1
|
Jiang H, Li QY, Sun JX, Huang YY, Zhang P, Mao YF, Qu YF, Liu XL. Studies on competitive adsorption characteristics of bisphenol A and 17α-ethinylestradiol on thermoplastic polyurethane by site energy distribution theory. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5181-5194. [PMID: 37093366 DOI: 10.1007/s10653-023-01566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Compound pollution of microplastics and estrogens is a growing ecotoxicological problem in aquatic environments. The adsorption isothermal properties of bisphenol A (BPA) and 17α-ethinyl estradiol (EE2) on polyamide (TPU) in monosolute and bisolute systems were studied. Under the same adsorption concentration (1-4 mg L-1), EE2 had a greater adsorption capacity than BPA in the monsolute system. Compared to the energy distribution features of the adsorption sites of EE2 and BPA, the BPA adsorption sites were located in the higher energy area and were more evenly distributed than those of EE2, while the quantity of BPA adsorption sites was less than that of EE2. In the bisolute system, the average site energy, site energy inhomogeneity, and adsorption site numbers of BPA increased by 1.674, -17.166, and 16.793%, respectively. In comparison, the average site energy, site energy inhomogeneity, and adsorption sites numbers of EE2 increased by 2.267, 4.416, and 8.585%, respectively. The results showed that BPA and EE2 had a cooperative effect on the competitive adsorption of TPU. XPS analysis showed that BPA and EE2 had electron transfer on TPU, although the chemisorption effects and hydrogen bonds between BPA and TPU were more significant. Comparing the changes in the relative functional group content of TPU in monosolute and bisolute systems, BPA and EE2 were synergistically absorbed on TPU. This study can provide a theoretical reference for the study of competitive adsorption between coexisting organic pollutants.
Collapse
Affiliation(s)
- Hui Jiang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Research Institute, China Coal Research Institute, Chongqing, 400037, China
| | - Qiao-Ying Li
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Jiao-Xia Sun
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
| | - Yuan-Yuan Huang
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China
- Chongqing Academy of Science and Technology, Chongqing, 401329, China
| | - Peng Zhang
- Chongqing Municipal Sanitation Inspection Center, Chongqing, 401121, China
| | - Yu-Feng Mao
- Chongqing Municipal Sanitation Inspection Center, Chongqing, 401121, China
| | - Ying-Fang Qu
- Chongqing Municipal Sanitation Inspection Center, Chongqing, 401121, China
| | - Xiu-Li Liu
- National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University, Chongqing, 400074, China.
- Bijie City Real Estate exchange, Guizhou, 551700, China.
| |
Collapse
|
2
|
Wang Y, Wang F, Xiang L, Bian Y, Wang Z, Srivastava P, Jiang X, Xing B. Attachment of positively and negatively charged submicron polystyrene plastics on nine typical soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128566. [PMID: 35359109 DOI: 10.1016/j.jhazmat.2022.128566] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs) have attracted increasing concern as emerging contaminants of global importance in recent years. Soil is considered an important sink for MPs. Due to environmental weathering, MP surfaces are often charged, but there are limited studies on the interaction of differentially charged MP with soils. This study constructed Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles, investigated the interaction mechanism of polystyrene MPs (0.2 µm) with positive (MP+) and negative (MP-) charges on nine typical soils through quantitative analysis of fluorescence intensity. The attachment of MPs to different soils fitted the pseudo-second-order kinetic model well. The attachment isotherm data of MP+ fitted the linear model better, while the MP- data fitted the Langmuir model. The attachment capacity of MPs was significantly correlated with the zeta potential of soils. These results, as well as the fourier transform infrared spectroscopy (FTIR) spectra and scanning electronic microscopy (SEM) images of soils, indicated that electrostatic interactions and physical trapping were the dominant mechanisms for MP attachment to soils. These results showed a strong affinity for MPs attachment on soil and gave insights to predict the transport, fate and ecological effect of different charged MPs in soil.
Collapse
Affiliation(s)
- Yu Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China.
| | - Leilei Xiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China
| | - Prashant Srivastava
- Land and Water Business Unit, Industry Environments Program, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Urrbrae, SA 5064, Australia
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Science, Nanjing 210008, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Wu W, Huang Y, Lin D, Yang K. Sorption mechanism of naphthalene by diesel soot: Insight from displacement with phenanthrene/p-nitrophenol. J Environ Sci (China) 2021; 106:136-146. [PMID: 34210429 DOI: 10.1016/j.jes.2021.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 06/13/2023]
Abstract
The nonlinear sorption of hydrophobic organic contaminants (HOCs) could be changed to linear sorption by the suppression of coexisting solutes in natural system, resulting in the enhancement of mobility, bioavailability and risks of HOCs in the environment. In previous study, inspired from the competitive adsorption on activated carbon (AC), the displaceable fraction of HOCs sorption to soot by competitor was attributed to the adsorption on elemental carbon fraction of soot (EC-Soot), while the linear and nondisplaceable fraction was attributed to the partition in authigenic organic matter of soot (OM-Soot). In this study, however, we observed that the linear and nondisplaceable fraction of HOC (naphthalene) to a diesel soot (D-Soot) by competitor (phenanthrene or p-nitrophenol) should be attributed to not only the linear partition in OM-Soot, but also the residual linear adsorption on EC-Soot. We also observed that the competition on the surface of soot dominated by external surface was different from that of AC dominated by micropore surface, i.e., complete displacement of HOCs by p-nitrophenol could occur for the micropore surface of AC, but not for the external surface of soot. These observations were obtained through the separation of EC-Soot and OM-Soot from D-Soot with organic-solvent extraction and the sorption comparisons of D-Soot with an AC (ACF300) and a multiwalled carbon nanotube (MWCNT30). The obtained results would give new insights to the sorption mechanisms of HOCs by soot and help to assess their environmental risks.
Collapse
Affiliation(s)
- Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Yun Huang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China.
| |
Collapse
|
4
|
Mo L, Wang Q, Bi E. Effects of endogenous and exogenous dissolved organic matter on sorption behaviors of bisphenol A onto soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112312. [PMID: 33711663 DOI: 10.1016/j.jenvman.2021.112312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The transport of organic contaminants in groundwater might be greatly affected by coexistence of dissolved organic matter (DOM) from different sources. In this study, the effects of endogenous and exogenous DOMs (referred to as DOMen and DOMex, respectively) on sorption behavior of bisphenol A (BPA) onto two reference soils were investigated by batch experiments and microscopic characterization. The results showed that BPA sorption onto soils was dominated by soil organic matter content and affected by DOM properties. The effect of DOMen on BPA sorption was also related to the inorganic components of the two soils. The decrease of organic matter content reduced the sorption capacity of fluvo-aquic soil. However, because the content of available inorganic components in black soil was high, after removing DOMen, more inorganic sites were exposed to increase the sorption capacity. In addition, DOMen could form complexes with BPA in solution, thus the removal of DOMen promoted BPA sorption onto black soil. Under the experimental conditions, contribution of DOMex to the total sorption of BPA onto both soils was not more than 30%. Results of dialysis experiments and soil sorption experiments indicated that effects of coexisting DOMex on BPA sorption was related to the affinity of DOMex to soils and complexation of BPA and DOMex. Since the affinity of DOMex to fluvo-aquic soil was relatively low, the complex of BPA and DOMex in solution was the main inhibition mechanism for BPA sorption. For black soil, higher complexation proportion of BPA with DOMex adsorbed onto soil which promoted BPA sorption onto soil. The findings are of significance for understanding the co-migration of DOM with BPA through soils.
Collapse
Affiliation(s)
- Limei Mo
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, And MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Qiaohui Wang
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, And MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| | - Erping Bi
- School of Water Resources and Environment, Beijing Key Laboratory of Water Resources and Environmental Engineering, And MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, PR China.
| |
Collapse
|
5
|
Rivas Chen F, Chefetz B, Thompson ML. Comparison of adsorption behaviors of selected endocrine-disrupting compounds in soil. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:756-767. [PMID: 33769579 DOI: 10.1002/jeq2.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Bisphenol-A (BPA), 17α-ethinylestradiol (EE2), and 4-nonylphenol (4NP) are endocrine-disrupting chemicals (EDCs) that are useful models for studying the potential fate and transport of EDCs in soil and water environments. Two alluvial soils with contrasting physicochemical properties were used as adsorbents for this study. The Zook soil material had more organic matter and clay than the sandy loam Hanlon soil material. Batch equilibrium experiments were performed to generate adsorption isotherms, to determine the adsorption parameters, and to assess desorption hysteresis. Adsorption of BPA to both soils followed an L-type isotherm, and 4NP adsorbed to both Hanlon and Zook soils exhibited S-shape isotherms. EE2 adsorbed to the Zook soil also followed an S-shaped isotherm, but EE2 adsorbed to the Hanlon soil showed an H-type isotherm. Overall, the Sips model fit the data well, with standard errors of prediction generally ≤6%. The adsorption affinity (KLF ) values were highest for 4NP, and BPA had the lowest hysteresis indices. The data suggest that BPA was most likely adsorbed by soil organic matter via hydrogen bonding involving its two phenolic groups. In contrast, isotherm shape, model affinity indices, lack of desorption, and molecular-scale characteristics led us to infer that 4NP was adsorbed largely by the retention of molecular clusters, perhaps in clay nanopores. Finally, the adsorption of EE2 exhibited different isotherm shapes for the two soils as well as intermediate affinity and desorption indices, suggesting that EE2 molecules could be retained both by soil organic matter and by clay.
Collapse
Affiliation(s)
- Fritzie Rivas Chen
- Monty's Plant Food Company, 4800 Strawberry Lane, Louisville, KY, 40209, USA
| | - Benny Chefetz
- Dep. of Soil and Water Sciences, Faculty of Agriculture, Food and Environment, The Hebrew Univ. of Jerusalem, Rehovot, 7610001, Israel
| | - Michael L Thompson
- Dep. of Agronomy, Iowa State Univ., 716 Farm House Lane, Ames, IA, 50010, USA
| |
Collapse
|
6
|
Guérin T, Ghinet A, Hossart M, Waterlot C. Wheat and ryegrass biomass ashes as effective sorbents for metallic and organic pollutants from contaminated water in lab-engineered cartridge filtration system. BIORESOURCE TECHNOLOGY 2020; 318:124044. [PMID: 32889120 DOI: 10.1016/j.biortech.2020.124044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
Three plant biomasses (miscanthus, ryegrass and wheat) have been considered for the preparation of five different sorbents evaluated for their potential to sorb cadmium and lead and four emergent organic compounds (diclofenac, sulfamethoxazole, 17α-ethynylestradiol and triclosan) from artificially contaminated water. Lab-created cartridges were filled with each sorbent and all experiments were systematically compared to activated charcoal Norit®. Results from activated charcoal, wheat straw and acidified wheat straw were supported by the Langmuir and Freundlich models. Wheat straw ashes were an excellent metal extractor that exceeded the potential of well-known activated charcoal. Acidified sorbents (wheat and ryegrass) were very effective in eliminating the selected emerging organic contaminants displaying equipotent or superior activity compared to activated charcoal. These results open the way for further in natura studies by proposing new biosource materials as new effective tools in the fight against water pollution.
Collapse
Affiliation(s)
- Théo Guérin
- Univ. Lille, IMT Douai, Univ. Artois, Yncréa Hauts-de-France, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France; Yncréa Hauts-de-France, Laboratory of Sustainable Chemistry and Health, Health & Environment Department, Team Sustainable Chemistry, Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille, 13 rue de Toul, F-59046 Lille, France
| | - Alina Ghinet
- Yncréa Hauts-de-France, Laboratory of Sustainable Chemistry and Health, Health & Environment Department, Team Sustainable Chemistry, Ecole des Hautes Etudes d'Ingénieur (HEI), UCLille, 13 rue de Toul, F-59046 Lille, France; Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000 Lille, France; Faculty of Chemistry, Department of Organic Chemistry, 'Al. I. Cuza' University of Iasi, Bd. Carol I nr. 11, 700506 Iasi, Romania
| | - Marc Hossart
- La Spiruline de Marc, 2 bis Grande Rue, 80560 Saint-Léger-lès-Authie, France
| | - Christophe Waterlot
- Univ. Lille, IMT Douai, Univ. Artois, Yncréa Hauts-de-France, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France.
| |
Collapse
|
7
|
Wang K, Larkin T, Singhal N, Zhao Y. Leachability of endocrine disrupting chemicals (EDCs) in municipal sewage sludge: Effects of EDCs interaction with dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140366. [PMID: 32623156 DOI: 10.1016/j.scitotenv.2020.140366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
In this study, experiments were performed to assess the significance of dissolved organic matter (DOM) on the leachability of four common EDCs, i.e., bisphenol A (BPA), 17α-ethinylestradiol (EE2), progesterone (PGT) and testosterone (TST), in municipal sewage sludge (MSS) under landfill conditions. The DOM was derived from two sources: MSS (MDOM), and natural soil represented by organic matter obtained from the Suwannee River (NDOM). Fluorescence excitation-emission matrix quenching combined with parallel factor analysis was adopted to characterize the interaction properties between the EDCs and DOM. The accumulative leachability of the target EDCs ranged from 0.09% (PGT) to 3.8% (TST). In particular, the leaching of BPA, EE2 and TST followed S-shaped curves, while PGT exhibited continuous leaching potential in untreated MSS. With the introduction of DOM, (i) the leachability of BPA and EE2 increased to 13.4% and 61.6%, respectively, whereas those of PGT and TST declined by 61.3% and 45.8%, respectively, and (ii) BPA, EE2 and PGT no longer reached leaching equilibrium but the S-shaped leaching property of TST persisted. The differential effects of MDOM and NDOM at identical concentrations on the EDCs leachability increased with curing time. BPA, EE2 and PGT quenched the MDOM fluorophores attributed to aromatic protein-like components. The fluorescence quenching of NDOM by BPA, EE2 and PGT was centered on soluble microbial by-product-like and humic-like substances. Compared with PGT, EE2 and BPA had greater capability for binding with DOM components largely via hydrophobic interactions, whereas PGT preferentially interacted with the DOM hydrophilic functionalities through specific interactions. TST had no binding capability but displayed potentials competing for sorption sites with DOM moieties. Our findings suggested that the management of MSS increased the risk of environmental contamination by EDCs for a long duration and that DOM was a useful indicator to predict the migration and transport properties of EDCs.
Collapse
Affiliation(s)
- Kun Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agricultural and Rural Affairs, Tianjin 300191, PR China; Jinan Environmental Research Academy, Jinan 250102, PR China; Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand.
| | - Tam Larkin
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag, 92019, New Zealand
| | - Yujie Zhao
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agricultural and Rural Affairs, Tianjin 300191, PR China
| |
Collapse
|
8
|
Li Y, Hu B, Gao S, Tong X, Jiang L, Chen X, An S, Zhang F. Comparison of 17β-estradiol adsorption on soil organic components and soil remediation agent-biochar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114572. [PMID: 32315821 DOI: 10.1016/j.envpol.2020.114572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/14/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Steroid estrogen residues (SEs) in the soil have attracted growing attention because of their potential for endocrine disruption. Soil organic matter (SOM) and soil remediation agent-biochar, both have important influences on the fate of SEs in the soil environment. This study compared the adsorption of 17β-estradiol (E2) on wheat straw biochar (W-BC) and cow manure biochar (C-BC) with main SOM components including biomacromolecules (cellulose, collagen and lignin) and humic acids (HA). The impact of pyrolysis temperature (350 °C, 550 °C, and 700 °C) on the adsorption capacity of biochar and different concentrations NaClO oxidation on the adsorption capacity of HA were also investigated. The experimental results showed that the adsorption of E2 by biomolecules conformed to the linear isotherm (R2 > 0.88), and the adsorption of E2 on biochars and HA were well described by the Langmuir and Freundlich isotherm (R2 > 0.94). Meanwhile, the order of the E2 adsorption capacity of sorbents was W-BC > C-BC > HA > lignin > collagen > cellulose. The adsorption capacity of biochar and SOM for E2 increased with the enhancement of aromaticity and hydrophobicity and the reduction of polarity. In addition, the increase of pyrolysis temperature of biochars also promoted the adsorption capacity of E2, while oxidation treatment with NaClO reduced the adsorption capacity of HA to E2. These results deepened the understanding of the adsorption behaviour of E2 on SOM and biochar, and expanded the understanding of the behaviour of SEs in the soil environment.
Collapse
Affiliation(s)
- Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China.
| | - Baiyang Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Shiying Gao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Xin Tong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing, 102206, China
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Siyu An
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, 100875, Beijing, China
| | - Fengsong Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101, Beijing, China
| |
Collapse
|
9
|
Yu W, Du B, Fan G, Yang S, Yang L, Zhang M. Spatio-temporal distribution and transformation of 17α- and 17β-estradiol in sterilized soil: A column experiment. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122092. [PMID: 31972526 DOI: 10.1016/j.jhazmat.2020.122092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/12/2019] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The environmental behaviors of steroid estrogens (SEs) associated with land irrigation and application are of critical concern worldwide. Understanding the spatio-temporal distribution and transformation process of these estrogenic compounds in soil is greatly significant. In this study, laboratory soil column experiments were conducted to investigate and explore the migration and abiotic transformation of 17α-estradiol (17α-E2) and 17β-estradiol (17β-E2) over spatial and time scales. Results indicated that the migration tendency of 17α-E2 and 17β-E2 was similar. Discrepancies in transport for different SEs groups might be due to the competitive sorption and isomeric transformation in the binary-solute system. 17α-E2 and 17β-E2 can also undergo the abiotic transformation during soil column transport. The soil with naturally abundant mineral substances (e.g., iron and manganese oxides) indicated that E2 isomers tended to mineral-promoted racemization, oxidation, reduction, and radical coupling reactions. Some possible transformation products (e.g., SE239, E2378, and SE dimer476) were identified and proposed in soil samples. Compared to the single compound tests, the estimated 17β-estradiol equivalency (EEQ) values of E2 mixture were higher during SEs migration process.
Collapse
Affiliation(s)
- Weiwei Yu
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Banghao Du
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Gongduan Fan
- College of Civil Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China
| | - Shuo Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Lun Yang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Minne Zhang
- Key Laboratory of Hydraulic and Waterway Engineering of the Ministry of Education, School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
10
|
Tong X, Li Y, Zhang F, Chen X, Zhao Y, Hu B, Zhang X. Adsorption of 17β-estradiol onto humic-mineral complexes and effects of temperature, pH, and bisphenol A on the adsorption process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112924. [PMID: 31362254 DOI: 10.1016/j.envpol.2019.07.092] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
The long-term use of animal manure in agriculture has resulted in estrogen pollution, which poses risks to facility vegetable soils. Owing to the complex soil composition, estrogen may exhibit a variety of behaviors at the water/soil interface. This study demonstrated the role of humic acid (HA) on the 17β-estradiol (E2) adsorption by clay minerals (montmorillonite, kaolinite, and hematite). The interfacial behaviors were investigated using adsorption kinetics and isotherms data. Then, the effects of temperature, pH, and bisphenol A (BPA) on the interactions between humic-mineral complexes and E2 were explored. The adsorption of E2 is an exothermic and spontaneous process, and the addition of HA to minerals significantly promoted their E2 adsorption capacities. Higher pH levels (>10) and the presence of BPA decreased the adsorption capacities of minerals and mineral complexes for E2. Moreover, intercalation, hydrophobic partitioning, π-π interactions and hydrogen bonding could dominate the E2 adsorption onto complexes. These results provided insight into the interfacial behaviors of E2 on the surfaces of humic-mineral complexes and promoted the understanding of the migration and transport of estrogens in soils.
Collapse
Affiliation(s)
- Xin Tong
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Fengsong Zhang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Boyang Hu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xuelian Zhang
- Beijing Soil and Fertilizer Extension Service Station, Beijing 100029, China
| |
Collapse
|
11
|
Wu W, Sheng H, Gu C, Song Y, Willbold S, Qiao Y, Liu G, Zhao W, Wang Y, Jiang X, Wang F. Extraneous dissolved organic matter enhanced adsorption of dibutyl phthalate in soils: Insights from kinetics and isotherms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1495-1503. [PMID: 29727973 DOI: 10.1016/j.scitotenv.2018.02.251] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
The widespread use of plastic film, especially in agricultural practices, has resulted in phthalic acid esters (PAEs) pollution, which poses risks for greenhouse soils. Application of composted manure is a common agricultural practice that adds extraneous dissolved organic matter (DOM) to the soil, however, the effect of extraneous DOM on the behavior of PAEs in agricultural soil is not clear. Dibutyl phthalate (DBP) was used as a model compound to investigate the effect and mechanism of extraneous DOM on the adsorption kinetics and isotherms of PAEs in two types of soils, through batch experiments and characterization of extraneous DOM and soils using fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The equilibrium adsorption amount of DBP in black soil was higher than in red soil regardless of the presence of extraneous DOM, due to the higher organic matter content of black soil. Hydrophobic partition played a dominant role in the DBP adsorption process of soils with and without extraneous DOM. The addition of DOM enhanced the adsorption capacity of DBP through partition in the two soils, especially at high DBP concentrations. Additions of a lower concentration of DOM better enhanced the adsorption effect than the higher concentrated DOM, due to an increase in water solubility of DBP resulted from excessive extraneous DOM in aqueous phase. Differences in mineral composition of soils led to diverse adsorption mechanisms of DBP as affected by additions of extraneous DOM. The FTIR spectra indicated that the intra-molecular and intermolecular hydrogen bond interactions of carboxylic acids, aromatic CC and CO in amides were involved in DBP adsorption in soils. Therefore, addition of DOM may increase adsorption of DBP in soils and thus influence its bioavailability and transformation in soils.
Collapse
Affiliation(s)
- Wei Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Sabine Willbold
- Central Institute for Engineering, Electronics and Analytics, Forschungszentrum Jülich GmbH, North Rhine-Westphalia 52425, Germany
| | - Yan Qiao
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030000, China
| | - Guangxia Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhao
- School of Environment Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Di QN, Cao WX, Xu R, Lu L, Xu Q, Wang XB. Chronic low-dose exposure of nonylphenol alters energy homeostasis in the reproductive system of female rats. Toxicol Appl Pharmacol 2018; 348:67-75. [PMID: 29641977 DOI: 10.1016/j.taap.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/30/2018] [Accepted: 04/04/2018] [Indexed: 12/31/2022]
Abstract
Nonylphenol (NP) as a confirmed endocrine disrupt chemical that causes reproductive and developmental toxicity. Previous studies focused only on short-term, high-dose exposure in vivo, or in vitro on female reproductive toxicity, which cannot accurately simulate the real human exposure scenario. The present study aims to explore NP toxicity and the underlying mechanisms of chronic low-dose NP exposure (500 μg/kg·bw/day, for 8 weeks) in the reproductive system of female rats. The results indicated that NP exposure caused female reproductive toxicity, including alterations in serum 17β-estradiol (E2) levels, endometria hyperplasia, altered oogenesis and significant changes in the metabolic profile observed in urine, serum, uterus and ovary. Furthermore, expression of the energy-sensitive proteins carnitine palmitoyltransferase I (CPTI), adenosine 5'-monophosphate-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma (PPAR-γ) were found to be down-regulated in uterus under NP exposure, which suggested the impaired fatty acid oxidation. Accordingly, a comprehensive metabolomics study in key reproductive tissues and body fluids revealed that 12 metabolites were associated with energy metabolism as potential biomarkers for the evaluation of low toxicity at early stages, with L-carnitines being the most representative ones. The present findings provide evidence that chronic low-dose NP exposure can significantly disrupt energy homeostasis in females, thus offering further insights into NP reproductive toxicity.
Collapse
Affiliation(s)
- Qian-Nan Di
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Wei-Xin Cao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Run Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale University, 60 College Street, New Haven, CT 06520-8034, USA
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Xiao-Bin Wang
- Laboratory Animal Center, Southeast University, Nanjing 210009, China.
| |
Collapse
|
13
|
Sun J, Pan L, Tsang DCW, Zhan Y, Zhu L, Li X. Organic contamination and remediation in the agricultural soils of China: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:724-740. [PMID: 29017123 DOI: 10.1016/j.scitotenv.2017.09.271] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Soil pollution is a global problem in both developed and developing countries. Countries with rapidly developing economies such as China are faced with significant soil pollution problems due to accelerated industrialization and urbanization over the last decades. This paper provides an overview of published scientific data on soil pollution across China with particular focus on organic contamination in agricultural soils. Based on the related peer-reviewed papers published since 2000 (n=203), we evaluated the priority organic contaminants across China, revealed their spatial and temporal distributions at the national scale, identified their possible sources and fates in soil, assessed their potential environmental risks, and presented the challenges in current remediation technologies regarding the combined organic pollution of agricultural soils. The primary pollutants in Northeast China were polycyclic aromatic hydrocarbons (PAHs) due to intensive fossil fuel combustion. The concentrations of organochlorine pesticides (OCPs) and phthalic acid esters (PAEs) were higher in North and Central China owing to concentrated agricultural activities. The levels of polychlorinated biphenyls (PCBs) were higher in East and South China primarily because of past industrial operations and improper electronic waste processing. The co-existence of organic contaminants was severe in the Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei Region, which are the most populated and industrialized regions in China. Integrated biological-chemical remediation technologies, such as surfactant-enhanced bioremediation, have potential uses in the remediation of soil contaminated by multiple contaminants. This critical review highlighted several future research directions including combined pollution, interfacial interactions, food safety, bioavailability, ecological effects, and integrated remediation methods for combined organic pollution in soil.
Collapse
Affiliation(s)
- Jianteng Sun
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Lili Pan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yu Zhan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
14
|
Orelma H, Virtanen T, Spoljaric S, Lehmonen J, Seppälä J, Rojas OJ, Harlin A. Cyclodextrin-Functionalized Fiber Yarns Spun from Deep Eutectic Cellulose Solutions for Nonspecific Hormone Capture in Aqueous Matrices. Biomacromolecules 2018; 19:652-661. [PMID: 29366320 PMCID: PMC6150646 DOI: 10.1021/acs.biomac.7b01765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
A wood
based yarn platform for capturing pharmaceutical molecules
from water was developed. Cellulose fiber yarns were modified with
cyclodextrins, and the capture of 17α-ethinyl estradiol (EE2),
a synthetic estrogen hormone used as contraceptive, from water was
tested. The yarns were prepared by spinning a deep eutectic solution
(DES) of cellulose in choline chloride-urea. Despite their high porosity
and water sorption capacity (5 g/g), the spun fiber yarns displayed
high wet strength, up to 60% of that recorded in dry condition (128
MPa with 17% strain at break). Cyclodextrin irreversible attachment
on the yarns was achieved with adsorbed chitosan and the conjugation
reactions and capture of EE2 by the cyclodextrin-modified cellulose
were confirmed via online detection with Surface Plasmon Resonance
(SPR). The facile synthesis of the bioactive yarns and EE2 binding
capacity from aqueous matrices (as high as 2.5 mg/g) indicate excellent
prospects for inexpensive platforms in disposable affinity filtration.
The study presents a strategy to produce a wood fiber based yarn to
be used as a platform for human and veterinary pharmaceutical hormone
capture.
Collapse
Affiliation(s)
- Hannes Orelma
- VTT Technical Research Centre of Finland Ltd , Biologinkuja 7, FI-02044 Espoo, Finland
| | - Tommi Virtanen
- VTT Technical Research Centre of Finland Ltd , Biologinkuja 7, FI-02044 Espoo, Finland
| | | | - Jani Lehmonen
- VTT Technical Research Centre of Finland Ltd , Biologinkuja 7, FI-02044 Espoo, Finland
| | | | | | - Ali Harlin
- VTT Technical Research Centre of Finland Ltd , Biologinkuja 7, FI-02044 Espoo, Finland
| |
Collapse
|
15
|
Fei YH, Leung KMY, Li XY. Adsorption of 17 α-ethyl estradiol with the competition of bisphenol A on the marine sediment of Hong Kong. MARINE POLLUTION BULLETIN 2017; 124:753-759. [PMID: 28669476 DOI: 10.1016/j.marpolbul.2017.06.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
The present experimental study was to characterize the adsorption behavior of 17 α-ethyl estradiol (EE2) onto marine sediment in both the single and binary solute systems. Stepwise spiking was innovatively performed to better understand the competition effects. Adsorption of EE2 on the marine sediment can be well fitted by the Freundlich model with an affinity coefficient (KF) varying from 15.8 to 39.8L/kg. It was significantly influenced by SOM and the particle properties. Co-presence of BPA brought about a significant competition effect on the adsorption of EE2, leading to a reduced EE2 adsorption. The competitive effect imposed by EE2 to BPA, however, was even more serious owing probably to the large molecular structure and high hydrophobicity of EE2. The sediment sample with the highest SOM and SSA presented a mild competition effect, while the sediment with the lowest SOM and largest particle size exhibited the most serious competition effect.
Collapse
Affiliation(s)
- Ying-Heng Fei
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Kenneth M Y Leung
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
16
|
Ma W, Nie C, Chen B, Cheng X, Lun X, Zeng F. Adsorption and biodegradation of three selected endocrine disrupting chemicals in river-based artificial groundwater recharge with reclaimed municipal wastewater. J Environ Sci (China) 2015; 31:154-163. [PMID: 25968269 DOI: 10.1016/j.jes.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Endocrine disrupting chemical (EDC) pollution in river-based artificial groundwater recharge using reclaimed municipal wastewater poses a potential threat to groundwater-based drinking water supplies in Beijing, China. Lab-scale leaching column experiments simulating recharge were conducted to study the adsorption, biodegradation, and transport characteristics of three selected EDCs: 17β-estradiol (E2), 17α-ethinylestradiol (EE2) and bisphenol A (BPA). The three recharge columns were operated under the conditions of continual sterilization recharge (CSR), continual recharge (CR), and wetting and drying alternative recharge (WDAR). The results showed that the attenuation effect of the EDCs was in the order of WDAR>CR>CSR system and E2>EE2>BPA, which followed first-order kinetics. The EDC attenuation rate constants were 0.0783, 0.0505, and 0.0479 m(-1) for E2, EE2 and BPA in the CR system, respectively. The removal rates of E2, EE2, and BPA in the CR system were 98%, 96% and 92%, which mainly depended on biodegradation and were affected by water temperature. In the CR system, the concentrations of BPA, EE2, and E2 in soil were 4, 6 and 10 times higher than in the WDAR system, respectively. According to the DGGE fingerprints, the bacterial community in the bottom layer was more diverse than in the upper layer, which was related to the EDC concentrations in the water-soil system. The dominant group was found to be proteobacteria, including Betaproteobacteria and Alphaproteobacteria, suggesting that these microbes might play an important role in EDC degradation.
Collapse
Affiliation(s)
- Weifang Ma
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Chao Nie
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Bin Chen
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Xiang Cheng
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xiaoxiu Lun
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Fangang Zeng
- School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| |
Collapse
|
17
|
Wang C, Li H, Liao S, Zhang D, Wu M, Pan B, Xing B. Sorption affinities of sulfamethoxazole and carbamazepine to two sorbents under co-sorption systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 194:203-209. [PMID: 25150454 DOI: 10.1016/j.envpol.2014.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 05/05/2023]
Abstract
The Kd of sulfamethoxazole (SMX) on activated carbon (AC) was larger than that of SMX on single-walled carbon nanotubes (SC), but the competition of SMX with carbamazepine (CBZ) for adsorption sites was weaker on AC than SC. Thus, a large Kd value does not necessarily reflect a high affinity. The analysis of the apparent sorption, competition, desorption hysteresis, and the sorption thermodynamics for SMX and CBZ did not provide sufficient information to distinguish their sorption affinities. The release of the adsorbed CBZ was not altered with SMX as the competitor, but SMX release increased significantly after CBZ addition. The higher sorption affinity of CBZ may be explained by the interactions of the CBZ benzene rings with the aromatic structures of the adsorbents. Although the thermodynamic meaning cannot be described, the release ratio of the adsorbed pollutants provides useful information for understanding pollutant sorption strength and associated risks.
Collapse
Affiliation(s)
- Chi Wang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Hao Li
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Shaohua Liao
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Di Zhang
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Min Wu
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China
| | - Bo Pan
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
18
|
Adsorption behaviors of 17α-ethinylestradiol in sediment-water system in northern Taihu Lake, China. ScientificWorldJournal 2014; 2014:371075. [PMID: 25152910 PMCID: PMC4135134 DOI: 10.1155/2014/371075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 11/25/2022] Open
Abstract
Adsorption behavior of 17α-ethinylestradiol (EE2) in northern Taihu Lake sediment was analyzed by using batch equilibrium experiment. Freundlich isotherm could describe the adsorption thermodynamic behavior of EE2 in sediment. Sediment organic matter (SOM) contents had important impacts on the adsorption capacity for EE2. The pH values also influenced the adsorption capacity for EE2. Increase of pH value could decrease the EE2 adsorption, which might be due to the electrostatic repulsion between the anionic form of EE2 and sediments with negative charge under high pH values. Competitive effects of bisphenol A (BPA) on EE2 adsorption were further analyzed. The results showed that low concentration BPA did not have significant influences on EE2 adsorption. However, high concentration BPA could reduce EE2 adsorption, which might be due to the similar molecular diameter of BPA with adsorption sites and one more benzene ring with a hydroxyl group in BPA. These results provide primary information of EE2 adsorption in sediment-water system in Taihu Lake, which is useful for the environmental risk assessment and management of EE2 in studied area.
Collapse
|