1
|
Li W, Yu J, Li Q, Wang H, Liu X, Li P, Jiang X, Yang J. Bacterial cellulose nanofiber reinforced self-healing hydrogel to construct a theranostic platform of antibacterial and enhanced wound healing. Int J Biol Macromol 2024; 281:136336. [PMID: 39370083 DOI: 10.1016/j.ijbiomac.2024.136336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
In order to promote wound healing, self-healing hydrogels with moisturizing property are employed as wound dressing. In this study, bacterial cellulose nanofibers (BCN) with high mechanical strength are used as reinforcement to improve the mechanical properties of self-healing hydrogels. A multifunctional self-healing hydrogel has been constructed by incorporating natural biomass, including Ag hybrid bacterial cellulose nanofiber (Ag-BCN), resveratrol (Res), and carbon nanodots (CNDs). The results of in vitro experiments demonstrate that the mechanical strength of the hybrid hydrogel was increased by 6 times with the addition of Ag-BCN, which also offers excellent antibacterial efficiency (S. aureus 99.99 % and E. coli 99.68 %). The hydrogel with CNDs can observe the healing process of the crack in real time and realize the controlled release of Res through photothermal effect. Moreover, the results of animal model experiments indicate that the prepared hydrogel could reduce the infection of the wound, effectively shorten the progress of wound healing (from 21d to 14 d). All the results imply that the prepared hydrogel has great promise in the application of skin wound healing.
Collapse
Affiliation(s)
- Wenping Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Junjie Yu
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Qingxue Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Heng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Xiaoli Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia District, Nanjing, Jiangsu Province 210023, China
| | - Pingyun Li
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Xiaohong Jiang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China
| | - Jiazhi Yang
- School of Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
2
|
|
3
|
Chen C, Ding W, Zhang H, Zhang L, Huang Y, Fan M, Yang J, Sun D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr Polym 2022; 278:118995. [PMID: 34973797 DOI: 10.1016/j.carbpol.2021.118995] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
Driven by its excellent physical and chemical properties, BC (bacterial cellulose) has achieved significant progress in the last decade, rendering with many novel applications. Due to its resemblance to the structure of extracellular matrix, BC-based biomaterials have been widely explored for biomedical applications such as tissue engineering and drug delivery. The recent advances in nanotechnology endow further modifications on BC and generate BC-based composites for different applications. This article presents a review on the research advancement on BC-based biomaterials from fabrication methods to biomedical applications, including wound dressing, artificial skin, vascular tissue engineering, bone tissue regeneration, drug delivery, and other applications. The preparation of these materials and their potential applications are reviewed and summarized. Important factors for the applications of BC in biomedical applications including degradation and pore structure characteristic are discussed in detail. Finally, the challenges in future development and potential advances of these materials are also discussed.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Yang Huang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Jiazhi Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110115. [PMID: 31546384 DOI: 10.1016/j.msec.2019.110115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/26/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
This research has revealed the promising, green and one-pot approach for fabrication of antimicrobial nanohybrids based on organic nanofibers including cellulose (CNF), chitosan (CHNF), and lignocellulose (LCNF) nanofibers impregnated with silver nanoparticles (AgNPs). Lythrum salicaria extract was used as a reducing agent as well as a capping agent. Formation of the spherical AgNPs ranging between 45 and 65 nm was proved by UV-Vis spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Biomaterials supported AgNPs were characterized and compared for their morphological, thermal, release, and antimicrobial properties. The considerable influence of the phenolic compounds of L.salicaria extract on the synthesis and uniform distribution of AgNPs on nanofibers was confirmed by field emission electron microscopy (FE-SEM). Energy dispersive X-ray spectroscopy (EDX) and ICP-OES analysis of nanohybrids, reflected a high loading capacity for LCNF and also CHNF in contrast to CNF. The release of AgNPs from LCNF substrate was lower than other nanofibers but the order of antimicrobial activity of nanohybrids against E.coli and S.aureus was as this: CHNF ˃ LCNF ˃ CNF. Generally, this research suggested that the efficiency of CHNF and LCNF as immobilizing support of AgNPs is higher than CNF and L.salicaria extract was proposed as a high potential reducing and capping agent.
Collapse
|
5
|
Jalili MA, Allafchian A, Karimzadeh F, Nasiri F. Synthesis and characterization of magnetite/Alyssum homolocarpum seed gum/Ag nanocomposite and determination of its antibacterial activity. Int J Biol Macromol 2019; 139:1263-1271. [PMID: 31421169 DOI: 10.1016/j.ijbiomac.2019.08.123] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/06/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
Due to applications of silver nanoparticles (Ag NPs) especially in advanced science fields, it is important to produce Ag antibacterial nanocomposites with enhanced antibacterial activity and reusability. Over the past decade researches about natural polymers have emphasized the use of them as nanoparticles coating. In this work, a novel core-shell antibacterial agent was synthesized through a three-step procedure. Fe3O4 nanoparticles (Fe3O4 NPs) were synthesized and coated with a natural polymer called Alyssum homolocarpum seed gum (AHSG). Ag NPs were immobilized on the AHSG resulting in formation of the new nanocomposite with improved antimicrobial properties. The immobilization of Ag NPs prevents the release of toxic Ag+ ions. The Fe3O4@AHSG@Ag nanocomposite could easily be separated from medium using an external magnetic field due to presence of the Fe3O4 superparamagnetic nanoparticles. The as-synthesized nanocomposite was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, vibrating sample magnetometer and dynamic light scattering. The results showed that the magnetic nanocomposite was synthesized and coated successfully. Finally, results of disk diffusion method demonstrated that the nanocomposite exhibits excellent antibacterial activity against gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- Mohammad Amin Jalili
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Alireza Allafchian
- Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Faezeh Nasiri
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
6
|
Tayyab Z, Safi SZ, Rahim A, Khan AS, Sharif F, Khan ZUH, Rehman F, Ullah Z, Iqbal J, Muhammad N. Preparation of cellulosic Ag-nanocomposites using an ionic liquid. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:785-796. [PMID: 31018777 DOI: 10.1080/09205063.2019.1605869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zuhra Tayyab
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Sher Zaman Safi
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Abdur Rahim
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Amir Sada Khan
- Department of Chemistry, University of Science and Technology, Bannu, Pakistan
| | - Faiza Sharif
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Fozia Rehman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Zahoor Ullah
- Department of Chemistry, Balochistan University of IT, Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| |
Collapse
|
7
|
Alonso-Díaz A, Floriach-Clark J, Fuentes J, Capellades M, Coll NS, Laromaine A. Enhancing Localized Pesticide Action through Plant Foliage by Silver-Cellulose Hybrid Patches. ACS Biomater Sci Eng 2019; 5:413-419. [DOI: 10.1021/acsbiomaterials.8b01171] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
The Effect of Impregnated Alpha-Cellulose Nanofibers with Ciprofloxacin Hydrochloride on Staphylococcus aureus In Vitro and Healing Process of Wound in Rat. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0066-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Muthivhi R, Parani S, May B, Oluwafemi OS. Green synthesis of gelatin-noble metal polymer nanocomposites for sensing of Hg2+ions in aqueous media. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2017.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Savitskaya I, Kistaubayeva A, Digel I, Shokatayeva D. Physicochemical and Antibacterial Properties of Composite Films Based on Bacterial Cellulose and Chitosan for Wound Dressing Materials. EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL 2017. [DOI: 10.18321/ectj670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
New bacterial cellulose/chitosan (BC/Ch) nanocomposite films were obtained using a simple procedure by immersing BC synthesized by Komagataeibacter xylinus in 1% acetic acid solutions of Ch with the degree of deacetylation 75‒85% of medium molecular weight. The BC and BC/Ch composites chemical composition was examined by FTIR, the mechanical properties by a tensile tester, surface morphology by scanning electron microscopy, and antibacterial activity against S. aureus, E. coli and P. aeruginosa by diffusion and joint incubation methods. The FTIR spectra indicated the intermolecular interaction between BC and Ch. Due to addition of 0.6% (w/v) Ch, the films of BC/Ch become more homogeneous with a significantly denser fibril structure, smaller pore diameter and higher surface area in comparison to those of pure BC films. Micro- (15‒35 nm) and macrofibrils (50‒150 nm) in both BC and BC/Ch films are joined in ribbon-like fibers, providing a high degree of mechanical strength (Young’s modulus: 33‒36 MPa, tensile strength and elongation et break: 17, 22 MPa). The obtained hybrid material is transparent, flexible and displays good water absorption capacity and water vapor permeability. The films have reasonable thermal stability to be in contact with body or during steam sterilization, since maximum degradation temperature (Td) of both biocomposites is around 400‒600 °C. The disc diffusion method confirmed that the BC/Ch films have predominantly non-diffusible antibacterial properties. Antibacterial assessment by the joint incubation method proved that addition of Ch to BC films resulted in significant growth inhibition against target bacteria. The BC/Ch biocomposites’ notable properties make them suitable for wound healing applications.
Collapse
|
11
|
Araújo IMS, Silva RR, Pacheco G, Lustri WR, Tercjak A, Gutierrez J, Júnior JRS, Azevedo FHC, Figuêredo GS, Vega ML, Ribeiro SJL, Barud HS. Hydrothermal synthesis of bacterial cellulose-copper oxide nanocomposites and evaluation of their antimicrobial activity. Carbohydr Polym 2017; 179:341-349. [PMID: 29111060 DOI: 10.1016/j.carbpol.2017.09.081] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023]
Abstract
In this work, for the first time bacterial cellulose (BC) hydrogel membranes were used for the fabrication of antimicrobial cellulosic nanocomposites by hydrothermal deposition of Cu derivative nanoparticles (i.e.Cu(0) and CuxOy species). BC-Cu nanocomposites were characterized by FTIR, SEM, AFM, XRD and TGA, to study the effect of hydrothermal processing time on the final physicochemical properties of final products. XRD result show that depending on heating time (3-48h), different CuxOy phases were achieved. SEM and AFM analyses unveil the presence of the Cu(0) and copper CuxOy nanoparticles over BC fibrils while the surface of 3D network became more compact and smother for longer heating times. Furthermore, the increase of heating time placed deleterious effect on the structure of BC network leading to decrease of BC crystallinity as well as of the on-set degradation temperature. Notwithstanding, BC-Cu nanocomposites showed excellent antimicrobial activity against E. coli, S. aureus and Salmonella bacteria suggesting potential applications as bactericidal films.
Collapse
Affiliation(s)
- Inês M S Araújo
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Robson R Silva
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara, Departamento de Química Geral e Inorgânica, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14.800-060, Araraquara, SP, Brazil; Instituto de Física de São Carlos, Universidade São Paulo, 13560-970, São Carlos, SP, Brazil..
| | - Guilherme Pacheco
- Universidade de Araraquara, Uniara, Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Rua. Carlos Gomes, 1217, 14.801-320, Araraquara, SP, Brazil.
| | - Wilton R Lustri
- Universidade de Araraquara, Uniara, Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Rua. Carlos Gomes, 1217, 14.801-320, Araraquara, SP, Brazil.
| | - Agnieszka Tercjak
- University of the Basque Country (UPV/EHU), Dpto. Ingeniería Química y del Medio Ambiente, Escuela Politécnica Donostia-San Sebastián, Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - Junkal Gutierrez
- University of the Basque Country (UPV/EHU), Dpto. Ingeniería Química y del Medio Ambiente, Escuela Politécnica Donostia-San Sebastián, Pza. Europa 1, 20018, Donostia-San Sebastián, Spain.
| | - José R S Júnior
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Francisco H C Azevedo
- Universidade Luterana do Brasil, Programa de Pós Graduação Em Genética e Toxicologia Aplicada, Av. Farroupilha, 8001, Prédio 01, São Luís, 92.450-900, Canoas, RS, Brazil.
| | - Girlene S Figuêredo
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Maria L Vega
- Universidade Federal do Piauí, Departamento de Química, Campus Ministro Petrônio Portela, Uninga, 64049-550,Teresina, PI, Brazil.
| | - Sidney J L Ribeiro
- Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Química de Araraquara, Departamento de Química Geral e Inorgânica, Rua Professor Francisco Degni, 55, Jardim Quitandinha, 14.800-060, Araraquara, SP, Brazil.
| | - Hernane S Barud
- Universidade de Araraquara, Uniara, Laboratório de Biopolímeros e Biomateriais (BIOPOLMAT), Rua. Carlos Gomes, 1217, 14.801-320, Araraquara, SP, Brazil.
| |
Collapse
|
12
|
Saini S, Belgacem MN, Bras J. Effect of variable aminoalkyl chains on chemical grafting of cellulose nanofiber and their antimicrobial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:760-768. [DOI: 10.1016/j.msec.2017.02.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/08/2016] [Accepted: 02/14/2017] [Indexed: 01/10/2023]
|
13
|
Prakash Menon M, Selvakumar R, Suresh kumar P, Ramakrishna S. Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Adv 2017. [DOI: 10.1039/c7ra06713e] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellulose nanofibers obtained from various plants and microbial sources, their extraction methods and various environmental applications are discussed.
Collapse
Affiliation(s)
| | - R. Selvakumar
- Nanobiotechnology Laboratory
- PSG Institute of Advanced Studies
- Coimbatore
- India-641004
| | - Palaniswamy Suresh kumar
- Environmental & Water Technology Centre of Innovation (EWTCOI)
- Ngee Ann Polytechnic
- Singapore-599489
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore 117576
| |
Collapse
|
14
|
Stumpf TR, Yang X, Zhang J, Cao X. In situ and ex situ modifications of bacterial cellulose for applications in tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 82:372-383. [PMID: 29025671 DOI: 10.1016/j.msec.2016.11.121] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/04/2016] [Accepted: 11/27/2016] [Indexed: 12/20/2022]
Abstract
Bacterial cellulose (BC) is secreted by a few strains of bacteria and consists of a cellulose nanofiber network with unique characteristics. Because of its excellent mechanical properties, outstanding biocompatibilities, and abilities to form porous structures, BC has been studied for a variety of applications in different fields, including the use as a biomaterial for scaffolds in tissue engineering. To extend its applications in tissue engineering, native BC is normally modified to enhance its properties. Generally, BC modifications can be made by either in situ modification during cell culture or ex situ modification of existing BC microfibers. In this review we will first provide a brief introduction of BC and its attributes; this will set the stage for in-depth and up-to-date discussions on modified BC. Finally, the review will focus on in situ and ex situ modifications of BC and its applications in tissue engineering, particularly in bone regeneration and wound dressing.
Collapse
Affiliation(s)
- Taisa Regina Stumpf
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Xiuying Yang
- Hainan Institute of Science and Technology, 571126 Haikou, China
| | - Jingchang Zhang
- Hainan Institute of Science and Technology, 571126 Haikou, China.
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
15
|
Martínez-Rodríguez M, Garza-Navarro M, Moreno-Cortez I, Lucio-Porto R, González-González V. Silver/polysaccharide-based nanofibrous materials synthesized from green chemistry approach. Carbohydr Polym 2015; 136:46-53. [PMID: 26572327 DOI: 10.1016/j.carbpol.2015.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/21/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
In this contribution a novel green chemistry approach for the synthesis of nanofibrous materials based on blends of carboxymethyl-cellulose (CMC)-silver nanoparticles (AgNPs) composite and polyvinyl-alcohol (PVA) is proposed. These nanofibrous materials were obtained from the electrospinning of blends of aqueous solutions of CMC-AgNPs composite and PVA, which were prepared at different CMC/PVA weight ratios in order to electrospin nanofibers applying a constant tension of 15kV. The synthesized materials were characterized by means of transmission electron microscopy, scanning electron microscopy; as well as Fourier-transform infrared, ultraviolet and Raman spectroscopic techniques. Experimental evidence suggests that the diameter of the nanofibers is thinner than any other reported in the literature regarding the electrospinning of CMC. This feature is related to the interactions of AgNPs with carboxyl functional groups of the CMC, which diminish those between the later and acetyl groups of PVA.
Collapse
|
16
|
Calamak S, Aksoy EA, Ertas N, Erdogdu C, Sagıroglu M, Ulubayram K. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.068] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Shao W, Liu H, Liu X, Sun H, Wang S, Zhang R. pH-responsive release behavior and anti-bacterial activity of bacterial cellulose-silver nanocomposites. Int J Biol Macromol 2015; 76:209-17. [PMID: 25748842 DOI: 10.1016/j.ijbiomac.2015.02.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/17/2023]
Abstract
Bacterial cellulose (BC) has been extensively explored as some of the most promising biomaterials for biomedical applications due to their unique properties, such as high crystallinity, high mechanical strength, ultrafine fiber network structure, good water holding capacity and biocompatibility. However, BC is lack of anti-bacterial activity which is the main issue to be solved. In the study, BC-Ag nanocomposites were prepared in situ by introducing silver nanoparticles (AgNPs) into BC acting as the templates. The BC and as-prepared BC-Ag nanocomposites were characterized by several techniques including scanning electron microscope, Fourier transform infrared spectra, ultraviolet-visible absorption spectra, X-ray diffraction and thermogravimetric analyses. These results indicate AgNPs successfully impregnated into BC. The releases of Ag(+) at different pH values were studied, which showed pH-responsive release behaviors of BC-Ag nanocomposites. The anti-bacterial performances of BC-Ag nanocomposites were evaluated with Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 9372 and Candida albicans CMCC(F) 98001, which frequently causes medical associated infections. The experimental results showed BC-Ag nanocomposites have excellent anti-bacterial activities, thus confirming its utility as potential wound dressings.
Collapse
Affiliation(s)
- Wei Shao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Hui Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiufeng Liu
- College of Life Science, Nanjing University, Nanjing 210093, PR China
| | - Haijun Sun
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuxia Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Rui Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
18
|
Rezaei A, Nasirpour A, Fathi M. Application of Cellulosic Nanofibers in Food Science Using Electrospinning and Its Potential Risk. Compr Rev Food Sci Food Saf 2015; 14:269-284. [DOI: 10.1111/1541-4337.12128] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/01/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Atefe Rezaei
- Dept. of Food Science and Technology; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| | - Ali Nasirpour
- Dept. of Food Science and Technology; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| | - Milad Fathi
- Dept. of Food Science and Technology; Isfahan Univ. of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
19
|
Shao W, Liu H, Liu X, Wang S, Zhang R. Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv 2015. [DOI: 10.1039/c4ra13057j] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bacterial cellulose/graphene oxide composites have excellent anti-bacterial activities and good compatibility.
Collapse
Affiliation(s)
- Wei Shao
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Hui Liu
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Xiufeng Liu
- College of Life Science
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Shuxia Wang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| | - Rui Zhang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- P. R. China
| |
Collapse
|
20
|
Coma V, Freire CSR, Silvestre AJD. Recent Advances on the Development of Antibacterial Polysaccharide-Based Materials. POLYSACCHARIDES 2015. [DOI: 10.1007/978-3-319-16298-0_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Luo Y, Huang J. Surface modification of natural cellulose substances: toward functional materials and applications. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5226-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
22
|
Recent Advances on the Development of Polysaccharide-Based. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_12-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|