1
|
Xing J, Liu S. Application of loaded graphene oxide biomaterials in the repair and treatment of bone defects. Bone Joint Res 2024; 13:725-740. [PMID: 39631429 PMCID: PMC11617066 DOI: 10.1302/2046-3758.1312.bjr-2024-0048.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Addressing bone defects is a complex medical challenge that involves dealing with various skeletal conditions, including fractures, osteoporosis (OP), bone tumours, and bone infection defects. Despite the availability of multiple conventional treatments for these skeletal conditions, numerous limitations and unresolved issues persist. As a solution, advancements in biomedical materials have recently resulted in novel therapeutic concepts. As an emerging biomaterial for bone defect treatment, graphene oxide (GO) in particular has gained substantial attention from researchers due to its potential applications and prospects. In other words, GO scaffolds have demonstrated remarkable potential for bone defect treatment. Furthermore, GO-loaded biomaterials can promote osteoblast adhesion, proliferation, and differentiation while stimulating bone matrix deposition and formation. Given their favourable biocompatibility and osteoinductive capabilities, these materials offer a novel therapeutic avenue for bone tissue regeneration and repair. This comprehensive review systematically outlines GO scaffolds' diverse roles and potential applications in bone defect treatment.
Collapse
Affiliation(s)
- Jinyi Xing
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shuzhong Liu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Sindi AM. Applications of graphene oxide and reduced graphene oxide in advanced dental materials and therapies. J Taibah Univ Med Sci 2024; 19:403-421. [PMID: 38405382 PMCID: PMC10885788 DOI: 10.1016/j.jtumed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/02/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
The graphene family of nanomaterials acquired significant attention in the field of dentistry due to a range of interesting properties. Graphene oxide (GO) and reduced graphene oxide (rGO) are the major graphene derivatives that are widely used in dental applications. These derivatives exhibit excellent mechanical properties, superior biocompatibility, good antibacterial properties, extreme chemical stability, and favorable tribological characteristics, thus representing highly materials for dentistry. The amphiphilic nature of GO allows covalent and noncovalent modifications that are favorable for biomedical applications. Graphene can influence the differentiation of dental pulp stem cells (DPSCs) and enhance the properties of other biomaterials. Here, we review the dental applications of GO or rGO with regards to antimicrobial activity, therapeutic drug delivery, restorative dentistry, implants, pulp regeneration, bone regeneration, periodontal tissue regeneration, biosensors, and tooth whitening.
Collapse
Affiliation(s)
- Amal M. Sindi
- Associate Professor, Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, KSA
| |
Collapse
|
3
|
Selective ischemic-hemisphere targeting Ginkgolide B liposomes with improved solubility and therapeutic efficacy for cerebral ischemia-reperfusion injury. Asian J Pharm Sci 2023; 18:100783. [PMID: 36891470 PMCID: PMC9986716 DOI: 10.1016/j.ajps.2023.100783] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 02/13/2023] Open
Abstract
Cerebral ischemia-reperfusion injury (CI/RI) remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies. One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier (BBB), which affects the intracerebral delivery of drugs. Ginkgolide B (GB), a major bioactive component in commercially available products of Ginkgo biloba, has been shown significance in CI/RI treatment by regulating inflammatory pathways, oxidative damage, and metabolic disturbance, and seems to be a candidate for stroke recovery. However, limited by its poor hydrophilicity and lipophilicity, the development of GB preparations with good solubility, stability, and the ability to cross the BBB remains a challenge. Herein, we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid (DHA) to obtain a covalent complex GB-DHA, which can not only enhance the pharmacological effect of GB, but can also be encapsulated in liposomes stably. The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion (MCAO) rats. Compared to the marketed ginkgolide injection, Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion. Low levels of reactive oxygen species (ROS) and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment, while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype, which modulate neuroinflammatory and angiogenesis. In addition, Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway. Thus, transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.
Collapse
|
4
|
Bellier N, Baipaywad P, Ryu N, Lee JY, Park H. Recent biomedical advancements in graphene oxide- and reduced graphene oxide-based nanocomposite nanocarriers. Biomater Res 2022; 26:65. [DOI: 10.1186/s40824-022-00313-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/30/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractRecently, nanocarriers, including micelles, polymers, carbon-based materials, liposomes, and other substances, have been developed for efficient delivery of drugs, nucleotides, and biomolecules. This review focuses on graphene oxide (GO) and reduced graphene oxide (rGO) as active components in nanocarriers, because their chemical structures and easy functionalization can be valuable assets for in vitro and in vivo delivery. Herein, we describe the preparation, structure, and functionalization of GO and rGO. Additionally, their important properties to function as nanocarriers are presented, including their molecular interactions with various compounds, near-infrared light adsorption, and biocompatibility. Subsequently, their mechanisms and the most appealing examples of their delivery applications are summarized. Overall, GO- and rGO-based nanocomposites show great promise as multipurpose nanocarriers owing to their various potential applications in drug and gene delivery, phototherapy, bioimaging, biosensing, tissue engineering, and as antibacterial agents.
Collapse
|
5
|
Rahimi S, Chen Y, Zareian M, Pandit S, Mijakovic I. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Adv Drug Deliv Rev 2022; 189:114467. [PMID: 35914588 DOI: 10.1016/j.addr.2022.114467] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/24/2023]
Abstract
Despite significant advances in early detection and personalized treatment, cancer is still among the leading causes of death globally. One of the possible anticancer approaches that is presently receiving a lot of attention is the development of nanocarriers capable of specific and efficient delivery of anticancer drugs. Graphene-based materials are promising nanocarriers in this respect, due to their high drug loading capacity and biocompatibility. In this review, we present an overview on the interactions of graphene-based materials with normal mammalian cells at the molecular level as well as cellular and subcellular levels, including plasma membrane, cytoskeleton, and membrane-bound organelles such as lysosomes, mitochondria, nucleus, endoplasmic reticulum, and peroxisome. In parallel, we assemble the knowledge about the interactions of graphene-based materials with cancerous cells, that are considered as the potential applications of these materials for cancer therapy including metastasis treatment, targeted drug delivery, and differentiation to non-cancer stem cells. We highlight the influence of key parameters, such as the size and surface chemistry of graphene-based materials that govern the efficiency of internalization and biocompatibility of these particles in vitro and in vivo. Finally, this review aims to correlate the key parameters of graphene-based nanomaterials specially graphene oxide, such as size and surface modifications, to their interactions with the cancerous and non-cancerous cells for designing and engineering them for bio-applications and especially for therapeutic purposes.
Collapse
Affiliation(s)
- Shadi Rahimi
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden.
| | - Yanyan Chen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Mohsen Zareian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; State Key Laboratory of Bio-based Material and Green Paper-making, Qilu University of Technology, Jinan, China
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg 41296, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
6
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Wang Y, Li J, Li X, Shi J, Jiang Z, Zhang CY. Graphene-based nanomaterials for cancer therapy and anti-infections. Bioact Mater 2022; 14:335-349. [PMID: 35386816 PMCID: PMC8964986 DOI: 10.1016/j.bioactmat.2022.01.045] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 12/11/2022] Open
Abstract
Graphene-based nanomaterials (GBNMs) has been thoroughly investigated and extensively used in many biomedical fields, especially cancer therapy and bacteria-induced infectious diseases treatment, which have attracted more and more attentions due to the improved therapeutic efficacy and reduced reverse effect. GBNMs, as classic two-dimensional (2D) nanomaterials, have unique structure and excellent physicochemical properties, exhibiting tremendous potential in cancer therapy and bacteria-induced infectious diseases treatment. In this review, we first introduced the recent advances in development of GBNMs and GBNMs-based treatment strategies for cancer, including photothermal therapy (PTT), photodynamic therapy (PDT) and multiple combination therapies. Then, we surveyed the research progress of applications of GBNMs in anti-infection such as antimicrobial resistance, wound healing and removal of biofilm. The mechanism of GBNMs was also expounded. Finally, we concluded and discussed the advantages, challenges/limitations and perspective about the development of GBNMs and GBNMs-based therapies. Collectively, we think that GBNMs could be potential in clinic to promote the improvement of cancer therapy and infections treatment.
Collapse
Affiliation(s)
- Yan Wang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Juan Li
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Xiaobin Li
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jinping Shi
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhaotan Jiang
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Can Yang Zhang
- Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
8
|
Voitko KV, Goshovska YV, Demianenko EM, Sementsov YI, Zhuravskyi SV, Mys LA, Korkach YP, Kolev H, Sagach VF. Graphene oxide nanoflackes prevent reperfussion injury of Langerdorff isolated rat heart providing antioxidative activity in situ. Free Radic Res 2022; 56:328-341. [PMID: 35769030 DOI: 10.1080/10715762.2022.2096450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Carbon materials possess powerful antioxidant activity that might be promising for the development of new generation treatment of cardiovascular diseases, ischemic conditions, and reperfusion injury. The present study aimed to characterize the structure of nanosized graphene oxide (GrO) sample and evaluate the antioxidant efficacy of GrO in situ models of oxidative stress widely used in pre-clinical studies. The structure and surface chemistry of the initial samples were analyzed via LDS, RAMAN, LDI, TPD-MS, and FTIR methods. The GrO showed a strong ability to scavenge DPPH, hydroxyl, and superoxide anion free radicals and have a total antioxidant capacity. The DFT quantum-chemical calculation demonstrated the radical scavenging effect of GrO proceeding due to the physical adsorption of the free radical on the surface. For evaluation of the antioxidant effect of GrO in situ, we used the model of ischemia-reperfusion (I/R) of Langendorff isolated rat heart. We revealed that intravenous pretreatment of Wistar male rats with GrO significantly increased resistance of myocardium to I/R, improved restoration of heart function, prevented non-effective oxygen utilization, and I/R induced reactive oxygen species production in cardiac tissue. Thus, our data demonstrate the perspective of further use of GrO for the development of antiischemic therapy.
Collapse
Affiliation(s)
- Kateryna V Voitko
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Yulia V Goshovska
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Eugeniy M Demianenko
- Department of Quantum Chemistry and Chemical Physics of Nanosystems;Chuiko Institute of Surface Chemistry, NAS of Ukraine, 17 General Naumov Str., Kyiv 03164, Ukraine
| | - Yury I Sementsov
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Sergey V Zhuravskyi
- Department of Physico-chemistry of Carbon Materials;Chuiko Institute of Surface Chemistry, NAS of Ukraine; 17 General Naumov Str.,Kyiv 03164, Ukraine
| | - Lida A Mys
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Yulia P Korkach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| | - Hristo Kolev
- Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Bldg 11, 1113 Sofia, Bulgaria
| | - Vadym F Sagach
- Department of Blood Circulation, Bogomoletz Institute of Physiology, NASof Ukraine, 4 Bogomolets str., 01024, Kyiv, Ukraine
| |
Collapse
|
9
|
Ghazimoradi MM, Ghorbani MH, Ebadian E, Hassani A, Mirzababaei S, Hodjat M, Navaei-Nigjeh M, Abdollahi M. Epigenetic effects of graphene oxide and its derivatives: A mini-review. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503483. [PMID: 35649677 DOI: 10.1016/j.mrgentox.2022.503483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 06/15/2023]
Abstract
Graphene oxide (GO), an engineered nanomaterial, has a two-dimensional structure with carbon atoms arranged in a hexagonal array. While it has been widely used in many industries, such as biomedicine, electronics, and biosensors, there are still concerns over its safety. Recently, many studies have focused on the potential toxicity of GO. Epigenetic toxicity is an important aspect of a material's toxicological profile, since changes in gene expression have been associated with carcinogenicity and disease progression. In this review, we focus on the epigenetic alterations caused by GO, including DNA methylation, histone modification, and altered expression of non-coding RNAs. GO can affect DNA methyltransferase activity and disrupt the methylation of cytosine bases in DNA strands, leading to alteration of genome expression. Modulation of histones by GO, targeting histone deacetylase and demethylase, as well as dysregulation of miRNA and lncRNA expression have been reported. Further studies are required to determine the mechanisms of GO-induced epigenetic alterations.
Collapse
Affiliation(s)
- Mohammad Mahdi Ghazimoradi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Hossein Ghorbani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ehsan Ebadian
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Ali Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
10
|
Rapid and efficient testing of the toxicity of graphene-related materials in primary human lung cells. Sci Rep 2022; 12:7664. [PMID: 35538131 PMCID: PMC9088729 DOI: 10.1038/s41598-022-11840-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
Graphene and its derivative materials are manufactured by numerous companies and research laboratories, during which processes they can come into contact with their handlers' physiological barriers—for instance, their respiratory system. Despite their potential toxicity, these materials have even been used in face masks to prevent COVID-19 transmission. The increasingly widespread use of these materials requires the design and implementation of appropriate, versatile, and accurate toxicological screening methods to guarantee their safety. Murine models are adequate, though limited when exploring different doses and lengths of exposure—as this increases the number of animals required, contrary to the Three R's principle in animal experimentation. This article proposes an in vitro model using primary, non-transformed normal human bronchial epithelial (NHBE) cells as an alternative to the most widely used model to date, the human lung tumor cell line A549. The model has been tested with three graphene derivatives—graphene oxide (GO), few-layer graphene (FLG), and small FLG (sFLG). We observed a cytotoxic effect (necrosis and apoptosis) at early (6- and 24-h) exposures, which intensified after seven days of contact between cells and the graphene-related materials (GRMs)—with cell death reaching 90% after a 5 µg/mL dose. A549 cells are more resistant to necrosis and apoptosis, yielding values less than half of NHBE cells at low concentrations of GRMs (between 0.05 and 5 µg/mL). Indeed, GRM-induced cell death in NHBE cells is comparable to that induced by toxic compounds such as diesel exhaust particles on the same cell line. We propose NHBE as a suitable model to test GRM-induced toxicity, allowing refinement of the dose concentrations and exposure timings for better-designed in vivo mouse assays.
Collapse
|
11
|
Jasim DA, Newman L, Rodrigues AF, Vacchi IA, Lucherelli MA, Lozano N, Ménard-Moyon C, Bianco A, Kostarelos K. The impact of graphene oxide sheet lateral dimensions on their pharmacokinetic and tissue distribution profiles in mice. J Control Release 2021; 338:330-340. [PMID: 34418522 DOI: 10.1016/j.jconrel.2021.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
Although the use of graphene and 2-dimensional (2D) materials in biomedicine has been explored for over a decade now, there are still significant knowledge gaps regarding the fate of these materials upon interaction with living systems. Here, the pharmacokinetic profile of graphene oxide (GO) sheets of three different lateral dimensions was studied. The GO materials were functionalized with a PEGylated DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), a radiometal chelating agent for radioisotope attachment for single photon emission computed tomography (SPECT/CT) imaging. Our results revealed that GO materials with three distinct size distributions, large (l-GO-DOTA), small (s-GO-DOTA) and ultra-small (us-GO-DOTA), were sequestered by the spleen and liver. Significant accumulation of the large material (l-GO-DOTA) in the lungs was also observed, unlike the other two materials. Interestingly, there was extensive urinary excretion of all three GO nanomaterials indicating that urinary excretion of these structures was not affected by lateral dimensions. Comparing with previous studies, we believe that the thickness of layered nanomaterials is the predominant factor that governs their excretion rather than lateral size. However, the rate of urinary excretion was affected by lateral size, with large GO excreting at slower rates. This study provides better understanding of 2D materials in vivo behaviour with varying structural features.
Collapse
Affiliation(s)
- Dhifaf A Jasim
- Nanomedicine Lab, National Graphene Institute, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
| | - Leon Newman
- Nanomedicine Lab, National Graphene Institute, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
| | - Artur Filipe Rodrigues
- Nanomedicine Lab, National Graphene Institute, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom
| | - Isabella A Vacchi
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, Strasbourg 67000, France
| | - Matteo A Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, Strasbourg 67000, France
| | - Neus Lozano
- Nanomedicine Lab, National Graphene Institute, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, Strasbourg 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, Strasbourg 67000, France
| | - Kostas Kostarelos
- Nanomedicine Lab, National Graphene Institute, Faculty of Biology, Medicine & Health, University of Manchester, AV Hill Building, Manchester M13 9PT, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
12
|
Fusco L, Orecchioni M, Reina G, Bordoni V, Fuoco C, Gurcan C, Guo S, Zoccheddu M, Collino F, Zavan B, Treossi E, Yilmazer A, Palermo V, Bianco A, Delogu LG. Lateral dimension and amino-functionalization on the balance to assess the single-cell toxicity of graphene on fifteen immune cell types. NANOIMPACT 2021; 23:100330. [PMID: 35559831 DOI: 10.1016/j.impact.2021.100330] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/14/2021] [Accepted: 05/31/2021] [Indexed: 06/15/2023]
Abstract
Given the wide variety of potential applications of graphene oxide (GO), its consequent release into the environment poses serious concerns on its safety. The future production and exploitation of graphene in the years to come should be guided by its specific chemical-physical characteristics. The unparalleled potential of single-cell mass cytometry (CyTOF) to dissect by high-dimensionality the specific immunological effects of nanomaterials, represents a turning point in nanotoxicology. It helps us to identify the safe graphene in terms of physical-chemical properties and therefore to direct its future safe production. Here we present a high-dimensional study to evaluate two historically indicated as key parameters for the safe exploitation: functionalization and dimension. The role of lateral dimension and the amino-functionalization of GO on their immune impact were here evaluated as synergistic players. To this end, we dissected the effects of GO, characterized by a large or small lateral size (GO 1.32 μm and GO 0.13 μm, respectively), and its amino-functionalized counterpart (GONH2 1.32 μm and GONH2 0.13 μm, respectively) on fifteen cell types of human primary peripheral blood mononuclear cells (PBMCs). We describe how the smallest later size not only evokes pronounced toxicity on the pool of PBMCs compared to larger GOs but also towards the distinct immune cell subpopulations, in particular on non-classical monocytes, plasmacytoid dendritic cells (pDCs), natural killer cells (NKs) and B cells. The amino-functionalization was able to improve the biocompatibility of classical and non-classical monocytes, pDCs, NKs, and B cells. Detailed single-cell analysis further revealed a complex interaction of all GOs with the immune cells, and in particular monocyte subpopulations, with different potency depending on their physicochemical properties. Overall, by high-dimensional profiling, our study demonstrates that the lateral dimension is an important factor modulating immune cells and specifically monocyte activation, but a proper surface functionalization is the dominant characteristic in its immune effects. In particular, the amino-functionalization can critically modify graphene impact dampening the immune cell activation. Our study can serve as a guide for the future broad production and use of graphene in our everyday life.
Collapse
Affiliation(s)
- Laura Fusco
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Marco Orecchioni
- La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Valentina Bordoni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey; Stem Cell Institute, Ankara University, Ankara, Turkey
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France
| | - Martina Zoccheddu
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| | - Federica Collino
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Clinical Sciences and Community Health, University of Milano, Milan, Italy
| | - Barbara Zavan
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Medical Sciences, University of Ferrara, Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey; Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, University of Strasbourg, ISIS, Strasbourg, France.
| | - Lucia Gemma Delogu
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy.
| |
Collapse
|
13
|
Phan LMT, Vo TAT, Hoang TX, Cho S. Graphene Integrated Hydrogels Based Biomaterials in Photothermal Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:906. [PMID: 33918204 PMCID: PMC8065877 DOI: 10.3390/nano11040906] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
14
|
Daneshmandi L, Barajaa M, Tahmasbi Rad A, Sydlik SA, Laurencin CT. Graphene-Based Biomaterials for Bone Regenerative Engineering: A Comprehensive Review of the Field and Considerations Regarding Biocompatibility and Biodegradation. Adv Healthc Mater 2021; 10:e2001414. [PMID: 33103370 PMCID: PMC8218309 DOI: 10.1002/adhm.202001414] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/21/2020] [Indexed: 12/15/2022]
Abstract
Graphene and its derivatives have continued to garner worldwide interest due to their unique characteristics. Having expanded into biomedical applications, there have been efforts to employ their exceptional properties for the regeneration of different tissues, particularly bone. This article presents a comprehensive review on the usage of graphene-based materials for bone regenerative engineering. The graphene family of materials (GFMs) are used either alone or in combination with other biomaterials in the form of fillers in composites, coatings for both scaffolds and implants, or vehicles for the delivery of various signaling and therapeutic agents. The applications of the GFMs in each of these diverse areas are discussed and emphasis is placed on the characteristics of the GFMs that have implications in this regard. In tandem and of importance, this article evaluates the safety and biocompatibility of the GFMs and carefully elucidates how various factors influence the biocompatibility and biodegradability of this new class of nanomaterials. In conclusion, the challenges and opportunities regarding the use of the GFMs in regenerative engineering applications are discussed, and future perspectives for the developments in this field are proposed.
Collapse
Affiliation(s)
- Leila Daneshmandi
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Mohammed Barajaa
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
| | - Armin Tahmasbi Rad
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Stefanie A Sydlik
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, CT, 06030, USA
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, CT, 06030, USA
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Orthopaedic Surgery, UConn Health, Farmington, CT, 06030, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
15
|
Dasmahapatra AK, Powe DK, Dasari TPS, Tchounwou PB. Assessment of reproductive and developmental effects of graphene oxide on Japanese medaka (Oryzias latipes). CHEMOSPHERE 2020; 259:127221. [PMID: 32615454 PMCID: PMC7483842 DOI: 10.1016/j.chemosphere.2020.127221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 05/05/2023]
Abstract
Due to its unique properties, graphene oxide (GO) has potential for biomedical and electronic applications, however environmental contamination including aquatic ecosystem is inevitable. Moreover, potential risks of GO in aquatic life are inadequately explored. Present study was designed to evaluate GO as an endocrine disrupting chemical (EDC) using the model Japanese medaka (Oryzias latipes). GO was injected intraperitoneally (25-200 μg/g) once to breeding pairs and continued pair breeding an additional 21 days. Eggs laid were analyzed for fecundity and the fertilized eggs were evaluated for developmental abnormalities including hatching. Histopathological evaluation of gonads, liver, and kidneys was made 21 days post-injection. LD50 was found to be sex-dependent. Fecundity tended to reduce in a dose-dependent manner during early post-injection days; however, the overall evaluation showed no significant difference. The hatchability of embryos was reduced significantly in the 200 μg/g group; edema (yolk and cardiovascular) and embryo-mortality remained unaltered. Histopathological assessment identified black particles, probably agglomerated GO, in the gonads of GO-treated fish. However, folliculogenesis in stromal compartments of ovary and the composition of germinal elements in testis remained almost unaltered. Moreover, granulosa and Leydig cells morphology did not indicate any significant EDC-related effects. Although liver and kidney histopathology did not show GO as an EDC, some GO-treated fish accumulated proteinaceous fluid in hepatic vessels and induced hyperplasia in interstitial lymphoid cells (HIL) located in kidneys. GO agglomerated in medaka gonads after 21-days post-injection. However, gonad histopathology including granulosa and Leydig cells alterations were associated with GO toxicity rather than EDC effects.
Collapse
Affiliation(s)
- Asok K Dasmahapatra
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA; Department of BioMolecular Sciences, Environmental Toxicology Division, University of Mississippi, University, MS, 38677, USA
| | - Doris K Powe
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Thabitha P S Dasari
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA
| | - Paul B Tchounwou
- RCMI Center for Environmental Health, Jackson State University, Jackson, MS, 39217, USA.
| |
Collapse
|
16
|
Catalytic nanographene oxide with hemin for enhanced photodynamic therapy. J Control Release 2020; 326:442-454. [DOI: 10.1016/j.jconrel.2020.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/26/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
|
17
|
Johnson AP, Gangadharappa H, Pramod K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J Control Release 2020; 325:141-162. [DOI: 10.1016/j.jconrel.2020.06.034] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 01/06/2023]
|
18
|
Newman L, Jasim DA, Prestat E, Lozano N, de Lazaro I, Nam Y, Assas BM, Pennock J, Haigh SJ, Bussy C, Kostarelos K. Splenic Capture and In Vivo Intracellular Biodegradation of Biological-Grade Graphene Oxide Sheets. ACS NANO 2020; 14:10168-10186. [PMID: 32658456 PMCID: PMC7458483 DOI: 10.1021/acsnano.0c03438] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 05/20/2023]
Abstract
Carbon nanomaterials, including 2D graphene-based materials, have shown promising applicability to drug delivery, tissue engineering, diagnostics, and various other biomedical areas. However, to exploit the benefits of these materials in some of the areas mentioned, it is necessary to understand their possible toxicological implications and long-term fate in vivo. We previously demonstrated that following intravenous administration, 2D graphene oxide (GO) nanosheets were largely excreted via the kidneys; however, a small but significant portion of the material was sequestered in the spleen. Herein, we interrogate the potential consequences of this accumulation and the fate of the spleen-residing GO over a period of nine months. We show that our thoroughly characterized GO materials are not associated with any detectable pathological consequences in the spleen. Using confocal Raman mapping of tissue sections, we determine the sub-organ biodistribution of GO at various time points after administration. The cells largely responsible for taking up the material are confirmed using immunohistochemistry coupled with Raman spectroscopy, and transmission electron microscopy (TEM). This combination of techniques identified cells of the splenic marginal zone as the main site of GO bioaccumulation. In addition, through analyses using both bright-field TEM coupled with electron diffraction and Raman spectroscopy, we reveal direct evidence of in vivo intracellular biodegradation of GO sheets with ultrastructural precision. This work offers critical information about biological processing and degradation of thin GO sheets by normal mammalian tissue, indicating that further development and exploitation of GO in biomedicine would be possible.
Collapse
Affiliation(s)
- Leon Newman
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Dhifaf A. Jasim
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Eric Prestat
- Department
of Materials, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Neus Lozano
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08193, Spain
| | - Irene de Lazaro
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Yein Nam
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Bakri M. Assas
- Lydia
Becker Institute of Immunology and Inflammation, and Division of Infection,
Immunity and Respiratory Medicine, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Department
of Immunology, Faculty of Applied Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Joanne Pennock
- Lydia
Becker Institute of Immunology and Inflammation, and Division of Infection,
Immunity and Respiratory Medicine, School of Biological Sciences,
Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Sarah J. Haigh
- Department
of Materials, School of Natural Sciences, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cyrill Bussy
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine
Lab, National Graphene Institute and Faculty of Biology, Medicine
& Health, The University of Manchester, Manchester, M13 9PT, United Kingdom
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, 08193, Spain
| |
Collapse
|
19
|
Acosta S, Moreno-Aguilar C, Hernández-Sánchez D, Morales-Cruzado B, Sarmiento-Gomez E, Bittencourt C, Sánchez-Vargas LO, Quintana M. A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1054-1061. [PMID: 32733780 PMCID: PMC7372247 DOI: 10.3762/bjnano.11.90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
The global emergence of multidrug resistance of fungal infections and the decline in the discovery of new antibiotics are increasingly prevalent causes of hospital-acquired infections, among other major challenges in the global health care sector. There is an urgent need to develop noninvasive, nontoxic, and new antinosocomial approaches that work more effectively and faster than current antibiotics. In this work, we report on a biocompatible hybrid nanomaterial composed of few-layer graphene and chlorin e6 (FLG-Ce6) for the photodynamic treatment (PDT) of Candida albicans. We show that the FLG-Ce6 hybrid nanomaterial displays enhanced reactive oxygen species (ROS) generation compared with Ce6. The enhancement is up to 5-fold when irradiated for 15 min at 632 nm with a red light-emitting diode (LED). The viability of C. albicans in the presence of FLG-Ce6 was measured 48 h after photoactivation. An antifungal effect was observed only when the culture/FLG-Ce6 hybrid was exposed to the light source. C. albicans is rendered completely unviable after exposure to ROS generated by the excited FLG-Ce6 hybrid nanomaterial. An increased PDT effect was observed with the FLG-Ce6 hybrid nanomaterial by a significant reduction in the viability of C. albicans, by up to 95%. This is a marked improvement compared to Ce6 without FLG, which reduces the viability of C. albicans to only 10%. The antifungal action of the hybrid nanomaterial can be activated by a synergistic mechanism of energy transfer of the absorbed light from Ce6 to FLG. The novel FLG-Ce6 hybrid nanomaterial in combination with the red LED light irradiation can be used in the development of a wide range of antinosocomial devices and coatings.
Collapse
Affiliation(s)
- Selene Acosta
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, México
- Chimie des Interactions Plasma – Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Belgium
| | - Carlos Moreno-Aguilar
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | | | | | - Erick Sarmiento-Gomez
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, León, Guanajuato, México
| | - Carla Bittencourt
- Chimie des Interactions Plasma – Surface (ChIPS), Research Institute for Materials Science and Engineering, Université de Mons, Belgium
| | - Luis Octavio Sánchez-Vargas
- Laboratorio de Bioquímica, Patología y Microbiología, Facultad de Estomatología, Universidad Autónoma de San Luis Potosí, México
| | - Mildred Quintana
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, México
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, México
| |
Collapse
|
20
|
Lucherelli MA, Yu Y, Reina G, Abellán G, Miyako E, Bianco A. Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Yue Yu
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
- Current address: Biomedical Research Institute National Institute of Advanced Industrial Science & Technology (AIST) Ikeda 563-8577 Japan
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
21
|
Lucherelli MA, Yu Y, Reina G, Abellán G, Miyako E, Bianco A. Rational Chemical Multifunctionalization of Graphene Interface Enhances Targeted Cancer Therapy. Angew Chem Int Ed Engl 2020; 59:14034-14039. [DOI: 10.1002/anie.201916112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/23/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Yue Yu
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
- Current address: Biomedical Research Institute National Institute of Advanced Industrial Science & Technology (AIST) Ikeda 563-8577 Japan
| | - Giacomo Reina
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol) Universidad de Valencia Catedrático José Beltrán 2 46980 Paterna Valencia Spain
| | - Eijiro Miyako
- Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi Ishikawa 923-1292 Japan
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572 University of Strasbourg ISIS 67000 Strasbourg France
| |
Collapse
|
22
|
López Tenorio D, Valencia CH, Valencia C, Zuluaga F, Valencia ME, Mina JH, Grande Tovar CD. Evaluation of the Biocompatibility of CS-Graphene Oxide Compounds In Vivo. Int J Mol Sci 2019; 20:E1572. [PMID: 30934823 PMCID: PMC6480102 DOI: 10.3390/ijms20071572] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 11/27/2022] Open
Abstract
In the last few years, graphene oxide (GO) has gained considerable importance in scaffold preparation for tissue engineering due to the presence of functional groups that allow the interaction between the extracellular matrix and the components of the cellular membrane. The interaction between GO and chitosan (CS) can not only improve the biomechanical properties of the scaffold but also generate a synergistic effect, facilitating tissue recovery. In vivo studies on GO are scarce; therefore, biocompatibility tests on CS-GO scaffolds and bone regeneration experiments on critical size defects were carried out on Wistar rats. Scaffolds made of CS, CS-GO 0.5%, and CS-GO 1% were prepared and implanted on Wistar rats cranial bones for three months. Scaffold samples were analyzed through histochemistry and scanning electron microscopy. The analysis performed showed reabsorption of the material by phagocytic activity and new bone formation. The CS-GO 0.5% formulation gave the best performance in bone regeneration, with excellent biocompatibility. These results show the potential of this compound for tissue regeneration opening and medical applications.
Collapse
Affiliation(s)
- Diego López Tenorio
- Escuela de Odontología, Grupo biomateriales dentales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Carlos H Valencia
- Escuela de Odontología, Grupo biomateriales dentales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Cesar Valencia
- Laboratorio SIMERQO polímeros, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Fabio Zuluaga
- Laboratorio SIMERQO polímeros, Departamento de Química, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Mayra E Valencia
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - José H Mina
- Grupo de Materiales Compuestos, Escuela de Ingeniería de Materiales, Universidad del Valle, Calle 13 No. 100-00, 76001 Cali, Colombia.
| | - Carlos David Grande Tovar
- Grupo de Investigación de Fotoquímica y Fotobiología, Universidad del Atlántico, Carrera 30 No. 8-49, 081008 Puerto Colombia, Colombia.
| |
Collapse
|
23
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 338] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|
24
|
Pelin M, Sosa S, Prato M, Tubaro A. Occupational exposure to graphene based nanomaterials: risk assessment. NANOSCALE 2018; 10:15894-15903. [PMID: 30132494 DOI: 10.1039/c8nr04950e] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Graphene-based materials (GBMs) are a family of novel materials including graphene, few layer graphene (FLG), graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNP). Currently, the risk posed by them to human health is associated mainly with the occupational exposure during their industrial and small-scale production or waste discharge. The most significant occupational exposure routes are inhalation, oral, cutaneous and ocular, inhalation being the majorly involved and most studied one. This manuscript presents a critical up-to-date review of the available in vivo toxicity data of the most significant GBMs, after using these exposure routes. The few in vivo inhalation toxicity studies (limited to 5-days of repeated exposure and only one to 5 days per week for 4 weeks) indicate inflammatory/fibrotic effects at the pulmonary level, not always reversible after 14/90 days. More limited in vivo data are available for the oral and ocular exposure routes, whereas the studies on cutaneous toxicity are at the initial stage. A long persistence of GBMs in rodents is recorded, while contradictory genotoxic data are reported. Data gap identification is also provided. Based on the available data, the occupational exposure limit cannot be determined. More experimental toxicity studies according to specific guidelines (tentatively validated for nanomaterials) and more information on the actual occupational exposure level to GBMs are needed. Furthermore, ADME (Absorption, Distribution, Metabolism, Excretion), genotoxicity, developmental and reproductive toxicity data related to the occupational exposure to GBMs have to be implemented. In addition, sub-chronic and/or chronic studies are still needed to completely exclude other toxic effects and/or carcinogenicity.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | | | | | | |
Collapse
|
25
|
Skovmand A, Jacobsen Lauvås A, Christensen P, Vogel U, Sørig Hougaard K, Goericke-Pesch S. Pulmonary exposure to carbonaceous nanomaterials and sperm quality. Part Fibre Toxicol 2018; 15:10. [PMID: 29386028 PMCID: PMC5793436 DOI: 10.1186/s12989-018-0242-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022] Open
Abstract
Background Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Methods Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Results Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels were found. Conclusion Despite the sustained pulmonary inflammatory response, an eight week exposure to graphene oxide, Flammruss 101, Printex 90 and the diesel particle SRM1650b in the present study did not appear to affect semen parameters, daily sperm production or testosterone concentration in male NMRI mice. Electronic supplementary material The online version of this article (10.1186/s12989-018-0242-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Astrid Skovmand
- The National Research Center for the Working Environment, Lersø Parkallé, DK-2100, Copenhagen Ø, Denmark.,Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægvej 68, DK-1870, Frederiksberg C, Denmark
| | - Anna Jacobsen Lauvås
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægvej 68, DK-1870, Frederiksberg C, Denmark
| | | | - Ulla Vogel
- The National Research Center for the Working Environment, Lersø Parkallé, DK-2100, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Karin Sørig Hougaard
- The National Research Center for the Working Environment, Lersø Parkallé, DK-2100, Copenhagen Ø, Denmark.,Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, DK-1014, Copenhagen K, Denmark
| | - Sandra Goericke-Pesch
- Section for Veterinary Reproduction and Obstetrics, Department of Veterinary Clinical Sciences, University of Copenhagen, Dyrlægvej 68, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|
26
|
El-Yamany NA, Mohamed FF, Salaheldin TA, Tohamy AA, Abd El-Mohsen WN, Amin AS. Graphene oxide nanosheets induced genotoxicity and pulmonary injury in mice. ACTA ACUST UNITED AC 2017; 69:383-392. [PMID: 28359838 DOI: 10.1016/j.etp.2017.03.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 03/09/2017] [Indexed: 01/28/2023]
Abstract
Graphene and graphene-related materials have broadly applied in biomedical purposes due to their unique properties, thus safety evaluation of them is crucial. This study was performed to explore the genotoxic and pulmonary toxic potential of different doses of graphene oxide nanosheets' (GOs) in mice.A total of 90 male mature mice were randomly divided into six groups of fifteen mice per each, five groups were intraperitoneally injected by GO at doses of 10, 50, 100, 250 and 500μg/kg b.w once weekly in addition to the control group that was injected intraperitoneally with 0.2ml saline solution. Five animals from each group were euthanized after 7, 28 and 56days post treatment. Evaluation of genotoxicity was performed through detection of chromosomal aberrations in bone marrow while assessment of lung injury was made by determination of DNA fragmentation in lung specimens using the alkali Comet assay, pulmonary oxidative markers estimation and finally histopathological investigations. Results revealed that GOs induced variable structural chromosomal aberrations (SCA) in bone marrow and DNA damage of lung cells that were time and dose dependent and represented by increase in%DNA in comet tail, tail moment and tail length and decrease in% head DNA in nuclei of lung of GOs-treated mice versus control groups in addition, GOs induced various changes in pulmonary oxidative stress parameters that were affected by dose and duration of treatment compared with the control as well as various pulmonary histopathological alterations were detected indicating lung injury. CONCLUSION GO potentiate the induction of genotoxicity and pulmonary injury in mice in time and dose dependent manner.
Collapse
Affiliation(s)
- Nabil A El-Yamany
- Department of Zoology & Entomology, Faculty of Science, Helwan University, Egypt
| | - Faten F Mohamed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Taher A Salaheldin
- Mostafa Elsayed Nanotechnology Research Center, British University in Egypt, Egypt; Nanotechnology & Advanced Materials Central Lab, Agriculture Research Center, Egypt
| | - Amany A Tohamy
- Department of Zoology & Entomology, Faculty of Science, Helwan University, Egypt
| | | | - Adel S Amin
- Biotechnology Research Unit, Animal Reproduction Research Institute, Egypt
| |
Collapse
|
27
|
Zhu J, Xu M, Gao M, Zhang Z, Xu Y, Xia T, Liu S. Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents. ACS NANO 2017; 11:2637-2651. [PMID: 28208020 DOI: 10.1021/acsnano.6b07311] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The outstanding physicochemical properties endow graphene materials (e.g., graphene oxide, GO) with beneficial potentials in diverse biomedical fields such as bioimaging, drug delivery, and biomolecular detection. GO recently emerged as a chemosensitizer; however, the detailed molecular basis underlying GO-conducted sensitization and corresponding biological effects are still elusive. Based on our recent findings that GO treatment at sublethal concentrations could impair the general cellular priming state, including disorders of plasma membrane and cytoskeleton construction, we aimed here to explore the mechanism of GO as a sensitizer to make cancer cells more susceptible to chemotherapeutic agents. We discovered that GO could not only compromise plasma membrane and cytoskeleton in J774A.1 macrophages and A549 lung cancer cells at sublethal concentrations without incurring significant cell death but also dampen a number of biological processes. Using the toxicogenomics approaches, we laid out the gene expression signature affected by GO and further defined those genes involved in membrane and cytoskeletal impairments responding to GO. The mechanistic investigation uncovered that the interactions of GO-integrin occurred on the plasma membrane and consequently activated the integrin-FAK-Rho-ROCK pathway and suppressed the expression of integrin, resulting in compromised cell membrane and cytoskeleton and a subsequent cellular priming state. By making use of this mechanism, the efficacy of chemotherapeutic agents (e.g., doxorubicin and cisplatin) could be enhanced by GO pretreatment in killing cancer cells. This study unveiled a feature of GO in cancer therapeutics: sensitizing cancer cells to chemotherapeutic agents by undermining the resistance capability of tumor cells against chemotherapeutic agents, at least partially, by compromising plasma membrane and cytoskeleton meshwork.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology , Tianjin 300211, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Ming Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| | - Zhihong Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology , Tianjin 300211, China
| | - Yong Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology , Tianjin 300211, China
| | - Tian Xia
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
- Division of NanoMedicine, Department of Medicine, University of California , Los Angeles, California 90095, United States
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing 100085, China
| |
Collapse
|
28
|
Ema M, Gamo M, Honda K. A review of toxicity studies on graphene-based nanomaterials in laboratory animals. Regul Toxicol Pharmacol 2017; 85:7-24. [PMID: 28161457 DOI: 10.1016/j.yrtph.2017.01.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/10/2016] [Accepted: 01/27/2017] [Indexed: 12/30/2022]
Abstract
We summarized the findings of toxicity studies on graphene-based nanomaterials (GNMs) in laboratory mammals. The inhalation of graphene (GP) and graphene oxide (GO) induced only minimal pulmonary toxicity. Bolus airway exposure to GP and GO caused acute and subacute pulmonary inflammation. Large-sized GO (L-GO) was more toxic than small-sized GO (S-GO). Intratracheally administered GP passed through the air-blood barrier into the blood and intravenous GO distributed mainly in the lungs, liver, and spleen. S-GO and L-GO mainly accumulated in the liver and lungs, respectively. Limited information showed the potential behavioral, reproductive, and developmental toxicity and genotoxicity of GNMs. There are indications that oxidative stress and inflammation may be involved in the toxicity of GNMs. The surface reactivity, size, and dispersion status of GNMs play an important role in the induction of toxicity and biodistribution of GNMs. Although this review paper provides initial information on the potential toxicity of GNMs, data are still very limited, especially when taking into account the many different types of GNMs and their potential modifications. To fill the data gap, further studies should be performed using laboratory mammals exposed using the route and dose anticipated for human exposure scenarios.
Collapse
Affiliation(s)
- Makoto Ema
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST) and Technology Research Association for Single Wall Carbon Nanotubes (TASC), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Masashi Gamo
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST) and Technology Research Association for Single Wall Carbon Nanotubes (TASC), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kazumasa Honda
- Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST) and Technology Research Association for Single Wall Carbon Nanotubes (TASC), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
29
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
30
|
Zhou Y, Jing X, Chen Y. Material chemistry of graphene oxide-based nanocomposites for theranostic nanomedicine. J Mater Chem B 2017; 5:6451-6470. [PMID: 32264411 DOI: 10.1039/c7tb00680b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarizes and discusses the development of the design, fabrication and biomedical applications of GO-based functional composites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Ultrasound
- the Third People's Hospital of Chengdu City
- the Affiliated Hospital of Southwest Jiaotong University
- Chengdu 610031
- P. R. China
| | - Xiangxiang Jing
- Department of Ultrasound
- Hainan General Hospital
- Haikou
- P. R. China
| | - Yu Chen
- State Key Lab of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai
- P. R. China
| |
Collapse
|
31
|
Baldrighi M, Trusel M, Tonini R, Giordani S. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective. Front Neurosci 2016; 10:250. [PMID: 27375413 PMCID: PMC4899452 DOI: 10.3389/fnins.2016.00250] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 05/20/2016] [Indexed: 01/05/2023] Open
Abstract
Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues.
Collapse
Affiliation(s)
- Michele Baldrighi
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| | - Massimo Trusel
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Raffaella Tonini
- Neuroscience and Brain Technology, Istituto Italiano di TecnologiaGenova, Italy
| | - Silvia Giordani
- Nano Carbon Materials Laboratory, Istituto Italiano di TecnologiaGenova, Italy
| |
Collapse
|
32
|
Assessing biocompatibility of graphene oxide-based nanocarriers: A review. J Control Release 2016; 226:217-28. [DOI: 10.1016/j.jconrel.2016.02.015] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 12/18/2022]
|
33
|
Strojny B, Kurantowicz N, Sawosz E, Grodzik M, Jaworski S, Kutwin M, Wierzbicki M, Hotowy A, Lipińska L, Chwalibog A. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS One 2015; 10:e0144821. [PMID: 26657282 PMCID: PMC4681315 DOI: 10.1371/journal.pone.0144821] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022] Open
Abstract
Due to their excellent biocompatibility, carbon nanoparticles have been widely investigated for prospective biomedical applications. However, their impact on an organism with prolonged exposure is still not well understood. Here, we performed an experiment investigating diamond, graphene oxide and graphite nanoparticles, which were repeatedly administrated intraperitoneally into Wistar rats for four weeks. Some of the animals was sacrificed after the last injection, whereas the rest were sacrificed twelve weeks after the last exposure. We evaluated blood morphology and biochemistry, as well as the redox and inflammatory state of the liver. The results show the retention of nanoparticles within the peritoneal cavity in the form of prominent aggregates in proximity to the injection site, as well as the presence of some nanoparticles in the mesentery. Small aggregates were also visible in the liver serosa, suggesting possible transportation to the liver. However, none of the tested nanoparticles affected the health of animals. This lack of toxic effect may suggest the potential applicability of nanoparticles as drug carriers for local therapies, ensuring accumulation and slow release of drugs into a targeted tissue without harmful systemic side effects.
Collapse
Affiliation(s)
- Barbara Strojny
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Natalia Kurantowicz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Sławomir Jaworski
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Hotowy
- Division of Nanobiotechnology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ludwika Lipińska
- Department of Chemical Technologies, Institute of Electronic Materials Technology, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
34
|
Kurantowicz N, Strojny B, Sawosz E, Jaworski S, Kutwin M, Grodzik M, Wierzbicki M, Lipińska L, Mitura K, Chwalibog A. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. NANOSCALE RESEARCH LETTERS 2015; 10:398. [PMID: 26459428 PMCID: PMC4602018 DOI: 10.1186/s11671-015-1107-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/07/2015] [Indexed: 05/22/2023]
Abstract
Carbon nanoparticles have recently drawn intense attention in biomedical applications. Hence, there is a need for further in vivo investigations of their biocompatibility and biodistribution via various exposure routes. We hypothesized that intraperitoneally injected diamond, graphite, and graphene oxide nanoparticles may have different biodistribution and exert different effects on the intact organism. Forty Wistar rats were divided into four groups: the control and treated with nanoparticles by intraperitoneal injection (4 mg of nanoparticles/kg body weight) eight times during the 4-week period. Blood was collected for evaluation of blood morphology and biochemistry parameters. Photographs of the general appearance of each rat's interior were taken immediately after sacrifice. The organs were excised and their macroscopic structure was visualized using a stereomicroscope. The nanoparticles were retained in the body, mostly as agglomerates. The largest agglomerates (up to 10 mm in diameter) were seen in the proximity of the injection place in the stomach serous membrane, between the connective tissues of the abdominal skin, muscles, and peritoneum. Numerous smaller, spherical-shaped aggregates (diameter around 2 mm) were lodged among the mesentery. Moreover, in the connective and lipid tissue in the proximity of the liver and spleen serosa, small aggregates of graphite and graphene oxide nanoparticles were observed. However, all tested nanoparticles did not affect health and growth of rats. The nanoparticles had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems.
Collapse
Affiliation(s)
- Natalia Kurantowicz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Marta Grodzik
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Ludwika Lipińska
- Department of Chemical Technologies, Institute of Electronic Materials Technology, Wolczynska 133, 01-919, Warsaw, Poland.
| | - Katarzyna Mitura
- Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, Poland.
| | - André Chwalibog
- Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark.
| |
Collapse
|
35
|
Jasim DA, Ménard-Moyon C, Bégin D, Bianco A, Kostarelos K. Tissue distribution and urinary excretion of intravenously administered chemically functionalized graphene oxide sheets. Chem Sci 2015; 6:3952-3964. [PMID: 28717461 PMCID: PMC5497267 DOI: 10.1039/c5sc00114e] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/14/2015] [Indexed: 12/17/2022] Open
Abstract
The design of graphene-based materials for biomedical purposes is of great interest. Graphene oxide (GO) sheets represent the most widespread type of graphene materials in biological investigations. In this work, thin GO sheets were synthesized and further chemically functionalized with DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), a stable radiometal chelating agent, by an epoxide opening reaction. We report the tissue distribution of the functionalized GO sheets labeled with radioactive indium (111In) after intravenous administration in mice. Whole body single photon emission computed tomography (SPECT/CT) imaging, gamma counting studies, Raman microscopy and histological investigations indicated extensive urinary excretion and predominantly spleen accumulation. Intact GO sheets were detected in the urine of injected mice by Raman spectroscopy, high resolution transmission electron microscopy (HR-TEM) and electron diffraction. These results offer a previously unavailable pharmacological understanding on how chemically functionalized GO sheets transport in the blood stream and interact with physiological barriers that will determine their body excretion and tissue accumulation.
Collapse
Affiliation(s)
- Dhifaf A Jasim
- Nanomedicine Laboratory , Faculty of Medical & Human Sciences and National Graphene Institute , University of Manchester , AV Hill Building , Manchester M13 9PT , UK .
| | - Cécilia Ménard-Moyon
- CNRS , Institut de Biologie Moléculaire et Cellulaire , Laboratoire d'Immunopathologie et Chimie Thérapeutique , 67000 Strasbourg , France .
| | - Dominique Bégin
- Institut de Chimie et Procédés pour l'Energie , l'Environnement et la Santé (ICPEES) , ECPM , UMR 7515 du CNRS , University of Strasbourg , 25 rue Becquerel Cedex 02 , 67087 Strasbourg , France
| | - Alberto Bianco
- CNRS , Institut de Biologie Moléculaire et Cellulaire , Laboratoire d'Immunopathologie et Chimie Thérapeutique , 67000 Strasbourg , France .
| | - Kostas Kostarelos
- Nanomedicine Laboratory , Faculty of Medical & Human Sciences and National Graphene Institute , University of Manchester , AV Hill Building , Manchester M13 9PT , UK .
| |
Collapse
|
36
|
Wu Z, Zhong H, Yuan X, Wang H, Wang L, Chen X, Zeng G, Wu Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. WATER RESEARCH 2014; 67:330-44. [PMID: 25314573 DOI: 10.1016/j.watres.2014.09.026] [Citation(s) in RCA: 326] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 09/04/2014] [Accepted: 09/19/2014] [Indexed: 05/05/2023]
Abstract
In this article, a rhamnolipid-functionalized graphene oxide (RL-GO) hybrid was prepared by one-step ultrasonication and adsorptive removal of methylene blue (MB) from both artificial and real wastewater by the RL-GO was investigated. The Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) area and Zeta potential analysis were used to characterize the adsorbent. The results showed that RL-GO had abundant functional groups and a mesopores feature. MB adsorption by the RL-GO increased with increase in adsorbent dose, pH, temperature and initial MB concentration, while it was insensitive to ionic strength variation. The adsorption kinetics fitted well to the pseudo-second-order model with correlation coefficients greater than 0.999. The Intra-particle diffusion and Boyd's film-diffusion models showed that the rate-controlled step was dominated by film-diffusion in the beginning and then followed by intra-particle diffusion. The adsorption isotherm was fitted by adsorption models with the suitability in order of BET > Freundlich > Langmuir > Temkin, based on comparison between correlation coefficients. Thermodynamic analysis of equilibriums suggested that the adsorption MB on RL-GO was spontaneous and endothermic. The adsorption mechanism was also proposed to be electrostatic attraction, π-π interaction and hydrogen bond. In addition, the real wastewater experiment, the regeneration study and the comparative cost analysis showed that the RL-GO composites could be a cost-effective and promising sorbent for MB wastewater treatment owing to its high efficiency and excellent reusability.
Collapse
Affiliation(s)
- Zhibin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hua Zhong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Department of Soil, Water and Environmental Science, The University of Arizona, Tucson AZ85719, USA.
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Hou Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lele Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaohong Chen
- School of Business, Central South University, Changsha 410083, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yan Wu
- College of Environment and Energy, South China University of Technology Guangzhou 510006, PR China
| |
Collapse
|
37
|
Cui Z, Milani AH, Greensmith PJ, Yan J, Adlam DJ, Hoyland JA, Kinloch IA, Freemont AJ, Saunders BR. A study of physical and covalent hydrogels containing pH-responsive microgel particles and graphene oxide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13384-13393. [PMID: 25313805 DOI: 10.1021/la5032015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this study we mixed low concentrations of graphene oxide (GO) with microgel (MG) particles and formed composite doubly cross-linked microgels (DX MG/GO) gels. The MG particles comprised poly(ethyl acrylate-co-methacrylic acid-co-1,4-butanediol diacrylate) with pendant glycidyl methacrylate units. The MG/GO mixed dispersions formed physical gels of singly cross-linked MGs (termed SX MG/GO), which were subsequently heated to produce DX MG/GO gels by free-radical reaction. The influence of the GO concentration on the mechanical properties of the SX MG/GO and DX MG/GO gels was investigated using dynamic rheology and static compression measurements. The SX MG/GO physical gels were injectable and moldable. The moduli for the DX MG/GO gels increased by a factor of 4-6 when only ca. 1.0 wt % of GO was included. The isostrain model was used to describe the variation of modulus with DX MG/GO composition. Inclusion of GO dramatically altered the stress dissipation and yielding mechanisms for the gels. GO acted as a high surface area, high modulus filler and played an increasing role in load distribution as the GO concentration increased. It is proposed that MG domains were dispersed within a percolated GO network. Comparison of the modulus data with those published for GO-free DX MGs showed that inclusion of GO provided an unprecedented rate of modulus increase with network volume fraction for this family of colloid gels. Furthermore, the DX MG/GO gels were biocompatible and the results imply that there may be future applications of these new systems as injectable load supporting gels for soft tissue repair.
Collapse
Affiliation(s)
- Zhengxing Cui
- School of Materials, The University of Manchester , Grosvenor Street, Manchester, M1 7HS, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Qu G, Wang X, Wang Z, Liu S, Jiang G. Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages. NANOSCALE RESEARCH LETTERS 2013; 8:198. [PMID: 23631472 PMCID: PMC3646675 DOI: 10.1186/1556-276x-8-198] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 04/16/2013] [Indexed: 05/04/2023]
Abstract
Great concerns have been raised about the exposure and possible adverse influence of nanomaterials due to their wide applications in a variety of fields, such as biomedicine and daily lives. The blood circulation system and blood cells form an important barrier against invaders, including nanomaterials. However, studies of the biological effects of nanomaterials on blood cells have been limited and without clear conclusions thus far. In the current study, the biological influence of quantum dots (QDs) with various surface coating on erythroid cells and graphene oxide (GO) on macrophages was closely investigated. We found that QDs posed great damage to macrophages through intracellular accumulation of QDs coupled with reactive oxygen species generation, particularly for QDs coated with PEG-NH2. QD modified with polyethylene glycol-conjugated amine particles exerted robust inhibition on cell proliferation of J744A.1 macrophages, irrespective of apoptosis. Additionally, to the best of our knowledge, our study is the first to have demonstrated that GO could provoke apoptosis of erythroid cells through oxidative stress in E14.5 fetal liver erythroid cells and in vivo administration of GO-diminished erythroid population in spleen, associated with disordered erythropoiesis in mice.
Collapse
Affiliation(s)
- Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoyan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhe Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|