1
|
Pagliarello R, Bennici E, Di Sarcina I, Villani ME, Desiderio A, Nardi L, Benvenuto E, Cemmi A, Massa S. Effects of gamma radiation on engineered tomato biofortified for space agriculture by morphometry and fluorescence-based indices. FRONTIERS IN PLANT SCIENCE 2023; 14:1266199. [PMID: 37877080 PMCID: PMC10591191 DOI: 10.3389/fpls.2023.1266199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Introduction Future long-term space missions will focus to the solar system exploration, with the Moon and Mars as leading goals. Plant cultivation will provide fresh food as a healthy supplement to astronauts' diet in confined and unhealthy outposts. Ionizing radiation (IR) are a main hazard in outer space for their capacity to generate oxidative stress and DNA damage. IR is a crucial issue not only for human survival, but also for plant development and related value-added fresh food harvest. To this end, efforts to figure out how biofortification of plants with antioxidant metabolites (such as anthocyanins) may contribute to improve their performances in space outposts are needed. Methods MicroTom plants genetically engineered to express the Petunia hybrida PhAN4 gene, restoring the biosynthesis of anthocyanins in tomato, were used. Seeds and plants from wild type and engineered lines AN4-M and AN4-P2 were exposed to IR doses that they may experience during a long-term space mission, simulated through the administration of gamma radiation. Plant response was continuously evaluated along life cycle by a non-disturbing/non-destructive monitoring of biometric and multiparametric fluorescence-based indices at both phenotypic and phenological levels, and indirectly measuring changes occurring at the primary and secondary metabolism level. Results Responses to gamma radiation were influenced by the phenological stage, dose and genotype. Wild type and engineered plants did not complete a seed-to-seed cycle under the exceptional condition of 30 Gy absorbed dose, but were able to cope with 0.5 and 5 Gy producing fruits and vital seeds. In particular, the AN4-M seeds and plants showed advantages over wild type: negligible variation of fluorimetric parameters related to primary metabolism, no alteration or improvement of yield traits at maturity while maintaining smaller habitus than wild type, biosynthesis of anthocyanins and maintained levels of these compounds compared to non-irradiated controls of the same age. Discussion These findings may be useful in understanding phenotypic effects of IR on plant growth in space, and lead to the exploitation of new breeding efforts to optimize plant performances to develop appropriate ideotypes for future long-term space exploration extending the potential of plants to serve as high-value product source.
Collapse
Affiliation(s)
- Riccardo Pagliarello
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Elisabetta Bennici
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Ilaria Di Sarcina
- Fusion and Nuclear Safety Technologies Department, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Angiola Desiderio
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Luca Nardi
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Alessia Cemmi
- Fusion and Nuclear Safety Technologies Department, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Silvia Massa
- Biotechnology Laboratory, Biotechnology and Agro-Industry Division, Department for Sustainability, Casaccia Research Center, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
2
|
Song KE, Lee SH, Jung JG, Choi JE, Jun W, Chung JW, Hong SH, Shim S. Hormesis effects of gamma radiation on growth of quinoa ( Chenopodium quinoa). Int J Radiat Biol 2021; 97:906-915. [PMID: 33900903 DOI: 10.1080/09553002.2021.1919783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 04/05/2021] [Indexed: 09/30/2022]
Abstract
PURPOSE Quinoa is an annual plant that grows well in high altitude regions with high radiation and ultraviolet intensity. It has known that high-dose radiation damages living organisms, but low-dose radiation also has a beneficial effect. Therefore, the purpose of this study is to investigate the hormesis effect of gamma-ray on quinoa by growth analysis and hyperspectral imaging. MATERIALS AND METHODS Quinoa seeds were irradiated at 50, 100, and 200 Gy emitted by 60CO. Subsequently, the seeds were germinated and transplanted into pots, then conducted growth analysis and physiological evaluation every week, and hyperspectral imaging. Photosynthetic ability was measured at 35 days after transplanting (DAT), and the plants for each dose were divided into aerial and underground parts for biomass evaluation at 91 DAT. Various vegetation indices were estimated from 14 to 35 DAT by hyperspectral analysis, and the specific bands were extracted based on the PLS model using plant height, SPAD value, and chlorophyll fluorescence parameters. RESULTS We found that plant height and biomass were increased in quinoa plants treated with a low dose (50 Gy) as compared to control. Chlorophyll content and chlorophyll fluorescence were not different between doses at the early growth stage, but as growth progressed, the plant irradiated at 200 Gy began to be lower. The photosynthetic ability of the quinoa plant treated at 50 Gy was greater than other plants at 35 DAT. The vegetation indices related to the pigment status also were higher in the plants treated by irradiation at 50 Gy than the plants grown in other doses treatment units at the beginning of the growth. Using the PLS model we collected sensitive band wavelengths from hyperspectral image analysis. Among the collected bands, eight bands closely related to plant height, nine bands to chlorophyll content, and ten bands to chlorophyll fluorescence were identified. CONCLUSION Our results showed that the growth and physiological parameters of quinoa treated by low dose gamma irradiation to seeds were greater than that of control as well as the plant with higher doses. These findings confirm that the positive changes in the characteristics of quinoa with low dose radiation indicated that hormesis occurs at 50 Gy radiation.
Collapse
Affiliation(s)
- Ki Eun Song
- Department of Agronomy, Gyeongsang National University, Jinju, Korea
- Division of Applied Science (Brain Korea 21 program), Gyeongsang National University, Jinju, Korea
| | - Seung Ha Lee
- Department of Agronomy, Gyeongsang National University, Jinju, Korea
| | - Jae Gyeong Jung
- Department of Agronomy, Gyeongsang National University, Jinju, Korea
| | - Jae Eun Choi
- Department of Agronomy, Gyeongsang National University, Jinju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | | | - Sun Hee Hong
- Department of Plant Life Science, Hankyong National University, Ansung, Korea
| | - Sangin Shim
- Department of Agronomy, Gyeongsang National University, Jinju, Korea
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
3
|
Laanen P, Saenen E, Mysara M, Van de Walle J, Van Hees M, Nauts R, Van Nieuwerburgh F, Voorspoels S, Jacobs G, Cuypers A, Horemans N. Changes in DNA Methylation in Arabidopsis thaliana Plants Exposed Over Multiple Generations to Gamma Radiation. FRONTIERS IN PLANT SCIENCE 2021; 12:611783. [PMID: 33868326 PMCID: PMC8044457 DOI: 10.3389/fpls.2021.611783] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/09/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have found indications that exposure to ionising radiation (IR) results in DNA methylation changes in plants. However, this phenomenon is yet to be studied across multiple generations. Furthermore, the exact role of these changes in the IR-induced plant response is still far from understood. Here, we study the effect of gamma radiation on DNA methylation and its effect across generations in young Arabidopsis plants. A multigenerational set-up was used in which three generations (Parent, generation 1, and generation 2) of 7-day old Arabidopsis thaliana plants were exposed to either of the different radiation treatments (30, 60, 110, or 430 mGy/h) or to natural background radiation (control condition) for 14 days. The parental generation consisted of previously non-exposed plants, whereas generation 1 and generation 2 plants had already received a similar irradiation in the previous one or two generations, respectively. Directly after exposure the entire methylomes were analysed with UPLC-MS/MS to measure whole genome methylation levels. Whole genome bisulfite sequencing was used to identify differentially methylated regions (DMRs), including their methylation context in the three generations and this for three different radiation conditions (control, 30 mGy/h, and 110 mGy/h). Both intra- and intergenerational comparisons of the genes and transposable elements associated with the DMRs were made. Taking the methylation context into account, the highest number of changes were found for cytosines followed directly by guanine (CG methylation), whereas only limited changes in CHG methylation occurred and no changes in CHH methylation were observed. A clear increase in IR-induced DMRs was seen over the three generations that were exposed to the lowest dose rate, where generation 2 had a markedly higher number of DMRs than the previous two generations (Parent and generation 1). Counterintuitively, we did not see significant differences in the plants exposed to the highest dose rate. A large number of DMRs associated with transposable elements were found, the majority of them being hypermethylated, likely leading to more genetic stability. Next to that, a significant number of DMRs were associated with genes (either in their promoter-associated region or gene body). A functional analysis of these genes showed an enrichment for genes related to development as well as various stress responses, including DNA repair, RNA splicing, and (a)biotic stress responses. These observations indicate a role of DNA methylation in the regulation of these genes in response to IR exposure and shows a possible role for epigenetics in plant adaptation to IR over multiple generations.
Collapse
Affiliation(s)
- Pol Laanen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Jorden Van de Walle
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - May Van Hees
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
- NXTGNT, Ghent University, Ghent, Belgium
| | | | - Griet Jacobs
- Vlaamse Instelling voor Technologisch Onderzoek, VITO, Mol, Belgium
| | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
- *Correspondence: Nele Horemans,
| |
Collapse
|
4
|
Morozova V, Kashparova E, Levchuk S, Bishchuk Y, Kashparov V. The progeny of Chernobyl Arabidopsis thaliana plants does not exhibit changes in morphometric parameters and cellular antioxidant defence system of shoots. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106076. [PMID: 31630854 DOI: 10.1016/j.jenvrad.2019.106076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/14/2018] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Morphometric parameters and functional state of the cellular antioxidant defence system of shoots were studied in the progeny of Arabidopsis thaliana (L.) Heynh. (A. thaliana) plants, previously and chronically exposed in the Chernobyl Exclusion Zone (ChEZ). Changes in cellular antioxidant enzyme activities in the progeny of exposed plants were assumed because antioxidant status of cell may be altered by inherited epigenetic changes, resulting in changes in antioxidant-response genes expression. These changes can be inferred as induced expression of CAT and SOD genes was found previously for A. thaliana plants by another group of scientists. It is well-known that ionizing radiation may induce changes in hormonal-signalling net-work, shifting balance in growth factors that may cause changes in morphometric parameters of plants. Seeds from A. thaliana plants were collected in the ChEZ at different levels of the external dose rate from 0.28 ± 0.01 to 12.93 ± 0.08 μGy/h. Internal dose rate for parent plants was calculated on the basis of the activity concentration of 90Sr and 137Cs in the plants, using dose conversion coefficients for wild grass. Total dose rate, absorbed by parent plants, was calculated as the sum of the external and internal dose rate and was in a range between 2.8 ± 0.2 and 99 ± 8 μGy/h. Seeds were then grown in the standard laboratory conditions (nutrient-agar, light-dark cycle and appropriate temperature) to analyse morphometric parameters of seedlings and final germination percentage. No significant changes in the morphometric parameters (root length and rosette diameter of shoots) of the seedlings were observed. Changes in the final germination percentage of the studied seeds were found, but low correlation was observed between found changes and the dose rate, absorbed by parent plants. In contrast to the results obtained in A. thaliana plants directly sampled in the field, no effect on the functional state of the cellular antioxidant defence system of shoots in the progeny of Chernobyl A. thaliana plants was observed.
Collapse
Affiliation(s)
- Valeriia Morozova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine.
| | - Elena Kashparova
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Sviatoslav Levchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Yeugeniia Bishchuk
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine
| | - Valery Kashparov
- Ukrainian Institute of Agricultural Radiology of National University of Life and Environmental Sciences of Ukraine, Mashinobudivnykiv str.7, Chabany, Kyiv region, 08162, Ukraine.
| |
Collapse
|
5
|
Arena C, Vitale E, Hay Mele B, Cataletto PR, Turano M, Simoniello P, De Micco V. Suitability of Solanum lycopersicum L. 'Microtom' for growth in Bioregenerative Life Support Systems: exploring the effect of high-LET ionising radiation on photosynthesis, leaf structure and fruit traits. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21:615-626. [PMID: 30585676 DOI: 10.1111/plb.12952] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/20/2018] [Indexed: 05/09/2023]
Abstract
The realisation of manned space exploration requires the development of Bioregenerative Life Support Systems (BLSS). In such self-sufficient closed habitats, higher plants have a fundamental role in air regeneration, water recovery, food production and waste recycling. In the space environment, ionising radiation represents one of the main constraints to plant growth. In this study, we explore whether low doses of heavy ions, namely Ca 25 Gy, delivered at the seed stage, may induce positive outcomes on growth and functional traits in plants of Solanum lycopersicum L. 'Microtom'. After irradiation of seed, plant growth was monitored during the whole plant life cycle, from germination to fruit ripening. Morphological parameters, photosynthetic efficiency, leaf anatomical functional traits and antioxidant production in leaves and fruits were analysed. Our data demonstrate that irradiation of seeds with 25 Gy Ca ions does not prevent achievement of the seed-to-seed cycle in 'Microtom', and induces a more compact plant size compared to the control. Plants germinated from irradiated seeds show better photochemical efficiency than controls, likely due to the higher amount of D1 protein and photosynthetic pigment content. Leaves of these plants also had smaller cells with a lower number of chloroplasts. The dose of 25 Gy Ca ions is also responsible for positive outcomes in fruits: although developing a lower number of berries, plants germinated from irradiated seeds produce larger berries, richer in carotenoids, ascorbic acid and anthocyanins than controls. These specific traits may be useful for 'Microtom' cultivation in BLSS in space, in so far as the crew members could benefit from fresh food richer in functional compounds that can be directly produced on board.
Collapse
Affiliation(s)
- C Arena
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - E Vitale
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - B Hay Mele
- Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy
| | - P R Cataletto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Turano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - P Simoniello
- Department of Science and Technology, University of Naples Pathenope, Centro Direzionale Isola C4, Naples, Italy
| | - V De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Portici (Naples), Italy
| |
Collapse
|
6
|
Deoli NT, Hasenstein KH. Irradiation effects of MeV protons on dry and hydrated Brassica rapa seeds. LIFE SCIENCES IN SPACE RESEARCH 2018; 19:24-30. [PMID: 30482278 DOI: 10.1016/j.lssr.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/27/2018] [Accepted: 08/15/2018] [Indexed: 06/09/2023]
Abstract
Although space radiation is a known risk for space travel and eventual colonization of Moon or Mars, relatively few data exist on radiation effects on potential crop plants. We studied Brassica rapa to assess the tolerance of seeds and seedlings to radiation by exposing dry and hydrated B. rapa seeds to 1, 2 and 3 MeV proton ions of various fluences and examined the effect on germination and root growth. Modeling penetration depth with SRIM code indicated that the applied energy was insufficient to penetrate the seeds; therefore, all energy was deposited into the tissue. Subsequent germination varied based on the incident ion energy and fluence (dose). Dry and hydrated seeds germinate after ion fluence (1013 ions cm-2) irradiation, but the germination percentage decreased with increasing fluence for ions that could penetrate the seed coat (> 1 MeV). Despite their greater volume and mass, hydrated seeds were more sensitive to irradiation than dry seeds. Damage of the seed coat after irradiation led to faster germination and initial seedling growth. Our results suggest that the seed coat represents a valuable natural radiation protection and that low energy protons, the prevailing solar radiation, are suitable for studying radiation effects in seeds and plants.
Collapse
Affiliation(s)
- Naresh T Deoli
- Louisiana Accelerator Center, University of Louisiana at Lafayette, Lafayette, LA, 70504-43600, USA
| | - Karl H Hasenstein
- Louisiana Accelerator Center, University of Louisiana at Lafayette, Lafayette, LA, 70504-43600, USA; Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-43602, USA.
| |
Collapse
|
7
|
De Micco V, Arena C, Aronne G. Anatomical alterations of Phaseolus vulgaris L. mature leaves irradiated with X-rays. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:187-93. [PMID: 24176096 DOI: 10.1111/plb.12125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The cultivation of higher plants in Space involves not only the development of new agro-technologies for the design of ecologically closed Space greenhouses, but also understanding of the effects of Space factors on biological systems. Among Space factors, ionising radiation is one of the main constraints to the growth of organisms. In this paper, we analyse the effect of low-LET radiation on leaf histology and cytology in Phaseolus vulgaris L. plants subjected to increasing doses of X-rays (0.3, 10, 50, 100 Gy). Leaves irradiated at tissue maturity were compared with not-irradiated controls. Semi-thin sections of leaves were analysed through light and epi-fluorescence microscopy. Digital image analysis was applied to quantify anatomical parameters, with a specific focus on the occurrence of signs of structural damage as well as alterations at subcellular level, such as the accumulation of phenolic compounds and chloroplast size. Results showed that even at high levels of radiation, general anatomical structure was not severely perturbed. Slight changes in mesophyll density and cell enlargement were detected at the highest level of radiation. However, at 100 Gy, higher levels of phenolic compounds accumulated along chloroplast membranes: this accompanied an increase in number of chloroplasts. The reduced content of chlorophylls at high levels of radiation was associated with reduced size of the chloroplasts. All data are discussed in terms of the possible role of cellular modifications in the maintenance of high radioresistance and photosynthetic efficiency.
Collapse
Affiliation(s)
- V De Micco
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | | | | |
Collapse
|
8
|
Scaldaferro M, Prina A, Moscone E, Kwasniewska J. Effects of ionizing radiation on Capsicum baccatum var. pendulum (Solanaceae). Appl Radiat Isot 2013; 79:103-8. [DOI: 10.1016/j.apradiso.2013.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 02/04/2013] [Accepted: 03/03/2013] [Indexed: 12/01/2022]
|
9
|
Genome-wide transcriptome profiling of ROS scavenging and signal transduction pathways in rice (Oryza sativa L.) in response to different types of ionizing radiation. Mol Biol Rep 2012; 39:11231-48. [DOI: 10.1007/s11033-012-2034-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
10
|
De Micco V, Arena C, Pignalosa D, Durante M. Effects of sparsely and densely ionizing radiation on plants. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:1-19. [PMID: 21113610 DOI: 10.1007/s00411-010-0343-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/05/2010] [Indexed: 05/09/2023]
Abstract
One of the main purposes leading botanists to investigate the effects of ionizing radiations is to understand plant behaviour in space, where vegetal systems play an important role for nourishment, psychological support and functioning of life support systems. Ground-based experiments have been performed with particles of different charge and energy. Samples exposed to X- or γ-rays are often used as reference to derive the biological efficiency of different radiation qualities. Studies where biological samples are exposed directly to the space radiation environment have also been performed. The comparison of different studies has clarified how the effects observed after exposure are deeply influenced by several factors, some related to plant characteristics (e.g. species, cultivar, stage of development, tissue architecture and genome organization) and some related to radiation features (e.g. quality, dose, duration of exposure). In this review, we report main results from studies on the effect of ionizing radiations, including cosmic rays, on plants, focusing on genetic alterations, modifications of growth and reproduction and changes in biochemical pathways especially photosynthetic behaviour. Most of the data confirm what is known from animal studies: densely ionizing radiations are more efficient in inducing damages at several different levels, in comparison with sparsely ionizing radiation.
Collapse
Affiliation(s)
- Veronica De Micco
- Dipartimento di Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli Federico II, via Università 100, 80055, Portici (Naples), Italy
| | | | | | | |
Collapse
|
11
|
Kobori N, Mastrangel T, Cicero S, Cassieri P, Moraes M, Walder J. Effects of Gamma Irradiation on Physiological and Phytosanitary Qualities of Brazilian Castor Bean Seeds, Ricinus communis (cv. IAC Guarani). ACTA ACUST UNITED AC 2010. [DOI: 10.3923/rjss.2010.70.81] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Bardet M, Maron S, Foray MF, Berger M, Guillermo A. Investigation of gamma-irradiated vegetable seeds with high-resolution solid-state 13C NMR. Radiat Res 2004; 161:458-63. [PMID: 15038765 DOI: 10.1667/rr3162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
13C solid-state NMR was used to investigate the effects of gamma radiation on vegetable seeds, Pisum sativum and Latuca sativa, at absorbed doses that inhibit their germination. By combining single-pulse excitation and cross-polarization experiments under magic angle spinning, both liquid and solid domains of seeds can be characterized. We showed that the liquid domains, mostly made of triacylglycerols (TAG), of vegetable seeds are not sensitive to radiation. The main structural changes have been observed in the embryonic axes of seeds when the seeds are water-imbibed before irradiation. These results rule out a starting hypothesis concerning the potential role of TAG contained in oil bodies as a potential source of aldehydes that could further react with DNA moiety.
Collapse
Affiliation(s)
- Michel Bardet
- Département de Recherche Fondamentale sur la Matière Condensée-Service de Chimie Inorganique et Biologique CEA-Grenoble, F-38054 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
13
|
Long-lived radicals produced by γ-irradiation or vital activity in plants, animals, cells, and protein solution: their observation and inhomogeneous decay dynamics. Radiat Phys Chem Oxf Engl 1993 2002. [DOI: 10.1016/s0969-806x(02)00198-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Chaudhuri SK. A simple and reliable method to detect gamma irradiated lentil (Lens culinaris Medik.) seeds by germination efficiency and seedling growth test. Radiat Phys Chem Oxf Engl 1993 2002. [DOI: 10.1016/s0969-806x(01)00467-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kumagai J, Kumada T, Watanabe M, Miyazaki T. Electron spin echo study of long-lived radicals which cause mutation in gamma-ray irradiated mammalian cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2000; 56:2509-2516. [PMID: 11132134 DOI: 10.1016/s1386-1425(00)00360-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Long-lived radicals, produced by gamma-ray irradiation of mammalian cells at room temperature, cause mutation and morphological transformation in the cells. The local environment near the long-lived radicals in irradiated cells was investigated here by the analysis of electron spin echo envelope modulation (ESEEM) spectra. The number of hydrogen (deuterium) atoms surrounding the long-lived radical, which may correspond to the number of water molecules, was estimated roughly as one or two. It is postulated that the long-lived radicals are generated in the interior of biopolymers. The radicals are not produced by the reaction of OH radicals, but mainly by the decomposition of biopolymer which absorbed directly the energy of the ionizing radiation.
Collapse
Affiliation(s)
- J Kumagai
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Japan.
| | | | | | | |
Collapse
|
16
|
Kumagai J, Katoh H, Miyazaki T, Hidema J, Kumagai T. Differences in the sensitivity to UVB radiation of two cultivars of rice (Oryza sativa L.) based on observation of long-lived radicals. JOURNAL OF RADIATION RESEARCH 1999; 40:303-310. [PMID: 10748576 DOI: 10.1269/jrr.40.303] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Free radicals with a long lifetime were observed in the leaves of two rice cultivars (Oryza sativa L.), Sasanishiki (UVB resistant) and Norin-1 (UVB sensitive), by electron spin resonance spectroscopy. The leaves of both cultivars grown with visible light show very similar ESR spectra composed of radical 1 (R1) and radical 2 (R2), which may be attributable to P700 cation radicals in the reaction center of photosystem I, and tyrosine cation radicals in the reaction center of photosystem II, respectively. The ESR spectrum composed of R1 and R2 radicals in the leaves of Sasanishiki grown under visible light with supplemental UVB was similar to that in the plant grown without supplemental UVB. On the other hand, the amount of R2 radicals in the leaves of Norin-1 grown under visible light with supplemental UVB was significantly smaller than that in the plant grown without supplemental UVB. It is suggested that the loss of R2 radicals in Norin-1 upon UVB irradiation is related to the instability of the plant.
Collapse
Affiliation(s)
- J Kumagai
- Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Japan.
| | | | | | | | | |
Collapse
|