1
|
Turcio R, Di Matteo F, Capolupo I, Ciaglia T, Musella S, Di Chio C, Stagno C, Campiglia P, Bertamino A, Ostacolo C. Voltage-Gated K + Channel Modulation by Marine Toxins: Pharmacological Innovations and Therapeutic Opportunities. Mar Drugs 2024; 22:350. [PMID: 39195466 DOI: 10.3390/md22080350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Bioactive compounds are abundant in animals originating from marine ecosystems. Ion channels, which include sodium, potassium, calcium, and chloride, together with their numerous variants and subtypes, are the primary molecular targets of the latter. Based on their cellular targets, these venom compounds show a range of potencies and selectivity and may have some therapeutic properties. Due to their potential as medications to treat a range of (human) diseases, including pain, autoimmune disorders, and neurological diseases, marine molecules have been the focus of several studies over the last ten years. The aim of this review is on the various facets of marine (or marine-derived) molecules, ranging from structural characterization and discovery to pharmacology, culminating in the development of some "novel" candidate chemotherapeutic drugs that target potassium channels.
Collapse
Affiliation(s)
- Rita Turcio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | | | - Ilaria Capolupo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Simona Musella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carla Di Chio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Claudio Stagno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences (CHIBIOFARAM), University of Messina, 98166 Messina, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Alessia Bertamino
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Carmine Ostacolo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
2
|
Monroe LK, Truong DP, Miner JC, Adikari SH, Sasiene ZJ, Fenimore PW, Alexandrov B, Williams RF, Nguyen HB. Conotoxin Prediction: New Features to Increase Prediction Accuracy. Toxins (Basel) 2023; 15:641. [PMID: 37999504 PMCID: PMC10675404 DOI: 10.3390/toxins15110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Conotoxins are toxic, disulfide-bond-rich peptides from cone snail venom that target a wide range of receptors and ion channels with multiple pathophysiological effects. Conotoxins have extraordinary potential for medical therapeutics that include cancer, microbial infections, epilepsy, autoimmune diseases, neurological conditions, and cardiovascular disorders. Despite the potential for these compounds in novel therapeutic treatment development, the process of identifying and characterizing the toxicities of conotoxins is difficult, costly, and time-consuming. This challenge requires a series of diverse, complex, and labor-intensive biological, toxicological, and analytical techniques for effective characterization. While recent attempts, using machine learning based solely on primary amino acid sequences to predict biological toxins (e.g., conotoxins and animal venoms), have improved toxin identification, these methods are limited due to peptide conformational flexibility and the high frequency of cysteines present in toxin sequences. This results in an enumerable set of disulfide-bridged foldamers with different conformations of the same primary amino acid sequence that affect function and toxicity levels. Consequently, a given peptide may be toxic when its cysteine residues form a particular disulfide-bond pattern, while alternative bonding patterns (isoforms) or its reduced form (free cysteines with no disulfide bridges) may have little or no toxicological effects. Similarly, the same disulfide-bond pattern may be possible for other peptide sequences and result in different conformations that all exhibit varying toxicities to the same receptor or to different receptors. We present here new features, when combined with primary sequence features to train machine learning algorithms to predict conotoxins, that significantly increase prediction accuracy.
Collapse
Affiliation(s)
- Lyman K. Monroe
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Duc P. Truong
- Theoretical Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jacob C. Miner
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Samantha H. Adikari
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Zachary J. Sasiene
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Paul W. Fenimore
- Theoretical Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Boian Alexandrov
- Theoretical Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Robert F. Williams
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Hau B. Nguyen
- Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
3
|
Arguelles J, Lee J, Cardenas LV, Govind S, Singh S. In Silico Analysis of a Drosophila Parasitoid Venom Peptide Reveals Prevalence of the Cation-Polar-Cation Clip Motif in Knottin Proteins. Pathogens 2023; 12:pathogens12010143. [PMID: 36678491 PMCID: PMC9865768 DOI: 10.3390/pathogens12010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT's 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation-Polar-Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosophila Drosomycin antifungal peptide, a canonical target gene of the fly's Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure-function relationships will advance novel drug design.
Collapse
Affiliation(s)
- Joseph Arguelles
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Jenny Lee
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Lady V. Cardenas
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
4
|
Matsumura K, Yokogawa M, Osawa M. Peptide Toxins Targeting KV Channels. Handb Exp Pharmacol 2021; 267:481-505. [PMID: 34117930 DOI: 10.1007/164_2021_500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A number of peptide toxins isolated from animals target potassium ion (K+) channels. Many of them are particularly known to inhibit voltage-gated K+ (KV) channels and are mainly classified into pore-blocking toxins or gating-modifier toxins. Pore-blocking toxins directly bind to the ion permeation pores of KV channels, thereby physically occluding them. In contrast, gating-modifier toxins bind to the voltage-sensor domains of KV channels, modulating their voltage-dependent conformational changes. These peptide toxins are useful molecular tools in revealing the structure-function relationship of KV channels and have potential for novel treatments for diseases related to KV channels. This review focuses on the inhibition mechanism of pore-blocking and gating-modifier toxins that target KV channels.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan.
| |
Collapse
|
5
|
Gao J, Zhang H, Xiong P, Yan X, Liao C, Jiang G. Application of electrophysiological technique in toxicological study: From manual to automated patch-clamp recording. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Naranjo D, Díaz-Franulic I. Binding of κ-Conotoxin-PVIIA to Open and Closed Shaker K-Channels Are Differentially Affected by the Ionic Strength. Mar Drugs 2020; 18:E533. [PMID: 33114777 PMCID: PMC7694074 DOI: 10.3390/md18110533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/01/2023] Open
Abstract
κ-Conotoxin-PVIIA (κ-PVIIA) is a potassium-channel blocking peptide from the venom of the fish-hunting snail, Conus purpurascens, which is essential for quick prey's excitotoxic immobilization. Binding of one κ-PVIIA to Shaker K-channels occludes the K+-conduction pore without additional conformational effects. Because this 27-residue toxin is +4-charged at neutral pH, we asked if electrostatic interactions play a role in binding. With Voltage-Clamp electrophysiology, we tested how ionic strength (IS) affects κ-PVIIA blockade to Shaker. When IS varied from ~0.06 to ~0.16 M, the dissociation constant for open and closed channels increased by ~5- and ~16-fold, respectively. While the association rates decreased equally, by ~4-fold, in open and closed channels, the dissociation rates increased 4-5-fold in closed channels but was IS-insensitive in open channels. To explain this differential IS-dependency, we propose that the bound κ-PVIIA wobbles, so that in open channels the intracellular environment, via ion-conduction pore, buffers the imposed IS-changes in the toxin-channel interface. A Brønsted-Bjerrum analysis on the rates predicts that if, instead of fish, the snail preyed on organisms with seawater-like lymph ionic composition, a severely harmless toxin, with >100-fold diminished affinity, would result. Thus, considerations of the native ionic environment are essential for conotoxins evaluation as pharmacological leads.
Collapse
Affiliation(s)
- David Naranjo
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| | - Ignacio Díaz-Franulic
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile;
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360103, Chile
| |
Collapse
|
7
|
Finol-Urdaneta RK, Belovanovic A, Micic-Vicovac M, Kinsella GK, McArthur JR, Al-Sabi A. Marine Toxins Targeting Kv1 Channels: Pharmacological Tools and Therapeutic Scaffolds. Mar Drugs 2020; 18:E173. [PMID: 32245015 PMCID: PMC7143316 DOI: 10.3390/md18030173] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.
Collapse
Affiliation(s)
- Rocio K. Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
- Electrophysiology Facility for Cell Phenotyping and Drug Discovery, Wollongong, NSW 2522, Australia
| | - Aleksandra Belovanovic
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Milica Micic-Vicovac
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| | - Gemma K. Kinsella
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, D07 ADY7 Dublin, Ireland;
| | - Jeffrey R. McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ahmed Al-Sabi
- College of Engineering and Technology, American University of the Middle East, Kuwait; (A.B.); (M.M.-V.)
| |
Collapse
|
8
|
Kan MW, Craik DJ. Discovery of Cyclotides from Australasian Plants. Aust J Chem 2020. [DOI: 10.1071/ch19658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This article is part of a special issue celebrating the contributions of Professor Paul Alewood to peptide science. We begin by providing a summary of collaborative projects between the Alewood and Craik groups at The University of Queensland and highlighting the impacts of some of these studies. In particular, studies on the discovery, synthesis, structures, and bioactivities of disulfide-rich toxins from animal venoms have led to a greater understanding of the biology of ion channels and to applications of these bioactive peptides in drug design. The second part of the article focuses on plant-derived disulfide-rich cyclic peptides, known as cyclotides, and includes an analysis of the geographical distribution of Australasian plant species that contain cyclotides as well as an analysis of the diversity of cyclotide sequences found in Australasian plants. This should provide a useful resource for researchers to access native cyclotides and explore their chemistry and biology.
Collapse
|
9
|
Moldenhauer H, Díaz-Franulic I, Poblete H, Naranjo D. Trans-toxin ion-sensitivity of charybdotoxin-blocked potassium-channels reveals unbinding transitional states. eLife 2019; 8:46170. [PMID: 31271355 PMCID: PMC6660193 DOI: 10.7554/elife.46170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022] Open
Abstract
In silico and in vitro studies have made progress in understanding protein–protein complex formation; however, the molecular mechanisms for their dissociation are unclear. Protein–protein complexes, lasting from microseconds to years, often involve induced-fit, challenging computational or kinetic analysis. Charybdotoxin (CTX), a peptide from the Leiurus scorpion venom, blocks voltage-gated K+-channels in a unique example of binding/unbinding simplicity. CTX plugs the external mouth of K+-channels pore, stopping K+-ion conduction, without inducing conformational changes. Conflicting with a tight binding, we show that external permeant ions enhance CTX-dissociation, implying a path connecting the pore, in the toxin-bound channel, with the external solution. This sensitivity is explained if CTX wobbles between several bound conformations, producing transient events that restore the electrical and ionic trans-pore gradients. Wobbling may originate from a network of contacts in the interaction interface that are in dynamic stochastic equilibria. These partially-bound intermediates could lead to distinct, and potentially manipulable, dissociation pathways.
Collapse
Affiliation(s)
- Hans Moldenhauer
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Díaz-Franulic
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Horacio Poblete
- Núcleo Científico Multidisciplinario, Dirección de Investigación. Centro de Bioinformática y Simulación Molecular, Facultad de Ingeniería, and Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Talca, Chile
| | - David Naranjo
- Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Wu X, Huang YH, Kaas Q, Harvey PJ, Wang CK, Tae HS, Adams DJ, Craik DJ. Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer. J Biol Chem 2017; 292:17101-17112. [PMID: 28851841 DOI: 10.1074/jbc.m117.808386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/20/2022] Open
Abstract
Conotoxin GeXIVA inhibits the α9α10 nicotinic acetylcholine receptor (nAChR) and is analgesic in animal models of pain. α-Conotoxins have four cysteines that can have three possible disulfide connectivities: globular (CysI-CysIII and CysII-CysIV), ribbon (CysI-CysIV and CysII-CysIII), or bead (CysI-CysII and CysIII-CysIV). Native α-conotoxins preferably adopt the globular connectivity, and previous studies of α-conotoxins have focused on the globular isomers as the ribbon and bead isomers typically have lower potency at nAChRs than the globular form. A recent report showed that the bead and ribbon isomers of GeXIVA are more potent than the globular isomer, with low nanomolar half-maximal inhibitory concentrations (IC50). Despite this high potency, the therapeutic potential of GeXIVA is limited, because like most peptides, it is susceptible to proteolytic degradation and is challenging to synthesize in high yield. Here we used backbone cyclization as a strategy to improve the folding yield as well as increase the serum stability of ribbon GeXIVA while preserving activity at the α9α10 nAChR. Specifically, cyclization of ribbon GeXIVA with a two-residue linker maintained the biological activity at the human α9α10 nAChR and improved stability in human serum. Short linkers led to selective formation of the ribbon disulfide isomer without requiring orthogonal protection. Overall, this study highlights the value of backbone cyclization in directing folding, improving yields, and stabilizing conotoxins with therapeutic potential.
Collapse
Affiliation(s)
- Xiaosa Wu
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Yen-Hua Huang
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Quentin Kaas
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Peta J Harvey
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Conan K Wang
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| | - Han-Shen Tae
- the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David J Adams
- the Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - David J Craik
- From the Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia and
| |
Collapse
|
11
|
|
12
|
Kwon S, Bosmans F, Kaas Q, Cheneval O, Conibear AC, Rosengren KJ, Wang CK, Schroeder CI, Craik DJ. Efficient enzymatic cyclization of an inhibitory cystine knot-containing peptide. Biotechnol Bioeng 2016; 113:2202-12. [PMID: 27093300 DOI: 10.1002/bit.25993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 01/01/2023]
Abstract
Disulfide-rich peptides isolated from cone snails are of great interest as drug leads due to their high specificity and potency toward therapeutically relevant ion channels and receptors. They commonly contain the inhibitor cystine knot (ICK) motif comprising three disulfide bonds forming a knotted core. Here we report the successful enzymatic backbone cyclization of an ICK-containing peptide κ-PVIIA, a 27-amino acid conopeptide from Conus purpurascens, using a mutated version of the bacterial transpeptidase, sortase A. Although a slight loss of activity was observed compared to native κ-PVIIA, cyclic κ-PVIIA is a functional peptide that inhibits the Shaker voltage-gated potassium (Kv) channel. Molecular modeling suggests that the decrease in potency may be related to the loss of crucial, but previously unidentified electrostatic interactions between the N-terminus of the peptide and the Shaker channel. This hypothesis was confirmed by testing an N-terminally acetylated κ-PVIIA, which shows a similar decrease in activity. We also investigated the conformational dynamics and hydrogen bond network of cyc-PVIIA, both of which are important factors to be considered for successful cyclization of peptides. We found that cyc-PVIIA has the same conformational dynamics, but different hydrogen bond network compared to those of κ-PVIIA. The ability to efficiently cyclize ICK peptides using sortase A will enable future protein engineering for this class of peptides and may help in the development of novel therapeutic molecules. Biotechnol. Bioeng. 2016;113: 2202-2212. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Soohyun Kwon
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Frank Bosmans
- Department of Physiology and Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Quentin Kaas
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Olivier Cheneval
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Anne C Conibear
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - K Johan Rosengren
- The University of Queensland, School of Biomedical Sciences, Brisbane, Qld, Australia
| | - Conan K Wang
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia
| | - Christina I Schroeder
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia.
| | - David J Craik
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
13
|
Wu X, Huang Y, Kaas Q, Craik DJ. Cyclisation of Disulfide‐Rich Conotoxins in Drug Design Applications. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaosa Wu
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| | - Yen‐Hua Huang
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| | - Quentin Kaas
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| | - David J. Craik
- Institute for Molecular BioscienceThe University of Queensland306 Carmody Road (Building 80)4072BrisbaneAustralia
| |
Collapse
|
14
|
Deuis JR, Dekan Z, Inserra MC, Lee TH, Aguilar MI, Craik DJ, Lewis RJ, Alewood PF, Mobli M, Schroeder CI, Henriques ST, Vetter I. Development of a μO-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. J Biol Chem 2016; 291:11829-42. [PMID: 27026701 DOI: 10.1074/jbc.m116.721662] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Indexed: 12/19/2022] Open
Abstract
The μO-conotoxins MrVIA, MrVIB, and MfVIA inhibit the voltage-gated sodium channel NaV1.8, a well described target for the treatment of pain; however, little is known about the residues or structural elements that define this activity. In this study, we determined the three-dimensional structure of MfVIA, examined its membrane binding properties, performed alanine-scanning mutagenesis, and identified residues important for its activity at human NaV1.8. A second round of mutations resulted in (E5K,E8K)MfVIA, a double mutant with greater positive surface charge and greater affinity for lipid membranes compared with MfVIA. This analogue had increased potency at NaV1.8 and was analgesic in the mouse formalin assay.
Collapse
Affiliation(s)
- Jennifer R Deuis
- From the Institute for Molecular Bioscience and School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia, and
| | | | - Marco C Inserra
- From the Institute for Molecular Bioscience and School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia, and
| | - Tzong-Hsien Lee
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Marie-Isabel Aguilar
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | | | | | | | - Mehdi Mobli
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | - Irina Vetter
- From the Institute for Molecular Bioscience and School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia, and
| |
Collapse
|
15
|
Synthetic Cystine-Knot Miniproteins - Valuable Scaffolds for Polypeptide Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 917:121-44. [PMID: 27236555 DOI: 10.1007/978-3-319-32805-8_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Peptides with the cystine-knot architecture, often termed knottins, are promising scaffolds for biomolecular engineering. These unique molecules combine diverse bioactivities with excellent structural, thermal, and proteolytical stability. Being different in the composition and structure of their amino acid backbone, knottins share the same core element, namely cystine knot, which is built by six cysteine residues forming three disulfides upon oxidative folding. This motif ensures a notably rigid framework that highly tolerates both rational and combinatorial changes in the primary structure. Being accessible through recombinant production and total chemical synthesis, cystine-knot miniproteins can be endowed with novel bioactivities by variation of surface-exposed loops and incorporation of non-natural elements within their non-conserved regions towards the generation of tailor-made peptidic compounds. In this chapter the topology of cystine-knot peptides, their synthesis and applications for diagnostics and therapy is discussed.
Collapse
|
16
|
Zhan C, Li C, Wei X, Lu W, Lu W. Toxins and derivatives in molecular pharmaceutics: Drug delivery and targeted therapy. Adv Drug Deliv Rev 2015; 90:101-18. [PMID: 25959429 DOI: 10.1016/j.addr.2015.04.025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/13/2023]
Abstract
Protein and peptide toxins offer an invaluable source for the development of actively targeted drug delivery systems. They avidly bind to a variety of cognate receptors, some of which are expressed or even up-regulated in diseased tissues and biological barriers. Protein and peptide toxins or their derivatives can act as ligands to facilitate tissue- or organ-specific accumulation of therapeutics. Some toxins have evolved from a relatively small number of structural frameworks that are particularly suitable for addressing the crucial issues of potency and stability, making them an instrumental source of leads and templates for targeted therapy. The focus of this review is on protein and peptide toxins for the development of targeted drug delivery systems and molecular therapies. We summarize disease- and biological barrier-related toxin receptors, as well as targeted drug delivery strategies inspired by those receptors. The design of new therapeutics based on protein and peptide toxins is also discussed.
Collapse
Affiliation(s)
- Changyou Zhan
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University & Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, PR China
| | - Xiaoli Wei
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai 201203, PR China; State Key Laboratory of Medical Neurobiology and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, PR China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
17
|
Abstract
INTRODUCTION Conotoxins are a large family of bioactive peptides derived from cone snail venom. They target specific classes of ion channels and other membrane proteins and may have therapeutic value, primarily in the management of pain. AREAS COVERED The authors surveyed the US patent literature covering conotoxins, and their potential therapeutic applications. They describe the various subclasses of conotoxins that are the subject of current patent applications and their therapeutic indications. Limitations that may preclude broader application of these molecules are discussed and strategies for overcoming these limitations are presented. EXPERT OPINION Despite more than 25 years of intense global conotoxin research, only one molecule has successfully reached the market. Several other conotoxin-derived candidates failed in clinical trials, indicating that 'from the bench into the clinic' translation has been more difficult than originally anticipated. Nevertheless, we are optimistic that the potent activities of these molecules and the potential for improving their biopharmaceutical properties may lead to next-generation drug candidates with favorable pharmacological properties.
Collapse
Affiliation(s)
- Thomas Durek
- a The University of Queensland, Institute for Molecular Bioscience , Brisbane 4072, QLD, Australia
| | - David J Craik
- a The University of Queensland, Institute for Molecular Bioscience , Brisbane 4072, QLD, Australia
| |
Collapse
|
18
|
Bioinformatics-Aided Venomics. Toxins (Basel) 2015; 7:2159-87. [PMID: 26110505 PMCID: PMC4488696 DOI: 10.3390/toxins7062159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/03/2015] [Accepted: 06/05/2015] [Indexed: 12/12/2022] Open
Abstract
Venomics is a modern approach that combines transcriptomics and proteomics to explore the toxin content of venoms. This review will give an overview of computational approaches that have been created to classify and consolidate venomics data, as well as algorithms that have helped discovery and analysis of toxin nucleic acid and protein sequences, toxin three-dimensional structures and toxin functions. Bioinformatics is used to tackle specific challenges associated with the identification and annotations of toxins. Recognizing toxin transcript sequences among second generation sequencing data cannot rely only on basic sequence similarity because toxins are highly divergent. Mass spectrometry sequencing of mature toxins is challenging because toxins can display a large number of post-translational modifications. Identifying the mature toxin region in toxin precursor sequences requires the prediction of the cleavage sites of proprotein convertases, most of which are unknown or not well characterized. Tracing the evolutionary relationships between toxins should consider specific mechanisms of rapid evolution as well as interactions between predatory animals and prey. Rapidly determining the activity of toxins is the main bottleneck in venomics discovery, but some recent bioinformatics and molecular modeling approaches give hope that accurate predictions of toxin specificity could be made in the near future.
Collapse
|
19
|
Abstract
The ICK (inhibitor cystine knot) defines a large superfamily of polypeptides with high structural stability and functional diversity. Here, we describe a new scorpion venom-derived K+ channel toxin (named λ-MeuKTx-1) with an ICK fold through gene cloning, chemical synthesis, nuclear magnetic resonance spectroscopy, Ca2+ release measurements and electrophysiological recordings. λ-MeuKTx-1 was found to adopt an ICK fold that contains a three-strand anti-parallel β-sheet and a 310-helix. Functionally, this peptide selectively inhibits the Drosophila Shaker K+ channel but is not capable of activating skeletal-type Ca2+ release channels/ryanodine receptors, which is remarkably different from the previously known scorpion venom ICK peptides. The removal of two C-terminal residues of λ-MeuKTx-1 led to the loss of the inhibitory activity on the channel, whereas the C-terminal amidation resulted in the emergence of activity on four mammalian K+ channels accompanied by the loss of activity on the Shaker channel. A combination of structural and pharmacological data allows the recognition of three putative functional sites involved in channel blockade of λ-MeuKTx-1. The presence of a functional dyad in λ-MeuKTx-1 supports functional convergence among scorpion venom peptides with different folds. Furthermore, similarities in precursor organization, exon–intron structure, 3D-fold and function suggest that scorpion venom ICK-type K+ channel inhibitors and Ca2+ release channel activators share a common ancestor and their divergence occurs after speciation between buthidae and non-buthids. The structural and functional characterizations of the first scorpion venom ICK toxin with K+ channel-blocking activity sheds light on functionally divergent and convergent evolution of this conserved scaffold of ancient origin.
Collapse
|
20
|
Computational studies of marine toxins targeting ion channels. Mar Drugs 2013; 11:848-69. [PMID: 23528952 PMCID: PMC3705375 DOI: 10.3390/md11030848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/30/2013] [Accepted: 02/07/2013] [Indexed: 12/18/2022] Open
Abstract
Toxins from marine animals offer novel drug leads for treatment of diseases involving ion channels. Computational methods could be very helpful in this endeavour in several ways, e.g., (i) constructing accurate models of the channel-toxin complexes using docking and molecular dynamics (MD) simulations; (ii) determining the binding free energies of toxins from umbrella sampling MD simulations; (iii) predicting the effect of mutations from free energy MD simulations. Using these methods, one can design new analogs of toxins with improved affinity and selectivity properties. Here we present a review of the computational methods and discuss their applications to marine toxins targeting potassium and sodium channels. Detailed examples from the potassium channel toxins—ShK from sea anemone and κ-conotoxin PVIIA—are provided to demonstrate capabilities of the computational methods to give accurate descriptions of the channel-toxin complexes and the energetics of their binding. An example is also given from sodium channel toxins (µ-conotoxin GIIIA) to illustrate the differences between the toxin binding modes in potassium and sodium channels.
Collapse
|
21
|
Mahdavi S, Kuyucak S. Why the Drosophila Shaker K+ channel is not a good model for ligand binding to voltage-gated Kv1 channels. Biochemistry 2013; 52:1631-40. [PMID: 23398369 DOI: 10.1021/bi301257p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The Drosophila Shaker K(+) channel is the first cloned voltage-gated potassium channel and has, therefore, played an important role in structural and functional studies of those channels. While such a role is well justified for ion permeation, it is not clear whether this also extends to ligand binding. Despite the high degree of homology among Shaker and Kv1 channels, κ-conotoxin PVIIA (κ-PVIIA) binds to Shaker with high affinity but not to Kv1 channels. Here we address this issue by studying binding of κ-PVIIA to Shaker and Kv1 channels using molecular dynamics (MD) simulations. The structures of the channel-toxin complexes are constructed via docking and refinement with MD. The binding mode of each complex is characterized and compared to available mutagenesis data to validate the complex models. The potential of mean force for dissociation of the Shaker-κ-PVIIA complex is calculated from umbrella sampling MD simulations, and the corresponding binding free energy is determined, which provides further validation of the complex structure. Comparison of the Shaker and Kv1 complex models shows that a few mutations in the turret and extended regions are sufficient to abolish the observed sensitivity of Shaker to κ-PVIIA. This study demonstrates that Shaker is not always a good model for Kv1 channels for ligand binding. It also provides insights into the binding of the toxin to potassium channels that will be useful for improving affinity and selectivity properties of Kv1 channels.
Collapse
Affiliation(s)
- Somayeh Mahdavi
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | | |
Collapse
|
22
|
Abstract
Conopeptides from the venoms of marine snails have attracted much interest as leads in drug design. Currently, one drug, Prialt(®), is on the market as a treatment for chronic neuropathic pain. Conopeptides target a range of ion channels, receptors and transporters, and are typically small, relatively stable peptides that are generally amenable to production using solid-phase peptide synthesis. With only a small fraction of the predicted diversity of conopeptides examined so far, these peptides represent an exciting and largely untapped resource for drug discovery. Recent efforts at chemically re-engineering conopeptides to improve their biopharmaceutical properties promise to accelerate the translation of these fascinating marine peptides to the clinic.
Collapse
|
23
|
Lewis RJ, Dutertre S, Vetter I, Christie MJ. Conus Venom Peptide Pharmacology. Pharmacol Rev 2012; 64:259-98. [DOI: 10.1124/pr.111.005322] [Citation(s) in RCA: 323] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
24
|
Schroeder CI, Nielsen KJ, Adams DA, Loughnan M, Thomas L, Alewood PF, Lewis RJ, Craik DJ. Effects of Lys2 to Ala2 substitutions on the structure and potency of ω-conotoxins MVIIA and CVID. Biopolymers 2012. [DOI: 10.1002/bip.22031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Abstract
Peptide-based toxins have attracted much attention in recent years for their exciting potential applications in drug design and development. This interest has arisen because toxins are highly potent and selectively target a range of physiologically important receptors. However, peptides suffer from a number of disadvantages, including poor in vivo stability and poor bioavailability. A number of naturally occurring cyclic peptides have been discovered in plants, animals, and bacteria that have exceptional stability and potentially ameliorate these disadvantages. The lessons learned from studies of the structures, stabilities, and biological activities of these cyclic peptides can be applied to the reengineering of toxins that are not naturally cyclic but are amenable to cyclization. In this chapter, we describe solid-phase chemical synthetic methods for the reengineering of peptide toxins to improve their suitability as therapeutic, diagnostic, or imaging agents. The focus is on small disulfide-rich peptides from the venoms of cone snails and scorpions, but the technology is potentially widely applicable to a number of other peptide-based toxins.
Collapse
Affiliation(s)
- Richard J Clark
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
26
|
Abstract
The cystine knot is a structural motif that confers exceptional stability on proteins. Here we provide an update on the topology of the cystine knot and the combinatorial diversity of proteins that contain it. We describe recent chemical biology studies that have utilised this structural motif for the development of potential therapeutic or diagnostic agents. The cystine knot appears to have evolved in fungi, plants and animals as a stable and adaptable framework for the display of a wide variety of bioactive peptide sequences, but is amenable to chemical or recombinant synthesis and thus has a wide range of applications in chemistry, biology and medicine.
Collapse
|
27
|
Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze TG, Mackay JP. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9. J Biol Chem 2011; 286:11779-91. [PMID: 21278251 DOI: 10.1074/jbc.m110.208207] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been implicated in the silencing of subsets of genes involved in various stages of cellular development. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core component of the NuRD complex and contains a nucleosome remodeling ATPase domain along with two chromodomains and two plant homeodomain (PHD) fingers. We have previously demonstrated that the second PHD finger of CHD4 binds peptides corresponding to the N terminus of histone H3 methylated at Lys(9). Here, we determine the solution structure of PHD2 in complex with H3K9me3, revealing the molecular basis of histone recognition, including a cation-π recognition mechanism for methylated Lys(9). Additionally, we demonstrate that the first PHD finger also exhibits binding to the N terminus of H3, and we establish the histone-binding surface of this domain. This is the first instance where histone binding ability has been demonstrated for two separate PHD modules within the one protein. These findings suggest that CHD4 could bind to two H3 N-terminal tails on the same nucleosome or on two separate nucleosomes simultaneously, presenting exciting implications for the mechanism by which CHD4 and the NuRD complex could direct chromatin remodeling.
Collapse
Affiliation(s)
- Robyn E Mansfield
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Norton RS. Structure and Function of Peptide and Protein Toxins from Marine Organisms. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/15569549809009246] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Conotoxins: molecular and therapeutic targets. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 46:45-65. [PMID: 19184584 DOI: 10.1007/978-3-540-87895-7_2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Marine molluscs known as cone snails produce beautiful shells and a complex array of over 50,000 venom peptides evolved for prey capture and defence. Many of these peptides selectively modulate ion channels and transporters, making them a valuable source of new ligands for studying the role these targets play in normal and disease physiology. A number of conopeptides reduce pain in animal models, and several are now in pre-clinical and clinical development for the treatment of severe pain often associated with diseases such as cancer. Less than 1% of cone snail venom peptides are pharmacologically characterised.
Collapse
|
30
|
DeLa Cruz R, Whitby FG, Buczek O, Bulaj G. Detergent-assisted oxidative folding of ��-conotoxins. ACTA ACUST UNITED AC 2008. [DOI: 10.1034/j.1399-3011.2003.t01-1-00048.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kolmar H. Alternative binding proteins: biological activity and therapeutic potential of cystine-knot miniproteins. FEBS J 2008; 275:2684-90. [PMID: 18435757 DOI: 10.1111/j.1742-4658.2008.06440.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystine-knot miniproteins are members of a large family of small proteins that are defined by a common structural scaffold which is stabilized by three intramolecular disulfide bonds. Cystine-knot miniproteins display a broad spectrum of therapeutically useful natural biological activities and several family members are marketed as therapeutics or are in clinical development. Because of their extraordinary intrinsic chemical and proteolytic stability they provide promising scaffolds for the introduction of therapeutically relevant functionalities. Several successful engineering efforts have been reported to generate miniproteins with novel activities by rational design via functional loop grafting or by directed evolution via screening of scaffold-constrained random libraries. Owing to their small size they are amenable to recombinant as well as to chemical routes of synthesis, which opens up new avenues in optimizing biological activity, specificity and bioavailability by site-specific modification, introduction of non-natural amino acids or chemical conjugation.
Collapse
Affiliation(s)
- Harald Kolmar
- Clemens-Schöpf-Institut für Biochemie und Organische Chemie, Technische Universität Darmstadt, Germany.
| |
Collapse
|
32
|
Craik DJ, Adams DJ. Chemical modification of conotoxins to improve stability and activity. ACS Chem Biol 2007; 2:457-68. [PMID: 17649970 DOI: 10.1021/cb700091j] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Conotoxins are small disulfide-rich peptides from the venom of cone snails. Along with other conopeptides, they target a wide range of membrane receptors, ion channels, and transporters, and because of their high potency and selectivity for defined subtypes of these receptors, they have attracted a great deal of attention recently as leads in drug development. However, like most peptides, conopeptides potentially suffer from the disadvantages of poor absorption, poor stability, or short biological half-lives. Recently, various chemical approaches, including residue substitutions, backbone cyclization, and disulfide-bridge modification, have been reported to increase the stability of conopeptides. These manufactured interventions add to the array of post-translational modifications that occur naturally in conopeptides. They enhance the versatility of these peptides as tools in neuroscience and as drug leads.
Collapse
Affiliation(s)
- David J Craik
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
33
|
Corzo G, Sabo JK, Bosmans F, Billen B, Villegas E, Tytgat J, Norton RS. Solution structure and alanine scan of a spider toxin that affects the activation of mammalian voltage-gated sodium channels. J Biol Chem 2006; 282:4643-4652. [PMID: 17148449 DOI: 10.1074/jbc.m605403200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magi 5, from the hexathelid spider Macrothele gigas, is a 29-residue polypeptide containing three disulfide bridges. It binds specifically to receptor site 4 on mammalian voltage-gated sodium channels and competes with scorpion beta-toxins, such as Css IV from Centruroides suffusus suffusus. As a consequence, Magi 5 shifts the activation voltage of the mammalian rNav1.2a channel to more hyperpolarized voltages, whereas the insect channel, DmNav1, is not affected. To gain insight into toxin-channel interactions, Magi 5 and 23 analogues were synthesized. The three-dimensional structure of Magi 5 in aqueous solution was determined, and its voltage-gated sodium channel-binding surfaces were mapped onto this structure using data from electrophysiological measurements on a series of Ala-substituted analogues. The structure clearly resembles the inhibitor cystine knot structural motif, although the triple-stranded beta-sheet typically found in that motif is partially distorted in Magi 5. The interactive surface of Magi 5 toward voltage-gated sodium channels resembles in some respects the Janus-faced atracotoxins, with functionally important charged residues on one face of the toxin and hydrophobic residues on the other. Magi 5 also resembles the scorpion beta-toxin Css IV, which has distinct nonpolar and charged surfaces that are critical for channel binding and has a key Glu involved in voltage sensor trapping. These two distinct classes of toxin, with different amino acid sequences and different structures, may utilize similar groups of residues on their surface to achieve the common end of modifying voltage-gated sodium channel function.
Collapse
Affiliation(s)
- Gerardo Corzo
- Instituto de Biotecnologi´a, Universidad Nacional Auto´noma de México, Apartado Postal 510-3, Cuernavaca, Morelos 61500, Mexico; Suntory Institute for Bioorganic Research, Mishima-gun, Shimamoto-cho, Wakayamadai 1-1-1, Osaka 618-8503, Japan
| | - Jennifer K Sabo
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | - Frank Bosmans
- Laboratory of Toxicology, University of Leuven, Campus Gasthuisberg, O&N2, 3000 Leuven, Belgium, and the
| | - Bert Billen
- Laboratory of Toxicology, University of Leuven, Campus Gasthuisberg, O&N2, 3000 Leuven, Belgium, and the
| | - Elba Villegas
- Centro de Investigacion en Biotecnologia Universidad Auto´noma del Estado de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| | - Jan Tytgat
- Laboratory of Toxicology, University of Leuven, Campus Gasthuisberg, O&N2, 3000 Leuven, Belgium, and the
| | - Raymond S Norton
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| |
Collapse
|
34
|
Dy CY, Buczek P, Imperial JS, Bulaj G, Horvath MP. Structure of conkunitzin-S1, a neurotoxin and Kunitz-fold disulfide variant from cone snail. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2006; 62:980-90. [PMID: 16929098 PMCID: PMC2924234 DOI: 10.1107/s0907444906021123] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 06/02/2006] [Indexed: 05/11/2023]
Abstract
Most Kunitz proteins like BPTI and α-dendrotoxin are stabilized by three disulfide bonds. The crystal structure shows how subtle repacking of non-covalent interactions may compensate for disulfide bond loss in a naturally occurring two-disulfide variant, conkunitzin-S1, the first discovered member of a new conotoxin family. Cone snails (Conus) are predatory marine mollusks that immobilize prey with venom containing 50–200 neurotoxic polypeptides. Most of these polypeptides are small disulfide-rich conotoxins that can be classified into families according to their respective ion-channel targets and patterns of cysteine–cysteine disulfides. Conkunitzin-S1, a potassium-channel pore-blocking toxin isolated from C. striatus venom, is a member of a newly defined conotoxin family with sequence homology to Kunitz-fold proteins such as α-dendrotoxin and bovine pancreatic trypsin inhibitor (BPTI). While conkunitzin-S1 and α-dendrotoxin are 42% identical in amino-acid sequence, conkunitzin-S1 has only four of the six cysteines normally found in Kunitz proteins. Here, the crystal structure of conkunitzin-S1 is reported. Conkunitzin-S1 adopts the canonical 310–β–β–α Kunitz fold complete with additional distinguishing structural features including two completely buried water molecules. The crystal structure, although completely consistent with previously reported NMR distance restraints, provides a greater degree of precision for atomic coordinates, especially for S atoms and buried solvent molecules. The region normally cross-linked by cysteines II and IV in other Kunitz proteins retains a network of hydrogen bonds and van der Waals interactions comparable to those found in α-dendrotoxin and BPTI. In conkunitzin-S1, glycine occupies the sequence position normally reserved for cysteine II and the special steric properties of glycine allow additional van der Waals contacts with the glutamine residue substituting for cysteine IV. Evolution has thus defrayed the cost of losing a disulfide bond by augmenting and optimizing weaker yet nonetheless effective non-covalent interactions.
Collapse
Affiliation(s)
- Catherine Y. Dy
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
| | - Pawel Buczek
- Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108, USA
| | - Julita S. Imperial
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
| | - Grzegorz Bulaj
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
- Cognetix Inc., 421 Wakara Way, Suite 201, Salt Lake City, Utah 84108, USA
| | - Martin P. Horvath
- Biology, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112-0840, USA
- Correspondence e-mail:
| |
Collapse
|
35
|
Abstract
In the four decades since toxinologists in Australia and elsewhere started to investigate the active constituents of venomous cone snails, a wealth of information has emerged on the various classes of peptides and proteins that make their venoms such potent bioactive cocktails. This article provides an overview of the current state of knowledge of these venom constituents, several of which are of interest as potential human therapeutics as a consequence of their high potency and exquisite target specificity. With the promise of as many as 50,000 venom components across the entire Conus genus, many more interesting peptides can be anticipated.
Collapse
Affiliation(s)
- Raymond S Norton
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville 3050, Victoria, Australia.
| | | |
Collapse
|
36
|
Factors Influencing the Stability of Cyclotides: Proteins with a Circular Backbone and Cystine Knot Motif. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9019-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Oliva C, González V, Naranjo D. Slow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins. Biophys J 2005; 89:1009-19. [PMID: 15923220 PMCID: PMC1366587 DOI: 10.1529/biophysj.105.060152] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 05/13/2005] [Indexed: 11/18/2022] Open
Abstract
Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important features: i), both are sensitive to the occupancy of the pore by permeant ions or tetraethylammonium, and ii), both are critically affected by point mutations in the external vestibule. Thus, mutual interference between these two processes is expected. To explore the extent of the conformational change involved in Shaker slow inactivation, we estimated the energetic impact of such interference. We used kappa-conotoxin-PVIIA (kappa-PVIIA) and charybdotoxin (CTX) peptides that occlude the pore of Shaker K-channels with a simple 1:1 stoichiometry and with kinetics 100-fold faster than that of slow inactivation. Because inactivation appears functionally different between outside-out patches and whole oocytes, we also compared the toxin effect on inactivation with these two techniques. Surprisingly, the rate of macroscopic inactivation and the rate of recovery, regardless of the technique used, were toxin insensitive. We also found that the fraction of inactivated channels at equilibrium remained unchanged at saturating kappa-PVIIA. This lack of interference with toxin suggests that during slow inactivation the toxin receptor site remains unaffected, placing a strong geometry-conservative constraint on the possible structural configurations of a slow inactivated K-channel. Such a constraint could be fulfilled by a concerted rotation of the external vestibule.
Collapse
Affiliation(s)
- Carolina Oliva
- Centro de Neurociencias de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | | | | |
Collapse
|
38
|
Sharpe BK, Liew CK, Kwan AH, Wilce JA, Crossley M, Matthews JM, Mackay JP. Assessment of the robustness of a serendipitous zinc binding fold: mutagenesis and protein grafting. Structure 2005; 13:257-66. [PMID: 15698569 DOI: 10.1016/j.str.2004.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 11/29/2004] [Accepted: 12/14/2004] [Indexed: 11/21/2022]
Abstract
Zinc binding motifs have received much attention in the area of protein design. Here, we have tested the suitability of a recently discovered nonnative zinc binding structure as a protein design scaffold. A series of multiple alanine mutants was created to investigate the minimal requirements for folding, and solution structures of these mutants showed that the original fold was maintained, despite changes in approximately 50% of the sequence. We next attempted to transplant binding faces from chosen bimolecular interactions onto one of these mutants, and many of the resulting "chimeras" were shown to adopt a native-like fold. These results both highlight the robust nature of small zinc binding domains and underscore the complexity of designing functional proteins, even using such small, highly ordered scaffolds as templates.
Collapse
Affiliation(s)
- Belinda K Sharpe
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
39
|
Boccaccio A, Conti F, Olivera BM, Terlau H. Binding of kappa-conotoxin PVIIA to Shaker K+ channels reveals different K+ and Rb+ occupancies within the ion channel pore. ACTA ACUST UNITED AC 2005; 124:71-81. [PMID: 15226365 PMCID: PMC2229607 DOI: 10.1085/jgp.200409048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The x-ray structure of the KcsA channel at different [K+] and [Rb+] provided insight into how K+ channels might achieve high selectivity and high K+ transit rates and showed marked differences between the occupancies of the two ions within the ion channel pore. In this study, the binding of κ-conotoxin PVIIA (κ-PVIIA) to Shaker K+ channel in the presence of K+ and Rb+ was investigated. It is demonstrated that the complex results obtained were largely rationalized by differences in selectivity filter occupancy of this 6TM channels as predicted from the structural work on KcsA. κ-PVIIA inhibition of the Shaker K+ channel differs in the closed and open state. When K+ is the only permeant ion, increasing extracellular [K+] decreases κ-PVIIA affinity for closed channels by decreasing the “on” binding rate, but has no effect on the block of open channels, which is influenced only by the intracellular [K+]. In contrast, extracellular [Rb+] affects both closed- and open-channel binding. As extracellular [Rb+] increases, (a) binding to the closed channel is slightly destabilized and acquires faster kinetics, and (b) open channel block is also destabilized and the lowest block seems to occur when the pore is likely filled only by Rb+. These results suggest that the nature of the permeant ions determines both the occupancy and the location of the pore site from which they interact with κ-PVIIA binding. Thus, our results suggest that the permeant ion(s) within a channel pore can determine its functional and pharmacological properties.
Collapse
Affiliation(s)
- Anna Boccaccio
- Max-Planck-Institute for Experimental Medicine, Molecular and Cellular Neuropharmacology Group, Hermann-Rein-Str.3, D-37075 Göttingen, Germany
| | | | | | | |
Collapse
|
40
|
Chagot B, Escoubas P, Villegas E, Bernard C, Ferrat G, Corzo G, Lazdunski M, Darbon H. Solution structure of Phrixotoxin 1, a specific peptide inhibitor of Kv4 potassium channels from the venom of the theraphosid spider Phrixotrichus auratus. Protein Sci 2004; 13:1197-208. [PMID: 15096626 PMCID: PMC2286752 DOI: 10.1110/ps.03584304] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Animal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif. We have solved the solution structure of Phrixotoxin 1, a gating modifier of Kv4 potassium channels. Analysis of the molecular surface and the electrostatic anisotropy of Phrixotoxin 1 and of other toxins acting on voltage-dependent potassium channels allowed us to propose a toxin interacting surface that encompasses both the surface from which the dipole moment emerges and a neighboring hydrophobic surface rich in aromatic residues.
Collapse
Affiliation(s)
- Benjamin Chagot
- Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6098 and Universités d'Aix-Marseille I and II, 13402 Marseille 20, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jouirou B, Mouhat S, Andreotti N, De Waard M, Sabatier JM. Toxin determinants required for interaction with voltage-gated K+ channels. Toxicon 2004; 43:909-14. [PMID: 15208024 DOI: 10.1016/j.toxicon.2004.03.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ion channel-acting toxins are mainly short peptides generally present in minute amounts in the venoms of diverse animal species such as scorpions, snakes, spiders, marine cone snails and sea anemones. Interestingly, these peptides have evolved over time on the basis of clearly distinct architectural motifs present throughout the animal kingdom, but display convergent molecular determinants and functional homologies. As a consequence of this conservation of some key determinants, it has also been evidenced that toxin targets display some common evolutionary origins. Indeed, these peptides often target ion channels and ligand-gated receptors, though other interacting molecules such as enzymes have been further evidenced. In this review, we provide an overview of some selected peptides from various animal species that act on specific K+ conducting voltage-gated ion channels. In particular, we emphasize our global analysis on the structural determinants of these molecules that are required for the recognition of a particular ion channel pore structure, a property that should be correlated to the blocking efficacy of the K+ efflux out of the cell during channel opening. A better understanding of these molecular determinants is valuable to better specify and derive useful peptide pharmacological properties.
Collapse
Affiliation(s)
- Besma Jouirou
- Laboratoire d'Ingénierie des Protéines, Faculte de Medecine Secteur Nord, CNRS FRE 2738, Bd Pierre Dramard, 13916 Marseille, France
| | | | | | | | | |
Collapse
|
42
|
Jones CE, Daly NL, Cobine PA, Craik DJ, Dameron CT. Structure and metal binding studies of the second copper binding domain of the Menkes ATPase. J Struct Biol 2004; 143:209-18. [PMID: 14572476 DOI: 10.1016/j.jsb.2003.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using 1H and 15N heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)2Cys pair, is located on an exposed loop. 1H-15N HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues.
Collapse
Affiliation(s)
- Christopher E Jones
- The National Research Centre for Environmental Toxicology, The University of Queensland, 39 Kessels Road, Coopers Plains, Qld 4108, Australia
| | | | | | | | | |
Collapse
|
43
|
Mouhat S, Jouirou B, Mosbah A, De Waard M, Sabatier JM. Diversity of folds in animal toxins acting on ion channels. Biochem J 2004; 378:717-26. [PMID: 14674883 PMCID: PMC1224033 DOI: 10.1042/bj20031860] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 12/16/2003] [Indexed: 12/15/2022]
Abstract
Animal toxins acting on ion channels of excitable cells are principally highly potent short peptides that are present in limited amounts in the venoms of various unrelated species, such as scorpions, snakes, sea anemones, spiders, insects, marine cone snails and worms. These toxins have been used extensively as invaluable biochemical and pharmacological tools to characterize and discriminate between the various ion channel types that differ in ionic selectivity, structure and/or cell function. Alongside the huge molecular and functional diversity of ion channels, a no less impressive structural diversity of animal toxins has been indicated by the discovery of an increasing number of polypeptide folds that are able to target these ion channels. Indeed, it appears that these peptide toxins have evolved over time on the basis of clearly distinct architectural motifs, in order to adapt to different ion channel modulating strategies (pore blockers compared with gating modifiers). Herein, we provide an up-to-date overview of the various types of fold from animal toxins that act on ion channels selective for K+, Na+, Ca2+ or Cl- ions, with special emphasis on disulphide bridge frameworks and structural motifs associated with these peptide folds.
Collapse
Affiliation(s)
- Stéphanie Mouhat
- Laboratoire Cellpep S.A., 13-15 Rue Ledru-Rollin, 13015 Marseille, France
| | | | | | | | | |
Collapse
|
44
|
Zhang SJ, Yang XM, Liu GS, Cohen MV, Pemberton K, Downey JM. CGX-1051, A Peptide from Conus Snail Venom, Attenuates Infarction in Rabbit Hearts When Administered at Reperfusion. J Cardiovasc Pharmacol 2003; 42:764-71. [PMID: 14639099 DOI: 10.1097/00005344-200312000-00011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
CGX-1051, isolated from the venom of the marine snail Conus purpurasens, was previously noted to interact with potassium channels. Since potassium channels play an important role in cardiac physiology, we assessed the effect of CGX-1051 on infarct size in a rabbit heart model of ischemia/reperfusion. A coronary branch was occluded for 30 minutes followed by 3 hours of reperfusion in in situ and 2 hours in in vitro preparations. Infarct size was measured with triphenyltetrazolium chloride staining and expressed as a percent of the risk zone. In in situ studies, a bolus intravenous injection of CGX-1051, either 10 or 100 microg/kg, administered 5 minutes before reperfusion, reduced infarct size from 40.4 +/- 2.8% of the risk zone in untreated animals to 19.8 +/- 3.8% and 15.0 +/- 1.9%, respectively. One microg/kg CGX-1051 was not protective. To see if the salvage was sustained, two groups of rabbits underwent 72 hours of reperfusion. The dose of 10 microg/kg infused 5 minutes before reperfusion reduced infarct size from 37.0 +/- 1.6% in untreated rabbits to 15.5 +/- 2.0%. When administered 10 minutes after reperfusion had begun, 100 microg/kg CGX-1051 had no effect. CGX-1051 also reduced infarct size in crystalloid-perfused, isolated rabbit hearts suggesting that protection did not depend on circulating leukocytes. The mitochondrial KATP inhibitors glibenclamide and 5-hydroxydecanoate and the MEK(1/2), ERK and hence, inhibitor PD 98059 aborted protection from CGX-1051. These data indicate that functionally active ERK and mitochondrial KATP channels are necessary for protection. CGX-1051 caused no hemodynamic alterations at any dose tested. We conclude that CGX-1051 has a powerful anti-infarct effect when given just before reperfusion.
Collapse
Affiliation(s)
- Shi Jun Zhang
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | | | | | |
Collapse
|
45
|
Takeuchi K, Yokogawa M, Matsuda T, Sugai M, Kawano S, Kohno T, Nakamura H, Takahashi H, Shimada I. Structural Basis of the KcsA K+ Channel and Agitoxin2 Pore-Blocking Toxin Interaction by Using the Transferred Cross-Saturation Method. Structure 2003; 11:1381-92. [PMID: 14604528 DOI: 10.1016/j.str.2003.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We have determined the binding site on agitoxin2 (AgTx2) to the KcsA K(+) channel by a transferred cross-saturation (TCS) experiment. The residues significantly affected in the TCS experiments formed a contiguous surface on AgTx2, and substitutions of the surface residues decreased the binding affinity to the KcsA K(+) channel. Based on properties of the AgTx2 binding site with the KcsA K(+) channel, we present a surface motif that is observed in pore-blocking toxins affecting the K(+) channel. Furthermore, we also explain the structural basis of the specificity of the K(+) channel to the toxins. The TCS method utilized here is applicable not only for the channels, which are complexed with other inhibitors, but also with a variety of regulatory molecules, and provides important information about their interface in solution.
Collapse
Affiliation(s)
- Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ostrow KL, Mammoser A, Suchyna T, Sachs F, Oswald R, Kubo S, Chino N, Gottlieb PA. cDNA sequence and in vitro folding of GsMTx4, a specific peptide inhibitor of mechanosensitive channels. Toxicon 2003; 42:263-74. [PMID: 14559077 DOI: 10.1016/s0041-0101(03)00141-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The peptide GsMTx4 from the tarantula venom (Grammostola spatulata) inhibits mechanosensitive ion channels. In this work, we report the cDNA sequence encoding GsMTx4. The gene is translated as a precursor protein of 80 amino acids. The first 21 amino acids are a predicted signal sequence and the C-terminal residues are a signal for amidation. An arginine residue adjacent to the N-terminal glycine of GsMTx4 is the cleavage site for release. The resulting peptide is 34 amino acids in length with a C-terminal phenylalanine and not a serine-alanine previously identified [J. Gen. Physiol. 115 (2000) 583]. We chemically synthesized this peptide and folded it in 0.1 M Tris, pH 7.9 with oxidized/reduced glutathione (1/10). Properties of the synthetic peptide were identical to the wild type for high performance liquid chromatography (HPLC), mass spectrometry, CD, and NMR. We also cloned GsMTx4 in a thioredoxin fusion protein system containing six histidines. Nickel affinity columns allowed rapid purification and folding occurred in conditions described above with 0.5 M guanidiniumHCl present. Thrombin cleavage liberated GsMTx4 with three extra amino acids at the N-terminus. The retention time in HPLC analysis and the CD spectrum was similar to wild type. Both the synthetic and cloned peptides were active in the patch clamp assay.
Collapse
Affiliation(s)
- Kimberly Laskie Ostrow
- Center for Single Molecule Biophysics, SUNY at Buffalo, 320 Cary Hall, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Kauferstein S, Huys I, Lamthanh H, Stöcklin R, Sotto F, Menez A, Tytgat J, Mebs D. A novel conotoxin inhibiting vertebrate voltage-sensitive potassium channels. Toxicon 2003; 42:43-52. [PMID: 12893060 DOI: 10.1016/s0041-0101(03)00099-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Toxins from cone snail (Conus species) venoms are multiple disulfide bonded peptides. Based on their pharmacological target (ion channels, receptors) and their disulfide pattern, they have been classified into several toxin families and superfamilies. Here, we report a new conotoxin, which is the first member of a structurally new superfamily of Conus peptides and the first conotoxin affecting vertebrate K+ channels. The new toxin, designated conotoxin ViTx, has been isolated from the venom of Conus virgo and comprises a single chain of 35 amino acids cross-linked by four disulfide bridges. Its amino acid sequence (SRCFPPGIYCTSYLPCCWGICCSTCRNVCHLRIGK) was partially determined by Edman degradation and deduced from the nucleotide sequence of the toxin cDNA. Nucleic acid sequencing also revealed a prepropeptide comprising 67 amino acid residues and demonstrated a posttranslational modification of the protein by releasing a six-residue peptide from the C-terminal. Voltage clamp studies on various ion channels indicated that the toxin inhibits the vertebrate K+ channels Kv1.1 and Kv1.3 but not Kv1.2. The chemically synthesized product exhibited the same physiological activity and identical molecular mass (3933.7 Da) as the native toxin.
Collapse
Affiliation(s)
- Silke Kauferstein
- Zentrum der Rechtsmedizin, University of Frankfurt, Kennedyallee 104, D-60596 Frankfurt am Main, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Plambeck CA, Kwan AHY, Adams DJ, Westman BJ, van der Weyden L, Medcalf RL, Morris BJ, Mackay JP. The structure of the zinc finger domain from human splicing factor ZNF265 fold. J Biol Chem 2003; 278:22805-11. [PMID: 12657633 DOI: 10.1074/jbc.m301896200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Identification of the protein domains that are responsible for RNA recognition has lagged behind the characterization of protein-DNA interactions. However, it is now becoming clear that a range of structural motifs bind to RNA and their structures and molecular mechanisms of action are beginning to be elucidated. In this report, we have expressed and purified one of the two putative RNA-binding domains from ZNF265, a protein that has been shown to bind to the spliceosomal components U1-70K and U2AF35 and to direct alternative splicing. We show that this domain, which contains four highly conserved cysteine residues, forms a stable, monomeric structure upon the addition of 1 molar eq of Zn(II). Determination of the solution structure of this domain reveals a conformation comprising two stacked beta-hairpins oriented at approximately 80 degrees to each other and sandwiching the zinc ion; the fold resembles the zinc ribbon class of zinc-binding domains, although with one less beta-strand than most members of the class. Analysis of the structure reveals a striking resemblance to known RNA-binding motifs in terms of the distribution of key surface residues responsible for making RNA contacts, despite a complete lack of structural homology. Furthermore, we have used an RNA gel shift assay to demonstrate that a single crossed finger domain from ZNF265 is capable of binding to an RNA message. Taken together, these results define a new RNA-binding motif and should provide insight into the functions of the >100 uncharacterized proteins in the sequence data bases that contain this domain.
Collapse
Affiliation(s)
- Craig A Plambeck
- Basic and Clinical Genomics Laboratory, School of Medical Science, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Lay FT, Schirra HJ, Scanlon MJ, Anderson MA, Craik DJ. The three-dimensional solution structure of NaD1, a new floral defensin from Nicotiana alata and its application to a homology model of the crop defense protein alfAFP. J Mol Biol 2003; 325:175-88. [PMID: 12473460 DOI: 10.1016/s0022-2836(02)01103-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an alpha-helix and a triple-stranded antiparallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized alphabeta motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure-activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP.
Collapse
Affiliation(s)
- Fung T Lay
- Department of Biochemistry, La Trobe University, Bundoora, Victoria 3086, Australia
| | | | | | | | | |
Collapse
|
50
|
Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TKS, Sato K, Tytgat J, Yu C, San BCC, Ranganathan S, Bowie HJ, Kini RM, Gopalakrishnakone P. kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. J Biol Chem 2002; 277:30040-7. [PMID: 12034709 DOI: 10.1074/jbc.m111258200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An important and exciting challenge in the postgenomic era is to understand the functions of newly discovered proteins based on their structures. The main thrust is to find the common structural motifs that contribute to specific functions. Using this premise, here we report the purification, solution NMR, and functional characterization of a novel class of weak potassium channel toxins from the venom of the scorpion Heterometrus fulvipes. These toxins, kappa-hefutoxin1 and kappa-hefutoxin2, exhibit no homology to any known toxins. NMR studies indicate that kappa-hefutoxin1 adopts a unique three-dimensional fold of two parallel helices linked by two disulfide bridges without any beta-sheets. Based on the presence of the functional diad (Tyr(5)/Lys(19)) at a distance (6.0 +/- 1.0 A) comparable with other potassium channel toxins, we hypothesized its function as a potassium channel toxin. kappa-Hefutoxin 1 not only blocks the voltage-gated K(+)-channels, Kv1.3 and Kv1.2, but also slows the activation kinetics of Kv1.3 currents, a novel feature of kappa-hefutoxin 1, unlike other scorpion toxins, which are considered solely pore blockers. Alanine mutants (Y5A, K19A, and Y5A/K19A) failed to block the channels, indicating the importance of the functional diad.
Collapse
Affiliation(s)
- Kellathur N Srinivasan
- Venom and Toxin Research Programme, Faculty of Medicine, National University of Singapore, 4 Medical Dr., Singapore 117597, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|