimental, FCF, Universidade de São Paulo, Bloco 14, CEP 05508-900, São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Pijning T, van Pouderoyen G, Kluskens L, van der Oost J, Dijkstra BW. The crystal structure of a hyperthermoactive exopolygalacturonase fromThermotoga maritimareveals a unique tetramer. FEBS Lett 2009; 583:3665-70. [DOI: 10.1016/j.febslet.2009.10.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/15/2009] [Accepted: 10/15/2009] [Indexed: 12/15/2022]
|
38
|
Structural biology of pectin degradation by Enterobacteriaceae. Microbiol Mol Biol Rev 2008; 72:301-16, table of contents. [PMID: 18535148 DOI: 10.1128/mmbr.00038-07] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
SUMMARY Pectin is a structural polysaccharide that is integral for the stability of plant cell walls. During soft rot infection, secreted virulence factors from pectinolytic bacteria such as Erwinia spp. degrade pectin, resulting in characteristic plant cell necrosis and tissue maceration. Catabolism of pectin and its breakdown products by pectinolytic bacteria occurs within distinct cellular environments. This process initiates outside the cell, continues within the periplasmic space, and culminates in the cytoplasm. Although pectin utilization is well understood at the genetic and biochemical levels, an inclusive structural description of pectinases and pectin binding proteins by both extracellular and periplasmic enzymes has been lacking, especially following the recent characterization of several periplasmic components and protein-oligogalacturonide complexes. Here we provide a comprehensive analysis of the protein folds and mechanisms of pectate lyases, polygalacturonases, and carbohydrate esterases and the binding specificities of two periplasmic pectic binding proteins from Enterobacteriaceae. This review provides a structural understanding of the molecular determinants of pectin utilization and the mechanisms driving catabolite selectivity and flow through the pathway.
Collapse
|
39
|
Abstract
The pectic enzymes are a diverse group of enzymes that collectively degrade pectin, a mixture of highly heterogeneous and branched polysaccharides rich in D: -galacturonic acids forming a major component of the primary cell wall of plants. This review covers key enzymes that function to deconstruct the "ramified region" of pectin. The enzymes include glycoside hydrolases and polysaccharide lyases that degrade complex pectic domains consisting of rhamnogalacturonans, xylogalacturonans, and other heterogeneous polymers. The chemical nature of the pectic substrates for the enzymes is presented. The biochemical properties of the enzymes, the mechanisms of enzyme actions, and related structures and functions, are described. Applications of these enzymes in fruit juice processing and in the production of bioactive compounds, as well as their technological relevance to the deconstruction of cell wall structures for biomass conversion are discussed.
Collapse
Affiliation(s)
- Dominic Wong
- Western Regional Research Center, USDA-ARS, 800 Buchanan Street, Albany, CA 94710, USA.
| |
Collapse
|
40
|
Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia (Bratisl) 2008. [DOI: 10.2478/s11756-008-0018-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Martínez-Martínez I, Navarro-Fernández J, Daniel Lozada-Ramírez J, García-Carmona F, Sánchez-Ferrer Á. YesT: A new rhamnogalacturonan acetyl esterase fromBacillus subtilis. Proteins 2008; 71:379-88. [DOI: 10.1002/prot.21705] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
42
|
Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. J Bacteriol 2007; 190:1375-82. [PMID: 18083818 DOI: 10.1128/jb.01104-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BH1115 is a gene from Bacillus halodurans strain C-125 that hypothetically encodes a rhamnogalacturonan acetyl esterase (RGAE) of the CE-12 family. As confirmation, this gene was cloned, and the product was expressed in Escherichia coli strain Rosetta (DE3) cells and purified. The enzyme obtained was monomeric, with a molecular mass of 45 kDa, and exhibited alkaliphilic properties. A study of the inhibition of the activity by some modulators confirmed that the catalytic triad for the esterase activity was Ser-His-Asp. This enzyme also presents broad substrate specificity and is active toward 7-aminocephalosporanic acid, cephalosporin C, p-nitrophenyl acetate, beta-naphthyl acetate, glucose pentaacetate, and acetylated xylan. Moreover, RGAE from B. halodurans achieves a synergistic effect with xylanase A toward acetylated xylan. As a member of the SGNH family, it does not adopt the common alpha/beta hydrolase fold. The homology between the folds of RGAE from Aspergillus aculeatus and the hypothetical YxiM precursor from Bacillus subtilis, which both belong to the SGNH family, illustrates the divergence of such proteins from a common ancestor. Furthermore, the enzyme possesses a putative substrate binding region at the N terminus of the protein which has never been described to date for any RGAE.
Collapse
|
43
|
Kowadlo G, Hall NE, Burgess AW. De novo design of beta-helical polypeptides. Growth Factors 2007; 25:168-90. [PMID: 18049953 DOI: 10.1080/08977190701679772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Many proteins, including several growth factor receptors such as the IGF-1R and EGFR family, contain variants of the beta-helix fold. Inspection of the irregular protein beta-helices suggested that different families of regular beta-helical polypeptides can be designed using a series of hinged vectors and the constraints imposed by the geometry of a peptide backbone. We have conceived beta-helices with five and six beta-strands per turn and designed, in detail, a series of regular beta-helices with rhomboidal or triangular cross-sections. Each beta-helix was modeled by threading C(alpha) atoms to follow the vectorial beta-helix and then creating the H-bonded polypeptide backbone and appropriate side-chain orientations. The conformational stability of these regular beta-helices was assessed using molecular dynamics simulations. Several potential repeat amino acid sequences were identified for different geometries of beta-helix. Regular beta-helices offer new possibilities for the study of protein folding, the production of nanofibers, catalysts, inhibitors of growth factor receptors and drug carriers.
Collapse
Affiliation(s)
- Gideon Kowadlo
- Ludwig Institute for Cancer Research, Tumor Biology Branch, Melbourne, Australia
| | | | | |
Collapse
|
44
|
Abbott DW, Boraston AB. The Structural Basis for Exopolygalacturonase Activity in a Family 28 Glycoside Hydrolase. J Mol Biol 2007; 368:1215-22. [PMID: 17397864 DOI: 10.1016/j.jmb.2007.02.083] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/21/2007] [Accepted: 02/21/2007] [Indexed: 11/19/2022]
Abstract
Family 28 glycoside hydrolases (polygalacturonases) are found in organisms across the plant, fungal and bacterial kingdoms, where they are central to diverse biological functions such as fruit ripening, biomass recycling and plant pathogenesis. The structures of several polygalacturonases have been reported; however, all of these enzymes utilize an endo-mode of digestion, which generates a spectrum of oligosaccharide products with varying degrees of polymerization. The structure of a complementary exo-acting polygalacturonase and an accompanying explanation of the molecular determinants for its specialized activity have been noticeably lacking. We present the structure of an exopolygalacturonase from Yersinia enterocolitica, YeGH28 in a native form (solved to 2.19 A resolution) and a digalacturonic acid product complex (solved to 2.10 A resolution). The activity of YeGH28 is due to inserted stretches of amino acid residues that transform the active site from the open-ended channel observed in the endopolygalacturonases to a closed pocket that restricts the enzyme to the exclusive attack of the non-reducing end of oligogalacturonide substrates. In addition, YeGH28 possesses a fused FN3 domain with unknown function, the first such structure described in pectin active enzymes.
Collapse
Affiliation(s)
- D Wade Abbott
- Biochemistry and Microbiology, University of Victoria, PO Box 3055 STN CSC, Victoria BC, Canada V8W 3P6
| | | |
Collapse
|
45
|
Fong JCN, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol 2007; 189:2319-30. [PMID: 17220218 PMCID: PMC1899372 DOI: 10.1128/jb.01569-06] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae, the causative agent of cholera, can undergo phenotypic variation generating rugose and smooth variants. The rugose variant forms corrugated colonies and well-developed biofilms and exhibits increased levels of resistance to several environmental stresses. Many of these phenotypes are mediated in part by increased expression of the vps genes, which are organized into vps-I and vps-II coding regions, separated by an intergenic region. In this study, we generated in-frame deletions of the five genes located in the vps intergenic region, termed rbmB to -F (rugosity and biofilm structure modulators B to F) in the rugose genetic background, and characterized the mutants for rugose colony development and biofilm formation. Deletion of rbmB, which encodes a protein with low sequence similarity to polysaccharide hydrolases, resulted in an increase in colony corrugation and accumulation of exopolysaccharides relative to the rugose variant. RbmC and its homolog Bap1 are predicted to encode proteins with carbohydrate-binding domains. The colonies of the rbmC bap1 double deletion mutant and bap1 single deletion mutant exhibited a decrease in colony corrugation. Furthermore, the rbmC bap1 double deletion mutant was unable to form biofilms at the air-liquid interface after 2 days, while the biofilms formed on solid surfaces detached readily. Although the colony morphology of rbmDEF mutants was similar to that of the rugose variant, their biofilm structure and cell aggregation phenotypes were different than those of the rugose variant. Taken together, these results indicate that vps intergenic region genes encode proteins that are involved in biofilm matrix production and maintenance of biofilm structure and stability.
Collapse
Affiliation(s)
- Jiunn C N Fong
- Department of Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
46
|
|
47
|
Martens-Uzunova E, Zandleven J, Benen J, Awad H, Kools H, Beldman G, Voragen A, Van Den Berg J, Schaap P. A new group of exo-acting family 28 glycoside hydrolases of Aspergillus niger that are involved in pectin degradation. Biochem J 2006; 400:43-52. [PMID: 16822232 PMCID: PMC1635439 DOI: 10.1042/bj20060703] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fungus Aspergillus niger is an industrial producer of pectin-degrading enzymes. The recent solving of the genomic sequence of A. niger allowed an inventory of the entire genome of the fungus for potential carbohydrate-degrading enzymes. By applying bioinformatics tools, 12 new genes, putatively encoding family 28 glycoside hydrolases, were identified. Seven of the newly discovered genes form a new gene group, which we show to encode exoacting pectinolytic glycoside hydrolases. This group includes four exo-polygalacturonan hydrolases (PGAX, PGXA, PGXB and PGXC) and three putative exo-rhamnogalacturonan hydrolases (RGXA, RGXB and RGXC). Biochemical identification using polygalacturonic acid and xylogalacturonan as substrates demonstrated that indeed PGXB and PGXC act as exo-polygalacturonases, whereas PGXA acts as an exo-xylogalacturonan hydrolase. The expression levels of all 21 genes were assessed by microarray analysis. The results from the present study demonstrate that exo-acting glycoside hydrolases play a prominent role in pectin degradation.
Collapse
Affiliation(s)
- Elena S. Martens-Uzunova
- *Section Fungal Genomics, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Joris S. Zandleven
- †Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Jaques A. E. Benen
- *Section Fungal Genomics, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Hanem Awad
- †Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Harrie J. Kools
- *Section Fungal Genomics, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Gerrit Beldman
- †Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Alphons G. J. Voragen
- †Laboratory of Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - Johan A. Van Den Berg
- *Section Fungal Genomics, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | - Peter J. Schaap
- *Section Fungal Genomics, Laboratory of Microbiology, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
- To whom correspondence should be addressed (email )
| |
Collapse
|
48
|
Xiang Y, Morais MC, Battisti AJ, Grimes S, Jardine PJ, Anderson DL, Rossmann MG. Structural changes of bacteriophage phi29 upon DNA packaging and release. EMBO J 2006; 25:5229-39. [PMID: 17053784 PMCID: PMC1630414 DOI: 10.1038/sj.emboj.7601386] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 08/26/2006] [Indexed: 01/01/2023] Open
Abstract
Cryo-electron microscopy three-dimensional reconstructions have been made of mature and of emptied bacteriophage phi29 particles without making symmetry assumptions. Comparisons of these structures with each other and with the phi29 prohead indicate how conformational changes might initiate successive steps of assembly and infection. The 12 adsorption capable 'appendages' were found to have a structure homologous to the bacteriophage P22 tailspikes. Two of the appendages are extended radially outwards, away from the long axis of the virus, whereas the others are around and parallel to the phage axis. The appendage orientations are correlated with the symmetry-mismatched positions of the five-fold related head fibers, suggesting a mechanism for partial cell wall digestion upon rotation of the head about the tail when initiating infection. The narrow end of the head-tail connector is expanded in the mature virus. Gene product 3, bound to the 5' ends of the genome, appears to be positioned within the expanded connector, which may potentiate the release of DNA-packaging machine components, creating a binding site for attachment of the tail.
Collapse
Affiliation(s)
- Ye Xiang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Marc C Morais
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Anthony J Battisti
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shelley Grimes
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Paul J Jardine
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Dwight L Anderson
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Microbiology, University of Minnesota, Minneapolis, MN, USA
| | - Michael G Rossmann
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA. Tel.: +1 765 494 4911; Fax: +1 765 496 1189; E-mail:
| |
Collapse
|
49
|
Woosley BD, Kim YH, Kumar Kolli VS, Wells L, King D, Poe R, Orlando R, Bergmann C. Glycan analysis of recombinant Aspergillus niger endo-polygalacturonase A. Carbohydr Res 2006; 341:2370-8. [PMID: 16854399 DOI: 10.1016/j.carres.2006.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 06/01/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
The enzyme endo-polygalacturonase A, or PGA, is produced by the fungus, Aspergillus niger, and appears to play a critical role during invasion of plant cell walls. The enzyme has been homologously overexpressed in order to provide sufficient quantities of purified enzyme for structural and biological studies. We have characterized this enzyme in terms of its post-translational modifications (PTMs) and found it to be both N- and O-glycosylated. Additionally, we have characterized the glycosyl moieties using MALDI-TOF and LC-ESI mass spectrometry. The characterization of all PTMs on PGA, along with molecular modeling, allows us to reveal potential roles played by the glycans in modulating the interaction of the enzyme with other macromolecules.
Collapse
Affiliation(s)
- Bryan D Woosley
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA 30602-4712, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Michel G, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. Bioconversion of red seaweed galactans: a focus on bacterial agarases and carrageenases. Appl Microbiol Biotechnol 2006; 71:23-33. [PMID: 16550377 DOI: 10.1007/s00253-006-0377-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Agars and carrageenans are 1,3-alpha-1,4-beta-galactans from the cell walls of red algae, substituted by zero (agarose), one (kappa-), two (iota-), or three (lambda-carrageenan) sulfate groups per disaccharidic monomer. Agars, kappa-, and iota-carrageenans auto-associate into crystalline fibers and are well known for their gelling properties, used in a variety of laboratory and industrial applications. These sulfated galactans constitute a crucial carbon source for a number of marine bacteria. These microorganisms secrete glycoside hydrolases specific for these polyanionic, insoluble polysaccharides, agarases and carrageenases. This article reviews the microorganisms involved in the degradation of agars and carrageenans, in their environmental and taxonomic diversity. We also present an overview on the biochemistry of the different families of galactanases. The structure-function relationships of the family GH16 beta-agarases and kappa-caraggeenases and of the family GH82 iota-carrageenases are discussed in more details. In particular, we examine how the active site topologies of these glycoside hydrolases influence their mode of action in heterogeneous phase. Finally, we discuss the next challenges in the basic and applied field of the galactans of red algae and of their related degrading microorganisms.
Collapse
Affiliation(s)
- Gurvan Michel
- Equipe Glycobiologie Marine, UMR7139 Végétaux Marins et Biomolécules (CNRS/UPMC), Station Biologique, Roscoff, Bretagne, France
| | | | | | | | | |
Collapse
|