1
|
Singh PR, Gupta A, Singh AP, Jaiswal J, Sinha RP. Effects of ultraviolet radiation on cellular functions of the cyanobacterium Synechocystis sp. PCC 6803 and its recovery under photosynthetically active radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 252:112866. [PMID: 38364711 DOI: 10.1016/j.jphotobiol.2024.112866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
Cyanobacteria are photosynthetic organisms and challenged by large number of stresses, especially by ultraviolet radiation (UVR). UVR primarily impacts lipids, proteins, DNA, photosynthetic performance, which lowers the fitness and production of cyanobacteria. UVR has a catastrophic effect on cyanobacterial cells and eventually leads to cell death. UVR tolerance in the Synechocystis was poorly studied. Therefore, we irradiated Synechocystis sp. PCC 6803 to varying hours of photosynthetically active radiations (PAR), PAR + UV-A (PA), and PAR + UV-A + UV-B (PAB) for 48 h. To study the tolerance of Synechocystis sp. PCC 6803 against different UVR. The study shows that Chl a and total carotenoids content increased up to 36 h in PAR and PA, after 36 h a decrease was observed. PC increased up to 4-fold in 48 h of PA irradiation compared to 12 h. Maximum increase in ROS was observed under 48 h PAB i.e., 5.8-fold. Flowcytometry (FCM) based analysis shows that 25% of cells do not give fluorescence of Chl a and H2DCFH. In case of cell viability 10% cells were found to be non-viable in 48 h of PAB irradiance compared to 12 h. From the above study it was found that FCM-based approaches would provide a better understanding of the variations that occurred within the Synechocystis cells compared to fluorescence microscopy-based methods.
Collapse
Affiliation(s)
- Prashant R Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Amit Gupta
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashish P Singh
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Jyoti Jaiswal
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rajeshwar P Sinha
- Laboratory of Photobiology and Molecular Microbiology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Chen H, Shi H, Chen C, Jiao Y, Wang P, Chen C, Li J, Wu LF, Song T. Effects of static magnetic field on the sulfate metabolic pathway involved in Magnetospirillum magneticum AMB-1 cell growth and magnetosome formation. J Appl Microbiol 2023; 134:lxad302. [PMID: 38066686 DOI: 10.1093/jambio/lxad302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 12/27/2023]
Abstract
AIMS Magnetotactic bacteria (MTB) can use their unique intracellular magnetosome organelles to swim along the Earth's magnetic field. They play important roles in the biogeochemical cycles of iron and sulfur. Previous studies have shown that the applied magnetic fields could affect the magnetosome formation and antioxidant defense systems in MTB. However, the molecular mechanisms by which magnetic fields affect MTB cells remain unclear. We aim to better understand the dark at 28°C-29°C for 20 h, as shownthe interactions between magnetic fields and cells, and the mechanism of MTB adaptation to magnetic field at molecular levels. METHODS AND RESULTS We performed microbiological, transcriptomic, and genetic experiments to analyze the effects of a weak static magnetic field (SMF) exposure on the cell growth and magnetosome formation in the MTB strain Magnetospirillum magneticum AMB-1. The results showed that a 1.5 mT SMF significantly promoted the cell growth but reduced magnetosome formation in AMB-1, compared to the geomagnetic field. Transcriptomic analysis revealed decreased expression of genes primarily involved in the sulfate reduction pathway. Consistently, knockout mutant lacking adenylyl-sulfate kinase CysC did no more react to the SMF and the differences in growth and Cmag disappeared. Together with experimental findings of increased reactive oxidative species in the SMF-treated wild-type strain, we proposed that cysC, as a key gene, can participate in the cell growth and mineralization in AMB-1 by SMF regulation. CONCLUSIONS This study suggests that the magnetic field exposure can trigger a bacterial oxidative stress response involved in AMB-1 growth and magnetosome mineralization by regulating the sulfur metabolism pathway. CysC may serve as a pivotal enzyme in mediating sulfur metabolism to synchronize the impact of SMF on both growth and magnetization of AMB-1.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongkai Shi
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyou Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Yangkun Jiao
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuanfang Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhua Li
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS, F-13402 Marseille, France
- Aix Marseille University, CNRS, LCB, F-13402 Marseille, France
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, Chinese Academy of Sciences, Beijing 100190, China
- School of Electronics, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sun Y, Chen YL, Xu CP, Gao J, Feng Y, Wu QF. Disinfection of influenza a viruses by Hypocrellin a-mediated photodynamic inactivation. Photodiagnosis Photodyn Ther 2023; 43:103674. [PMID: 37364664 DOI: 10.1016/j.pdpdt.2023.103674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/11/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Influenza A viruses can be transmitted indirectly by surviving on the surface of an object. Photodynamic inactivation (PDI) is a promising approach for disinfection of pathogens. METHODS PDI was generated using Hypocrellin A (HA) and red light emitting diode (625-635 nm, 280 W/m2). Effects of the HA-mediated PDI on influenza viruses H1N1 and H3N2 were evaluated by the reduction of viral titers compared to virus control. After selection of the HA concentrations and illumination times, the applicability of PDI was assessed on surgical masks. Reactive oxygen species (ROS) were determined using a 2'-7'-dichlorodihydrofluorescein diacetate fluorescence probe. RESULTS In solution, 10 μM HA inactivated up to 5.11 ± 0.19 log10 TCID50 of H1N1 and 4.89 ± 0.38 log10 TCID50 of H3N2 by illumination for 5 and 30 min, respectively. When surgical masks were contaminated by virus before HA addition, PDI inactivated 99.99% (4.33 ± 0.34 log reduction) of H1N1 and 99.40% (2.22 ± 0.39 log reduction) of H3N2 under the selected condition. When the masks were pretreated with HA before virus addition, PDI decontaminated 99.92% (3.11 ± 0.19 log reduction) of H1N1 and 98.71% (1.89 ± 0.20 log reduction) of H3N2 virus. The fluorescence intensity of 2',7'-dichlorofluorescein in photoactivated HA was significantly higher than the cell control (P > 0.05), indicating that HA efficiently generated ROS. CONCLUSIONS HA-mediated PDI is effective for the disinfection of influenza viruses H1N1 and H3N2. The approach could be an alternative to decontaminating influenza A viruses on the surfaces of objects.
Collapse
Affiliation(s)
- Yao Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yu-Lu Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Chang-Ping Xu
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Jian Gao
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yan Feng
- Key Laboratory of Public Health Detection and Etiological Research of Zhejiang Province, Department of Microbiology, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Qiao-Feng Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Wang X, Qian Y, Chen Y, Liu F, An D, Yang G, Dai R. Application of fluorescence spectra and molecular weight analysis in the identification of algal organic matter-based disinfection by-product precursors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163589. [PMID: 37087012 DOI: 10.1016/j.scitotenv.2023.163589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Algal organic matter (AOM) is considered to be threatening for the consumption of disinfectants and the formation of disinfection by-products (DBPs) during the disinfection process. Incompatible parameters in the conventional pretreatment of algal-laden water will lead to counterproductive results, such as AOM release. Therefore, the generation of AOM and its conversion to DBPs during pretreatment should be observed. The characteristics of DBPs from extracellular organic matter (EOM) and intracellular organic matter (IOM) were epitomized and simulation experiments were conducted in deionized (DI) water and source water under pretreatment conditions. Differences in DBP formation between the different backgrounds during chlorination and powdered activated carbon (PAC) treatment were investigated. Instead of monotonous excitation-emission matrix (EEM) spectra, molecular weight (MW) fractionation was simultaneously applied to elucidate the mechanisms of chlorination and PAC adsorption on AOM-based DBPs. The fluorescence regional integration (FRI) EEM results showed a clear correlation between the fluorescent properties and MW distribution of AOM. A decreasing trend was observed after a rapid increase in fluorescence intensity during the chlorination and PAC treatment of water samples in the simulation experiments in deionized (DI) water and source water. The DBP formation potential (FP) in the source water was consistent with the change in AOM during chlorination and PAC adsorption. In addition, EEM showed decent predictability of AOM-based trihalomethanes (THM) FPs (R2 = 0.77-0.99) invoking a combination with MW fractionation. Macromolecular protein compounds were highly correlated with the formation of dichloroacetonitrile (DCAN) (R2 = 0.89-0.98). These post-mortems results imply that EEM spectra are a useful tool for identifying AOM-based precursors to reveal the accurate environmental fate and risk assessments of AOM.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yunkun Qian
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Fan Liu
- Department of the Built Environment, Aalborg University, Aalborg 9220, Denmark
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Guodong Yang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| | - Ruihua Dai
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200238, PR China
| |
Collapse
|
5
|
Multiple Photolyases Protect the Marine Cyanobacterium Synechococcus from Ultraviolet Radiation. mBio 2022; 13:e0151122. [PMID: 35856560 PMCID: PMC9426592 DOI: 10.1128/mbio.01511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine cyanobacteria depend on light for photosynthesis, restricting their growth to the photic zone. The upper part of this layer is exposed to strong UV radiation (UVR), a DNA mutagen that can harm these microorganisms. To thrive in UVR-rich waters, marine cyanobacteria employ photoprotection strategies that are still not well defined. Among these are photolyases, light-activated enzymes that repair DNA dimers generated by UVR. Our analysis of genomes of 81 strains of Synechococcus, Cyanobium, and Prochlorococcus isolated from the world’s oceans shows that they possess up to five genes encoding different members of the photolyase/cryptochrome family, including a photolyase with a novel domain arrangement encoded by either one or two separate genes. We disrupted the putative photolyase-encoding genes in Synechococcus sp. strain RS9916 and discovered that each gene contributes to the overall capacity of this organism to survive UVR. Additionally, each conferred increased survival after UVR exposure when transformed into Escherichia coli lacking its photolyase and SOS response. Our results provide the first evidence that this large set of photolyases endows Synechococcus with UVR resistance that is far superior to that of E. coli, but that, unlike for E. coli, these photolyases provide Synechococcus with the vast majority of its UVR tolerance.
Collapse
|
6
|
Luo CW, Chen SP, Chiang CY, Wu WJ, Chen CJ, Chen WY, Kuan YH. Association between Ultraviolet B Exposure Levels and Depression in Taiwanese Adults: A Nested Case-Control Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:6846. [PMID: 35682430 PMCID: PMC9180491 DOI: 10.3390/ijerph19116846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/19/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023]
Abstract
Depression is a common mental disorder that affects more than 264 million people worldwide. Anxiety, diabetes, Alzheimer's disease, myocardial infarction, and cancer, among other disorders, are known to increase the risk of depression. Exposure to ultraviolet B (UVB) can cause human serotonin levels to increase. The vitamin D pathway is one mechanism through which ultraviolet light absorbed through the skin can affect mood; however, UVB exposure is known to increase the risk of cancer. In this study, we explored the effects of prolonged exposure to UVB on depression. Data were retrieved from the Taiwan National Health Insurance Research Database for 2008 to 2013. Each patient with depression was matched 1:4 with a comparison patient by sex and age (±5 years); thus, the study included 23,579 patients with depression and 94,316 healthy controls for comparison. The patients had been exposed to UVB for at least 1 year to observe the cumulative effect of UVB exposure. Based on the World Health Organization UV index, we divided the observation period data into five UV levels: low, moderate, high, very high, and extreme. A multivariate Poisson regression model was used to assess the risk of depression according to UVB exposure level, adjusting for sex, age, income, urbanization level, month, and comorbidities. The results revealed that the incidence rate ratio (IRR) for patients with depression was 0.889 for moderate levels (95% CI 0.835-0.947), 1.134 for high levels (95% CI: 1.022-1.260), 1.711 for very high levels (95% CI: 1.505-1.945), and 2.785 for extreme levels (95% CI: 2.439-3.180) when compared to low levels. Moderate levels of UVB lowered the risk of depression, while high levels of UVB gradually increased the risk. We propose that UVB at normal concentrations can effectively improve depression. However, exposure to high concentrations of UVB damage DNA results in physical diseases such as skin cancer, which increase the risk of depression.
Collapse
Affiliation(s)
- Ci-Wen Luo
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.); (W.-J.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Shih-Pin Chen
- Department of Internal Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chen-Yu Chiang
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-Y.C.); (W.-Y.C.)
| | - Wen-Jun Wu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; (C.-W.L.); (W.-J.W.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chun-Jung Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan; (C.-Y.C.); (W.-Y.C.)
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
7
|
Ren L, Huang J, Ding K, Wang Y, Yang Y, Zhang L, Wu H. Comparative Study of Algal Responses and Adaptation Capability to Ultraviolet Radiation with Different Nutrient Regimes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5485. [PMID: 35564879 PMCID: PMC9104955 DOI: 10.3390/ijerph19095485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023]
Abstract
Frequent outbreaks of harmful algal blooms (HABs) represent one of the most serious outcomes of eutrophication, and light radiation plays a critical role in the succession of species. Therefore, a better understanding of the impact of light radiation is essential for mitigating HABs. In this study, Chlorella pyrenoidosa and non-toxic and toxic Microcystis aeruginosa were mono-cultured and co-cultured to explore algal responses under different nutrient regimes. Comparisons were made according to photosynthetically active radiation (PAR), UV-B radiation exerted oxidative stresses, and negative effects on the photosynthesis and growth of three species under normal growth conditions, and algal adaptive responses included extracellular polymeric substance (EPS) production, the regulation of superoxide dismutase (SOD) activity, photosynthetic pigments synthesis, etc. Three species had strain-specific responses to UV-B radiation and toxic M. aeruginosa was more tolerant and showed a higher adaptation capability to UV-B in the mono-cultures, including the lower sensitivity and better self-repair efficiency. In addition to stable μmax in PAR ad UV-B treatments, higher EPS production and enhanced production of photosynthetic pigments under UV-B radiation, toxic M. aeruginosa showed a better recovery of its photosynthetic efficiency. Nutrient enrichment alleviated the negative effects of UV-B radiation on three species, and the growth of toxic M. aeruginosa was comparable between PAR and UV-B treatment. In the co-cultures with nutrient enrichment, M. aeruginosa gradually outcompeted C. pyrenoidosa in the PAR treatment and UV-B treatment enhanced the growth advantages of M. aeruginosa, when toxic M. aeruginosa showed a greater competitiveness. Overall, our study indicated the adaptation of typical algal species to ambient UV-B radiation and the stronger competitive ability of toxic M. aeruginosa in the UV-radiated waters with severer eutrophication.
Collapse
Affiliation(s)
- Lingxiao Ren
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Jing Huang
- Three Gorges Beijing Enterprises Nanjing Water Group Co., Ltd., Nanjing 210000, China;
| | - Keqiang Ding
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Yi Wang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Yangyang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China;
| | - Lijuan Zhang
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| | - Haoyu Wu
- School of Environmental Engineering, Nanjing Institute of Technology, Nanjing 211167, China; (K.D.); (Y.W.); (L.Z.); (H.W.)
| |
Collapse
|
8
|
Wu D, Yang C, Zhang X, Hou X, Zhang S, Dai X, Zhang X, Igarashi Y, Luo F. Algicidal effect of tryptoline against Microcystis aeruginosa: Excess reactive oxygen species production mediated by photosynthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150719. [PMID: 34606873 DOI: 10.1016/j.scitotenv.2021.150719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/26/2023]
Abstract
Cyanobacterial blooms significantly decrease water quality and can damage ecosystems and, as such, require efficient control methods. Algicidal bacteria and their associated substances are promising tools for controlling cyanobacterial blooms; however, their specific algicidal mechanisms remain unclear. Therefore, the current study sought to investigate the algicidal mechanism of tryptoline (1,2,3,4-tetrahydro-9 h-pyrido[3,4-b]indole) against Microcystis aeruginosa, with a specific focus on the contribution made by reactive oxygen species (ROS), the underlying mechanisms of ROS increase, as well as the photosystem response. Results show that the algicidal ratio of tryptoline significantly and positively correlates with algal ROS. Moreover, 93.79% of the algicidal ratio variation is attributed to ROS in the tryptoline group, while only 47.75% can be attributed to ROS in the tryptoline + N-acetyl-L-cysteine (NAC) group, where ROS are partially scavenged by NAC. In the presence of tryptoline, algicidal effect and ROS levels were significantly enhanced in the presence of light as compared to those in the dark (P < 0.001). Hence, the increase in ROS production attributed to tryptoline is primarily affected by the presence of light and photosynthesis. Additionally, tryptoline significantly reduces Fv/Fm, PIABS, ETo/RC, and the expression of psaB and psbA genes related to photosynthesis, while increasing Vj and DIo/RC (P < 0.05). These results suggest that tryptoline hinders algal photosynthesis by significantly decreasing photosynthetic efficiency and carbon assimilation, inhibiting photochemical electron transfer, and increasing closed reaction centers and energy loss. Moreover, following partial blockade of the photosynthetic electron transfer from QA to QB by diuron (3-(3-4-dichlorophenyl)-1,1-dimethylurea), the ROS of algae exposed to tryptoline is significantly decreased. Thus, tryptoline inhibits electron transfer downstream of QA, which increase the number of escaping electron and thereby increase ROS generation. Collectively, this study describes the algicidal mechanism of tryptoline against M. aeruginosa and highlights the critical factors associated with induction of algicidal activity.
Collapse
Affiliation(s)
- Donghao Wu
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Caiyun Yang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xian Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiping Hou
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Siqi Zhang
- State Cultivation Base of Eco-agriculture for Southwest Mountainous Land, Department of Environmental Sciences and Engineering, College of Resource and Environment, Southwest University, Chongqing 400716, China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
9
|
Vine Cane Compounds to Prevent Skin Cells Aging through Solid Lipid Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14020240. [PMID: 35213973 PMCID: PMC8876727 DOI: 10.3390/pharmaceutics14020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/09/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
The long lifespan of the world’s population has been raising interest in the research for new solutions to delay the aging process. With the aim of skin aging prevention, solid lipid nanoparticles (SLNs) were developed in this work for the encapsulation of three lipophilic natural compounds extracted from vine cane—epigallocatechin gallate (EGCG), resveratrol and myricetin. The developed loaded-SLNs proved to be stable, maintaining their adequate physicochemical characteristics for 30 days. In addition, the loaded-SLNs formulations exhibited high encapsulation efficiencies and loading capacities and high intracellular antioxidant activity. The mixture of EGCG-loaded SLNs with resveratrol-loaded SLNs proved to have the highest protection against induced oxidative stress. The in vitro cytotoxicity of the loaded SLNs was also evaluated, showing that the developed formulations are biocompatible for concentrations up to 50 µg/mL and could be safe for use in cosmetics. The encapsulation of EGCG, resveratrol and myricetin in SLNs seems to be a suitable strategy for the delivery of these antioxidants to the skin, improving their bioavailability.
Collapse
|
10
|
Gonçalves C, Ramalho MJ, Silva R, Silva V, Marques-Oliveira R, Silva AC, Pereira MC, Loureiro JA. Lipid Nanoparticles Containing Mixtures of Antioxidants to Improve Skin Care and Cancer Prevention. Pharmaceutics 2021; 13:pharmaceutics13122042. [PMID: 34959324 PMCID: PMC8706926 DOI: 10.3390/pharmaceutics13122042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress, triggered by UV radiation, is one of the major causes of free radical-associated disorders, such as skin cancer. The application of natural compounds (NCs) with antioxidant effects can attenuate free radicals’ accumulation and, therefore, provide a strategy for skin care and cancer prevention. In this work, three natural compounds, naringenin, nordihydroguaiaretic acid (NDGA), and kaempferol, were encapsulated into nanostructured lipid carriers (NLCs) aiming for the development of a formulation for cutaneous application with antioxidant properties. For the experiments, different formulation parameters were evaluated to optimize the NLCs that showed a diameter around 200 nm, which is an adequate particle size for incorporation in cosmetics. Transmission electron microscopy (TEM) analysis confirmed the NLCs’ typical spherical morphology. Encapsulation efficiency (EE) and loading capacity (LC) values revealed an effective production process, with EEs over 90% and LCs near the maximum value. The developed NLCs revealed a prolonged in vitro release of the natural compounds. The NLCs were stable under storage conditions, maintaining their psychochemical characteristics for 30 days. Additionally, they did not show any physical instability in accelerated stability studies, which also suggests long-term stability. Finally, the NCs antioxidant activity was evaluated. Interestingly, the NDGA and kaempferol mixture provided an antioxidant synergic effect. The NLC formulations’ cytotoxicity was tested in vitro in immortalized human keratinocytes (HaCaT). In addition, putative antioxidant effects of the developed NLC formulations against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress were studied, and the NDGA-loaded NLC was revealed to be the one with the most protective effect. Therefore, we concluded that the naringenin, NDGA, and kaempferol incorporation into NLCs constitutes a promising strategy to increase their bioavailability and delivery to the skin.
Collapse
Affiliation(s)
- Catarina Gonçalves
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (C.G.); (M.J.R.)
| | - Maria João Ramalho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (C.G.); (M.J.R.)
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (R.S.); (V.S.); (R.M.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (R.S.); (V.S.); (R.M.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Marques-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (R.S.); (V.S.); (R.M.-O.)
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (R.S.); (V.S.); (R.M.-O.)
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- Correspondence: (A.C.S.); (M.C.P.); (J.A.L.)
| | - Maria Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (C.G.); (M.J.R.)
- Correspondence: (A.C.S.); (M.C.P.); (J.A.L.)
| | - Joana A. Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; (C.G.); (M.J.R.)
- Correspondence: (A.C.S.); (M.C.P.); (J.A.L.)
| |
Collapse
|
11
|
Functional Diversity of TonB-Like Proteins in the Heterocyst-Forming Cyanobacterium Anabaena sp. PCC 7120. mSphere 2021; 6:e0021421. [PMID: 34787445 PMCID: PMC8597729 DOI: 10.1128/msphere.00214-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The TonB-dependent transport of scarcely available substrates across the outer membrane is a conserved feature in Gram-negative bacteria. The plasma membrane-embedded TonB-ExbB-ExbD accomplishes complex functions as an energy transducer by physically interacting with TonB-dependent outer membrane transporters (TBDTs). TonB mediates structural rearrangements in the substrate-loaded TBDTs that are required for substrate translocation into the periplasm. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, four TonB-like proteins have been identified. Out of these TonB3 accomplishes the transport of ferric schizokinen, the siderophore which is secreted by Anabaena to scavenge iron. In contrast, TonB1 (SjdR) is exceptionally short and not involved in schizokinen transport. The proposed function of SjdR in peptidoglycan structuring eliminates the protein from the list of TonB proteins in Anabaena. Compared with the well-characterized properties of SjdR and TonB3, the functions of TonB2 and TonB4 are yet unknown. Here, we examined tonB2 and tonB4 mutants for siderophore transport capacities and other specific phenotypic features. Both mutants were not or only slightly affected in schizokinen transport, whereas they showed decreased nitrogenase activity in apparently normal heterocysts. Moreover, the cellular metal concentrations and pigment contents were altered in the mutants, most pronouncedly in the tonB2 mutant. This strain showed an altered susceptibility toward antibiotics and SDS and formed cell aggregates when grown in liquid culture, a phenotype associated with an elevated lipopolysaccharide (LPS) production. Thus, the TonB-like proteins in Anabaena appear to take over distinct functions, and the mutation of TonB2 strongly influences outer membrane integrity. IMPORTANCE The genomes of many organisms encode more than one TonB protein, and their number does not necessarily correlate with that of TonB-dependent outer membrane transporters. Consequently, specific as well as redundant functions of the different TonB proteins have been identified. In addition to a role in uptake of scarcely available nutrients, including iron complexes, TonB proteins are related to virulence, flagellum assembly, pilus localization, or envelope integrity, including antibiotic resistance. The knowledge about the function of TonB proteins in cyanobacteria is limited. Here, we compare the four TonB proteins of Anabaena sp. strain PCC 7120, providing evidence that their functions are in part distinct, since mutants of these proteins exhibit specific features but also show some common impairments.
Collapse
|
12
|
Yoon H, Kim HC, Kim S. Long-term seasonal and temporal changes of hydrogen peroxide from cyanobacterial blooms in fresh waters. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 298:113515. [PMID: 34403920 DOI: 10.1016/j.jenvman.2021.113515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
In water, hydrogen peroxide (H2O2) is produced through abiotic and biotic reactions with organic matter, including algal cells. The production of H2O2 is influenced by harmful algal cell communities and toxicity. However, only a few studies have been conducted on H2O2 concentrations in natural water. Particularly, the seasonal and temporal patterns of H2O2 concentration suggest that H2O2 generation from aquatic microorganisms could be identified to compare of photochemical production from dissolved organic matter. Study area is a source of raw water and is a large artificial lake located near a metropolitan city. Due to various environmental conditions, harmful algal blooms frequently occur in summer. The purpose of this study was to trace the H2O2 concentration and water quality parameters of study area where algal bloom occurs and what factors directly affect the H2O2 concentration. Experiments were performed on the influencing factors via water samples from study area and lab-scale culture tank. The lake produces an average of 553 nM H2O2, which increases by more than three times (1460 nM) in summer compared the winter. The lake (18.6-23.8 nMh-1) produced more H2O2 than streams (7.4-9.0 nMh-1) during daylight hours. All water sites presented the lowest production rates in dark conditions (1.1-1.5 nMh-1). Daytime environment increased the generation rate more than the nighttime. The trend of H2O2 produced by algal cells was similar to that of the growth of algal cells. The exposure to external substances (heavy metals and antibiotics) increased the incidence by approximately five times; antibiotics were more influential than heavy metals.
Collapse
Affiliation(s)
- Hyojik Yoon
- Program in Environmental Technology and Policy, Korea University, Sejong 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Hyun-Chul Kim
- Research Institute for Advanced Industrial Technology, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Sungpyo Kim
- Program in Environmental Technology and Policy, Korea University, Sejong 30019, Republic of Korea; Department of Environmental Engineering, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea.
| |
Collapse
|
13
|
In-Vivo In-Vitro Screening of Ocimum basilicum L. Ecotypes with Differential UV-B Radiation Sensitivity. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7050101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated UV-B radiation (UV-B) has been previously reported to affect plant development, physiology, and promote the biosynthesis of UV-absorbing compounds. Sweet basil (Ocimum basilicum L.) is an aromatic herb, widely cultivated worldwide for its use in the food, pharmaceuticals, and cosmetics industry. This species exhibits high diversity among different ecotypes based on their geographical locations. There has been little research on intra-specific photosynthetic and metabolic differences in UV-B tolerance across ecotypes from different geographical areas. This study evaluated the protection responses to high UV-B radiation of nine O. basilicum accessions with different geographic origins. Specifically, the changes in chlorophyll a fluorescence parameters and the leaf rosmarinic acid (RA) compound were assessed using an “in vivo-vitro system” in a closed-type plant production system. Our results revealed a significant variation in UV-B protection mechanisms among accessions when plants were treated with high UV-B doses. The accumulation of RA increased significantly by UV-B light treatment in OCI142, OCI148, OCI30, OCI160, and OCI102, with the highest concentration measured in OCI160 plants. This ecotype showed the highest value of the Fv/Fm ratio, 0.70, after 48 h. Recovery of leaf functionality was more rapid in OCI160 than in other sweet basil accessions, which may indicate better photosynthetic capacity associated with enhanced biosynthesis of UV absorbing compounds. This study shows that the biosynthesis of the UV-absorbing compound (RA) represents an effective mechanism to reduce the photoinhibitory and photooxidative damage caused by high UV stress.
Collapse
|
14
|
Chen H, Li K, Cai Y, Wang P, Gong W, Wu LF, Song T. Light regulation of resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum mediated by a Cys-less LOV-like protein. Appl Microbiol Biotechnol 2020; 104:7927-7941. [PMID: 32780289 DOI: 10.1007/s00253-020-10807-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Light-oxygen-voltage (LOV) proteins are ubiquitous photoreceptors that can interact with other regulatory proteins and then mediate their activities, which results in cellular adaptation and subsequent physiological changes. Upon blue-light irradiation, a conserved cysteine (Cys) residue in LOV covalently binds to flavin to form a flavin-Cys adduct, which triggers a subsequent cascade of signal transduction and reactions. We found a group of natural Cys-less LOV-like proteins in magnetotactic bacteria (MTB) and investigated its physiological functions by conducting research on one of these unusual LOV-like proteins, Amb2291, in Magnetospirillum magneticum. In-frame deletion of amb2291 or site-directive substitution of alanine-399 for Cys mutants impaired the protective responses against hydrogen peroxide, thereby causing stress and growth impairment. Consequently, gene expression and magnetosome formation were affected, which led to high sensitivity to oxidative damage and defective phototactic behaviour. The purified wild-type and A399C-mutated LOV-like proteins had similar LOV blue-light response spectra, but Amb2291A399C exhibited a faster reaction to blue light. We especially showed that LOV-like protein Amb2291 plays a role in magnetosome synthesis and resistance to oxidative stress of AMB-1 when this bacterium was exposed to red light and hydrogen peroxide. This finding expands our knowledge of the physiological function of this widely distributed group of photoreceptors and deepens our understanding of the photoresponse of MTB. KEY POINTS: • We found a group of Cys-less light-oxygen-voltage (LOV) photoreceptors in magnetotactic bacteria, which prompted us to study the light-response and biological roles of these proteins in these non-photosynthetic bacteria. • The Cys-less LOV-like protein participates in the light-regulated signalling pathway and improves resistance to oxidative damage and magnetic crystal biogenesis in Magnetospirillum magneticum. • This result will contribute to our understanding of the structural and functional diversity of the LOV-like photoreceptor and help us understand the complexity of light-regulated model organisms.
Collapse
Affiliation(s)
- Haitao Chen
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Kefeng Li
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,Shandong Sport University, Jinan, 250102, China
| | - Yao Cai
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Pingping Wang
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China.,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China
| | - Weimin Gong
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Long-Fei Wu
- France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China. .,Aix Marseille University, CNRS, LCB, 13402, Marseille, France.
| | - Tao Song
- Beijing Key Laboratory of Biological Electromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,France-China International Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms, CNRS-CAS, Beijing, 100190, China.
| |
Collapse
|
15
|
Adaptative transcriptional response of Dietzia cinnamea P4 strain to sunlight simulator. Arch Microbiol 2020; 202:1701-1708. [PMID: 32296869 DOI: 10.1007/s00203-020-01879-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/19/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Responses to sunlight exposure of the oil-degrading Dietzia cinnamea P4 strain were evaluated by transcriptional levels of SOS genes, photoreactivation and genes involved in tolerance to high levels of reactive oxygen species. The P4 strain was exposed for 1 and 2 h and the magnitude of level changes in the mRNA was evaluated by qPCR. The results described the activation of the SOS system, with the decline of the repressor lexA gene levels and the concomitant increase of recA and uvrAD genes levels. The genes that participate in the photoreactivation process were also responsive to sunlight. The phrB gene encoding deoxyribodipyrimidine photo-lyase had its expression increased after 1-h exposure, while the phytAB genes showed a progressive increase over the studied period. The protective genes against reactive oxygen species, catalases, superoxides, peroxidases, and thioredoxins, had their expression rates detected under the conditions validated in this study. These results show a fast and coordinated response of genes from different DNA repair and tolerance mechanisms employed by strain P4, suggesting a complex concerted protective action against environmental stressors.
Collapse
|
16
|
Song K, Mohseni M, Taghipour F. Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths. WATER RESEARCH 2019; 163:114875. [PMID: 31344504 DOI: 10.1016/j.watres.2019.114875] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 05/05/2023]
Abstract
Recently, ultraviolet light-emitting diodes (UV-LEDs) have emerged as a new UV source, bringing flexibility for various UV wavelength combinations due to their unique feature of wavelength diversity. In this study, we investigated inactivation mechanisms of representative microorganisms at different wavelength combinations using UV-LEDs. Two types of indicator microorganisms were examined, namely Escherichia coli (E. coli) as a representative bacteria and bacteriophage MS2 as a representative virus. Different inactivation effects were observed, and the results for UVA pretreatment followed by UVC inactivation were particularly interesting. While a substantial shoulder in the E. coli UVC inactivation curve was observed, this was reduced by UVA pretreatment (365 nm) at 17 J/cm2. Further, 52 J/cm2 UVA eliminated the shoulder in the fluence-response curves, resulting in improved UVC (265 nm) inactivation of E. coli by over two orders of magnitude. No inactivation improvement was observed for MS2. Moreover, UVA pretreatment eliminated photoreactivation of E. coli but did not affect dark repair. Detailed investigation of inactivation mechanisms revealed that hydroxyl radicals (•OH) played a significant role in the effects of UVA pretreatment. This study demonstrated that •OH radicals were generated inside E. coli cells during UVA pretreatment, which accounted for the subsequent effects on E. coli. The impact of UVA pretreatment on E. coli inactivation and reactivation was mainly due to increased levels of •OH radicals in E. coli cells, impairing cell functions such as DNA self-repair.
Collapse
Affiliation(s)
- Kai Song
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada; College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Madjid Mohseni
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| | - Fariborz Taghipour
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
17
|
Zhang S, Benoit G. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105271. [PMID: 31470337 DOI: 10.1016/j.aquatox.2019.105271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Microcystis blooms and their associated microcystins pose a significant health risk to humans. Microcystis normally occurs as colonies in eutrophic water bodies, and its physiological tolerance to algaecides is dissimilar to that of unicellular forms. However, the differences of physiological response to algaecides between unicellular and colonial Microcystis have been poorly explored. The current study investigated the effects of hexane extract of Acorus calamus rhizome (HEACR) on the physiological and photosynthetic mechanisms of unicellular and colonial M. aeruginosa in the laboratory. We analyzed the cell density, reactive oxygen species (ROS) level, malonaldehyde (MDA) content, photosynthetic pigments, capsular polysaccharide (CPS), and photosystem (PS II) parameters of the two morphological forms of Microcystis. Our results show that HEACR suppresses the growth of both unicellular and colonial M. aeruginosa, increases the intracellular ROS level and cause lipid peroxidation, as well as exerting a detrimental effect on chlorophyll a (chl a) content and photosynthetic efficiency. Almost 100% inhibition was observed for unicellular and colonial M. aeruginosa after 3 d exposure to 50 and 100 mg L-1 HEACR, respectively. The ROS level increase, MDA accumulation, the chl a decrease and carotenoid increase in unicellular M. aeruginosa were all more obvious than that in colonial cells. The fall in photosynthetic efficiency of unicellular M. aeruginosa were also more significant than that of colonial cells. After 3d exposure, the maximum quantum yield of PS II photochemistry (Fv/Fm), effective quantum yield of PS II photochemistry (Fv'/Fm') and effective quantum yield of photochemical energy conversion in PS II (YII) of unicellular M. aeruginosa was almost totally inhibited by 20 mg L-1 HEACR, while the Fv/Fm, Fv'/Fm' and YII of colonial M. aeruginosa decreased by 43%, 26% and 66% for 100 mg L-1 of HEACR, respectively. Comparing the two morphological forms of Microcystis, colonies show a greater increase in CPS level to more effectively resist the stress of HEACR and to mitigate ROS generation thereby better defending against oxidative damage. Furthermore, colonial M. aeruginosa shows better photoprotection ability than the unicellular form when exposed to HEACR. The colonies also sustain their maximum electron transport rate, increase their tolerance to strong light, and maintain a higher ability to disperse excess energy. These results demonstrated that HEACR can significantly interfere with the growth and physiological processes of both unicellular and colonial M. aeruginosa, but that colonial M. aeruginosa has a greater ability to adjust physiological tolerance to resist the stresses of HEACR.
Collapse
Affiliation(s)
- Shenghua Zhang
- School of Forestry & Environmental Studies, Yale University, New Haven, 06511, CT, United States; College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Gaboury Benoit
- School of Forestry & Environmental Studies, Yale University, New Haven, 06511, CT, United States.
| |
Collapse
|
18
|
Phukan T, Syiem MB. Modulation of oxidant and antioxidant homeostasis in the cyanobacterium Nostoc muscorum Meg1 under UV-C radiation stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 213:105228. [PMID: 31229888 DOI: 10.1016/j.aquatox.2019.105228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
The present work was conducted to study how restoration of perturbed oxidant and antioxidant homeostasis is achieved in the UV-C radiation exposed cells of cyanobacterium Nostoc muscorum Meg1. Exposure to varying doses of UV-C radiation (6, 12, 18 and 24 mJ/cm2) showed damage to ultrastructures especially cytoplasmic membrane, cell wall and organisation of thylakoid membranes of the cyanobacterium under transmission electron microscope (TEM). All doses of UV-C exposure significantly induced most of the enzymatic antioxidant {catalase, superoxide dismutase (SOD) and glutathione reductase (GR)} activities, their protein levels (western blot analysis) and mRNA levels (real time PCR analysis) within the first hour of post UV-C radiation incubation period. In the same way, contents of many non-enzymatic antioxidants such as ascorbic acid, reduced glutathione, proline, phenol and flavonoids were also augmented in response to such UV-C radiation exposure. Although notable increase in ROS level was only seen in cultures treated with 24 mJ/cm2 UV-C exposure which also registered increase in protein oxidation (22%) and lipid peroxidation (20%), this boost in both enzymatic and non-enzymatic antioxidants was significant in all radiation exposed cells indicating cell's preparation to combat rise in oxidants. Further, albeit all antioxidants increased considerably, their levels were restored back to control values by day seventh re-establishing physiological redox state for normal metabolic function. The combined efficiency of the enzymatic and non-enzymatic antioxidants were so effective that they were able to bring down the increase levels of ROS, lipid peroxidation and protein oxidation to the physiological levels within 1 h of radiation exposure signifying their importance in the defensive roles in protecting the organism from oxidative toxicity induced by UV-C radiation exposure.
Collapse
Affiliation(s)
- Tridip Phukan
- Department of Biochemistry, North Eastern Hill University, Shillong, 793022, Meghalaya, India
| | - Mayashree B Syiem
- Department of Biochemistry, North Eastern Hill University, Shillong, 793022, Meghalaya, India.
| |
Collapse
|
19
|
Teikari JE, Popin RV, Hou S, Wahlsten M, Hess WR, Sivonen K. Insight into the genome and brackish water adaptation strategies of toxic and bloom-forming Baltic Sea Dolichospermum sp. UHCC 0315. Sci Rep 2019; 9:4888. [PMID: 30894564 PMCID: PMC6426976 DOI: 10.1038/s41598-019-40883-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/22/2019] [Indexed: 11/09/2022] Open
Abstract
The Baltic Sea is a shallow basin of brackish water in which the spatial salinity gradient is one of the most important factors contributing to species distribution. The Baltic Sea is infamous for its annual cyanobacterial blooms comprised of Nodularia spumigena, Aphanizomenon spp., and Dolichospermum spp. that cause harm, especially for recreational users. To broaden our knowledge of the cyanobacterial adaptation strategies for brackish water environments, we sequenced the entire genome of Dolichospermum sp. UHCC 0315, a species occurring not only in freshwater environments but also in brackish water. Comparative genomics analyses revealed a close association with Dolichospermum sp. UHCC 0090 isolated from a lake in Finland. The genome closure of Dolichospermum sp. UHCC 0315 unraveled a mixture of two subtypes in the original culture, and subtypes exhibited distinct buoyancy phenotypes. Salinity less than 3 g L-1 NaCl enabled proper growth of Dolichospermum sp. UHCC 0315, whereas growth was arrested at moderate salinity (6 g L-1 NaCl). The concentrations of toxins, microcystins, increased at moderate salinity, whereas RNA sequencing data implied that Dolichospermum remodeled its primary metabolism in unfavorable high salinity. Based on our results, the predicted salinity decrease in the Baltic Sea may favor toxic blooms of Dolichospermum spp.
Collapse
Affiliation(s)
- Jonna E Teikari
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Rafael V Popin
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Shengwei Hou
- Genetics & Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Matti Wahlsten
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University Freiburg, Schänzlestraße 1, D-79104, Freiburg, Germany
| | - Kaarina Sivonen
- Department of Microbiology, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland.
| |
Collapse
|
20
|
Ciok A, Dziewit L. Exploring the genome of Arctic Psychrobacter sp. DAB_AL32B and construction of novel Psychrobacter-specific cloning vectors of an increased carrying capacity. Arch Microbiol 2018; 201:559-569. [PMID: 30448872 PMCID: PMC6579772 DOI: 10.1007/s00203-018-1595-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/27/2018] [Accepted: 11/09/2018] [Indexed: 01/03/2023]
Abstract
Cold-active bacteria are currently of great interest in biotechnology, and their genomic and physiological features have been extensively studied. One of the model psychrotolerant bacteria are Psychrobacter spp. Analysis of Arctic psychrophilic Psychrobacter sp. DAB_AL32B genome content provided an insight into its overall stress response, and genes conferring protection against various life-limiting factors (i.e., low temperature, increased ultraviolet radiation, oxidative stress and osmotic pressure) were recognized and described. Moreover, it was revealed that the strain carries a large plasmid pP32BP2. Its replication system was used for the construction of two novel shuttle vectors (pPS-NR-Psychrobacter-Escherichia coli-specific plasmid and pPS-BR-Psychrobacter-various Proteobacteria-specific plasmid) of an increased carrying capacity, which may be used for genetic engineering of Psychrobacter spp.
Collapse
Affiliation(s)
- Anna Ciok
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
21
|
Hernando M, Minaglia MCC, Malanga G, Houghton C, Andrinolo D, Sedan D, Rosso L, Giannuzzi L. Physiological responses and toxin production of Microcystis aeruginosa in short-term exposure to solar UV radiation. Photochem Photobiol Sci 2018; 17:69-80. [PMID: 29188851 DOI: 10.1039/c7pp00265c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to evaluate the effects of short-term (hours) exposure to solar UV radiation (UVR, 280-400 nm) on the physiology of Microcystis aeruginosa. Three solar radiation treatments were implemented: (i) PAR (PAR, 400-700 nm), (ii) TUVA (PAR + UVAR, 315-700 nm) and (iii) TUVR (PAR + UVAR + UVBR, 280-700 nm). Differential responses of antioxidant enzymes and the reactive oxygen species (ROS) production to UVR were observed. Antioxidant enzymes were more active at high UVR doses. However, different responses were observed depending on the exposure to UVAR or UVBR and the dose level. No effects were observed on the biomass, ROS production or increased activity of superoxide dismutase (SOD) and catalase (CAT) compared to the control when UVR + PAR doses were lower than 9875 kJ m-2. For intermediate doses, UVR + PAR doses between 9875 and 10 275 kJ m-2, oxidative stress increased while resistance was imparted through SOD and CAT in the cells exposed to UVAR. Despite the increased antioxidant activity, biomass decrease and photosynthesis inhibition were observed, but no effects were observed with added exposure to UVBR. At the highest doses (UVR + PAR higher than 10 275 kJ m-2), the solar UVR caused decreased photosynthesis and biomass with only activation of CAT by UVBR and SOD and CAT by UVAR. In addition, for such doses, a significant decrease of microcystins (MCs, measured as MC-LR equivalents) was observed as a consequence of UVAR. This study facilitates our understanding of the SOD and CAT protection according to UVAR and UVBR doses and cellular damage and reinforces the importance of UVR as an environmental stressor. In addition, our results support the hypothesized antioxidant function of MCs.
Collapse
Affiliation(s)
- Marcelo Hernando
- Comisión Nacional de Energía Atómica, Dpto. Radiomicrobiología CAC, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Polymer-based gadolinium oxide nanocomposites for FL/MR/PA imaging guided and photothermal/photodynamic combined anti-tumor therapy. J Control Release 2018. [DOI: 10.1016/j.jconrel.2018.03.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Jia P, Zhou Y, Zhang X, Zhang Y, Dai R. Cyanobacterium removal and control of algal organic matter (AOM) release by UV/H 2O 2 pre-oxidation enhanced Fe(II) coagulation. WATER RESEARCH 2018; 131:122-130. [PMID: 29277080 DOI: 10.1016/j.watres.2017.12.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/22/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
Harmful algal blooms in source water are a worldwide issue for drinking water production and safety. UV/H2O2, a pre-oxidation process, was firstly applied to enhance Fe(II) coagulation for the removal of Microcystis aeruginosa [M. aeruginosa, 2.0 (±0.5) × 106 cell/mL] in bench scale. It significantly improved both algae cells removal and algal organic matter (AOM) control, compared with UV irradiation alone (254 nm UVC, 5.4 mJ/cm2). About 94.7% of algae cells were removed after 5 min UV/H2O2 pre-treatment with H2O2 dose 375 μmol/L, FeSO4 coagulation (dose 125 μmol/L). It was also certified that low residue Fe level and AOM control was simultaneously achieved due to low dose of Fe(II) to settle down the cells as well as the AOM. The result of L9(3)4 orthogonal experiment demonstrated that H2O2 and FeSO4 dose was significantly influenced the algae removal. UV/H2O2 induced an increase of intracellular reactive oxidant species (ROS) and a decrease in zeta potential, which might contribute to the algae removal. The total microcystins (MCs) concentration was 1.5 μg/L after UV/H2O2 pre-oxidation, however, it could be removed simultaneously with the algae cells and AOM. This study suggested a novel application of UV/H2O2-Fe(II) process to promote algae removal and simultaneously control AOM release in source waters, which is a green and promising technology without secondary pollution.
Collapse
Affiliation(s)
- Peili Jia
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yanping Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xufeng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ruihua Dai
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
24
|
Wu X, Feng Z, Yuan B, Zhou Z, Li F, Sun W. Effects of solution chemistry on the sunlight inactivation of particles-associated viruses MS2. Colloids Surf B Biointerfaces 2018; 162:179-185. [DOI: 10.1016/j.colsurfb.2017.11.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
|
25
|
Tang L, Wu W, Fu W, Hu Y. The effects of phototherapy and melanocytes on keratinocytes. Exp Ther Med 2018; 15:3459-3466. [PMID: 29545869 DOI: 10.3892/etm.2018.5807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 04/28/2017] [Indexed: 12/30/2022] Open
Abstract
Phototherapy is widely used in the treatment of vitiligo. Previous studies have focused on the effects of ultraviolet (UV) radiation on melanocytes; however, the biological effects of phototherapy and melanocytes on keratinocytes remain to be elucidated. To investigate and assess the effects of clinically doses of broad band (BB)-UVA, narrow band (NB)-UVB and melanocytes on human keratinocytes in vitro, clinical doses of BB-UVA or NB-UVB radiation and human melanoma cell A375 co-culture were performed as stress divisors to HaCaT cells. Cell proliferation, expression of protease-activated receptor-2 (PAR-2) and nuclear factor E2-related factor 2 mRNA, lipid peroxidation and intracellular antioxidant level of keratinocytes were analyzed. It was demonstrated that UV radiation inhibited the proliferation of cells apart from following exposure to low dose (1 J/cm2) UVA. Medium dose (5 J/cm2) UVA radiation had no adverse effects on lipid peroxidation and increased antioxidant levels in HaCaT cells. Medium (200 mJ/cm2) and high (400 mJ/cm2) doses of UVB radiation induced cellular damage due to increased lipid peroxidation as indicated by levels of malondialdehyde. Furthermore, A375 co-culture treatment induced a similar effect on the lipid peroxidation of HaCaT as with low dose UVB radiation. Therefore, the results of the present study determined that clinical doses of BB-UVA and NB-UVB radiation had varying effects on proliferation and related protein levels in HaCaT cells. Co-culture with A375 had similar effects as those of low dose UVA and UVB radiation, in which the PAR-2 expression was significantly upregulated.
Collapse
Affiliation(s)
- Luyan Tang
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Wenwen Fu
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| | - Yao Hu
- Department of Dermatology, Huashan Hospital of Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
26
|
Rohnke BA, Singh SP, Pattanaik B, Montgomery BL. RcaE-Dependent Regulation of Carboxysome Structural Proteins Has a Central Role in Environmental Determination of Carboxysome Morphology and Abundance in Fremyella diplosiphon. mSphere 2018; 3:e00617-17. [PMID: 29404416 PMCID: PMC5784247 DOI: 10.1128/msphere.00617-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/20/2022] Open
Abstract
Carboxysomes are central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation in cyanobacteria. Although the structure is well understood, roles of environmental cues in the synthesis, positioning, and functional tuning of carboxysomes have not been systematically studied. Fremyella diplosiphon is a model cyanobacterium for assessing impacts of environmental light cues on photosynthetic pigmentation and tuning of photosynthetic efficiency during complementary chromatic acclimation (CCA), which is controlled by the photoreceptor RcaE. Given the central role of carboxysomes in photosynthesis, we investigated roles of light-dependent RcaE signaling in carboxysome structure and function. A ΔrcaE mutant exhibits altered carboxysome size and number, ccm gene expression, and carboxysome protein accumulation relative to the wild-type (WT) strain. Several Ccm proteins, including carboxysome shell proteins and core-nucleating factors, overaccumulate in ΔrcaE cells relative to WT cells. Additionally, levels of carboxysome cargo RuBisCO in the ΔrcaE mutant are lower than or unchanged from those in the WT strain. This shift in the ratios of carboxysome shell and nucleating components to the carboxysome cargo appears to drive carboxysome morphology and abundance dynamics. Carboxysomes are also occasionally mislocalized spatially to the periphery of spherical mutants within thylakoid membranes, suggesting that carboxysome positioning is impacted by cell shape. The RcaE photoreceptor links perception of external light cues to regulating carboxysome structure and function and, thus, to the cellular capacity for carbon fixation. IMPORTANCE Carboxysomes are proteinaceous subcellular compartments, or bacterial organelles, found in cyanobacteria that consist of a protein shell surrounding a core primarily composed of the enzyme ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) that is central to the carbon dioxide-concentrating mechanism (CCM) and carbon fixation. Whereas significant insights have been gained regarding the structure and synthesis of carboxysomes, limited attention has been given to how their size, abundance, and protein composition are regulated to ensure optimal carbon fixation in dynamic environments. Given the centrality of carboxysomes in photosynthesis, we provide an analysis of the role of a photoreceptor, RcaE, which functions in matching photosynthetic pigmentation to the external environment during complementary chromatic acclimation and thereby optimizing photosynthetic efficiency, in regulating carboxysome dynamics. Our data highlight a role for RcaE in perceiving external light cues and regulating carboxysome structure and function and, thus, in the cellular capacity for carbon fixation and organismal fitness.
Collapse
Affiliation(s)
- Brandon A. Rohnke
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Shailendra P. Singh
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Bagmi Pattanaik
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
| | - Beronda L. Montgomery
- Department of Energy—Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, East Lansing, Michigan, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
27
|
Impairment of ntcA gene revealed its role in regulating iron homeostasis, ROS production and cellular phenotype under iron deficiency in cyanobacterium Anabaena sp. PCC 7120. World J Microbiol Biotechnol 2017; 33:158. [DOI: 10.1007/s11274-017-2323-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
|
28
|
Verdugo M, Ogra Y, Quiroz W. Mechanisms underlying the toxic effects of antimony species in human embryonic kidney cells (HEK-293) and their comparison with arsenic species. J Toxicol Sci 2017; 41:783-792. [PMID: 27853107 DOI: 10.2131/jts.41.783] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Antimony cytotoxicity was assessed in human embryonic kidney cells (HEK-293). Uptake, mitochondrial respiratory activity, ROS generation and diffusional kinetics were measured using fluorescence recovery after photobleaching (FRAP). Furthermore, the toxic effect induced by Sb was compared with As toxicity in regard to ROS generation and diffusional kinetics, which provides information on the protein aggregation process. Our results show a favored uptake of Sb(III) and a more severe effect, decreasing the mitochondrial activity more than in the presence of Sb(V). In comparison with As, the Sb species did not generate a significant increase in ROS generation, which was observed with As(III) and As(V). FRAP analysis yielded important information on the diffusion and binding dynamics of live cells in presence of these metalloids. The mobile fraction showed a strong decrease with the As species and Sb(III). The diffusion rate and the koff-rate were significantly decreased for the As and Sb species but were more strong in the presence of As(III).
Collapse
Affiliation(s)
- Marcelo Verdugo
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | |
Collapse
|
29
|
Biphasic ROS accumulation and programmed cell death in a cyanobacterium exposed to salinity (NaCl and Na 2 SO 4 ). ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.01.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Li ZK, Dai GZ, Juneau P, Qiu BS. Different physiological responses of cyanobacteria to ultraviolet-B radiation under iron-replete and iron-deficient conditions: Implications for underestimating the negative effects of UV-B radiation. JOURNAL OF PHYCOLOGY 2017; 53:425-436. [PMID: 28164281 DOI: 10.1111/jpy.12517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Iron deficiency has been considered one of the main limiting factors of phytoplankton productivity in some aquatic systems including oceans and lakes. Concomitantly, solar ultraviolet-B radiation has been shown to have both deleterious and positive impacts on phytoplankton productivity. However, how iron-deficient cyanobacteria respond to UV-B radiation has been largely overlooked in aquatic systems. In this study, physiological responses of four cyanobacterial strains (Microcystis and Synechococcus), which are widely distributed in freshwater or marine systems, were investigated under different UV-B irradiances and iron conditions. The growth, photosynthetic pigment composition, photosynthetic activity, and nonphotochemical quenching of the different cyanobacterial strains were drastically altered by enhanced UV-B radiation under iron-deficient conditions, but were less affected under iron-replete conditions. Intracellular reactive oxygen species (ROS) and iron content increased and decreased, respectively, with increased UV-B radiation under iron-deficient conditions for both Microcystis aeruginosa FACHB 912 and Synechococcus sp. WH8102. On the contrary, intracellular ROS and iron content of these two strains remained constant and increased, respectively, with increased UV-B radiation under iron-replete conditions. These results indicate that iron-deficient cyanobacteria are more susceptible to enhanced UV-B radiation. Therefore, UV-B radiation probably plays an important role in influencing primary productivity in iron-deficient aquatic systems, suggesting that its effects on the phytoplankton productivity may be underestimated in iron-deficient regions around the world.
Collapse
Affiliation(s)
- Zheng-Ke Li
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Guo-Zheng Dai
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Philippe Juneau
- Department of Biological Sciences, GRIL-TOXEN, Ecotoxicology of Aquatic Microorganisms Laboratory, Université du Québec à Montréal, CP8888 Succursale Centre-ville, Montréal, Québec, Canada, H3C 3P8
| | - Bao-Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, 430079, China
| |
Collapse
|
31
|
Sun Q, You Q, Pang X, Tan X, Wang J, Liu L, Guo F, Tan F, Li N. A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials 2017; 122:188-200. [DOI: 10.1016/j.biomaterials.2017.01.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 01/21/2023]
|
32
|
Kaushik MS, Srivastava M, Srivastava A, Singh A, Mishra AK. Nitric oxide ameliorates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:21805-21821. [PMID: 27523042 DOI: 10.1007/s11356-016-7421-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
In cyanobacterium Anabaena 7120, iron deficiency leads to oxidative stress with unavoidable consequences. Nitric oxide reduces pigment damage and supported the growth of Anabaena 7120 in iron-deficient conditions. Elevation in nitric oxide accumulation and reduced superoxide radical production justified the role of nitric oxide in alleviating oxidative stress in iron deficiency. Increased activities of antioxidative enzymes and higher levels of ROS scavengers (ascorbate, glutathione and thiol) in iron deficiency were also observed in the presence of nitric oxide. Nitric oxide also supported the membrane integrity of Anabaena cells and reduces protein and DNA damage caused by oxidative stress induced by iron deficiency. Results suggested that nitric oxide alleviates the damaging effects of oxidative stress induced by iron deficiency in cyanobacterium Anabaena 7120.
Collapse
Affiliation(s)
- Manish Singh Kaushik
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Meenakshi Srivastava
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Alka Srivastava
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Anumeha Singh
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
33
|
Chaturvedi D, Singh VK. Toxicity of Chlorophyllin against Lymnaea acuminata at Different Wavelengths of Visible Light. Trop Life Sci Res 2016; 27:25-36. [PMID: 27688849 DOI: 10.21315/tlsr2016.27.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Fasciolosis is a water and food-borne disease caused by the liver fluke Fasciola hepatica and Fasciola gigantica. This disease is widespread in different parts of the world. Lymnaeidae and Planorbidae snails are the intermediate hosts of these flukes. Snail population management is a good tool to control fasciolosis because gastropods represent the weakest link in the life-cycle of trematodes. Chlorophyll can be extracted from any green plant. Chlorophyllin was prepared from spinach in 100% ethanol by using different types of chemicals. The chlorophyll obtained from spinach was transformed into water-soluble chlorophyllin. In the present paper, toxicity of chlorophyllin against the snail Lymnaea acuminata was time and concentration dependent. The toxicity of extracted and pure chlorophyllin at continuous 4 h exposure of sunlight was highest with lethal concentration (LC50) of 331.01 mg/L and 2.60 mg/L, respectively, than discontinuous exposure of sunlight up to 8 h with LC50 of 357.04 mg/L and 4.94 mg/L, respectively. Toxicity of extracted chlorophyllin was noted in the presence of different monochromatic visible lights. The highest toxicity was noted in yellow light (96 h, LC50 392.77 mg/L) and the lowest in green light (96 h, LC50 833.02 mg/L). Chlorophyllin in combination with solar radiation or different wavelength of monochromatic visible lights may become a latent remedy against the snail L. acuminata. It was demonstrated that chlorophyllin was more toxic in sunlight. Chlorophyllin is ecologically safe and more economical than synthetic molluscicides which have the potential to control the incidence of fasciolosis in developing countries.
Collapse
Affiliation(s)
- Divya Chaturvedi
- Malacology Laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur-273 009, UP, India
| | - Vinay Kumar Singh
- Malacology Laboratory, Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur-273 009, UP, India
| |
Collapse
|
34
|
Singh DJ, Singh DK. ANTHELMINTIC ACTIVITY OF CHLOROPHYLLIN AGAINST DIFFERENT LARVAL STAGES OF Fasciola gigantica. Rev Inst Med Trop Sao Paulo 2016; 58:39. [PMID: 27253741 PMCID: PMC4879996 DOI: 10.1590/s1678-9946201658039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 11/23/2015] [Indexed: 01/04/2023] Open
Abstract
Fasciolosis is a food borne zoonosis, caused by the digenetic trematode
Fasciola. Freshwater lymnaeid snails are the intermediate host of
the trematodes. Chlorophyllin, a semi-synthetic derivative of chlorophyll and its
formulations obtained from freeze dried cow urine (FCU) had their toxicity tested
against redia and cercaria larvae of F. gigantica. The larvicidal
activity of chlorophyllin and its formulations were found to depend on both, time and
concentration used against the larvae. Toxicity of chlorophyllin + FCU (1:1 ratio) in
sunlight against redia larva (8 h LC50: 0.03 mg/mL) was more pronounced
than using just chlorophyllin (8 h LC50: 0.06 mg/mL). Toxicity of
chlorophyllin + FCU in sunlight against redia (8 h LC50: 0.03 mg/mL) was
higher than against cercaria (8 h LC50: 0.06 mg/mL). The larvicidal
activity of chlorophyllin in sunlight (redia/cercaria larvae: 8 h LC50:
0.06 mg/mL) was more pronounced than under laboratory conditions (redia: 8 h
LC50: 22.21 mg/mL/, cercaria 8 h LC50: 96.21 mg/mL).
Toxicity of FCU against both larvae was lower than that of chlorophyllin and
chlorophyllin + FCU. Chlorophyllin and its formulations + FCU were 357.4 to 1603.5
times more effective against redia/cercaria larvae in sunlight than under laboratory
conditions. The present study has shown that chlorophyllin formulations may be used
as potent larvicides against fasciolosis.
Collapse
|
35
|
Wang WH, He EM, Chen J, Guo Y, Chen J, Liu X, Zheng HL. The reduced state of the plastoquinone pool is required for chloroplast-mediated stomatal closure in response to calcium stimulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:132-44. [PMID: 26945669 DOI: 10.1111/tpj.13154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 05/12/2023]
Abstract
Besides their participation in photosynthesis, leaf chloroplasts function in plant responses to stimuli, yet how they direct stimulus-induced stomatal movement remains elusive. Here, we showed that over-reduction of the plastoquinone (PQ) pool by dibromothymoquinone (DBMIB) was closely associated with stomatal closure in plants which required chloroplastic H2O2 generation in the mesophyll. External application of H2 O2 reduced the PQ pool, whereas the cell-permeable reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) reversed the DBMIB-induced over-reduction of the PQ pool and stomatal closure. Mesophyll chloroplasts are key players of extracellular Ca(2+) (Ca(2+)o)-induced stomatal closure, but when treated with either 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or NAC they failed to facilitate Ca(2+)o-induced stomatal closure due to the inhibition of chloroplastic H2 O2 synthesis in mesophyll. Similarly, the Arabidopsis electron transfer chain-related mutants npq4-1, stn7 and cas-1 exhibited diverse responses to Ca(2+)o or DBMIB. Transcriptome analysis also demonstrated that the PQ pool signaling pathway shared common responsive genes with the H2 O2 signaling pathway. These results implicated a mechanism for chloroplast-mediated stomatal closure involving the generation of mesophyll chloroplastic H2O2 based on the reduced state of the PQ pool, which is calcium-sensing receptor (CAS) and LHCII phosphorylation dependent.
Collapse
Affiliation(s)
- Wen-Hua Wang
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| | - En-Ming He
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| | - Juan Chen
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ying Guo
- Fujian Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Xiamen, Fujian, 361006, China
| | - Juan Chen
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiang Liu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
36
|
Singh DJ, Singh DK. Phytotherapy of chlorophyllin exposed Lymnaea acuminata: A new biotechnological tool for fasciolosis control. Parasite Epidemiol Control 2016; 1:20-25. [PMID: 29988195 PMCID: PMC5991855 DOI: 10.1016/j.parepi.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/17/2016] [Accepted: 03/17/2016] [Indexed: 01/20/2023] Open
Abstract
Phytotherapy of chlorophyllin formulations against Fasciola gigantica infected Lymnaea acuminata under sunlight exposure was highly toxic against redia and cercaria larvae. Binary combinations (1:1 ratio) of chlorophyllin (CHL) + freeze dried cow urine (FCU) were more toxic against cercariae (8 h LC50: 9.6 mg L- 1) than single treatment with chlorophyllin (8 h LC50: 12.6 mg L- 1) in sunlight. The larvicidal activity of sunlight exposed CHL against rediae (8 h LC50: 13.5 mg L- 1) and cercariae (8 h LC50: 12.6 mg L- 1) was more pronounced than laboratory conditions CHL treatment (rediae- 8 h LC50: 305.9 mg L- 1; cercariae- 8 h LC50: 765.4 mg L- 1). Larvicidal activity of FCU was less than CHL and CHL + FCU against both redia and cercaria. Chlorophyllin and its formulations were more toxic against redia and cercaria larvae in sunlight than laboratory conditions. CHL and its different formulations may be used as potent larvicides against Fasciola gigantica larvae. Chlorophyllin formulations will be economical, ecologically sounder and their use in aquatic environment will be safe.
Collapse
Affiliation(s)
- Divya Jyoti Singh
- Malacology Laboratory, Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh, Pin: 273 009, India
| | - D K Singh
- Malacology Laboratory, Department of Zoology, D.D.U. Gorakhpur University, Gorakhpur, Uttar Pradesh, Pin: 273 009, India
| |
Collapse
|
37
|
Singh SP, Montgomery BL. Regulation of BolA abundance mediates morphogenesis in Fremyella diplosiphon. Front Microbiol 2015; 6:1215. [PMID: 26594203 PMCID: PMC4633512 DOI: 10.3389/fmicb.2015.01215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/19/2015] [Indexed: 11/24/2022] Open
Abstract
Filamentous cyanobacterium Fremyella diplosiphon is known to alter its pigmentation and morphology during complementary chromatic acclimation (CCA) to efficiently harvest available radiant energy for photosynthesis. F. diplosiphon cells are rectangular and filaments are longer under green light (GL), whereas smaller, spherical cells and short filaments are prevalent under red light (RL). Light regulation of bolA morphogene expression is correlated with photoregulation of cellular morphology in F. diplosiphon. Here, we investigate a role for quantitative regulation of cellular BolA protein levels in morphology determination. Overexpression of bolA in WT was associated with induction of RL-characteristic spherical morphology even when cultures were grown under GL. Overexpression of bolA in a ΔrcaE background, which lacks cyanobacteriochrome photosensor RcaE and accumulates lower levels of BolA than WT, partially reverted the cellular morphology of the strain to a WT-like state. Overexpression of BolA in WT and ΔrcaE backgrounds was associated with decreased cellular reactive oxygen species (ROS) levels and an increase in filament length under both GL and RL. Morphological defects and high ROS levels commonly observed in ΔrcaE could, thus, be in part due to low accumulation of BolA. Together, these findings support an emerging model for RcaE-dependent photoregulation of BolA in controlling the cellular morphology of F. diplosiphon during CCA.
Collapse
Affiliation(s)
- Shailendra P. Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- MSU-DOE Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
38
|
Guo X, Liu X, Pan J, Yang H. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa. Sci Rep 2015; 5:14720. [PMID: 26423356 PMCID: PMC4589682 DOI: 10.1038/srep14720] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/02/2015] [Indexed: 11/08/2022] Open
Abstract
A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.
Collapse
Affiliation(s)
- Xingliang Guo
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xianglong Liu
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jianliang Pan
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
39
|
Montgomery BL. Light-dependent governance of cell shape dimensions in cyanobacteria. Front Microbiol 2015; 6:514. [PMID: 26074902 PMCID: PMC4443024 DOI: 10.3389/fmicb.2015.00514] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/09/2015] [Indexed: 12/15/2022] Open
Abstract
The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.
Collapse
Affiliation(s)
- Beronda L. Montgomery
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
40
|
Zhang H, Zhang S, Peng Y, Li Y, Chen Z, Xu H, Yu Z, Zheng W, Zheng T. Effects of marine actinomycete on the removal of a toxicity alga Phaeocystis globose in eutrophication waters. Front Microbiol 2015; 6:474. [PMID: 26042109 PMCID: PMC4436911 DOI: 10.3389/fmicb.2015.00474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023] Open
Abstract
Phaeocystis globosa blooms in eutrophication waters can cause severely damage in marine ecosystem and consequently influence human activities. This study investigated the effect and role of an algicidal actinomycete (Streptomyces sp. JS01) on the elimination process of P. globosa. JS01 supernatant could alter algal cell membrane permeability in 4 h when analyzed with flow cytometry. Reactive oxygen species (ROS) levels were 7.2 times higher than that at 0 h following exposure to JS01 supernatant for 8 h, which indicated that algal cells suffered from oxidative damage. The Fv/Fm value which could reflect photosystem II (PS II) electron flow status also decreased. Real-time PCR showed that the expression of the photosynthesis related genes psbA and rbcS were suppressed by JS01 supernatant, which might induce damage to PS II. Our results demonstrated that JS01 supernatant can change algal membrane permeability in a short time and then affect photosynthesis process, which might block the PS II electron transport chain to produce excessive ROS. This experiment demonstrated that Streptomyces sp. JS01 could eliminate harmful algae in marine waters efficiently and may be function as a harmful algal bloom controller material.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Su Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Yun Peng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Hong Xu
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zhiming Yu
- Key Laboratory of Marine Ecology and Environmental Science, Institute of Oceanology, Chinese Academy of Sciences Qingdao, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| |
Collapse
|
41
|
Shrivastava AK, Chatterjee A, Yadav S, Singh PK, Singh S, Rai LC. UV-B stress induced metabolic rearrangements explored with comparative proteomics in three Anabaena species. J Proteomics 2015; 127:122-33. [PMID: 25997677 DOI: 10.1016/j.jprot.2015.05.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/21/2015] [Accepted: 05/14/2015] [Indexed: 11/24/2022]
Abstract
Comparative proteomics together with physiological variables revealed different responses among three species of diazotrophic cyanobacterium Anabaena exposed to UV-B stress at the same time points. Perceptible decline in PSII activity, ATP pool, nitrogenase activity and respiration rate was observed for all the three species; this being maximum in Anabaena doliolum, followed by Anabaena sp. PCC 7120 and minimum in Anabaena L31. Statistical analysis of the protein abundance divided majority of them as early accumulated in A. L31, late accumulated in A. sp. PCC 7120 and downregulated in A. doliolum. Tolerance of A. L31 may be ascribed to post-translational modification reflected through the highest number of protein isoforms in its proteome followed by A. PCC 7120 and A. doliolum. Furthermore, increase in abundance of cyanophycinase, glutamine synthetase and succinate semialdehyde dehydrogenase in A. L31 suggests operation of an alternate pathway for assimilation of nitrogen and carbon under UV-B stress. An early accumulation of four proteins viz., glutamate ammonia ligase (Alr2328), transketolase (Alr3344), inorganic pyrophosphatase (All3570), and trigger protein (Alr3681) involved respectively in amino acid metabolism, energy metabolism, biosynthesis of cofactor and trigger protein and chaperone like activity across three species, suggests them to be marker of UV-B stress in Anabaena spp. This article is part of a Special Issue entitled: Proteomics in India.
Collapse
Affiliation(s)
- Alok Kumar Shrivastava
- Molecular Biology Section, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Antra Chatterjee
- Molecular Biology Section, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shivam Yadav
- Molecular Biology Section, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Prashant Kumar Singh
- Molecular Biology Section, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - Shilpi Singh
- Molecular Biology Section, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India
| | - L C Rai
- Molecular Biology Section, Center of Advanced Study in Botany, Banaras Hindu University, Varanasi 221005, India..
| |
Collapse
|
42
|
Korkaric M, Behra R, Fischer BB, Junghans M, Eggen RIL. Multiple stressor effects in Chlamydomonas reinhardtii--toward understanding mechanisms of interaction between effects of ultraviolet radiation and chemical pollutants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 162:18-28. [PMID: 25768714 DOI: 10.1016/j.aquatox.2015.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/26/2015] [Accepted: 03/01/2015] [Indexed: 06/04/2023]
Abstract
The effects of chemical pollutants and environmental stressors, such as ultraviolet radiation (UVR), can interact when organisms are simultaneously exposed, resulting in higher (synergistic) or lower (antagonistic) multiple stressor effects than expected based on the effects of single stressors. Current understanding of interactive effects is limited due to a lack of mechanism-based multiple stressor studies. It has been hypothesized that effect interactions may generally occur if chemical and non-chemical stressors cause similar physiological effects in the organism. To test this hypothesis, we exposed the model green alga Chlamydomonas reinhardtii to combinations of UVR and single chemicals displaying modes of action (MOA) similar or dissimilar to the impact of UVR on photosynthesis. Stressor interactions were analyzed based on the independent action model. Effect interactions were found to depend on the MOA of the chemicals, and also on their concentrations, the exposure time and the measured endpoint. Indeed, only chemicals assumed to cause effects on photosynthesis similar to UVR showed interactions with UVR on photosynthetic yield: synergistic in case of Cd(II) and paraquat and antagonistic in case of diuron. No interaction on photosynthesis was observed for S-metolachlor, which acts dissimilarly to UVR. However, combined effects of S-metolachlor and UVR on algal reproduction were synergistic, highlighting the importance of considering additional MOA of UVR. Possible mechanisms of stressor effect interactions are discussed.
Collapse
Affiliation(s)
- Muris Korkaric
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland
| | - Renata Behra
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland
| | - Beat B Fischer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland
| | - Marion Junghans
- Swiss Center for Applied Ecotoxicology Eawag-EPFL, 8600, Duebendorf, Switzerland
| | - Rik I L Eggen
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Environmental Toxicology, 8600, Duebendorf, Switzerland; ETH Zürich, Institute of Biogeochemistry and Pollutant Dynamics, 8092 Zürich, Switzerland.
| |
Collapse
|
43
|
Lei X, Li D, Li Y, Chen Z, Chen Y, Cai G, Yang X, Zheng W, Zheng T. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium. Front Microbiol 2015; 6:7. [PMID: 25667582 PMCID: PMC4304249 DOI: 10.3389/fmicb.2015.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/05/2015] [Indexed: 01/12/2023] Open
Abstract
Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.
Collapse
Affiliation(s)
- Xueqian Lei
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| | - Dong Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; Fujian Center for Disease Control and Prevention Fuzhou, China
| | - Yi Li
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Zhangran Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Yao Chen
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Guanjing Cai
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Xujun Yang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University Xiamen, China ; ShenZhen Research Institute of Xiamen University ShenZhen, China
| |
Collapse
|
44
|
Differential Display of Antioxidants in Mitigating Adverse Effects of UV-B Radiation in Nostoc muscorum and Phormidium foveolarum Photoacclimated to Different Irradiances. Appl Biochem Biotechnol 2015; 175:2703-28. [DOI: 10.1007/s12010-014-1446-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
|
45
|
Young RM, Schoenrock KM, von Salm JL, Amsler CD, Baker BJ. Structure and Function of Macroalgal Natural Products. Methods Mol Biol 2015; 1308:39-73. [PMID: 26108497 DOI: 10.1007/978-1-4939-2684-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Since the initial discovery of marine phyco-derived secondary metabolites in the 1950s there has been a rapid increase in the description of new algal natural products. These metabolites have multiple ecological roles as well as commercial value as potential drugs or lead compounds. With the emergence of resistance to our current arsenal of drugs as well as the development of new chemotherapies for currently untreatable diseases, new compounds must be sourced. As outlined in this chapter algae produce a diverse range of chemicals many of which have potential for the treatment of human afflictions.In this chapter we outline the classes of metabolites produced by this chemically rich group of organisms as well as their respective ecological roles in the environment. Algae are found in nearly every environment on earth, with many of these organisms possessing the ability to shape the ecosystem they inhabit. With current challenges to climate stability, understanding how these important organisms interact with their environment as well as one another might afford better insight into how they respond to a changing climate.
Collapse
Affiliation(s)
- Ryan M Young
- Department of Chemistry and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, 33620, USA
| | | | | | | | | |
Collapse
|
46
|
Dong S, Hong PY, Nguyen TH. Persistence of Bacteroides ovatus under simulated sunlight irradiation. BMC Microbiol 2014; 14:178. [PMID: 24993443 PMCID: PMC4099502 DOI: 10.1186/1471-2180-14-178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 06/26/2014] [Indexed: 01/27/2023] Open
Abstract
Background Bacteroides ovatus, a member of the genus Bacteroides, is considered for use in molecular-based methods as a general fecal indicator. However, knowledge on its fate and persistence after a fecal contamination event remains limited. In this study, the persistence of B. ovatus was evaluated under simulated sunlight exposure and in conditions similar to freshwater and seawater. By combining propidium monoazide (PMA) treatment and quantitative polymerase chain reaction (qPCR) detection, the decay rates of B. ovatus were determined in the presence and absence of exogenous photosensitizers and in salinity up to 39.5 parts per thousand at 27°C. Results UVB was found to be important for B. ovatus decay, averaging a 4 log10 of decay over 6 h of exposure without the presence of extracellular photosensitizers. The addition of NaNO2, an exogenous sensitizer producing hydroxyl radicals, did not significantly change the decay rate of B. ovatus in both low and high salinity water, while the exogenous sensitizer algae organic matter (AOM) slowed down the decay of B. ovatus in low salinity water. At seawater salinity, the decay rate of B. ovatus was slower than that in low salinity water, except when both NaNO2 and AOM were present. Conclusion The results of laboratory experiments suggest that if B. ovatus is released into either freshwater or seawater environment in the evening, 50% of it may be intact by the next morning; if it is released at noon, only 50% may be intact after a mere 5 min of full spectrum irradiation on a clear day. This study provides a mechanistic understanding to some of the important environmental relevant factors that influenced the inactivation kinetics of B. ovatus in the presence of sunlight irradiation, and would facilitate the use of B. ovatus to indicate the occurrence of fecal contamination.
Collapse
Affiliation(s)
| | - Pei-Ying Hong
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N, Mathews, 3230 Newmark Lab, Urbana, IL 61801, USA.
| | | |
Collapse
|
47
|
Zhang H, Lv J, Peng Y, Zhang S, An X, Xu H, Zhang J, Tian Y, Zheng W, Zheng T. Cell death in a harmful algal bloom causing species Alexandrium tamarense upon an algicidal bacterium induction. Appl Microbiol Biotechnol 2014; 98:7949-58. [PMID: 24962118 DOI: 10.1007/s00253-014-5886-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/03/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
Abstract
Harmful algal blooms occur throughout the world, destroying aquatic ecosystems and threatening human health. The culture supernatant of the marine algicidal bacteria DHQ25 was able to lysis dinoflagellate Alexandrium tamarense. Loss of photosynthetic pigments, accompanied by a decline in Photosystem II (PSII) photochemical efficiency (Fv/Fm), in A. tamarense was detected under bacterial supernatant stress. Transmission electron microscope analysis showed obvious morphological modifications of chloroplast dismantling as a part of the algicidal process. The PSII electron transport chain was seriously blocked, with its reaction center damaged. This damage was detected in a relative transcriptional level of psbA and psbD genes, which encode the D1 and D2 proteins in the PSII reaction center. And the block in the electron transport chain of PSII might generate excessive reactive oxygen species (ROS) which could destroy the membrane system and pigment synthesis and activated enzymic antioxidant systems including superoxide dismutase (SOD) and catalase (CAT). This study indicated that marine bacteria with indirect algicidal activity played an important role in the changes of photosynthetic process in a harmful algal bloom species.
Collapse
Affiliation(s)
- Huajun Zhang
- State Key Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, 422, Siming Nan Road, Xiamen, 361005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pattanaik B, Busch AWU, Hu P, Chen J, Montgomery BL. Responses to iron limitation are impacted by light quality and regulated by RcaE in the chromatically acclimating cyanobacterium Fremyella diplosiphon. Microbiology (Reading) 2014; 160:992-1005. [DOI: 10.1099/mic.0.075192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic organisms adapt to environmental fluctuations of light and nutrient availability. Iron is critical for photosynthetic organismal growth, as many cellular processes depend upon iron cofactors. Whereas low iron levels can have deleterious effects, excess iron can lead to damage, as iron is a reactive metal that can result in the production of damaging radicals. Therefore, organisms regulate cellular iron levels to maintain optimal iron homeostasis. In particular, iron is an essential factor for the function of photosystems associated with photosynthetic light-harvesting complexes. Photosynthetic organisms, including cyanobacteria, generally respond to iron deficiency by reduced growth, degradation of non-essential proteins and in some cases alterations of cellular morphology. In response to fluctuations in ambient light quality, the cyanobacterium Fremyella diplosiphon undergoes complementary chromatic adaptation (CCA). During CCA, phycobiliprotein composition of light-harvesting antennae is altered in response to green light (GL) and red light (RL) for efficient utilization of light energy for photosynthesis. We observed light-regulated responses to iron limitation in F. diplosiphon. RL-grown cells exhibited significant reductions in growth and pigment levels, and alterations in iron-associated proteins, which impact the accumulation of reactive oxygen species under iron-limiting conditions, whereas GL-grown cells exhibited partial resistance to iron limitation. We investigated the roles of known CCA regulators RcaE, RcaF and RcaC in this light-dependent iron-acclimation response. Through comparative analyses of wild-type and CCA mutant strains, we determined that photoreceptor RcaE has a central role in light-induced oxidative stress associated with iron limitation, and impacts light-regulated iron-acclimation responses, physiologically and morphologically.
Collapse
Affiliation(s)
- Bagmi Pattanaik
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Pingsha Hu
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Jin Chen
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Beronda L. Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Energy – Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Wang Y, Lin W, Li J, Pan Y. Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation. Front Microbiol 2013; 4:397. [PMID: 24391631 PMCID: PMC3867805 DOI: 10.3389/fmicb.2013.00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022] Open
Abstract
Effects of ultraviolet radiation on microorganisms are of great interest in field of microbiology and planetary sciences. In the present study, we used Magnetospirillum magneticum AMB-1 as a model organism to examine the influence of ultraviolet-B (UV-B) radiation on cell growth and magnetite biomineralization of magnetotactic bacteria (MTB). Live AMB-1 cells were exposed to UV-B radiation for 60, 300 and 900 s, which correspond to radiation doses of 120 J/m2, 600 J/m2, and 1800 J/m2, respectively. After irradiation, the amounts of cyclobutane pyrimidine dimers (CPD) and reactive oxygen species (ROS) of the cells were increased, and cell growth was stunted up to ~170 h, depending on the UV-B radiation doses. The UV-B irradiated cells also produced on average more magnetite crystals with larger grain sizes and longer chains, which results in changes of their magnetic properties.
Collapse
Affiliation(s)
- Yinzhao Wang
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing, China ; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences Beijing, China
| | - Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing, China ; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences Beijing, China
| | - Jinhua Li
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing, China ; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences Beijing, China
| | - Yongxin Pan
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of the Earth's Deep Interior, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing, China ; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
50
|
Singh SP, Miller HL, Montgomery BL. Temporal dynamics of changes in reactive oxygen species (ROS) levels and cellular morphology are coordinated during complementary chromatic acclimation in Fremyella diplosiphon. PHOTOSYNTHESIS RESEARCH 2013; 118:95-104. [PMID: 24122367 DOI: 10.1007/s11120-013-9938-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/01/2013] [Indexed: 06/02/2023]
Abstract
Fremyella diplosiphon alters the phycobiliprotein composition of its light-harvesting complexes, i.e., phycobilisomes, and its cellular morphology in response to changes in the prevalent wavelengths of light in the external environment in a phenomenon known as complementary chromatic acclimation (CCA). The organism primarily responds to red light (RL) and green light (GL) during CCA to maximize light absorption for supporting optimal photosynthetic efficiency. Recently, we found that RL-characteristic spherical cell morphology is associated with higher levels of reactive oxygen species (ROS) compared to growth under GL where lower ROS levels and rectangular cell shape are observed. The RL-dependent association of increased ROS levels with cellular morphology was demonstrated by treating cells with a ROS-scavenging antioxidant which resulted in the observation of GL-characteristic rectangular morphology under RL. To gain additional insights into the involvement of ROS in impacting cellular morphology changes during CCA, we conducted experiments to study the temporal dynamics of changes in ROS levels and cellular morphology during transition to growth under RL or GL. Alterations in ROS levels and cell morphology were found to be correlated with each other at early stages of acclimation of low white light-grown cells to growth under high RL or cells transitioned between growth in RL and GL. These results provide further general evidence that significant RL-dependent increases in ROS levels are temporally correlated with changes in morphology toward spherical. Future studies will explore the light-dependent mechanisms by which ROS levels may be regulated and the direct impacts of ROS on the observed morphology changes.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Energy-Plant Research Laboratory, Michigan State University, Plant Biology Laboratories, 612 Wilson Road, Room 106, East Lansing, MI, 48824-1312, USA
| | | | | |
Collapse
|