1
|
Walvekar VA, Ramesh K, Jobichen C, Kannan M, Sivaraman J, Kini RM, Mok YK. Crystal structure of Aedes aegypti trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor. Protein Sci 2022; 31:470-484. [PMID: 34800067 PMCID: PMC8820117 DOI: 10.1002/pro.4245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Kazal-type protease inhibitor specificity is believed to be determined by sequence of the reactive-site loop that make most, if not all, contacts with the serine protease. Here, we determined the complex crystal structure of Aedes aegypti trypsin inhibitor (AaTI) with μ-plasmin, and compared its reactivities with other Kazal-type inhibitors, infestin-1 and infestin-4. We show that the shortened 99-loop of plasmin creates an S2 pocket, which is filled by phenylalanine at the P2 position of the reactive-site loop of infestin-4. In contrast, AaTI and infestin-1 retain a proline at P2, rendering the S2 pocket unfilled, which leads to lower plasmin inhibitions. Furthermore, the protein scaffold of AaTI is unstable, due to an elongated Cys-V to Cys-VI region leading to a less compact hydrophobic core. Chimeric study shows that the stability of the scaffold can be modified by swapping of this Cys-V to Cys-VI region between AaTI and infestin-4. The scaffold instability causes steric clashing of the bulky P2 residue, leading to significantly reduced inhibition of plasmin by AaTI or infestin-4 chimera. Our findings suggest that surface loops of protease and scaffold stability of Kazal-type inhibitor are both necessary for specific protease inhibition, in addition to reactive site loop sequence. PDB ID code: 7E50.
Collapse
Affiliation(s)
| | - Karthik Ramesh
- Department of Biological SciencesNational University of SingaporeSingapore,Present address:
Department of Biophysics and BiochemistryUT Southwestern Medical CentreDallasTXUSA
| | - Chacko Jobichen
- Department of Biological SciencesNational University of SingaporeSingapore
| | - Muthu Kannan
- Department of Biological SciencesNational University of SingaporeSingapore
| | - J. Sivaraman
- Department of Biological SciencesNational University of SingaporeSingapore
| | - R. Manjunatha Kini
- Department of Biological SciencesNational University of SingaporeSingapore,Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Yu Keung Mok
- Department of Biological SciencesNational University of SingaporeSingapore
| |
Collapse
|
2
|
Atomic resolution structure of a protein prepared by non-enzymatic His-tag removal. Crystallographic and NMR study of GmSPI-2 inhibitor. PLoS One 2014; 9:e106936. [PMID: 25233114 PMCID: PMC4169406 DOI: 10.1371/journal.pone.0106936] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/09/2014] [Indexed: 12/03/2022] Open
Abstract
Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods. GmSPI-2 was purified using a new method consisting in non-enzymatic His-tag removal based on a highly specific peptide bond cleavage reaction assisted by Ni(II) ions. The X-ray crystal structure of GmSPI-2 was refined against diffraction data extending to 0.98 Å resolution measured at 100 K using synchrotron radiation. Anisotropic refinement with the removal of stereochemical restraints for the well-ordered parts of the structure converged with R factor of 10.57% and Rfree of 12.91%. The 3D structure of GmSPI-2 protein in solution was solved on the basis of 503 distance constraints, 10 hydrogen bonds and 26 torsion angle restraints. It exhibits good geometry and side-chain packing parameters. The models of the protein structure obtained by X-ray diffraction and NMR spectroscopy are very similar to each other and reveal the same β2αβ fold characteristic for Kazal-family serine proteinase inhibitors.
Collapse
|
3
|
Valdés JJ, Schwarz A, Cabeza de Vaca I, Calvo E, Pedra JHF, Guallar V, Kotsyfakis M. Tryptogalinin is a tick Kunitz serine protease inhibitor with a unique intrinsic disorder. PLoS One 2013; 8:e62562. [PMID: 23658744 PMCID: PMC3643938 DOI: 10.1371/journal.pone.0062562] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/22/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND A salivary proteome-transcriptome project on the hard tick Ixodes scapularis revealed that Kunitz peptides are the most abundant salivary proteins. Ticks use Kunitz peptides (among other salivary proteins) to combat host defense mechanisms and to obtain a blood meal. Most of these Kunitz peptides, however, remain functionally uncharacterized, thus limiting our knowledge about their biochemical interactions. RESULTS We discovered an unusual cysteine motif in a Kunitz peptide. This peptide inhibits several serine proteases with high affinity and was named tryptogalinin due to its high affinity for β-tryptase. Compared with other functionally described peptides from the Acari subclass, we showed that tryptogalinin is phylogenetically related to a Kunitz peptide from Rhipicephalus appendiculatus, also reported to have a high affinity for β-tryptase. Using homology-based modeling (and other protein prediction programs) we were able to model and explain the multifaceted function of tryptogalinin. The N-terminus of the modeled tryptogalinin is detached from the rest of the peptide and exhibits intrinsic disorder allowing an increased flexibility for its high affinity with its inhibiting partners (i.e., serine proteases). CONCLUSIONS By incorporating experimental and computational methods our data not only describes the function of a Kunitz peptide from Ixodes scapularis, but also allows us to hypothesize about the molecular basis of this function at the atomic level.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The correct balance between proteases and their natural protein inhibitors is of great importance in living systems. Protease inhibitors usually comprise small folds that are crosslinked by a high number of disulfide bonds, making them perfect models for the study of oxidative folding. To date, the oxidative folding of numerous protease inhibitors has been analyzed, revealing a great diversity of folding pathways that differ mainly in the heterogeneity and native disulfide-bond content of their intermediates. The two extremes of this diversity are represented by bovine pancreatic trypsin inhibitor and hirudin, which fold, respectively, via few native intermediates and heterogeneous scrambled isomers. Other proteins, such as leech carboxypeptidase inhibitor, share characteristics of both models displaying mixed folding pathways. The study of the oxidative folding of two-domain inhibitors, such as secretory leukocyte protease inhibitor, tick carboxypeptidase inhibitor, and Ascaris carboxypeptidase inhibitor, has provided some clues about how two-domain protease inhibitors may fold, that is, either by folding each domain autonomously or with one domain assisting in the folding of the other. Finally, the recent determination of the structures of the major intermediates of protease inhibitors has shed light on the molecular mechanisms guiding the oxidative folding of small disulfide-rich proteins.
Collapse
Affiliation(s)
- Joan L Arolas
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | | |
Collapse
|
5
|
Rimphanitchayakit V, Tassanakajon A. Structure and function of invertebrate Kazal-type serine proteinase inhibitors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2010; 34:377-386. [PMID: 19995574 DOI: 10.1016/j.dci.2009.12.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 12/01/2009] [Accepted: 12/01/2009] [Indexed: 05/28/2023]
Abstract
Proteinases and proteinase inhibitors are involved in several biological and physiological processes in all multicellular organisms. The proteinase inhibitors function as modulators for controlling the extent of deleterious proteinase activity. The Kazal-type proteinase inhibitors (KPIs) in family I1 are among the well-known families of proteinase inhibitors, widely found in mammals, avian and a variety of invertebrates. Like those classical KPIs, the invertebrate KPIs can be single or multiple domain proteins containing one or more Kazal inhibitory domains linked together by peptide spacers of variable length. All invertebrate Kazal domains of about 40-60 amino acids in length share a common structure which is dictated by six conserved cysteine residues forming three intra-domain disulfide cross-links despite the variability of amino acid sequences between the half-cystines. Invertebrate KPIs are strong inhibitors as shown by their extremely high association constant of 10(7)-10(13)M(-1). The inhibitory specificity of a Kazal domain varies widely with a different reactive P(1) amino acid. Different invertebrate KPI domains may arise from gene duplication but several KPI proteins can also be derived from alternative splicing. The invertebrate KPIs function as anticoagulants in blood-sucking animals such as leech, mosquitoes and ticks. Several KPIs are likely involved in protecting host from microbial proteinases while some from the parasitic protozoa help protecting the parasites from the host digestive proteinase enzymes. Silk moths produce KPIs to protect their cocoon from predators and microbial destruction.
Collapse
Affiliation(s)
- Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Bangkok 10330, Thailand.
| | | |
Collapse
|
6
|
Pantoja-Uceda D, Arolas JL, Aviles FX, Santoro J, Ventura S, Sommerhoff CP. Deciphering the structural basis that guides the oxidative folding of leech-derived tryptase inhibitor. J Biol Chem 2010; 284:35612-20. [PMID: 19820233 DOI: 10.1074/jbc.m109.061077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein folding mechanisms have remained elusive mainly because of the transient nature of intermediates. Leech-derived tryptase inhibitor (LDTI) is a Kazal-type serine proteinase inhibitor that is emerging as an attractive model for folding studies. It comprises 46 amino acid residues with three disulfide bonds, with one located inside a small triple-stranded antiparallel beta-sheet and with two involved in a cystine-stabilized alpha-helix, a motif that is widely distributed in bioactive peptides. Here, we analyzed the oxidative folding and reductive unfolding of LDTI by chromatographic and disulfide analyses of acid-trapped intermediates. It folds and unfolds, respectively, via sequential oxidation and reduction of the cysteine residues that give rise to a few 1- and 2-disulfide intermediates. Species containing two native disulfide bonds predominate during LDTI folding (IIa and IIc) and unfolding (IIa and IIb). Stop/go folding experiments demonstrate that only intermediate IIa is productive and oxidizes directly into the native form. The NMR structures of acid-trapped and further isolated IIa, IIb, and IIc reveal global folds similar to that of the native protein, including a native-like canonical inhibitory loop. Enzyme kinetics shows that both IIa and IIc are inhibitory-active, which may substantially reduce proteolysis of LDTI during its folding process. The results reported show that the kinetics of the folding reaction is modulated by the specific structural properties of the intermediates and together provide insights into the interdependence of conformational folding and the assembly of native disulfides during oxidative folding.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Departamento de Espectroscopía y Estructura Molecular, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, E-28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
7
|
Head-to-Tail Cyclized Cystine-Knot Peptides by a Combined Recombinant and Chemical Route of Synthesis. Chembiochem 2008; 9:33-7. [DOI: 10.1002/cbic.200700452] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Arolas JL, Bronsoms S, Aviles FX, Ventura S, Sommerhoff CP. Oxidative folding of leech-derived tryptase inhibitor via native disulfide-bonded intermediates. Antioxid Redox Signal 2008; 10:77-85. [PMID: 18004973 DOI: 10.1089/ars.2007.1850] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Leech-derived tryptase inhibitor (LDTI), comprising 46 residues and a fold stabilized by three disulfide bonds, is the only protein known to inhibit human beta-tryptase with high affinity. The present work examines its oxidative folding and reductive unfolding with chromatographic and disulfide analysis of the trapped intermediates. LDTI folds and unfolds through a sequential oxidation of its cysteine residues that give rise to the accumulation of a few one- and two-disulfide intermediates. Three species containing two native disulfide bonds (IIa, IIb, and IIc) are detected in LDTI folding, but only one (IIb) seems to be productive and oxidizes into the native structure. Stop/go experiments indicate that the intermediates IIa and IIc must reduce or rearrange their disulfide bonds to reach the productive route. The acquisition of the native structure is extremely fast and efficient, probably influenced by the low levels of non-native three-disulfide (scrambled) isomers occurring along the reaction. Finally, the Cys14-Cys40 disulfide bond, buried in native LDTI and formed in IIa and IIb intermediates, appears to be a key factor for both the initiation of folding and the stability of this molecule. Together, the derived data provide a molecular basis for development of new LDTI variants with altered properties.
Collapse
Affiliation(s)
- Joan L Arolas
- Institut de Biotecnologia i Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
9
|
Zheng QL, Chen J, Nie ZM, Lv ZB, Wang D, Zhang YZ. Expression, purification and characterization of a three-domain Kazal-type inhibitor from silkworm pupae (Bombyx mori). Comp Biochem Physiol B Biochem Mol Biol 2007; 146:234-40. [PMID: 17161640 DOI: 10.1016/j.cbpb.2006.10.106] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 10/20/2006] [Accepted: 10/21/2006] [Indexed: 11/21/2022]
Abstract
Serine protease inhibitors are essential for host physiological and immunological activities in insects. Analyzing the amino-acid sequence of a cDNA coding for a serine protease inhibitor in Bombyx mori (BmSPI), we found that BmSPI contained three homologous domains with a conserved sequence of C-X(3)-C-X(9)-C-X(6)-Y-X(7)-C-X(3)-C-X(11)-C similar to that of Kazal-type serine protease inhibitors, suggesting BmSPI as a new member of the Kazal-type serine protease inhibitor family. To characterize the three-domain Kazal-type inhibitor from silkworm pupae, the recombinant protein was expressed in Escherichia coli BL21 (DE3) Star. After purification with affinity and reversed-phase chromatographies, the recombinant BmSPI with a molecular mass of 33.642 Da was shown to be a specific subtilisin A inhibitor. Further studies indicated that the K(i) value of the recombinant BmSPI was 3.35 nM and the inhibitor seemed to form a 1:1 complex with subtilisin A. This is a first description of the structure and characterization of Kazal-type inhibitor with three domains cloned from silkworm pupae, B. mori.
Collapse
Affiliation(s)
- Qing-Liang Zheng
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
10
|
Zhu L, Song L, Chang Y, Xu W, Wu L. Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819). FISH & SHELLFISH IMMUNOLOGY 2006; 20:320-31. [PMID: 16005644 DOI: 10.1016/j.fsi.2005.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 02/01/2005] [Accepted: 05/11/2005] [Indexed: 05/03/2023]
Abstract
Serine protease inhibitors, critical regulators of endogenous proteases, are found in all multicellular organisms and play crucial roles in host physiological and immunological effector mechanisms. The first mollusk serine proteinase inhibitor (designated AISPI) cDNA was obtained from the bay scallop Argopecten irradians by randomly sequencing a whole tissue cDNA library and rapid amplification of cDNA ends (RACE). The full-length cDNA of the scallop serine protease inhibitor was 1020 bp, consisting of a 5'-terminal untranslated region (UTR) of 39 bp, a 3'-terminal UTR of 147 bp with a canonical polyadenylation signal sequence AATAAA and a poly(A) tail, and an open reading frame of 834 bp. The AISPI cDNA encoded a polypeptide of 278 amino acids with a putative signal peptide of 22 amino acids and a mature protein of 256 amino acids. The deduced amino-acid sequence of AISPI contained six tandem and homologous domains similar to that of Kazal-type serine protease inhibitors, including the conserved sequence C-X(7)-C-X(6)-Y-X(3)-C-X(2,3)-C and six cysteine residues responsible for the formation of disulfide bridges, indicating that the AISPI protein from bay scallop should be a member of the Kazal-type serine protease inhibitor family. The temporal expression of AISPI was measured by semi-quantitative RT-PCR after injury or bacterial challenge. After the adductor muscle was wounded or injected with Vibrio anguillarum, the expression of AISPI mRNA in hemolymph was up-regulated and reached the maximum level at 8 and 16 h, respectively, and then progressively dropped back to the original level. The results indicated that AISPI could play an important role in injury healing and immune response in mollusks as it could be induced by injury and bacterial challenge.
Collapse
Affiliation(s)
- Ling Zhu
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P.R. China
| | | | | | | | | |
Collapse
|
11
|
Breitenlechner CB, Bossemeyer D, Engh RA. Crystallography for protein kinase drug design: PKA and SRC case studies. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:38-49. [PMID: 16269279 DOI: 10.1016/j.bbapap.2005.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 09/27/2005] [Accepted: 09/28/2005] [Indexed: 10/25/2022]
Abstract
Protein crystallography can be used throughout the drug discovery process to obtain diverse information critical for structure based drug design. At a minimum, a single target structure may be available. Optimally, and especially for protein kinases, a broad range of crystal structures should be obtained to characterize target flexibility, structure modulation via co-factor binding or posttranslational modification, ligand induced conformational changes, and off-target complex structures for selectivity optimization. The flexibility of the protein kinases is in contrast to the need for "crystallizable" constructs, that is, proteins that crystallize under varying conditions and in varying crystal packing arrangements. Strategies to produce crystallizable protein kinase constructs include truncation to the catalytic domain, co-crystallization with rigidifying ligands, crystallization of known rigid forms, and point mutation to improve homogeneity or mimic less crystallizable proteins. PKA, the prototypical serine/threonine protein kinase, and SRC, a tyrosine kinase and the first identified oncoprotein, provide multiple examples of these various approaches to protein kinase crystallography for drug design.
Collapse
|
12
|
Auvynet C, Seddiki N, Dunia I, Nicolas P, Amiche M, Lacombe C. Post-translational amino acid racemization in the frog skin peptide deltorphin I in the secretion granules of cutaneous serous glands. Eur J Cell Biol 2005; 85:25-34. [PMID: 16373172 DOI: 10.1016/j.ejcb.2005.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 09/05/2005] [Accepted: 09/05/2005] [Indexed: 10/25/2022] Open
Abstract
The dermal glands of the South American hylid frog Phyllomedusa bicolor synthesize and expel huge amounts of cationic, alpha-helical, 24- to 33-residue antimicrobial peptides, the dermaseptins B. These glands also produce a wide array of peptides that are similar to mammalian hormones and neuropeptides, including a heptapeptide opioid containing a D-amino acid, deltorphin I (Tyr-DAla-Phe-Asp-Val-Val-Gly NH2). Its biological activity is due to the racemization of L-Ala2 to D-Ala. The dermaseptins B and deltorphins are all derived from a single family of precursor polypeptides that have an N-terminal preprosequence that is remarkably well conserved, although the progenitor sequences giving rise to mature opioid or antimicrobial peptides are markedly different. Monoclonal and polyclonal antibodies were used to examine the cellular and ultrastructural distributions of deltorphin I and dermaseptin B in the serous glands by immunofluoresence confocal microscopy and immunogold-electron microscopy. Preprodeltorphin I and preprodermaseptins B are sorted into the regulated pathway of secretion, where they are processed to give the mature products. Deltorphin I, [l-Ala2]-deltorphin I and dermaseptin B are all stored together in secretion granules which accumulate in the cytoplasm of all serous glands. We conclude that the L- to D-amino acid isomerization of the deltorphin I occurs in the secretory granules as a post-translational event. Thus the specificity of isomerization depends on the presence of structural and/or conformational determinants in the peptide N-terminus surrounding the isomerization site.
Collapse
Affiliation(s)
- Constance Auvynet
- Peptidome de la peau d'amphibiens, FRE 2852, CNRS-Université Paris-6, Tour 43, Institut Jacques Monod, 2 Place Jussieu, F-75251 Paris, Cedex 05, France
| | | | | | | | | | | |
Collapse
|
13
|
Wong T, Groutas CS, Mohan S, Lai Z, Alliston KR, Vu N, Schechter NM, Groutas WC. 1,2,5-Thiadiazolidin-3-one 1,1-dioxide-based heterocyclic sulfides are potent inhibitors of human tryptase. Arch Biochem Biophys 2005; 436:1-7. [PMID: 15752703 DOI: 10.1016/j.abb.2005.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Revised: 01/25/2005] [Indexed: 11/19/2022]
Abstract
We describe herein the design, synthesis, and in vitro biochemical evaluation of a series of potent, time-dependent inhibitors of the mast cell-derived serine protease tryptase. The inhibitors were readily obtained by attaching various heterocyclic thiols, as well as a basic primary specificity residue P(1), to the 1,2,5-thiadiazolidin-3-one 1,1-dioxide scaffold. The inhibitors were found to be devoid of any inhibitory activity toward a neutral (elastase) or cysteine (papain) protease, however they were also fairly efficient inhibitors of bovine trypsin. The differential inhibition observed with trypsin suggests that enzyme selectivity can be optimized by exploiting differences in the S' subsites of the two enzymes. The results described herein demonstrate the versatility of the heterocyclic scaffold in fashioning mechanism-based inhibitors of neutral, basic, and acidic (chymo)trypsin-like serine proteases.
Collapse
Affiliation(s)
- Tzutshin Wong
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Forrer P, Chang C, Ott D, Wlodawer A, Plückthun A. Kinetic stability and crystal structure of the viral capsid protein SHP. J Mol Biol 2004; 344:179-93. [PMID: 15504410 DOI: 10.1016/j.jmb.2004.09.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 09/09/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
SHP, the capsid-stabilizing protein of lambdoid phage 21, is highly resistant against denaturant-induced unfolding. We demonstrate that this high functional stability of SHP is due to a high kinetic stability with a half-life for unfolding of 25 days at zero denaturant, while the thermodynamic stability is not unusually high. Unfolding experiments demonstrated that the trimeric state (also observed in crystals and present on the phage capsid) of SHP is kinetically stable in solution, while the monomer intermediate unfolds very rapidly. We also determined the crystal structure of trimeric SHP at 1.5A resolution, which was compared to that of its functional homolog gpD. This explains how a tight network of H-bonds rigidifies crucial interpenetrating residues, leading to the observed extremely slow trimer dissociation or denaturation. Taken as a whole, our results provide molecular-level insights into natural strategies to achieve kinetic stability by taking advantage of protein oligomerization. Kinetic stability may be especially needed in phage capsids to allow survival in harsh environments.
Collapse
Affiliation(s)
- Patrik Forrer
- Biochemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Scarpi D, McBride JD, Leatherbarrow RJ. Inhibition of human β-tryptase by Bowman–Birk inhibitor derived peptides: creation of a new tri-functional inhibitor. Bioorg Med Chem 2004; 12:6045-52. [PMID: 15519150 DOI: 10.1016/j.bmc.2004.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Accepted: 09/10/2004] [Indexed: 10/26/2022]
Abstract
Bowman-Birk inhibitor proteins (BBIs), which are potent inhibitors of chymotrypsin-like proteases, do not inhibit human beta-tryptase despite this protein having a chymotrypsin-like fold. We have reported previously that, in contrast, BBI-derived peptides (whose sequences incorporate the solvent exposed reactive site loop motif) are able to inhibit human beta-tryptase. This is due to their small size, which allows them to access the restricted active site(s) of tryptase, which has an unusual tetrameric arrangement with four active sites flanking a central pore. In this paper, we have examined the possibility of creating additional interactions within this pore by adding extensions to the BBI-peptide motif. We have taken the core disulfide-bridged sequence SCTKSIPPQCY and examined a series of extensions, at both the C- and N-termini, that bear a second positively charged Lys residue at their end. The aim was to construct inhibitors that could make additional interactions in tryptase by spanning the gap between adjacent active sites in the enzyme, producing a double-headed inhibitor; a positively charged group was used as the dominant specificity of this enzyme is for a positively charged P1 residue. Both N- and C-terminal extensions are found to produce inhibitors of much increased potency, with a strong dependence of potency on chain length. Moreover, it was found that the C- and N-terminal extensions were able to synergise, with their combination on the same peptide producing an even better inhibitor with a potency 10(4)-fold greater than the original sequence. We suggest that the C- and N-terminal extensions are picking up interactions with separate additional sites on the tryptase, making the doubly extended BBI peptide a tri-functional tryptase inhibitor.
Collapse
Affiliation(s)
- Dina Scarpi
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | |
Collapse
|
16
|
Abstract
We have investigated the D-amino acid residues present in Protein Data Bank (PDB) entries, categorizing them into "real" D-residues and artifacts. In polypeptide chains of more than 20 residues, only a single instance of a "real" D-residue, other than those deliberately designed or engineered, was found. This example was the result of a slow chemical epimerization process. Another 12 designed D-residues were found in these longer polypeptide chains. Smaller peptides of 20 or fewer residues contained 479 "real" D-residues, the majority in various gramicidin, actinomycin, or cyclosporin structures. We found 148 PDB entries with "real" D-residues and a further 186, in which all apparent D-residues are artifacts. Investigating the (phi, psi) preferences of the "real" D-residues, we found that the region around (-60 degrees, -45 degrees ) was almost completely unoccupied, even though it is not formally disallowed. We link the low propensity to occupy this region with the alpha-helix destabilizing properties of D-residues.
Collapse
Affiliation(s)
- John B O Mitchell
- Unilever Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK.
| | | |
Collapse
|
17
|
Scarpi D, McBride JD, Leatherbarrow RJ. Inhibition of human beta-tryptase by Bowman-Birk inhibitor derived peptides. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2002; 59:90-3. [PMID: 11906611 DOI: 10.1046/j.1397-002x.2001.00001_950.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four 11-residue peptides based on the Bowman-Birk inhibitor (BBI) structure were synthesized. These were tested for their ability to inhibit human beta-tryptase. Peptides with a basic residue at P1 inhibited tryptase even though the intact BBI protein is inactive. This result is interpreted in terms of the unique structural arrangement of active sites in tryptase which prevent access by large protein inhibitors.
Collapse
Affiliation(s)
- D Scarpi
- Department of Chemistry, Imperial College of Science, Technology and Medicine, South Kensington, London, UK
| | | | | |
Collapse
|
18
|
Lindh JG, Botero-Kleiven S, Arboleda JI, Wahlgren M. A protease inhibitor associated with the surface of Toxoplasma gondii. Mol Biochem Parasitol 2001; 116:137-45. [PMID: 11522347 DOI: 10.1016/s0166-6851(01)00314-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Toxoplasma gondii has a broad host-range including man and a variety of warm-blooded animals. The ability to infect and survive in this wide spectrum of hosts suggests highly evolved mechanisms to handle the harsh environments encountered. Here we show that extracellular tachyzoites are resistant to milligram levels of trypsin and describe the presence of an inhibitor of trypsin associated with the surface of T. gondii, TgTI. TgTI has an estimated molecular mass of 37000 dalton and is encoded by the TgTI-gene which is found at low abundance as an expressed sequence tag (EST) in both the bradyzoite and tachyzoite stages. The inhibitory binding region was found to be in the N-terminus of TgTI where aminoacid-alignment to earlier described protease inhibitors demonstrates 75% similarity. In functional analysis, recombinant TgTI-protein inhibits the activity of trypsin approximately 10 times more efficiently than an inhibitor isolated from soybean. In contrast to other known trypsin inhibitors, TgTI also possesses a predicted membrane-binding region. Polyclonal antibodies raised against recombinant TgTI bind to the surface of the tachyzoite stage as seen both by immunofluorescence and immunoprecipitation of surface labelled parasite proteins. The high survival rate of the parasite in the upper gastrointestinal tract may be enhanced by the presence of the TgTI-molecule.
Collapse
Affiliation(s)
- J G Lindh
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, S-171 77, Stockholm, Sweden
| | | | | | | |
Collapse
|
19
|
Felizmenio-Quimio ME, Daly NL, Craik DJ. Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis. J Biol Chem 2001; 276:22875-82. [PMID: 11292835 DOI: 10.1074/jbc.m101666200] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta-sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol. 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed. Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.
Collapse
Affiliation(s)
- M E Felizmenio-Quimio
- Institute for Molecular Bioscience, University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | | |
Collapse
|
20
|
Erba F, Fiorucci L, Sommerhoff CP, Coletta M, Ascoli F. Kinetic and thermodynamic analysis of leech-derived tryptase inhibitor interaction with bovine tryptase and bovine trypsin. Biol Chem 2000; 381:1117-22. [PMID: 11154069 DOI: 10.1515/bc.2000.136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interaction of leech-derived tryptase inhibitor (LDTI) with bovine liver capsule tryptase (BLCT) and bovine trypsin has been studied using both thermodynamic and kinetic approaches. Several differences were detected: (i) the equilibrium affinity of LDTI for BLCT (Ka = 8.9 x 10(5) M(-1)) is about 600-fold lower than that for bovine trypsin (Ka = 5.1 x 10(8) M(-1)); (ii) LDTI behaves as a purely non-competitive inhibitor of BLCT, while it is a purely competitive inhibitor of bovine trypsin. These functional data are compared with those previously reported for the LDTI binding to human tryptase, where tight inhibition occurs at two of the four active sites of the tetramer (Ka = 7.1 x 10(8) M(-1)). Amino acid sequence alignment of BLCT, human betaII-tryptase and bovine trypsin allows us to infer some possible structural basis for the observed functional differences.
Collapse
Affiliation(s)
- F Erba
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università Tor Vergata, Roma, Italy
| | | | | | | | | |
Collapse
|
21
|
Sommerhoff CP, Bode W, Matschiner G, Bergner A, Fritz H. The human mast cell tryptase tetramer: a fascinating riddle solved by structure. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:75-89. [PMID: 10708850 DOI: 10.1016/s0167-4838(99)00265-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tryptases, the predominant proteins of human mast cells, have been implicated as pathogenetic mediators of allergic and inflammatory conditions, most notably asthma. Until recently, the fascinating properties that distinguish tryptases among the serine proteinases, particularly their activity as a heparin-stabilized tetramer, resistance to most proteinaceous inhibitors, and preference for peptidergic over macromolecular substrates presented a riddle. This review solves this riddle with the help of the crystal structure of the human beta(2)-tryptase tetramer, but also indicates controversies between the unique quaternary architecture and some experimental data.
Collapse
Affiliation(s)
- C P Sommerhoff
- Abteilung für Klinische Chemie und Klinische Biochemie in der Chirurgischen Klinik Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Nussbaumstrasse 20, D-80336, Munich, Germany.
| | | | | | | | | |
Collapse
|
22
|
Rester U, Bode W, Moser M, Parry MA, Huber R, Auerswald E. Structure of the complex of the antistasin-type inhibitor bdellastasin with trypsin and modelling of the bdellastasin-microplasmin system. J Mol Biol 1999; 293:93-106. [PMID: 10512718 DOI: 10.1006/jmbi.1999.3162] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The serine proteinase plasmin is, together with tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA), involved in the dissolution of blood clots in a fibrin-dependent manner. Moreover, plasmin plays a key role in a variety of other activation cascades such as the activation of metalloproteinases, and has also been implicated in wound healing, pathogen invasion, cancer invasion and metastasis. The leech-derived (Hirudo medicinalis) antistasin-type inhibitor bdellastasin represents a specific inhibitor of trypsin and plasmin and thus offers a unique opportunity to evaluate the concept of plasmin inhibition. The complexes formed between bdellastasin and bovine as well as porcine beta-trypsin have been crystallised in a monoclinic and a tetragonal crystal form, containing six molecules and one molecule per asymmetric unit, respectively. Both structures have been solved and refined to 3.3 A and 2.8 A resolution. Bdellastasin turns out to have an antistasin-like fold exhibiting a bis-domainal structure like the tissue kallikrein inhibitor hirustasin. The interaction between bdellastasin and trypsin is restricted to the C-terminal subdomain of bdellastasin, particularly to its primary binding loop, comprising residues Asp30-Glu38. The reactive site of bdellastasin differs from other antistasin-type inhibitors of trypsin-like proteinases, exhibiting a lysine residue instead of an arginine residue at P1. A model of the bdellastasin-microplasmin complex has been created based on the X-ray structures. Our modelling studies indicate that both trypsin and microplasmin recognise bdellastasin by interactions which are characteristic for canonically binding proteinase inhibitors. On the basis of our three-dimensional structures, and in comparison with the tissue-kallikrein-bound and free hirustasin and the antistasin structures, we postulate that the binding of the inhibitors toward trypsin and plasmin is accompanied by a switch of the primary binding loop segment P5-P3. Moreover, in the factor Xa inhibitor antistasin, the core of the molecule would prevent an equivalent rotation of the P3 residue, making exosite interactions of antistasin with factor Xa imperative. Furthermore, Arg32 of antistasin would clash with Arg175 of plasmin, thus impairing a favourable antistasin-plasmin interaction and explaining its specificity.
Collapse
Affiliation(s)
- U Rester
- Abteilung Strukturforschung, Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, Martinsried, 82152, Germany.
| | | | | | | | | | | |
Collapse
|