1
|
Frazzoli C, Bocca B, Battistini B, Ruggieri F, Rovira J, Amadi CN, Offor SJ, Orisakwe OE. Rare Earth and Platinum Group Elements In Sub-Saharan Africa and Global Health: The Dark Side of the Burgeoning of Technology. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241271553. [PMID: 39282214 PMCID: PMC11393805 DOI: 10.1177/11786302241271553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024]
Abstract
Despite steady progress in the development and promotion of the circular economy as a model, an overwhelming proportion of technological devices discarded by the Global North still finds its way to the Global South, where technology-related environmental health problems start from the predation of resources and continue all the way to recycling and disposal. We reviewed literature on TCEs in sub-Saharan Africa (SSA), focussing on: the sources and levels of environmental pollution; the extent of human exposure to these substances; their role in the aetiology of human diseases; their effects on the environment. Our review shows that even minor and often neglected technology-critical elements (TCEs), like rare earth elements (REEs) and platinum group elements (PGEs), reveal the environmental damage and detrimental health effects caused by the massive mining of raw materials, exacerbated by improper disposal of e-waste (from dumping to improper recycling and open burning). We draw attention of local research on knowledge gaps such as workable safer methods for TCE recovery from end-of-life products, secondary materials and e-waste, environmental bioremediation and human detoxification. The technical and political shortcomings in the management of TCEs in SSA is all the more alarming against the background of unfavourable determinants of health and a resulting higher susceptibility to diseases, especially among children who work in mines and e-waste recycling sites or who reside in dumping sites.This paper demonstrates, for the first time, that the role of unjust North-South dynamics is evident even in the environmental levels of minor trace elements and that the premise underlying attempts to solve the problem of e-waste dumped in Africa through recycling and disposal technology is in fact misleading. The influx of foreign electrical and electronic equipments should be controlled and limited by clearly defining what is a 'useful' second-hand device and what is e-waste; risks arising from device components or processing by-products should be managed differently, and scientific uncertainty and One Health thinking should be incorporated in risk assessment.
Collapse
Affiliation(s)
- Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Joaquim Rovira
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Catalonia, Spain
- Environmental Engineering Laboratory, Department d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cecilia Nwadiuto Amadi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Samuel James Offor
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Uyo, Uyo, Akwa Ibom State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, Port Harcourt, Choba, Nigeria
- Advanced Research Centre, European University of Lefke, Lefke, Northern Cyprus, Turkey
| |
Collapse
|
2
|
Luo X, Xiao S, Huang D, Guo E, Yang Y, Qiu X, Wang X, Qian Z, Vaughn MG, Bingheim E, Dong G, Liu S, Zeng X. Associations between urinary rare Earth elements with renal function: Findings from a cross-sectional study in Guangxi, China. J Trace Elem Med Biol 2024; 85:127461. [PMID: 38986394 DOI: 10.1016/j.jtemb.2024.127461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND With increased applications of rare earth elements (REEs) across various industries, evaluating the relationship between REEs exposure and potential health effects has become a public concern. In vivo experiments have established that REEs impact renal function. However, relevant epidemiological evidence on this relationship remains scarce. The objective of this study is to examine the impact of exposure to REEs on renal function. METHODS In this cross-sectional study, 1052 participants were recruited from Guangxi, China. We measured urinary concentrations of 12 REEs using an inductively coupled plasma-mass spectrometer (ICP-MS). Multiple linear regression models were developed to explore the relationship between a single REEs exposure and the estimated glomerular filtration rate (eGFR), a marker of renal function. Weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) were used to examine the combined effects of REE co-exposure on eGFR. RESULTS In the multiple linear regression analysis, increasing the concentrations of lanthanum (La, β: 8.22, 95% CI: 5.67-10.77), cerium (Ce, β:6.61, 95% CI: 3.80-9.43), praseodymium (Pr, β: 8.46, 95% CI: 5.85-11.07), neodymium (Nd, β:8.75, 95% CI: 6.10-11.41), and dysprosium (Dy, β:7.38, 95% CI: 4.85-9.91) significantly increased the eGFR. In the WQS regression model, the WQS index was significantly associated with eGFR (β: 4.03, 95% CI: 2.46-5.60), with Pr having the strongest correlation with eGFR. Similar results were obtained in the BKMR model. Additionally, interactions between Pr and La, and Pr and Nd were observed. CONCLUSIONS Co-exposure to REEs is positively associated with elevated eGFR. Pr is likely to have the most significant influence on increased eGFRs and this might be exacerbated when interacting with La and Nd. Mixed exposure to low doses of REEs had a protective effect on renal function, which can provide some evidence for the exposure threshold of REEs in the environment. TRIAL REGISTRATION The study has been approved by the Guangxi Medical University Medical Ethics Committee (#20170206-1), and all participants provided written informed consent.
Collapse
Affiliation(s)
- Xingxi Luo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Suyang Xiao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Erna Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yu Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Xiaogang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Zhengmin Qian
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, USA
| | - Michael G Vaughn
- Department of Epidemiology and Biostatistics, School of Social Work, Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, USA
| | - Elizabeth Bingheim
- Department of Epidemiology and Biostatistics, College for Public Health & Social Justice, Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, USA
| | - Guanghui Dong
- Department of Environmental and Occupational Health, School of Public Health, Sun Yat-sen University, 74, Guangzhou 510080, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, China.
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
3
|
Belisheva NK, Drogobuzhskaya SV. Rare Earth Element Content in Hair Samples of Children Living in the Vicinity of the Kola Peninsula Mining Site and Nervous System Diseases. BIOLOGY 2024; 13:626. [PMID: 39194565 DOI: 10.3390/biology13080626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024]
Abstract
The aim of this study is to assess the rare earth element (REE) content in hair samples of children living in Lovozero village, near an REE mining site, and the possible effects of REEs on the prevalence of nervous system diseases in Lovozersky District (Murmansk region, Kola Peninsula). Fifty-three school-age children were recruited for the analysis of REE content in hair samples. REE (Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) content was estimated by means of inductively coupled plasma mass spectrometry (ICP-MS). The analysis of REE content in the hair of children living in Russia, Kazakhstan, and China indicated REE intake from the environment. The possible contribution of REEs to nervous system disorders is supported by the link between the REE content in hair samples of children living near REE mining areas (China) and the manifestation of cognitive disorders in these children. It is also found that the prevalence of nervous system diseases in children aged 15-17 years is higher in Lovozersky District compared to the other districts of the Murmansk region. In this paper, the possible contribution of REEs to the prevalence of episodic paroxysmal disorders (G40-G47), cerebral palsy (G80-G83), and epilepsy and status epilepticus (G40-G41) is discussed.
Collapse
Affiliation(s)
- Natalia K Belisheva
- Research Centre for Human Adaptation in the Arctic, Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences" (RCHAA KSC RAS), Akademgorodok, 41a, 184209 Apatity, Russia
| | - Svetlana V Drogobuzhskaya
- Tananaev Institute of Chemistry-Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences", Akademgorodok, 26 a, 184209 Apatity, Russia
| |
Collapse
|
4
|
Sun M, Liu J, Lin K, Yuan W, Liang X, Wu H, Zhang Y, Dai Q, Yang X, Song G, Wang J. Distribution and migration of rare earth elements in sediment profile near a decommissioned uranium hydrometallurgical site in South China: Environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121832. [PMID: 39038435 DOI: 10.1016/j.jenvman.2024.121832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Rare earth elements have garnered increasing attention due to their strategic properties and chronic toxicity to humans. To better understand the content, migration, and ecological risk of rare earth elements in a 180 cm depth sediment profile downstream of a decommissioned uranium hydrometallurgical site in South China, X-ray powder diffraction (XRD) and High-resolution transmission electron microscope (HRTEM) were additionally used to quantify and clarify the mineral composition features. The results showed a high enrichment level of total rare earth elements in the sediment depth profile (range: 129.6-1264.3 mg/kg); the concentration variation of light rare earth elements was more dependent on depth than heavy rare earth elements. Overall, there was an obvious enrichment trend of light rare earth elements relative to heavy rare earth elements and negative anomalies of Ce and Eu. The fractionation and anomaly of rare earth elements in sediments were closely related to the formation and weathering of iron-bearing minerals and clay minerals, as confirmed by the correlation analysis of rare earth elements with Fe (r2 = 0.77-0.90) and Al (r2 = 0.50-0.71). The mineralogical composition of sediments mainly consisted of quartz, feldspar, magnetite, goethite, and hematite. Pollution assessment based on the potential ecological risk index, pollution load index (PLI), enrichment factor, and geological accumulation index (Igeo) showed that almost all the sediments had varying degrees of pollution and a high level of ecological risk. This study implied that continued environmental supervision and management are needed to secure the ecological health in terms of rare earth elements enrichment around a decommissioned uranium hydrometallurgical site. The findings may provide valuable insights for other uranium mining and hydrometallurgical areas globally.
Collapse
Affiliation(s)
- Mengqing Sun
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Juan Liu
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Ke Lin
- Earth Observatory of Singapore and Asian School of the Environment, Nanyang Technological University, Singapore
| | - Wenhuan Yuan
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Xiaoliang Liang
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, China
| | - Ying Zhang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Qunwei Dai
- School of Environment and Resource, Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education, Southwest University of Science and Technology, Mianyang, China
| | - Xiao Yang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China
| | - Jin Wang
- School of Environmental Science and Engineering, Key Laboratory of Waters Quality & Conservation in the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, China.
| |
Collapse
|
5
|
Ou T, Bao H, Zhou Y, Liu Z, Sui H, Yong L, Mao W, Wang Y, Bao H, Xiao X, Zhang L, Yang D, Jiang D, Li N, Wei S, Song Y. Concentration and health risk assessment of 16 rare earth elements in six types of tea in China. Food Chem Toxicol 2024; 190:114832. [PMID: 38908816 DOI: 10.1016/j.fct.2024.114832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Rare Earth Elements (REEs) have been implicated in potential health effects. However, the health risk of REE exposure among tea drinkers in China remains poorly understood. This study aimed to characterize the concentration of REEs in different tea categories and evaluate the associated health risks for tea consumers in China. By analyzing the content of 16 REEs in 4326 tea samples from China, the exposure level of REEs to the general population was estimated. The content of these 16 REEs was similar across six types of tea, with oolong tea exhibiting the highest levels. The concentration of light rare earth elements (LREEs) in six types of tea was higher than that of heavy rare earth elements (HREEs). The daily mean and 95th percentile (P95) exposure to REEs from tea for the general population in China were 0.0328 μg/kg BW and 0.1283 μg/kg BW, respectively, which are significantly lower than the temporary acceptable daily dose (tADI). Our findings suggest that REEs from tea do not pose a known health risk to Chinese consumers.
Collapse
Affiliation(s)
- Tong Ou
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Hanbing Bao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China; Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yujing Zhou
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhaoping Liu
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Haixia Sui
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Weifeng Mao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Yibaina Wang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Huihui Bao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Xiao Xiao
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Lei Zhang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Dajin Yang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Dingguo Jiang
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Ning Li
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China
| | - Sheng Wei
- Department of Epidemiology and Biostatistics, Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Healthand Family Planning Commission of the People's Republic of China (China National Center for Food Safety Risk Assessment), Beijing, 100022, China.
| |
Collapse
|
6
|
Qiu F, Zhang H, Cui Y, Zhang L, Zhou W, Huang M, Xia W, Xu S, Li Y. Associations of maternal urinary rare earth elements individually and in mixtures with neonatal size at birth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123163. [PMID: 38104763 DOI: 10.1016/j.envpol.2023.123163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Prenatal rare earth elements (REEs) exposure is linked to unfavorable health consequences. Epidemiologic research on repeated measurements of REEs during gestation correlated with fetal growth is exiguous. Until now, few studies have characterized exposure characteristics of REEs in pregnant women. We aimed to ascertain the characteristics and predictors of REEs exposure over three trimesters among pregnant women and examine the possible effects of prenatal REEs exposure on size at birth. Urinary REEs concentrations exhibited considerable within-subject variation with intraclass correlation coefficients ranging from 0.16 to 0.58. Maternal age, household income, gestational weight gain, passive smoking during pregnancy, parity, and neonatal gender were associated with maternal urinary REEs concentrations. Elevated maternal urinary holmium and thulium concentrations in the 3rd trimester were significantly related to reductions in birth weight. Weighted quantile sum (WQS) regression model identified that urinary REEs mixture in the 3rd trimester were negatively related to birth weight (WQSREEs β = -26.22; 95% confidence interval [CI]: -47.62, -4.82), with holmium (40%) and thulium (24%) receiving the highest weights. Male infants received the most weight (>50%) related to decreased birth weight. This study revealed a significant association between individual and mixture REE exposure in late pregnancy with a reduction in birth weight.
Collapse
Affiliation(s)
- Feng Qiu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yuan Cui
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Liping Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wensi Zhou
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Min Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
7
|
Hou F, Huang J, Qing F, Guo T, Ouyang S, Xie L, Ding Y, Yu J, Li Y, Liu X, He TS, Fan X, Liu Z. The rare-earth yttrium induces cell apoptosis and autophagy in the male reproductive system through ROS-Ca 2+-CamkII/Ampk axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115262. [PMID: 37480693 DOI: 10.1016/j.ecoenv.2023.115262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
China has the world's largest reserves of rare earth elements (REEs), but widespread mining and application of REEs has led to an increased risk of potential pollution. Yttrium (Y), the first heavy REEs to be discovered, poses a substantial threat to human health. Unfortunately, little attention has been given to the impact of Y on human reproductive health. In this study, we investigated the toxic effects of YCl3 on mouse testes and four types of testicular cells, including Sertoli, Leydig, spermatogonial and spermatocyte cells. The results showed that YCl3 exposure causes substantial damage to mouse testes and induces apoptosis and autophagy, but not pyroptosis or necrosis, in testicular cells. Genome-wide gene expression analysis revealed that YCl3 induced significant changes in gene expression, with Ca2+ and mitochondria-related genes being the most significantly altered. Mechanistically, YCl3 exposure induced mitochondrial dysfunction in testicular cells, triggering the overproduction of reactive oxygen species (ROS) by impairing the Nrf2 pathway, regulating downstream Ho-1 target protein expression, and increasing Ca2+ levels to activate the CamkII/Ampk signaling pathway. Blocking ROS production or Ca2+ signaling significantly attenuates apoptosis and autophagy, while supplementation with Ca2+ reverses the suppression of apoptosis and autophagy by ROS blockade in testicular cells. Notably, apoptosis and autophagy induced by YCl3 treatment are independent of each other. Thus, our study suggests that YCl3 may impair the antioxidant stress signaling pathway and activate the calcium pathway through the ROS-Ca2+ axis, which promotes testicular cell apoptosis and autophagy independently, thus inducing testicular damage and impairing male reproductive function.
Collapse
Affiliation(s)
- Fangpeng Hou
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; The First School of Clinical Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Junyun Huang
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Furong Qing
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tianfu Guo
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Sijia Ouyang
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Lu Xie
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yechun Ding
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Jingge Yu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Yanmin Li
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Xia Liu
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China
| | - Tian-Sheng He
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Xiaona Fan
- College of Pharmacy, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| | - Zhiping Liu
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi 341000, China; School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
8
|
Dai L, Ge J, Wang L, Wan X, Guo G, Liang T, Bolan N, Rennert T, Rinklebe J. Hair-biomonitoring assessment of rare-earth-element exposure in residents of the largest rare-earth mining and smelting area of China. ENVIRONMENT INTERNATIONAL 2023; 179:108177. [PMID: 37690222 DOI: 10.1016/j.envint.2023.108177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
The long-term and large-scale mining of rare earth minerals may lead to an accumulation of rare earth elements (REEs) in the environment, posing potential health risks to residents. We collected scalp hair (n = 254) from residents of a smelting area, a mining area, and a reference area to clarify human exposure to REEs. The contents of 15 REEs investigated in human hair samples were notably higher in the mining and smelting areas than in the reference area. Significant differences between some REEs were observed between the mining and smelting areas, for instance, cerium (Ce), dysprosium, and praseodymium. In the study areas, exposure to different sources of REEs may be one of the factors that contributed to the variations of REE correlations and clusters in human hair. Furthermore, in the smelting area, Ce contents in hair decreased with increasing age of children. However, Ce contents in the hair of adults increased with age. In contrast, Ce accumulation continuously increased in the reference area residents' hair with age. Regression results indicated that age and location were more important than sex when considering the influence on REE accumulation in residents' hair. The results of this study may help policymakers to implement guidelines to alleviate residents' exposure to REE in mining and smelting areas.
Collapse
Affiliation(s)
- Lijun Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinsong Ge
- Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Ecological Environment Planning and Environmental Protection Technology Center of Qinghai Province, Xining 810007, China; University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| | - Xiaoming Wan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Guanghui Guo
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Thilo Rennert
- University of Hohenheim, Institute of Soil Science and Land Evaluation, Department of Soil Chemistry and Pedology, 70593 Stuttgart, Germany
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany.
| |
Collapse
|
9
|
Qiao X, Cui W, Gao S, Zhi Q, Li B, Fan Y, Liu L, Gao J, Tan H. Occupational exposure to rare earth elements: Assessment of external and internal exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119801. [PMID: 35863702 DOI: 10.1016/j.envpol.2022.119801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Our study investigated occupational exposure to rare earth elements (REEs) in a major REE processing plant from North China by assessing both external exposure and internal exposure in the workers. An exposure group, including 50 workers in the processing plant, and a control group, including 50 workers from a liquor factory located 150 km away from the exposure group, were recruited in the study. Portable air sampler was employed to accurately measure individual exposure to the external environment, and the data demonstrating significantly higher contamination in the REE processing plant compared with the control group (i.e., 87.5 versus 0.49 μg/m3 of ΣREEs). Blood concentrations were also significantly higher in the exposure group (3.47 versus 2.24 μg/L of ΣREEs). However, the compositional profiles of REEs resembled between the exposure and control group in blood or air particles, indicating the influence of mining/processing activities on the surrounding regions. External exposure in the occupational environment appeared to significantly influence internal REE exposure in the REE processing workers. Some other sociodemographic and occupational factors, including the residence time and the type of work, could also influence occupational exposure to selected REEs. Our data clearly demonstrated the highly elevated REE contamination in both working environment and human bodies compared with the control subjects, raising the critical need for better assessing the health risks from occupational REE exposure and efficient management for occupational hazards.
Collapse
Affiliation(s)
- Xinhang Qiao
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Wenxuan Cui
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Sheng Gao
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, 010000, China
| | - Qiang Zhi
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, 010000, China
| | - Bin Li
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, 010000, China
| | - Yaochun Fan
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, 010000, China
| | - Li Liu
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, 010000, China
| | - Jianqiong Gao
- Inner Mongolia Autonomous Region Comprehensive Center for Disease Control and Prevention, Hohhot, Inner Mongolia, 010000, China
| | - Hongli Tan
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Wang J, Liu S, Wei X, Beiyuan J, Wang L, Liu J, Sun H, Zhang G, Xiao T. Uptake, organ distribution and health risk assessment of potentially toxic elements in crops in abandoned indigenous smelting region. CHEMOSPHERE 2022; 292:133321. [PMID: 34929267 DOI: 10.1016/j.chemosphere.2021.133321] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/23/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Inorganic pollution induced by smelting waste has threatened the safety of environment, whereas the impacts on farmlands with regards to potentially toxic elements (PTEs) receive insufficient attention. Herein, the contents, transfer pathways and potential risks of the PTEs in common crops were examined from different farmlands distributed around an indigenous Zn-smelting area in Guizhou, China. The results showed that Tl in cabbage (Brassica oleracea L.) (up to 3.74 mg/kg) and radish (Raphanus sativus L.) (up to 1.16 mg/kg) at some sites exceeded the maximum permissible level (MPL) (0.5 mg/kg) for food, and, under the same pollution condition, cabbage and radish were more likely to enrich PTEs, and the edible portion of maize was not prone to Tl risk. Hazard quotient calculations of Tl, Ba, and U were greater than 1, indicating the edible risk of crops for these PTEs. Further characterization of selected soils revealed that MnFe2O4 and Fe2O3 controlled the phase transformation of Tl(III) in rhizospheric soils. Furthermore, distinctive mullite was detected in the soil which confirmed the contribution of high temperature smelting to PTEs pollution. The findings indicate an emergent need for soil remediation around historical indigenous metal smelting areas for the sake of food security.
Collapse
Affiliation(s)
- Jin Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou 510006, China.
| | - Siyu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xudong Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Legnaro, Italy
| | - Jingzi Beiyuan
- School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China
| | - Lulu Wang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juan Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
| | - Hui Sun
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gaosheng Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| |
Collapse
|
11
|
Tao Y, Shen L, Feng C, Yang R, Qu J, Ju H, Zhang Y. Distribution of rare earth elements (REEs) and their roles in plant growth: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118540. [PMID: 34801619 DOI: 10.1016/j.envpol.2021.118540] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/28/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
The increasing use of rare earth elements (REEs) in various industries has led to a rise in discharge points, thus increasing discharge rates, circulation, and human exposure. Therefore, REEs have received widespread attention as important emerging pollutants. This article thus summarizes and discusses the distribution and occurrence of REEs in the world's soil and water, and briefly introduces current REEs content analysis technology for the examination of different types of samples. Specifically, this review focuses on the impact of REEs on plants, including the distribution and fractionation of REEs in plants and their bioavailability, the effect of REEs on seed germination and growth, the role of REEs in plant resistance, the physiological and biochemical responses of plants in the presence of REEs, including mineral absorption and photosynthesis, as well as a description of the substitution mechanism of REEs competing for Ca in plant cells. Additionally, this article summarizes the potential mechanisms of REEs to activate endocytosis in plants and provides some insights into the mechanisms by which REEs affect endocytosis from a cell and molecular biology perspective. Finally, this article discusses future research prospects and summarizes current scientific findings that could serve as a basis for the development of more sustainable rare earth resource utilization strategies and the assessment of REEs in the environment.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Shen
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Chong Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rongyi Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hanxun Ju
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Panichev AM, Baranovskaya NV, Seryodkin IV, Chekryzhov IY, Vakh EA, Soktoev BR, Belyanovskaya AI, Makarevich RA, Lutsenko TN, Popov NY, Ruslan AV, Ostapenko DS, Vetoshkina AV, Aramilev VV, Kholodov AS, Golokhvast KS. Landscape REE anomalies and the cause of geophagy in wild animals at kudurs (mineral salt licks) in the Sikhote-Alin (Primorsky Krai, Russia). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1137-1160. [PMID: 34212291 DOI: 10.1007/s10653-021-01014-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
To test the "rare earth" hypothesis of geophagy, geological and hydrogeochemical studies unparalleled anywhere in the world were carried out at kudurs (salt licks) in two districts in the Primorsky Krai, Russia. The mineral and chemical compositions of geophagic earth consumed by animals, the chemical composition of surface waters and vegetation, and the chemical composition of biological tissues of red deer (Cervus elaphus) were studied in this research. It was found that ultra-fresh surface and fontinal waters in the studied areas contain anomalously high concentrations of rare earth elements (REE), the sums of which exceeded the average values in the Primorsky Krai and worldwide by tenfold, and more. The presence of landscape REE anomalies is confirmed by elevated concentrations of these elements in vegetation. Using electron microscopy, it was determined that the sources of REE in landscape components are rocks containing secondary, readily soluble, REE minerals (hydrophosphates and fluorocarbonates). The study of the chemical composition of animal tissues showed the presence of significant concentrations of heavy REE (HREE) in the blood and brain, which indirectly indicates a high probability of animals developing stress reactions against the background REE-elementosis. Eaten earthy substances in both areas are represented by mixtures of smectite clays and zeolites with high ion-exchange properties. In the digestive tract of animals, such sorbents actively interact with the biological electrolyte, saturating it with sodium ions and absorbing HREE. The main meaning of geophagy is regulation of the concentration and proportion of REE in the body. Sometimes it manifests itself in intake of significant amounts of Na.
Collapse
Affiliation(s)
- A M Panichev
- Pacific Geographical Institute FEB RAS, Vladivostok, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | | | - I V Seryodkin
- Pacific Geographical Institute FEB RAS, Vladivostok, Russia
| | | | - E A Vakh
- Far Eastern Federal University, Vladivostok, Russia
- Pacific Oceanological Institute FEB RAS, Vladivostok, Russia
| | | | | | - R A Makarevich
- Pacific Geographical Institute FEB RAS, Vladivostok, Russia
| | - T N Lutsenko
- Pacific Geographical Institute FEB RAS, Vladivostok, Russia
| | - N Yu Popov
- Far East Geological Institute FEB RAS, Vladivostok, Russia
| | - A V Ruslan
- Far East Geological Institute FEB RAS, Vladivostok, Russia
| | - D S Ostapenko
- Far East Geological Institute FEB RAS, Vladivostok, Russia
| | - A V Vetoshkina
- Far East Geological Institute FEB RAS, Vladivostok, Russia
| | - V V Aramilev
- Pacific Geographical Institute FEB RAS, Vladivostok, Russia
| | - A S Kholodov
- Far East Geological Institute FEB RAS, Vladivostok, Russia
| | - K S Golokhvast
- Pacific Geographical Institute FEB RAS, Vladivostok, Russia.
- Far Eastern Federal University, Vladivostok, Russia.
- Siberian Federal Scientific Center of Agrobiotechnology RAS, Krasnoobsk, Russia.
| |
Collapse
|
13
|
Ferreira MDS, Fontes MPF, Lima MTWDC, Cordeiro SG, Wyatt NLP, Lima HN, Fendorf S. Human health risk assessment and geochemical mobility of rare earth elements in Amazon soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151191. [PMID: 34710416 DOI: 10.1016/j.scitotenv.2021.151191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Rare earth elements (REEs) are a grouping of elements that encompasses lanthanides, yttrium and scandium due to their similar chemical properties and occurrence in ore deposits. Over the past few decades, economic interest in REEs has increased due to their use in several types of industries such as high-tech, medicine and agriculture. Extraction of REEs has been followed, in general, by incorrect disposal of tailing and waste, creating hazardous conditions in several countries. However, the magnitude of the possible impacts on ecosystem and human health are relatively unknown, especially in tropical systems. Thus, the objectives of this study were to assess the geochemical mobility and the bioaccessibility of REEs based on a series of chemical extractions and in vitro essay. We also tested two promising simple protocols (0.01 mol L-1 CaCl2 and 0.43 mol L-1 HNO3) for measuring REE bioaccessible fractions through a single extraction. Our findings show that the bioavailable fractions represent less than 20% of the ΣREEs fraction in all soil samples examine. Similarly, the oral bioaccessibility obtained by two in vitro methods (Gastric protocol and Gastric-Intestinal protocol) and by the single extraction tests represented less than 20% of the ΣREE contents. The non-carcinogenic risks and the carcinogenic risks associated to REEs oral exposure were low for children and adults. The extractions with 0.01 mol L-1 CaCl2 showed great potential as a method for measuring the REEs bioaccessible fraction.
Collapse
Affiliation(s)
| | | | | | - Suellen Geronimo Cordeiro
- Department of Chemistry, Federal University of Espirito Santo, Vitoria, Espirito Santo 29075-910, Brazil
| | | | - Hedinaldo Narciso Lima
- Department of Agricultural Engineering and Soils, Federal University of Amazonas, Manaus, Amazonas 69080-900, Brazil.
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
14
|
Culicov OA, Trtić-Petrović T, Balvanović R, Petković A, Ražić S. Spatial distribution of multielements including lanthanides in sediments of Iron Gate I Reservoir in the Danube River. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44877-44889. [PMID: 33851297 PMCID: PMC8364546 DOI: 10.1007/s11356-021-13752-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Recent studies show that lanthanides (Ln) are becoming emerging pollutants due to their wide application in new technologies, but their environmental fate, transport, and possible accumulation are still relatively unknown. This study aims to determine major and trace elements including Ln in the Danube River sediment which either belong or close to the Iron Gate Reservoir. The Iron Gate Reservoir is characterized by accumulation of sediments as an effect of building hydropower dam Iron Gate I. The surface sediments were collected on the Danube River-1141 to 864 km and three tributaries along this waterway. Two samples of deep sediments were used for comparison. The results indicate the significant upward enrichment of Zn, Sb, Cr, Nd, and Dy in sediments belongs to the Iron Gate Reservoir. The sample 4-Smed is labelled as a hot spot of contamination with Zn, Cr, As, Sb, Nd, and Dy. Also, a trend of increasing concentration in the time period from 1995 to 2016 was found for elements Zn, Cr, and Ni in sediment samples in the Iron Gate Reservoir. Chemometric analysis shows the grouping of sample sites into clusters characterized by the following properties: (i) increased concentration of all measured elements (samples within the Iron Gate Reservoir); (ii) increased Cu concentration (11-Pek); and (iii) lower concentrations of the measured elements (deep sediments). The data presented hereby contribute to the monitoring of pollution of the River Danube sediments and give the first view of Ln profile in the studied sediments.
Collapse
Affiliation(s)
- Otilia Ana Culicov
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russian Federation
- National Institute for R&D in Electrical Engineering ICPE-CA, Bucharest, Romania
| | - Tatjana Trtić-Petrović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia.
| | - Roman Balvanović
- Laboratory of Physics, Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, Belgrade, 11001, Serbia
| | - Anđelka Petković
- "JaroslavČerni" Institute for the Development of Water Resources, Belgrade, Serbia
| | - Slavica Ražić
- Faculty of Pharmacy - Department of Analytical Chemistry, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Ferreira MDS, Fontes MPF, Bellato CR, Marques Neto JDO, Lima HN, Fendorf S. Geochemical signatures and natural background values of rare earth elements in soils of Brazilian Amazon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 277:116743. [PMID: 33640811 DOI: 10.1016/j.envpol.2021.116743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Rare earth elements (REEs) are generally defined as a homogenous group of elements with similar physical-chemical properties, encompassing Y and Sc and the lanthanides elements series. Natural REEs contents in soils depend on the parent material, the soil genesis processes and can be gradually added to the soil by anthropogenic activities. The REEs have been considered emerging pollutants in several countries, so the establishment of regulatory guidelines is necessary to avoid environmental contamination. In Brazil, REE soils data are restricted to some regions, and knowledge about them in the Amazon soils is scarce, although this biome covers more than 40% of the Brazilian territory. Thus, the objectives of this study were to determine the REE content in soils of two hydrographic basins (Solimões and Rio Negro) of the Amazon biome, establish their Quality Reference Values (QRV) and to investigate the existence of enrichment of REEs in urban soils. The ΣREE(Y + Sc) content of Solimões surface samples was 109.28 mg kg-1 and the ΣREE(Y + Sc) content in the subsurface samples was 94.11 mg kg-1. In soils of Rio Negro basin, the ΣREE(Y + Sc) was 43.95 15 mg kg-1 surface samples and 38.40 mg kg-1 in subsurface samples. The ΣREE(Y + Sc) in urban topsoils samples was 38.62 mg kg-1. The REEs contents pattern in three studied areas are influenced in different amplitude by natural soil properties. The REEs content in urban topsoils were slightly higher than the Rio Negro pristine soils, but the ecological risk was low. QRVs recommend for Solimões soils ranged from 0.01 (Lu) to 145.6 mg kg-1 (Ce) and for Rio Negro soils ranged from 0.05 (Lu) to 15.8 mg kg-1 (Ce).
Collapse
Affiliation(s)
| | | | - Carlos Roberto Bellato
- Department of Chemistry, Federal University of Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| | | | - Hedinaldo Narciso Lima
- Hedinaldo Narciso Lima, Department of Agricultural Engineering and Soils, Federal University of Amazonas, Manaus, Amazonas, 69080-900, Brazil.
| | - Scott Fendorf
- Scott Fendorf, Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Rucki M, Kejlova K, Vlkova A, Jirova D, Dvorakova M, Svobodova L, Kandarova H, Letasiova S, Kolarova H, Mannerstrom M, Heinonen T. Evaluation of toxicity profiles of rare earth elements salts (lanthanides). J RARE EARTH 2021. [DOI: 10.1016/j.jre.2020.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Liu Y, Wu M, Song L, Bi J, Wang L, Chen K, Liu Q, Xiong C, Cao Z, Li Y, Xia W, Xu S, Wang Y. Association between prenatal rare earth elements exposure and premature rupture of membranes: Results from a birth cohort study. ENVIRONMENTAL RESEARCH 2021; 193:110534. [PMID: 33249034 DOI: 10.1016/j.envres.2020.110534] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/10/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The widespread exploitation and application of rare earth elements (REE) have led to the risk of human exposure and might result in the adverse health effect on pregnant women. However, no epidemiological studies have explored the associations between prenatal REE exposure and premature rupture of membranes (PROM). OBJECTIVE We aimed to investigate the associations of maternal urinary REE levels with the risk of PROM. METHODS A total of 4897 mother-newborn pairs were recruited from a birth cohort study in Wuhan, China. Urinary concentrations of REE were measured by inductively coupled plasma mass spectrometry (ICP-MS). The associations of prenatal REE exposure with PROM were evaluated using logistic regression models. False discovery rate (FDR) was applied to adjust for multiple testing. Weighted quantile sum (WQS) regression was used to estimate the association of urinary REE mixture with PROM. RESULTS With one unit increase (μg/g creatinine) in natural log-transformed urinary REE levels (Ce, Yb, La, Pr, Nd, Eu, Gd, Dy, Ho, Er, Tm), the adjusted ORs (95% CIs) for the PROM were from 1.143 (1.078, 1.211) to 1.317 (1.223, 1.419), and the associations were still observed after FDR adjustment (all PFDRs < 0.05). The associations were stronger among male infants than female infants. Furthermore, the urinary REE mixture was also associated with the risk of PROM, a quartile increase in the WQS index of REE resulted in ORs (95% CI) for the PROM of 1.494 (1.356, 1.645) in the adjusted model. CONCLUSIONS Our findings suggested that prenatal exposure to REE (Ce, Yb, La, Pr, Nd, Eu, Gd, Dy, Ho, Er, and Tm) and REE mixture were associated with the increased risk of PROM. Further studies from different populations are needed to confirm the associations and to explore the mechanisms.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongqiang Cao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
18
|
Galhardi JA, de Mello JWV, Wilkinson KJ. Environmental and health risk assessment of agricultural areas adjacent to uranium ore fields in Brazil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:3965-3981. [PMID: 32653967 DOI: 10.1007/s10653-020-00659-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
To investigate the risks posed by trace and rare earth elements (REEs) in two tropical uranium ore fields, metal concentrations from 50 vegetable samples (corn and soybean) and their corresponding agricultural soils were evaluated in a U mining area and a U-rich coal mining area in Brazil. Samples from both areas had metal concentrations (REE: La to Lu, and trace elements: As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, Sr) that were higher than the guidelines proposed by the Brazilian environmental agency. Soils from the U mining area (Poços de Caldas) generally had higher contents of trace elements than the coal mining area (Figueira), with the exception of Ni and Cr, indicating a higher risk of pollution, which was confirmed by a pollution load index that was greater than unity. For both sites, concentrations of uranium in the soil and plants, its hazard quotients and the soil contamination factor were higher in agricultural fields closer to the mines, indicating that contamination and the consequent risks to human health were distance dependent. REE concentrations averaged 52.8 mg kg-1 in the topsoils and 0.76 mg kg-1 in the grains for Figueira, whereas higher values of 371 mg kg-1 (topsoils) and 0.9 mg kg-1 (grains) were found in Poços de Caldas. Based upon corn and soybean consumption, the estimated intake dose of the REE was lower than the intake dose predicted to be problematic for human health for both sites, indicating limited risk related to the ingestion of REE.
Collapse
Affiliation(s)
- Juliana A Galhardi
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, QC, Canada.
| | - Jaime W V de Mello
- Soil Chemistry and Environmental Geochemistry Group, Department of Soil, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Kevin J Wilkinson
- Biophysical Environmental Chemistry Group, Department of Chemistry, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
19
|
Liu Y, Wu M, Liu B, Song L, Bi J, Wang L, Upadhyaya Khatiwada S, Chen K, Liu Q, Xiong C, Li Y, Xia W, Xu S, Wang Y, Zhou A. Association of prenatal exposure to rare earth elements with newborn mitochondrial DNA content: Results from a birth cohort study. ENVIRONMENT INTERNATIONAL 2020; 143:105863. [PMID: 32683209 DOI: 10.1016/j.envint.2020.105863] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/01/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Rare earth elements (REE) have been widely used in industry and agriculture. Mitochondria are susceptible to environmental exposure and the change of mitochondrial DNA (mtDNA) content is a proxy indicator of mitochondrial response to damage. However, no study has explored the associations between prenatal repeated REE exposure and newborn mtDNA content. OBJECTIVES We aimed to investigate the trimester-specific associations between prenatal REE exposure and newborn mtDNA content. METHODS A total of 587 mother-newborn pairs were recruited from Wuhan Children's Hospital between November 2013 and March 2015 in Wuhan, China. Urinary concentrations of REE collected during 3 trimesters were measured by inductively coupled plasma mass spectrometry (ICP-MS). Quantitative real-time polymerase chain reaction (qPCR) was used to measure relative cord blood mtDNA content. We evaluated the trimester-specific associations between prenatal REE exposure and relative cord blood mtDNA content with multiple informant models. False discovery rate (FDR) was used to correct for multiple testing. RESULTS After adjustment for potential confounders, prenatal exposure to REE [gadolinium (Gd), dysprosium (Dy), erbium (Er), praseodymium (Pr)] during the third trimester were positively related to cord blood mtDNA content, and the positive associations with cord blood mtDNA content were still observed in Dy, Er, and Pr after FDR correction. CONCLUSIONS This prospective study demonstrated that maternal REE exposure during the third trimester was associated with the increased newborn mtDNA content, and the third trimester might be a potential window for sensitivity of newborn mtDNA content to REE exposure. The results might provide evidence of the potential health effects of environmental REE exposure.
Collapse
Affiliation(s)
- Yunyun Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingyang Wu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bingqing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianing Bi
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulin Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shikha Upadhyaya Khatiwada
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kai Chen
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qing Liu
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Xiong
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Aifen Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
20
|
Zhang R, Wang L, Li Y, Li H, Xu Y. Distribution Characteristics of Rare Earth Elements and Selenium in Hair of Centenarians Living in China Longevity Region. Biol Trace Elem Res 2020; 197:15-24. [PMID: 31728813 DOI: 10.1007/s12011-019-01970-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/30/2019] [Indexed: 11/28/2022]
Abstract
In order to explore the characteristics of the rare earth elements (REEs) and selenium (Se) among the Chinese centenarians, the concentrations of REE and Se were detected in the hair of healthy centenarians living in typical Chinese longevity region, and the influences of physiological conditions and behavior on the concentrations of REE and Se were assessed. The average values of light RE (LRE) and heavy RE (HRE) are 31.87 and 11.12 ng/g. Female centenarians had higher concentrations of lanthanum (La), praseodymium (Pr), gadolinium (Gd), terbium (Tb), erbium (Er), thulium (Tm), yttrium (Y), and Se but lower levels of cerium (Ce), neodymium (Nd), samarium (Sm), europium (Eu), dysprosium (Dy), holmium (Ho), ytterbium (Yb), and lutetium (Lu). Except for Ce, the higher the age, the lower the REE and Se content were. Smoking was positively associated with Dy, Er, and Yb levels, whereas drinking habits showed no significant effect on all the elements. Elderly individuals who ate smoked and pickled food and who consumed high amounts of salt had higher levels of REE and Se in their hair, and centenarians who consumed egg and milk had higher Se and REE in the hair than did the non-eaters. This comprehensive study on the REE and Se concentrations among the healthy centenarians can provide scientific support for shaping a healthy aging society.
Collapse
Affiliation(s)
- Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hairong Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuefeng Xu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
21
|
Shajib MTI, Hansen HCB, Liang T, Holm PE. Rare earth elements in surface specific urban runoff in Northern Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:136969. [PMID: 32062247 DOI: 10.1016/j.scitotenv.2020.136969] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Rare earth elements (REEs) have been increasingly diffused to the environment through mining activities and the extensive use in modern commodities, vehicular activities, coal burning and various environmental and agricultural applications. Studies of REEs in urban environments are limited with no data on REEs in urban runoff. To investigate the concentration and distribution of REEs, a total of 150 runoff samples were collected from trafficked areas, rooftops and residential parking lots in a moderate to densely populated area in Beijing, China. The runoff samples were separated into dissolved and particulate phases and analyzed by ICP-MS. The REEs were mainly (>80%) found in the runoff particulate material. The sum of REEs (ΣREE) total concentrations in urban stormwater runoff samples ranged from 0.16 to 185 μg/l. The observed mean total concentration of ΣREE in the runoff samples were 3-14 folds higher and dissolved fractions 1.5 to 6 times higher than published concentrations for recipients such as sewage channels and rivers. The distribution of REEs in runoff was dominated by light REE. Cluster analysis and Pearson's correlations revealed a strong association between the individual REEs pointing to a similar source. Higher Ce concentrations compared to other REEs indicated strong influence from traffic emission particulates. The La/Sm (5.90-8.05), La/Ce (0.53-0.58) and Ce/Yb (31.0-42.7) ratios pointed to REE sources from traffic emissions and coal burning thus defining an urban fingerprint.
Collapse
Affiliation(s)
- Md Tariqul Islam Shajib
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark; Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Sino Danish Center for Education and Research (SDC), China
| | - Hans Christian Bruun Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark; Sino Danish Center for Education and Research (SDC), China
| | - Tao Liang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China; Sino Danish Center for Education and Research (SDC), China.
| | - Peter Engelund Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark; Sino Danish Center for Education and Research (SDC), China
| |
Collapse
|
22
|
Liu H, Guo H, Pourret O, Chen Y, Yuan R. Role of Manganese Oxyhydroxides in the Transport of Rare Earth Elements Along a Groundwater Flow Path. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E2263. [PMID: 31248060 PMCID: PMC6651366 DOI: 10.3390/ijerph16132263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/02/2022]
Abstract
Rare earth elements (REE) are known to be emerging contaminants in hydrosphere, but roles of hydrous manganese oxyhydroxides (HMO) in REE transport in groundwater remains unknown. In this study, groundwater was sampled along a flow path in the North China Plain to determine the behavior of REE surface complexation to HMO by a modeling and field study approach. Results show that the proportion of neodymium (Nd) complexed by HMO ranges from 0.2% to 95.8%, and from 0.3% to 99.6% in shallow groundwater and deep groundwater, respectively. The amount of complexed REE increases along the flow path. REE bound to HMO exhibit decreasing trends with increasing atomic number. The process was determined to be independent of pH, HMO content, and metal loading. This finding further demonstrates HMO-REE complexation plays a key role in transport of REE in groundwater through preferential scavenging of light REE (LREE) over heavy REE (HREE). Nevertheless, carbonate ligands appear to be robust competitors in reducing the amount of REE sorbed to HMO when solution pH rises above 8.0. Assuming that 50% of Mn concentration occurs as HMO, the amount of complexed REE was predicted to show a more marked decrease in LREE compared to that of HREE.
Collapse
Affiliation(s)
- Haiyan Liu
- School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China.
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
- UniLaSalle, AGHYLE, 60026 Beauvais Cedex, France.
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | | | - Yi Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| | - Rongxiao Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
23
|
Adeel M, Lee JY, Zain M, Rizwan M, Nawab A, Ahmad MA, Shafiq M, Yi H, Jilani G, Javed R, Horton R, Rui Y, Tsang DCW, Xing B. Cryptic footprints of rare earth elements on natural resources and living organisms. ENVIRONMENT INTERNATIONAL 2019; 127:785-800. [PMID: 31039528 DOI: 10.1016/j.envint.2019.03.022] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Rare earth elements (REEs) are gaining attention due to rapid rise of modern industries and technological developments in their usage and residual fingerprinting. Cryptic entry of REEs in the natural resources and environment is significant; therefore, life on earth is prone to their nasty effects. Scientific sectors have expressed concerns over the entry of REEs into food chains, which ultimately influences their intake and metabolism in the living organisms. OBJECTIVES Extensive scientific collections and intensive look in to the latest explorations agglomerated in this document aim to depict the distribution of REEs in soil, sediments, surface waters and groundwater possibly around the globe. Furthermore, it draws attention towards potential risks of intensive industrialization and modern agriculture to the exposure of REEs, and their effects on living organisms. It also draws links of REEs usage and their footprints in natural resources with the major food chains involving plants, animals and humans. METHODS Scientific literature preferably spanning over the last five years was obtained online from the MEDLINE and other sources publishing the latest studies on REEs distribution, properties, usage, cycling and intrusion in the environment and food-chains. Distribution of REEs in agricultural soils, sediments, surface and ground water was drawn on the global map, together with transport pathways of REEs and their cycling in the natural resources. RESULTS Fourteen REEs (Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th and Yb) were plighted in this study. Wide range of their concentrations has been detected in agricultural soils (<15.9-249.1 μg g-1) and in groundwater (<3.1-146.2 μg L-1) at various sites worldwide. They have strong tendency to accumulate in the human body, and thus associated with kidney stones. The REEs could also perturb the animal physiology, especially affecting the reproductive development in both terrestrial and aquatic animals. In plants, REEs might affect the germination, root and shoot development and flowering at concentration ranging from 0.4 to 150 mg kg-1. CONCLUSIONS This review article precisely narrates the current status, sources, and potential effects of REEs on plants, animals, humans health. There are also a few examples where REEs have been used to benefit human health. However, still there is scarce information about threshold levels of REEs in the soil, aquatic, and terrestrial resources as well as living entities. Therefore, an aggressive effort is required for global action to generate more data on REEs. This implies we prescribe an urgent need for inter-disciplinary studies about REEs in order to identify their toxic effects on both ecosystems and organisms.
Collapse
Affiliation(s)
- Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, PR China
| | - Jie Yinn Lee
- Institute for Tropical Biology and Conservation (ITBC), University of Malaysia Sabah, Kota Kinabalu, Sabah 88400, Malaysia
| | - Muhammad Zain
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, Henan 453003, PR China
| | - Muhammad Rizwan
- Microelement research center, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Aamir Nawab
- Department of Animal Science, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - M A Ahmad
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 11044, PR China
| | - Muhammad Shafiq
- Faculty of biological and agricultural sciences, University of Colima, Mexico
| | - Hao Yi
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, PR China
| | - Ghulam Jilani
- Insititute of Soil Science and SWC, PMAS Arid Agriculture University Rawalpindi, Rawalpindi, Pakistan
| | - Rabia Javed
- Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - R Horton
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, PR China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
24
|
Cardoso CED, Almeida JC, Lopes CB, Trindade T, Vale C, Pereira E. Recovery of Rare Earth Elements by Carbon-Based Nanomaterials-A Review. NANOMATERIALS 2019; 9:nano9060814. [PMID: 31146505 PMCID: PMC6630350 DOI: 10.3390/nano9060814] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
Abstract
Modern societies depend strongly on electronic and electric equipment (EEE) which has a side effect result on the large production of electronic wastes (e-waste). This has been regarded as a worldwide issue, because of its environmental impact-namely due to non-adequate treatment and storage limitations. In particular, EEE is dependent on the availability of rare earth elements (REEs), considered as the "vitamins" of modern industry, due to their crucial role in the development of new cutting-edge technologies. High demand and limited resources of REEs in Europe, combined with potential environmental problems, enforce the development of innovative low-cost techniques and materials to recover these elements from e-waste and wastewaters. In this context, sorption methods have shown advantages to pre-concentrate REEs from wastewaters and several studies have reported the use of diverse nanomaterials for these purposes, although mostly describing the sorption of REEs from synthetic and mono-elemental solutions at unrealistic metal concentrations. This review is a one-stop-reference by bringing together recent research works in the scope of the application of carbon nanomaterials for the recovery of REEs from water.
Collapse
Affiliation(s)
- Celso E D Cardoso
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Joana C Almeida
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Cláudia B Lopes
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Tito Trindade
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Carlos Vale
- Interdisciplinar Centre of Marine and Environmental Research, 4450-208 Matosinhos, Portugal.
| | - Eduarda Pereira
- Chemistry Department, CICECO and CESAM & LAQV-REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
25
|
Kotelnikova A, Fastovets I, Rogova O, Volkov DS, Stolbova V. Toxicity assay of lanthanum and cerium in solutions and soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:20-28. [PMID: 30292972 DOI: 10.1016/j.ecoenv.2018.09.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Lanthanum (La) and cerium (Ce) are one of the most abundant rare earth elements (REEs). In spite of quite extensive studying of the effects of these lanthanides on biota, some contradictions remain in the results. Also little is known about the effect of lanthanum and cerium on plant cells and their mitotic cycle, especially in soils. In this study, the effects of La and Ce in solutions and soil samples on root growth, mitotic index (MI) and frequency of aberrant cells (FAC) were assayed using one of the most convenient objects for testing of cytotoxicity - onion Allium cepa L. Bulbs were germinated on media containing La and Ce in concentrations 0-200 mg/l and 0-50 mg/l respectively for solutions and 0-200 mg/kg for soil samples. After 5 days of germination in solutions, a significant decrease in root elongation and MI in apical meristem cells are shown. We have also observed an increase in the number of cells with aberrations at 50 mg/l La and Ce concentration. The number of observed stickiness and disturbed metaphase has increased significantly. Soil samples turned out to be less toxic compared to the solutions probably due to the decreased availability of REEs. In spite of this, significant cytotoxicity of soil samples containing the highest concentration of La and Ce (200 mg/kg) is observed. The latter may indicate the importance of considering the cytotoxicity of soils containing high lanthanides concentrations - in extraction and production areas and actively fertilized fields.
Collapse
Affiliation(s)
- Anna Kotelnikova
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia; Soil Science Faculty, Lomonosov Moscow State University, Leninskiye gory ul., 1, str. 12, Moscow 119991, Russia
| | - Ilya Fastovets
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia; Skolkovo Institute of Science and Technology, Nobelya, 3, Moscow 121205, Russia.
| | - Olga Rogova
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia.
| | - Dmitry S Volkov
- Department of Chemistry and Physical Chemistry of Soils, V.V. Dokuchaev Soil Science Institute, Pyzhevsky per., 7/2, Moscow 119017, Russia; Department of Chemistry, Lomonosov Moscow State University, Leninskiye gory ul., 1 str. 3, Moscow 119991, Russia
| | - Valeriya Stolbova
- Soil Science Faculty, Lomonosov Moscow State University, Leninskiye gory ul., 1, str. 12, Moscow 119991, Russia.
| |
Collapse
|
26
|
Potentially Toxic Elements and Health Risk Assessment in Farmland Systems around High-Concentrated Arsenic Coal Mining in Xingren, China. J CHEM-NY 2018. [DOI: 10.1155/2018/2198176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The health risk of potentially toxic elements (PTEs) via contamination of the food chain has attracted widespread concern. The aim of this study is to evaluate the effects of PTEs in environment and human body (fingernail, hair, and blood) of people living in agricultural soil near arsenic coal mining areas in Xingren County (Guizhou, southwest China). 89 crop samples which included vegetables, rice, maize, and coix seed and their corresponding soils and 17 local surface water and biological tissue samples (41 × 3) in near arsenic coal mining areas were collected, and the concentrations of potentially toxic elements (As, Cd, Cu, Cr, and Pb) in all the samples were determined. The health risk assessment methods developed by the United States Environmental Protection Agency were employed to explore the potential health hazards of PTEs in soils growing crops. Results showed that 4 toxic elements, Cd, Cu, As, and Cr, were found to have different degrees of contamination in soils in the studied area. The total concentration of toxic elements (As, Cr, Cu, and Pb) in fingernail, hair, and blood samples were 90.50, 69.31, and 6.90 mg·kg−1, respectively. Fingernail samples from females were more likely to show exposure to trace metals compared to males. As the age of the subject increased, the concentration of As also increased in all three biological samples. The risk assessment for the mean hazard index value from the consumption of local food crops was 14.81, indicating that consumers may experience adverse, noncarcinogenic health effects. The estimated mean total cancer risk value of was 5.3 × 10−3, which was approximately 10 to 1000 times higher than the acceptable range of 10−6–10−4, indicating serious carcinogenic risks for local people consuming crops from the area. This study provides evidence that local residents in this study area may be at a high risk of disease caused from toxic element exposure.
Collapse
|
27
|
Neves VM, Heidrich GM, Hanzel FB, Muller EI, Dressler VL. Rare earth elements profile in a cultivated and non-cultivated soil determined by laser ablation-inductively coupled plasma mass spectrometry. CHEMOSPHERE 2018; 198:409-416. [PMID: 29421757 DOI: 10.1016/j.chemosphere.2018.01.165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Rare earth elements (REEs) have several applications but the effects on environment are not well known. Therefore, the aim of this work is to establish a method for direct solid sample analysis by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) to evaluate the concentration and distribution of REEs in cultivated and non-cultivated soil. Samples were collected in two areas to 40 cm of depth. The LA-ICP-MS method is easy to be implemented and the sample treatment is very fast comprising only its drying, grounding and pressing as a pellet. The accuracy of the method was evaluated by using a certified reference material (BCR 667 - Estuarine Sediment, Institute for Reference Materials and Measurements (IRMM)) where good agreement with the certified values was obtained. Analyte recovery at two levels of concentration (2.5 and 15.0 μg g-1) was also performed and recoveries in the range of 85%-120% were achieved, values that are acceptable for LA-ICP-MS analysis. In general, the concentration of the REEs is higher in the cultivated soil and increased from the surface to deeper layers, which can be a consequence of fertilizer application.
Collapse
Affiliation(s)
- Vinicius M Neves
- Federal University of Santa Maria, Department of Chemistry, 97.105-900, Santa Maria, RS, Brazil
| | - Graciela M Heidrich
- Federal University of Santa Maria, Department of Chemistry, 97.105-900, Santa Maria, RS, Brazil
| | - Flavia B Hanzel
- Federal University of Santa Maria, Department of Chemistry, 97.105-900, Santa Maria, RS, Brazil
| | - Edson I Muller
- Federal University of Santa Maria, Department of Chemistry, 97.105-900, Santa Maria, RS, Brazil
| | - Valderi L Dressler
- Federal University of Santa Maria, Department of Chemistry, 97.105-900, Santa Maria, RS, Brazil.
| |
Collapse
|
28
|
ZHOU D, LI Z, LUO X, SU J. Leaching of rare earth elements from contaminated soils using saponin and rhamnolipid bio-surfactant. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(17)60994-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
WITHDRAWN: Leachingof rare earth elements from contaminated soils using Saponin and rhamnolipid bio-surfactant. J RARE EARTH 2017. [DOI: 10.1016/j.jre.2017.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Flotation performance and adsorption mechanism of styrene phosphonic acid as a collector to synthetic (Ce,La) 2 O 3. J RARE EARTH 2017. [DOI: 10.1016/s1002-0721(17)60955-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|