1
|
Ma Q, Li Y, Yu G, Liu S, Jiang Y, Duan H, Wang D, He Y, Chen X, Yao N, Lin X, Wan H, Shen J. Sex-Specific Associations of Five Serum Essential Metal Elements with Thyroid Nodules in Euthyroid Adults: a Cross‑sectional Study. Biol Trace Elem Res 2024; 202:4357-4366. [PMID: 38157093 DOI: 10.1007/s12011-023-04024-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The association between the serum essential metal elements (magnesium, iron, copper, zinc, and calcium) and thyroid nodules is still inconsistent. The current study aims to investigate the relationship of metal elements with thyroid nodules and their malignant tendency. A total of 6480 Chinese euthyroid adults were included in our study. We collect basic information through questionnaires and medical checkups. We diagnose thyroid nodules by ultrasound and detect serum trace metal concentrations by using an automatic biochemical analyzer. Binary and multinomial logistic regressions were used to investigate the associations. As a result, we found that serum copper concentrations were positively associated with thyroid nodules in the second, third, and fourth quartiles, compared to the first quartile (P = 0.024, P = 0.016, P = 0.032) in women and P for trend is 0.038. There is a significant sex-specific association between copper concentrations and thyroid nodules (P for interaction = 0.009). The results of the multinomial logistic regression analyses indicate high serum calcium and magnesium concentrations emerged as consistent risk factors for thyroid nodules in both genders, whereas low zinc was a sex-specific factor. We also observed significant sex interactions in the relationships of magnesium (P for interaction = 0.043) with thyroid nodules with malignant tendency among participants with thyroid nodules. In conclusion, our study suggests that gender is an important factor when studying the association between serum metals and thyroid nodules. The imbalance of selected metal elements (calcium, copper, zinc, and magnesium) may relate to thyroid nodules and their malignant tendency, and future prospective studies are needed to further confirm the associations.
Collapse
Affiliation(s)
- Qintao Ma
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Ying Li
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Genfeng Yu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Siyang Liu
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Yuqi Jiang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Hualin Duan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Dongmei Wang
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Yajun He
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Xingying Chen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Nanfang Yao
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China
| | - Heng Wan
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| | - Jie Shen
- Department of Endocrinology and Metabolism, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), No.1 of Jiazi Road, Lunjiao, Shunde District, Foshan City, 528308, Guangdong Province, China.
| |
Collapse
|
2
|
Liu K, Liu X, Wen L, Zhai W, Ye R, Zhang B, Xie W, Zhang X, Zhang W, Li H, Xu J, Huang L, Wang H, Li D, Sun H. Blocking Metallothionein-2 Expression by Copper-Doped Carbon Dots Induces Cellular Antioxidant System Collapse for Antitumor Therapy. NANO LETTERS 2024; 24:10699-10709. [PMID: 39141437 DOI: 10.1021/acs.nanolett.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The insufficient antioxidant reserves in tumor cells play a critical role in reactive oxygen species (ROS)-mediated therapeutics. Metallothionein-2 (MT-2), an intracellular cysteine-rich protein renowned for its potent antioxidant properties, is intricately involved in tumor development and correlates with a poor prognosis. Consequently, MT-2 emerges as a promising target for tumor therapy. Herein, we present the development of copper-doped carbon dots (Cu-CDs) to target MT-2 to compromise the delicate antioxidant reserves in tumor cells. These Cu-CDs with high tumor accumulation and prolonged body retention can effectively suppress tumor growth by inducing oxidative stress. Transcriptome sequencing unveils a significant decrease in MT-2 expression within the in vivo tumor samples. Further mechanical investigations demonstrate that the antitumor effect of Cu-CDs is intricately linked to apolipoprotein E (ApoE)-mediated downregulation of MT-2 expression and the collapse of the antioxidant system. The robust antitumor efficacy of Cu-CDs provides invaluable insights into developing MT-2-targeted nanomedicine for cancer therapies.
Collapse
Affiliation(s)
- Kexuan Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Xinchen Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Linlin Wen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Wenhao Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Rongrong Ye
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Boya Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Wangni Xie
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Xue Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Wenbing Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Haiqiu Li
- Department of Hand and Podiatric Surgery, Orthopedics Center, The First Hospital of Jilin University, Jilin University, Changchun 130031, People's Republic of China
| | - Jiaqi Xu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Lei Huang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Daowei Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| | - Hongchen Sun
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, 763 Heguang Road, Changchun 130021, People's Republic of China
| |
Collapse
|
3
|
Jia D, Liu L, Liu W, Li J, Jiang X, Xin Y. Copper metabolism and its role in diabetic complications: A review. Pharmacol Res 2024; 206:107264. [PMID: 38876443 DOI: 10.1016/j.phrs.2024.107264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.
Collapse
Affiliation(s)
- Dongkai Jia
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Lulu Liu
- Department of Emergency and Critical Medicine, the Second Hospital of Jilin University, Changchun 130012, China
| | - Wei Liu
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Jinjie Li
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy and Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, and College of Basic Medical Science, Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Kapiamba KF, Owusu SY, Wu Y, Huang YW, Jiang Y, Wang Y. Examining the Oxidation States of Metals in Aerosols Emitted by Electronic Cigarettes. Chem Res Toxicol 2024; 37:1113-1120. [PMID: 38957009 DOI: 10.1021/acs.chemrestox.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Electronic cigarettes (ECs) emit many toxic substances, including metals, that can pose a threat to users and the environment. The toxicity of the emitted metals depends on their oxidation states. Hence, this study examines the oxidation states of metals observed in EC aerosols. X-ray photoelectron spectroscopy analysis of the filters that collected EC aerosols identified the oxidation states of five primary metals (based on surface sample analysis), including chromium(III) (close to 100%) under low power setting while a noticeable amount of chromium(VI) (15%) at higher power settings of the EC, and copper(II) (100%), zinc(II) (100%), nickel(II) (100%), lead(II) (65%), and lead(IV) (35%) regardless of power settings. This observation indicates that the increased temperature due to higher power settings could alter the oxidation states of certain metals. We noted that many metals were in their lesser toxic states; however, inhaling these metals may still pose health risks.
Collapse
Affiliation(s)
- Kashala Fabrice Kapiamba
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Miami, Florida 33146, United States
| | - Stephen Yaw Owusu
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yangtao Wu
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon TU428, Hong Kong
| | - Yue-Wern Huang
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Yi Jiang
- Department of Civil and Environmental Engineering, the Hong Kong Polytechnic University, Hung Hom, Kowloon TU428, Hong Kong
| | - Yang Wang
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Miami, Florida 33146, United States
| |
Collapse
|
5
|
Chen S, Qiu G. Physiological and multi-omics analysis reveals the influence of copper on Halophila beccarii Asch. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108785. [PMID: 38824692 DOI: 10.1016/j.plaphy.2024.108785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/04/2024]
Abstract
High concentrations of copper can pollute coastal waters, primarily from agricultural runoff and mining activities, which can harm marine organisms, including seagrasses. The molecular mechanism of copper toxicity to seagrass currently remains unclear. To determine the response to copper, physiological and multi-omic analyses were conducted to explore the molecular mechanism by which copper affects the global threatened seagrass Halophila beccarii Asch. Excessive copper stress causes oxidative damage and stimulates the activity of the antioxidant enzyme system to remove excess reactive oxygen species (ROS), thereby reducing the damage caused by copper stress. Cu increases the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), peroxidase (EC 1.11.1.7), ascorbate peroxidase (EC 1.11.1.11), glutathione peroxidase (EC 1.11.1.9), ascorbate oxidase (EC 1.10.3.3), glutathione reductase (EC 1.6.4.2), and dehydroascorbate reductase (EC 1.8.5.1) and the content of malondialdehyde and reduces the activity of monodehydroascorbate reductase (EC 1.6.5.4). Under copper stress, H. beccarii upregulates the metabolic pathways of steroid biosynthesis and cutin, suberin, and wax biosynthesis, downregulates the metabolic pathways of arginine and proline metabolism and fructose and mannose metabolism; the levels of expression of the ribosome-related genes; upregulates the levels of expression of circadian rhythm-related proteins and downregulates the levels of glutathione metabolism and the proteins related to carbon fixation. This study provides new insights into the response of seagrass to copper stress and reports potential candidate metabolites, genes, and proteins that can be considered as biomarkers to improve the protection and management of seagrass meadows.
Collapse
Affiliation(s)
- Siting Chen
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| | - Guanglong Qiu
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, Guangxi, 536007, China.
| |
Collapse
|
6
|
Chandra GV, Golla SY, Ghosh PK. Review of soil environment quality in India near coal mining regions: current and future predictions. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:194. [PMID: 38695957 DOI: 10.1007/s10653-024-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/25/2024] [Indexed: 05/14/2024]
Abstract
Production and utilization of coal are one of the primary routes of accumulation of Toxic Elements (TEs) in the soil. The exploration of trends in the accumulation of TEs is essential to establishing a soil pollution strategy, implementing cost-effective remediation, and early warnings of ecological risks. This study provides a comprehensive review of soil concentrations and future accumulation trends of various TEs (Cr, Ni, Pb, Co, Cu, Cd, Zn, Fe, Mn, and As) in Indian coal mines. The findings revealed that average concentrations of Cr, Mn, Ni, Cu, Zn, Pb, and Co surpass India's natural background soil levels by factors of 2, 4.05, 5.32, 1.77, 9.6, and 6.15, respectively. Geo-accumulation index values revealed that 27.3%, 14.3%, and 7.7% of coal mines are heavily polluted by Ni, Co, and Cu, respectively. Also, the Potential Ecological Risk Index indicates that Cd and Ni are primary contaminants in coal mines. Besides, the health risk assessment reveals oral ingestion as the main exposure route for soil TMs. Children exhibit a higher hazard index than adults, with Pb and Cr being major contributors to their non-carcinogenic risk. In addition, carcinogenic risks exist for females and children, with Cr and Cu as primary contributors. Multivariate statistical analysis revealed that TEs (except Cd) accumulated in the soil from anthropogenic sources. The assessment of future accumulation trends in soil TE concentrations reveals dynamic increases that significantly impact both the ecology and humans at elevated levels. This study signifies a substantial improvement in soil quality and risk management in mining regions.
Collapse
|
7
|
Kalita N, Baruah PP. Copper removal efficacy and stress tolerance potential of Leptolyngbya sp. GUEco1015. Heliyon 2024; 10:e29131. [PMID: 38644834 PMCID: PMC11033120 DOI: 10.1016/j.heliyon.2024.e29131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/23/2024] Open
Abstract
Cyanobacteria, a group of microalgae are the potent organism having the ability to survive in the copper rich environment and recently gained too much attention for their profuse proliferation in such water bodies. Amongst the members of cyanobacteria, the current study was conducted on Leptolyngbya sp. GUEco1015, collected from hydrocarbon rich water bodies of Assam, India. Morphological images of treated samples showed a remarkable damage in the cell surface as well as the organelles over the control. Biochemical results revealed a significant increase of enzymatic and non-enzymatic antioxidants during oxidative damage of Cu2+. But, ascorbate in 1.2 ppm (p < 0.01), 1.5 ppm (p < 0.001) and catalase content 1.5 ppm (p < 0.05) showed a significant reduction after a certain level. The cells were optimized to evaluate the maximum Cu2+ removal potential by the cells related to growth. Initial metal concentration 0.1 ppm, pH 7.5, temperature 25 °C and shaking rate 100 rpm are the optimized abiotic parameters which showed maximum 83% of Cu2+ removal. FTIR spectroscopy and EDX data has identified a number of notable functional groups that were involved in Cu2+ binding mechanism and revealed a distinctive peak of Cu with 0.41 wt % which makes the species as one of the competent copper adsorbents.
Collapse
Affiliation(s)
- Nilamjyoti Kalita
- Plant Ecology Laboratory, Dept. of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam 781014, India
| | - Partha Pratim Baruah
- Plant Ecology Laboratory, Dept. of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati, Assam 781014, India
| |
Collapse
|
8
|
Kitahata S, Michitaka K, Kinebuchi M, Matsuura A, Hiraoka A, Ohama H, Yanagihara E, Saneto H, Izumoto H, Kawamura T, Kuroda T, Tada F, Miyata H, Ninomiya T, Hiasa Y. Renal Cell Carcinoma and Hepatocellular Carcinoma in a Patient with Wilson's Disease. Intern Med 2024; 63:963-968. [PMID: 37612087 PMCID: PMC11045387 DOI: 10.2169/internalmedicine.2056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023] Open
Abstract
No reports of renal cancer in patients with Wilson's disease (WD) exist. We herein report a 37-year-old Japanese man diagnosed with WD who had been treated with d-penicillamine 9 years prior. Hepatocellular carcinoma had been diagnosed at 36 years old and treated with radiofrequency ablation therapy. One year later, renal cancer and recurrent hepatocellular carcinoma had developed. The hepatocellular carcinoma was treated after renal cancer surgical resection of a clear-cell-type renal cell carcinoma, with iron, rather than copper, deposited on the renal cancer cells. This patient harbored a novel mutation, p. Leu1395Terfs in ATP7B.
Collapse
Affiliation(s)
- Shogo Kitahata
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Kojiro Michitaka
- Department of Internal Medicine, Saiseikai Imabari Dai2 Hospital, Japan
| | - Miyuki Kinebuchi
- First Department of Pathology, Sapporo Medical University, Japan
| | | | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hideko Ohama
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Emi Yanagihara
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hironobu Saneto
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hirofumi Izumoto
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Tomoe Kawamura
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Taira Kuroda
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Fujimasa Tada
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | - Hideki Miyata
- Gastroenterology Center, Ehime Prefectural Central Hospital, Japan
| | | | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Japan
| |
Collapse
|
9
|
Shen J, Zhang H, Jiang H, Lin H, He J, Fan S, Yu D, Yang L, Tang H, Lin E, Li L, Chen L. The effect of micronutrient on thyroid cancer risk: a Mendelian randomization study. Front Nutr 2024; 11:1331172. [PMID: 38496794 PMCID: PMC10940541 DOI: 10.3389/fnut.2024.1331172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/22/2024] [Indexed: 03/19/2024] Open
Abstract
Background The effect of micronutrients on thyroid cancer has been studied in observational studies, however, the cause of relationships has not yet been determined. Thyroid cancer was the subject of a Mendelian randomization (MR) analysis of micronutrients. Aimed to determine whether micronutrient intake has a causal impact on the chance of developing thyroid cancer. Methods We used a Mendelian randomization (MR) analysis with two samples. Our circulation levels of Cu, Ir, Zn, Ca, VD, and VC were reflected by genetic variations reported from GWAS in individuals of European ancestry. For the GWAS outcome of thyroid cancer. Sensitivity studies that included MR-Egger, weighted median/mode tests, and a more open selection of variations at a genome-wide sub-significant threshold were added to our inverse-variance weighted (IVW) MR study. Results Using the IVW approach, we did not find evidence that any of the micronutrients to thyroid cancer (Cu: odds ratio [OR = 0.88, p = 0.41]; Zn: odds ratio [OR = 0.87, p = 0.40]; Ir: odds ratio [OR = 1.18, p = 0.39]; Ca: odds ratio [OR = 1.12, p = 0.43]; VC: odds ratio [OR = 0.95, p = 0.22]; VD: odds ratio [OR = 0.89, p = 0.04]). The heterogeneity (p > 0.05) and pleiotropy (p > 0.05) testing provided confirmatory evidence for the validity of our MR estimates. Conclusion This study does not provide evidence that supplementation with micronutrients including Cu, Ir, Zn, Ca, VD, and VC can prevent thyroid cancer.
Collapse
Affiliation(s)
- Jiali Shen
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hong Zhang
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Hongzhan Jiang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huihui Lin
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaxi He
- School of Medicine, Xiamen University, Xiamen, China
| | - Siyue Fan
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Doudou Yu
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Liping Yang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Tang
- Department of Nuclear Medicine, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen, China
| | - Ende Lin
- Department of General Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen, China
| | - Lianghui Li
- Department of General Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen, China
| | - Lijuan Chen
- Department of General Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen, China
| |
Collapse
|
10
|
Midorikawa K, Kobayashi K, Kato S, Kawanishi S, Kobayashi H, Oikawa S, Murata M. Oxidative DNA damage: Induction by fructose, in vitro, and its enhancement by hydrogen peroxide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2024; 893:503719. [PMID: 38272630 DOI: 10.1016/j.mrgentox.2023.503719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/27/2024]
Abstract
Sucrose and high-fructose corn syrup comprise nearly equal amounts of glucose and fructose. With the use of high-fructose corn syrup in the food industry, consumption of fructose, which may be a tumor promoter, has increased dramatically. We examined fructose-induced oxidative DNA damage in the presence of Cu(II), with or without the addition of H2O2. With isolated DNA, fructose induced Cu(II)-mediated DNA damage, including formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), to a greater extent than did glucose, and H2O2 enhanced the damage. In cultured human cells, 8-oxodG formation increased significantly following treatment with fructose and the H2O2-generating enzyme glucose oxidase. Fructose may play an important role in oxidative DNA damage, suggesting a possible mechanism for involvement of fructose in carcinogenesis.
Collapse
Affiliation(s)
- Kaoru Midorikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan; Faculty of Child Education, Suzuka University, 663-222, Koriyama, Suzuka, Mie 510-0298, Japan
| | - Kokoro Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie 513-8670, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
11
|
Li C, Xiao Y, Cao H, Chen Y, Li S, Yin F. Cuproptosis Regulates Microenvironment and Affects Prognosis in Prostate Cancer. Biol Trace Elem Res 2024; 202:99-110. [PMID: 37155084 DOI: 10.1007/s12011-023-03668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Current immunotherapy for prostate cancer is still in the stage of clinical trials. This delay is thought to be caused by an unclear regulatory mechanism of the immune microenvironment, which makes it impossible to distinguish patients suitable for immunotherapy. Cuprotosis may be related to the heterogeneity of immune microenvironment, which was regarded as a new copper-dependent cell death mode, was proposed, and gain attention. We explored for the first time the relationship between cuprotosis and the immune microenvironment of prostate cancer and constructed cuprotosis score. RNA sequencing data sets for prostate cancer were downloaded from public databases. Consensus clustering was applied to distinguish cuprotosis phenotype based on the expression of cuproptosis-related genes (CRGs) identified as prognostic factors. Genomic phenotypes of CRG clusters were depicted via consensus clustering. Cuprotosis score was established on the basis of differentially expressed genes (DEGs) identified as prognostic factors via principal component analysis. Cuprotosis score = the first principal component of prognostic factors + the second principal component of prognostic factors. The value of cuproptosis score in predicting prognosis and immunotherapy response was evaluated. PDHA1 (HR = 3.86, P < 0.001) and GLS (HR = 1.75, P = 0.018) were risk factors for prognosis of prostate cancer patients, while DBT (HR = 0.66, P = 0.048) was a favorable factor for prognosis of prostate cancer patients. CRG clusters had different prognosis and immune cell infiltration. So as gene clusters. Prostate cancer patients with low cuprotosis score showed better prognosis for biochemical relapse-free survival. Cuprotosis score is accompanied with high immune score and Gleason score. As cuprotosis genes, PDHA1, GLS, and DBT were identified as independent prognostic factors of prostate cancer. Cuprotosis score was established via principal component analysis of PDHA1, GLS, and DBT, which can be used as a predictor of prognosis and immunotherapy response of prostate cancer patients, and can characterize immune cells infiltration in tumors. Cuproptosis was involved in the regulation of immune microenvironment, which may depend on the effect of tricarboxylic acid cycle. Our study provided clues to reveal the relationship between copper death and immune microenvironment, highlighted the clinical significance of cuproptosis, and provided a reference for the development of personalized immunotherapy.
Collapse
Affiliation(s)
- Chao Li
- Department of Urology, Shijiazhuang People's Hospital, 9 Fangbei Road, Shijiazhuang, 050011, Hebei Province, China
| | - Yongqiang Xiao
- Department of Urology, Shijiazhuang People's Hospital, 9 Fangbei Road, Shijiazhuang, 050011, Hebei Province, China
| | - Heran Cao
- Department of Urology, Shijiazhuang People's Hospital, 9 Fangbei Road, Shijiazhuang, 050011, Hebei Province, China
| | - Yan Chen
- Department of Urology, Shijiazhuang People's Hospital, 9 Fangbei Road, Shijiazhuang, 050011, Hebei Province, China
| | - Shen Li
- Department of Urology, Shijiazhuang People's Hospital, 9 Fangbei Road, Shijiazhuang, 050011, Hebei Province, China
| | - Fengchao Yin
- Department of Urology, Shijiazhuang People's Hospital, 9 Fangbei Road, Shijiazhuang, 050011, Hebei Province, China.
| |
Collapse
|
12
|
Behar AE, Maayan G. A Peptoid-Chelator Selective to Cu 2+ That Can Extract Copper from Metallothionein-2 and Lead to the Production of ROS. Antioxidants (Basel) 2023; 12:2031. [PMID: 38136151 PMCID: PMC10741037 DOI: 10.3390/antiox12122031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Copper is an essential metal ion that is involved in critical cellular processes, but which can also exhibit toxic effects through its ability to catalyze reactive oxygen species (ROS) formation. Dysregulation of copper homeostasis has been implicated in the progression of several diseases, including cancer. A novel therapeutic approach, extensively studied in recent years, is to capitalize on the increased copper uptake and dependency exhibited by cancer cells and to promote copper-associated ROS production within the tumor microenvironment, leading to the apoptosis of cancer cells. Such an effect can be achieved by selectively chelating copper from copper-bearing metalloproteins in cancer cells, thereby forming a copper-chelator complex that produces ROS and, through this, induces oxidative stress and initiates apoptosis. Herein, we describe a peptoid chelator, TB, that is highly suitable to carry this task. Peptoids are N-substituted glycine oligomers that can be efficiently synthesized on a solid support and are also biocompatible; thus, they are considered promising drug candidates. We show, by rigorous spectroscopic techniques, that TB is not only selective for Cu(II) ions, but can also effectively extract copper from metallothionein-2, and the formed complex CuTB can promote ROS production. Our findings present a promising first example for the future development of peptoid-based chelators for applications in anti-cancer chelation therapy, highlighting the potential for the prospect of peptoid chelators as therapeutics.
Collapse
Affiliation(s)
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology Technion City, Haifa 3200008, Israel
| |
Collapse
|
13
|
Zhao B, Wu W, Liang L, Cai X, Chen Y, Tang W. Prediction model of clinical prognosis and immunotherapy efficacy of gastric cancer based on level of expression of cuproptosis-related genes. Heliyon 2023; 9:e19035. [PMID: 37636385 PMCID: PMC10448029 DOI: 10.1016/j.heliyon.2023.e19035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/29/2023] Open
Abstract
Background Gastric cancer is one of the most common malignancies in the world and ranks fourth among cancer-related causes of death. Gastric adenocarcinoma is the most common pathological type of gastric cancer; usually, this tumor is associated with distant metastasis upon first diagnosis and has a poor prognosis. Cuproptosis is a novel mechanism of cell death induced by copper, and is closely related to tumor progression, prognosis and immune response. However, the role of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of gastric cancer has yet to be elucidated. Methods Gastric adenocarcinoma data were downloaded from the Cancer Genome Atlas (TCGA) database. Through bioinformatics analysis, a risk scoring model was constructed from cuproptosis gene-related lncRNA. Then, we investigated the relationship between prognosis and the TIME of gastric cancer according to clinical characteristics and risk score. Results Validation of the model showed that the overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group (P < 0.001) and that the risk score was an independent predictor of prognosis (P < 0.001). The new model was significantly correlated with the prognosis and TIME of patients with gastric cancer, including immune cell infiltration, tumor mutation burden (TMB) score, targeted drug sensitivity, and immune checkpoint gene expression. In addition, a prognostic nomogram was established based on the risk score (AC008915.2, AC011005.4, AC023511.1, AC139792.1, AL355312.2, LINC01094 and LINC02476). Conclusion Our analysis revealed that the prognostic model of cuproptosis-related genes could effectively predict the prognosis of patients with gastric cancer and comprehensively establish the relationship between cuproptosis genes and tumor immunity. This may provide a new strategy for the precise treatment of gastric cancer.
Collapse
Affiliation(s)
- Bo Zhao
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Wei Wu
- Departments of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Liang Liang
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiaoyong Cai
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yongjun Chen
- Department of General Surgery, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Weizhong Tang
- Guangxi Clinical Research Center for Colorectal Cancer, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region 530021, Nanning, PR China
| |
Collapse
|
14
|
Anđelković M, Djordjevic AB, Vukelić D, Đukić-Ćosić D, Aćimović M, Bojanić N, Bartolović D, Bulat P, Antonijević B, Bulat Z. Cadmium and lead implication in testis cancer; is there a connection? CHEMOSPHERE 2023; 330:138698. [PMID: 37062390 DOI: 10.1016/j.chemosphere.2023.138698] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/14/2023]
Abstract
Testis cancer (TC) is the most common malignancy of young men. Current evidence from studies, alongside genetics and hormonal status, suggests a significant role of toxic metals, cadmium (Cd) and lead (Pb), in the origin and development of TC. Besides oxidative stress and endocrine disruption, interaction with bioelements is one of the critical mechanisms of Cd and Pb toxicity and malign transformation. This study aimed to investigate metal levels in blood, healthy, and tumor testis tissue and to reveal hormone, oxidative status, and bioelements levels in patients with TC. The study enrolled 52 patients with TC and 61 healthy volunteers. Toxic metals and bioelements levels were analyzed by atomic absorption spectrophotometry (AAS) while electrochemiluminescence immunoassay (ECLIA) and spectrophotometry methods were used for hormone and oxidative parameters evaluation. Significantly higher blood Cd levels were depicted in TC cohort. Furthermore, blood Cd elevation was associated with a 1.98 higher probability of TC developing. However, a metal concentration between healthy and tumor testis tissue did not differ significantly. Lower levels of estradiol and testosterone, established in a cohort of TC patients, followed the significant role of hormones in TC development. At the same time, ischemia-modified albumin (IMA) has been recognized as a parameter with very good accuracy as a potential diagnostic marker for TC. The study revealed different distribution patterns of copper (Cu) and zinc (Zn) in the three compartments of the patients, as well significant correlation between essential metals Cu/Zn and toxic metals Cd/Pb indicating metal-metal interactions as pivotal mechanisms of metals toxicity.
Collapse
Affiliation(s)
- Milena Anđelković
- University Hospital Medical Center Kosovska Mitrovica, Kosovska Mitrovica, Serbia; Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Dragana Vukelić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia.
| | - Danijela Đukić-Ćosić
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Miodrag Aćimović
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute of Urology and Nephrology, Clinical Center of Serbia, Belgrade, Serbia
| | - Nebojša Bojanić
- Institute of Urology and Nephrology, Clinical Center of Serbia, Belgrade, Serbia
| | - Daniela Bartolović
- Institute of Urology and Nephrology, Clinical Center of Serbia, Belgrade, Serbia
| | - Petar Bulat
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Serbian Institute of Occupational Health "Dr Dragomir Karajović", Belgrade, Serbia
| | - Biljana Antonijević
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| |
Collapse
|
15
|
Cho HH, Jung DH, Heo JH, Lee CY, Jeong SY, Lee JH. Gold Nanoparticles as Exquisite Colorimetric Transducers for Water Pollutant Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19785-19806. [PMID: 37067786 DOI: 10.1021/acsami.3c00627] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Gold nanoparticles (AuNPs) are useful nanomaterials as transducers for colorimetric sensors because of their high extinction coefficient and ability to change color depending on aggregation status. Therefore, over the past few decades, AuNP-based colorimetric sensors have been widely applied in several environmental and biological applications, including the detection of water pollutants. According to various studies, water pollutants are classified into heavy metals or cationic metal ions, toxins, and pesticides. Notably, many researchers have been interested in AuNP that detect water pollutants with high sensitivity and selectivity, while offering no adverse environmental issues in terms of AuNP use. This review provides a representative overview of AuNP-based colorimetric sensors for detecting several water pollutants. In particular, we emphasize the advantages of AuNP as colorimetric transducers for water pollutant detection in terms of their low toxicity, high stability, facile processability, and unique optical properties. Next, we discuss the status quo and future prospects of AuNP-based colorimetric sensors for the detection of water pollutants. We believe that this review will promote research and development of AuNP as next-generation colorimetric transducers for water pollutant detection.
Collapse
Affiliation(s)
- Hui Hun Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Do Hyeon Jung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jun Hyuk Heo
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
| | - Chae Yeon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang Yun Jeong
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jung Heon Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Research Center for Advanced Materials Technology (RCAMT), Core Research Institute (CRI), Suwon 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
16
|
Determination of Ultra-Trace Amounts of Copper in Environmental Water Samples by Dispersive Liquid-Liquid Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry. SEPARATIONS 2023. [DOI: 10.3390/separations10020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A new method of dispersive liquid-liquid microextraction (DLLME) combined with graphite furnace atomic absorption spectrometry (GFAAS) was proposed for the determination of ultra-trace copper. It was based on the reaction of Cu(II) with the laboratory-prepared chelating agent 2-(5-bromo-2-pyridylazo)-5-dimethylaminoaniline (5-Br-PADMA) in a HAc-NaAc buffer solution at pH 5.0 to form stable hydrophobic chelates, which were separated and enriched by DLLME with chlorobenzene (C6H5Cl) and acetonitrile (CH3CN) as extraction and disperser solvents, respectively. The sedimented phase containing the chelates was then determined with GFAAS. Various operating variables that may be affected by the extraction process such as the pH of the solution, the concentration of the chelating agent 5-Br-PADMA, the types and volumes of extraction and disperser solvents, the extraction time, and the centrifugation time were investigated. Under optimum conditions, the calibration curve was linear in the range from 0.02 ng/mL to 0.16 ng/mL of copper with a correlation coefficient of r = 0.9961, and the detection limit was 0.01 ng/mL based on 3Sb. The relative standard deviation for six replicate measurements of 0.05 ng /mL of copper was 3.9%. An enrichment factor (EF) of 110 was obtained. The method has the advantages of low detection limit, high sensitivity, simple operation, less consumption of organic solvents, higher enrichment factor, and environmental friendliness and was applied to the determination of trace copper in environmental water samples with satisfactory results.
Collapse
|
17
|
Zhou J, Chen D, Zhang S, Wang C, Zhang L. Identification of two molecular subtypes and a novel prognostic model of lung adenocarcinoma based on a cuproptosis-associated gene signature. Front Genet 2023; 13:1039983. [PMID: 36712848 PMCID: PMC9877306 DOI: 10.3389/fgene.2022.1039983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Lung adenocarcinoma is the most common subtype of lung cancer clinically, with high mortality and poor prognosis. Cuproptosis present a newly discovered mode of cell death characterized by aggregation of fatty acylated proteins, depletion of iron-sulfur clusterin, triggering of HSP70, and induction of intracellular toxic oxidative stress. However, the impact of cuproptosis on lung adenocarcinoma development, prognosis, and treatment has not been elucidated. By systematically analyzing the genetic alterations of 10 cuproptosis-related genes in lung adenocarcinoma, we found that CDKN2A, DLAT, LIAS, PDHA1, FDX1, GLS, and MTF1 were differentially expressed between lung cancer tissues and adjacent tissues. Based on the expression levels of 10 cuproptosis-related genes, we classified lung adenocarcinoma patients into two molecular subtypes using the Consensus clustering method, of which subtype 2 had a worse prognosis. Differential expression genes associated with prognosis between the two subtypes were obtained by differential analysis and survival analysis, and cox lasso regression was applied to construct a cuproptosis-related prognostic model. Its survival predicting ability was validated in three extrinsic validation cohorts. The results of multivariate cox analysis indicated that cuproptosis risk score was an independent prognostic predictor, and the mixed model formed by cupproptosis prognostic model combined with stage had more robust prognostic prediction accuracy. We found the differences in cell cycle, mitosis, and p53 signaling pathways between high- and low-risk groups according to GO and KEGG enrichment analysis. The results of immune microenvironment analysis showed that the enrichment score of activated dendritic cells, mast cells, and type 2 interferon response were down-regulated in the high-risk group, while the fraction of neutrophils and M0 macrophages were upregulated in the high-risk group. Compared with the high-risk group, subjects in the low-risk group had higher Immunophenoscore and may be more sensitive to immunotherapy. We identified seven chemotherapy agents may improve the curative effect in LUAD samples with higher risk score. Overall, we discovered that cuproptosis is closely related to the occurrence, prognosis, and treatment of lung adenocarcinoma. The cuproptosis prognostic model is a potential prognostic predictor and may provide new strategies for precision therapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jinlin Zhou
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Dehe Chen
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Shiguo Zhang
- Department of Respiratory Medicine, Bazhong Central Hospital, Bazhong, Sichuan, China
| | - Chunmei Wang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Li Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China,*Correspondence: Li Zhang,
| |
Collapse
|
18
|
Li T, Shi L, Wei W, Xu J, Liu Q. The trace that is valuable: serum copper and copper to zinc ratio for survival prediction in younger patients with newly diagnosed acute myeloid leukaemia. BMC Cancer 2023; 23:14. [PMID: 36604732 PMCID: PMC9817254 DOI: 10.1186/s12885-022-10486-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
PURPOSE No data on predicting the survival of AML patients based on the level of trace elements in the serum have been presented to date. The aims of this prospective cohort study were as follows: (i) to evaluate the serum Cu and Zn levels in people from Northeast China, (ii) to assess the association between the serum Cu level (SCL) and Cu to Zn ratio (SCZR) and clinical and nutrition data, and (iii) to investigate the predictive values of the SCL and SCZR in newly diagnosed de novo AML patients. METHODS A total of 105 newly diagnosed AML patients and 82 healthy controls were recruited. The serum Cu and Zn levels were determined by inductively coupled plasma spectrometry. The associations of SCL and SCZR with the survival of these AML patients were assessed by Cox proportional hazards models. RESULTS Both SCL and SCZR were positively related to the blast percentage of bone marrow and C-reactive protein, negatively related to albumin level and CEBPA double mutation and were significantly associated with worse overall survival and disease-free survival. Meanwhile, patients with higher SCL had worse CTCAE levels, and patients with higher SCZR showed less complete remission during the first course of induction chemotherapy. Moreover, higher SCZR was positively associated with ELN risk stratification, and was negatively associated with haemoglobin level and prognostic nutritional index (PNI). CONCLUSION The SCL and SCZR are associated with long-term survival in patients with newly diagnosed AML undergoing intensive induction and may serve as important predictive biomarkers.
Collapse
Affiliation(s)
- Taotao Li
- grid.430605.40000 0004 1758 4110Department of Haematology, the First Hospital of Jilin University, Cancer Center, Changchun, Jilin, China
| | - Liming Shi
- grid.430605.40000 0004 1758 4110Department of Haematology, the First Hospital of Jilin University, Cancer Center, Changchun, Jilin, China
| | - Wei Wei
- grid.263826.b0000 0004 1761 0489Department of Haematology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jiancheng Xu
- grid.430605.40000 0004 1758 4110Department of Laboratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Qiuju Liu
- grid.430605.40000 0004 1758 4110Department of Haematology, the First Hospital of Jilin University, Cancer Center, Changchun, Jilin, China
| |
Collapse
|
19
|
Wang Z, Jin D, Zhou S, Dong N, Ji Y, An P, Wang J, Luo Y, Luo J. Regulatory roles of copper metabolism and cuproptosis in human cancers. Front Oncol 2023; 13:1123420. [PMID: 37035162 PMCID: PMC10076572 DOI: 10.3389/fonc.2023.1123420] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/08/2023] [Indexed: 04/11/2023] Open
Abstract
Copper is an essential micronutrient for human body and plays a vital role in various biological processes including cellular respiration and free radical detoxification. Generally, copper metabolism in the body is in a stable state, and there are specific mechanisms to regulate copper metabolism and maintain copper homeostasis. Dysregulation of copper metabolism may have a great connection with various types of diseases, such as Wilson disease causing copper overload and Menkes disease causing copper deficiency. Cancer presents high mortality rates in the world due to the unlimited proliferation potential, apoptosis escape and immune escape properties to induce organ failure. Copper is thought to have a great connection with cancer, such as elevated levels in cancer tissue and serum. Copper also affects tumor progression by affecting angiogenesis, metastasis and other processes. Notably, cuproptosis is a novel form of cell death that may provide novel targeting strategies for developing cancer therapy. Copper chelators and copper ionophores are two copper coordinating compounds for the treatment of cancer. This review will explore the relationship between copper metabolism and cancers, and clarify copper metabolism and cuproptosis for cancer targeted therapy.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dekui Jin
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shuaishuai Zhou
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Niujing Dong
- China Astronaut Research and Training Center, Beijing, China
| | - Yuting Ji
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Jiaping Wang
- China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing, China
- *Correspondence: Jiaping Wang, ; Yongting Luo, ; Junjie Luo,
| |
Collapse
|
20
|
Synthesis, structural characterization and in vitro cytotoxicity assessment of new mononuclear Cu(II) and Co(II) complexes against MDA–MB–231, HCC–1806 and HT–29 cancer cell lines. Polyhedron 2023. [DOI: 10.1016/j.poly.2022.116189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Kudva AK, Raghu SV, Achar PK, Rao S, Suresh S, Shrinath Baliga M. Study of Serum Zinc and Copper Levels and Tumor Pathology: A Pilot Study in People Affected with Head and Neck Cancers. Indian J Otolaryngol Head Neck Surg 2022; 74:6007-6015. [PMID: 36742902 PMCID: PMC9895224 DOI: 10.1007/s12070-021-02589-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
This study aimed to determine understanding the role of serum copper, zinc and copper/zinc ratio with tumor staging in people newly diagnosed to be affected with Head and Neck cancer and by comparing with age matched health individuals devoid of any orodental maladies. The study included patients confirmed to be affected with HN cancer with histological diagnosis of Head and Neck cancer (60) and age matched healthy volunteers (N = 23). The demographic details like age, domicile, menopausal status and pathological details (like tumor stage, number of lymph node involvement, tumor size) were collected from the patient's hospital data file. The serum levels of zinc and copper assayed as per standard procedures and the zinc/copper was calculated for the cancer patients and controls. The data were subjected to unpaired "t" test and ANOVA with Bonferroni's multiple comparisons. The association between zinc and copper levels with pathological details between the variables was ascertained using the Pearson correlation coefficient(r). A statistical value of p < 0.05 was considered to be significant in agreeance to the accepted norms. Results: This result of the study indicates that when compared to the healthy individuals, the serum levels of copper, and zinc, and copper/zinc ratio were high in patients with H&N cancer. Also when compared with controls, the levels of zinc decreased, while that of copper and copper/zinc ratio increased in people affected with H&N cancer (p = 0.017 to 0.0001) and with the stage of the tumor (p = 0.03 to 0.001). The results of the study suggest that levels of serum zinc were significantly lower and that of copper higher in H&N cancer patients than that in controls and also that it was dependent on the tumor stage. When analyzed cumulatively the results hint that zinc and copper, due to their role in free radical generation and prevention have an important role in cancer progression and possible prevention by judicious intervention.
Collapse
Affiliation(s)
- Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, Karnataka 574199 India
| | - Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, Karnataka 574199 India
| | - Pavan Kumar Achar
- Research Unit, Mangalore Institute of Oncology, Pumpwell, Mangalore, Karnataka 575002 India
| | - Suresh Rao
- Radiation Oncology, Mangalore Institute of Oncology, Mangalore, Karnataka 575002 India
| | - Sucharitha Suresh
- Community Medicine, Father Muller Medical College, Mangalore, Karnataka 575002 India
| | | |
Collapse
|
22
|
Zhang Q, Ma L, Zhou H, Zhou Y, Liu S, Li Q. A prognostic signature of cuproptosis and TCA-related genes for hepatocellular carcinoma. Front Oncol 2022; 12:1040736. [PMID: 36324575 PMCID: PMC9619237 DOI: 10.3389/fonc.2022.1040736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 11/26/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Cuproptosis is a newly defined form of cell death. Copper ion induces cell death by binding to the tricarboxylic acid cycle (TCA). The effect of cuproptosis-related and TCA-related genes on the clinical prognosis of HCC is still unclear. In this study, we explores the genetic changes of cuproptosis-related genes that affect the TCA process and their potential therapeutic value in HCC patients. Methods The cuproptosis and TCA-related genes were obtained from cuproptosis-related articles and the molecular signatures database. The prognosis signatures of eight related genes were constructed using the last absolute shrinkage and selection operator (LASSO), and Receiver Operating Characteristic (ROC) curves were used to evaluate the signature. In addition, we analyzed downstream functional enrichment and immune infiltration to explore cuproptosis-inducing drugs and immunotherapeutic responses. All these analyses were validated using multiple datasets of the International Cancer Genome Consortium (ICGC). Results TCA and copper malnutrition-related genes (CDKN2A, IDH1, OGDHL, IDH3G, IDH3B, GLS, DLAT, LIPT1) were finally included. According to the risk score, they were divided into high-risk and low-risk groups. Survival analysis showed that the overall survival (OS) of the high-risk group was significantly lower than that of the low-risk group. We established a risk prognostic feature to predict the OS of patients with HCC. Based on this feature and the clinical stage, we constructed a nomogram. Functional enrichment analysis revealed pathways related to organelle division and the cell cycle. Different risk scores had different immune abundances in immune cells (including macrophages and regulatory T-cells) and immune pathways (including antigen-presenting cells co-stimulation). Moreover, the drug sensitivity of eleschomol and PD-L1 in the high-risk group was better than that in the low-risk group. The status of TP53 somatic mutation was also closely related to the risk score. Conclusion In this study, we established a new prediction signature of eight genes related to cuproptosis and the TCA process, which can effectively predict the prognosis of HCC patients.
Collapse
|
23
|
Li M, Luo J, Lu J, Shang W, Mu J, Sun F, Dong Z, Li X. A novel nanofibrous PAN ultrafiltration membrane embedded with ZIF-8 nanoparticles for effective removal of Congo red, Pb(II), and Cu(II) in industrial wastewater treatment. CHEMOSPHERE 2022; 304:135285. [PMID: 35714956 DOI: 10.1016/j.chemosphere.2022.135285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A novel Polyacrylonitrile (PAN) composite membrane involving ZIF-8 nanoparticles, named as ZIF-8/PAN membrane, was obtained via electrospinning to remove the Congo red (CR), Pb(II) and Cu(II) ions in industrial wastewaters, during which the adsorption mechanisms were examined in this study. The adsorption efficiency of the electrospun ZIF-8/PAN membrane was as high as 89%, 92% and 76% for CR, Pb(II) and Cu(II), respectively. Comparative analysis showed that ZIF-8 nanoparticles embedded in the ZIF-8/PAN membrane accounted for these enhanced adsorption capabilities. The adsorption behaviors of the ZIF-8 nanoparticles were investigated through experiments and theoretical analysis, and the results unraveled that the adsorption for CR by the ZIF-8 was mainly including electrostatic interaction, hydrogen bonding and π-π interaction, while those for Pb(II) and Cu(II) were mainly caused by ion-exchange and chemical adsorption. Parametric studies were conducted to optimize the conditions for removing CR, Pb(II), and Cu(II) by ZIF-8 nanoparticles, during which all of pollutants showed different reactions to the solution pH. This work not only develops a novel ZIF-8/PAN composite membrane for effective removals of pollutants, but also reveals the underlying mechanisms of pollutants adsorption in terms of molecular interactions, providing important understandings on fibrous materials design for efficient heavy metals and dyes removals in industrial wastewater treatment.
Collapse
Affiliation(s)
- Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jingwen Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jianjiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wentao Shang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiale Mu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zijun Dong
- School of Civil and Traffic Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaoyan Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
24
|
Wang Y, Wang Y, Yan C. Gender differences in trace element exposures with cognitive abilities of school-aged children: a cohort study in Wujiang city, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64807-64821. [PMID: 35474433 DOI: 10.1007/s11356-022-20353-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Trace elements persist in the environment, and their early exposure may adversely affect children's intellectual development. To clarify the influence of blood trace element levels in newborns and school-aged children, we used Wechsler Intelligence Scale for children (WISC-CR) to explore intellectual development level of 148 school-aged children based on a population cohort study. Lead (Pb), selenium (Se), arsenic (As), copper (Cu), manganese (Mn) and chromium (Cr) in cord blood and Pb, As, Cu in venous blood were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometer (AAS). Our analysis of the correlation between children's mental development and trace element content found children's cognitive abilities negatively correlate with Pb (PIQ: β=-0.109, P=0.03737) and Cu (PIQ: β=-0.031, P=0.04431; FISQ: β=-0.031, P=0.02137) levels in cord blood. Prenatal low-level As exposure may negatively affect girls' performance intelligence quotient (PIQ) and verbal intelligence quotient (VIQ). There were differences in Se levels in cord blood and venous blood between boys and girls (P=0.010; P=0.073). High Se levels were associated with a lower VIQ in boys and a higher VIQ in girls. Prenatal exposure to Pb, As and Cu may weaken children's cognitive abilities at school age. Se exposure may have opposite effects on cognitive abilities affected by dose and gender.
Collapse
Affiliation(s)
- Yihong Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Shanghai, 200092, China
| | - Yaqian Wang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Chonghuai Yan
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665, Kongjiang Road, Shanghai, 200092, China.
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
25
|
Sha S, Si L, Wu X, Chen Y, Xiong H, Xu Y, Liu W, Mei H, Wang T, Li M. Prognostic analysis of cuproptosis-related gene in triple-negative breast cancer. Front Immunol 2022; 13:922780. [PMID: 35979353 PMCID: PMC9376234 DOI: 10.3389/fimmu.2022.922780] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Cuproptosis is a copper-dependent cell death mechanism that is associated with tumor progression, prognosis, and immune response. However, the potential role of cuproptosis-related genes (CRGs) in the tumor microenvironment (TME) of triple-negative breast cancer (TNBC) remains unclear. Patients and methods In total, 346 TNBC samples were collected from The Cancer Genome Atlas database and three Gene Expression Omnibus datasets, and were classified using R software packages. The relationships between the different subgroups and clinical pathological characteristics, immune infiltration characteristics, and mutation status of the TME were examined. Finally, a nomogram and calibration curve were constructed to predict patient survival probability to improve the clinical applicability of the CRG_score. Results We identified two CRG clusters with immune cell infiltration characteristics highly consistent with those of the immune-inflamed and immune-desert clusters. Furthermore, we demonstrated that the gene signature can be used to evaluate tumor immune cell infiltration, clinical features, and prognostic status. Low CRG_scores were characterized by high tumor mutation burden and immune activation, good survival probability, and more immunoreactivity to CTLA4, while high CRG_scores were characterized by the activation of stromal pathways and immunosuppression. Conclusion This study revealed the potential effects of CRGs on the TME, clinicopathological features, and prognosis of TNBC. The CRGs were closely associated with the tumor immunity of TNBC and are a potential tool for predicting patient prognosis. Our data provide new directions for the development of novel drugs in the future.
Collapse
Affiliation(s)
- Shengnan Sha
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Luyi Si
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Xinrui Wu
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, China
| | - Yuanbiao Chen
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hui Xiong
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong, University, Medical School of Nantong University, Nantong, China
| | - Ying Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Wangrui Liu
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China,Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Mei Li, ; Tao Wang, ; Haijun Mei, ; Wangrui Liu,
| | - Haijun Mei
- Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China,*Correspondence: Mei Li, ; Tao Wang, ; Haijun Mei, ; Wangrui Liu,
| | - Tao Wang
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Mei Li, ; Tao Wang, ; Haijun Mei, ; Wangrui Liu,
| | - Mei Li
- Department of Oncology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China,*Correspondence: Mei Li, ; Tao Wang, ; Haijun Mei, ; Wangrui Liu,
| |
Collapse
|
26
|
Godínez-Loyola Y, Gracia-Mora J, Rojas-Montoya ID, Hernández-Ayala LF, Reina M, Ortiz-Frade LA, Rascón-Valenzuela LA, Robles-Zepeda RE, Gómez-Vidales V, Bernad-Bernad MJ, Ruiz-Azuara L. Casiopeinas® third generation, with indomethacin: synthesis, characterization, DFT studies, antiproliferative activity, and nanoencapsulation. RSC Adv 2022; 12:21662-21673. [PMID: 35975050 PMCID: PMC9347768 DOI: 10.1039/d2ra03346a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Seven new Casiopeinas® were synthesized and properly characterized. These novel compounds have a general formula [Cu(N-N)(Indo)]NO3, where Indo is deprotonated indomethacin and N-N is either bipyridine or phenanthroline with some methyl-substituted derivatives, belonging to the third generation of Casiopeinas®. Spectroscopic characterization suggests a square-based pyramid geometry and voltammetry experiments indicate that the redox potential is strongly dependent on the N-N ligand. All the presented compounds show high cytotoxic efficiency, and most of them exhibit higher efficacy compared to the well-known cisplatin drug and acetylacetonate analogs of the first generation. Computational calculations show that antiproliferative behavior can be directly related to the volume of the molecules. Besides, a chitosan (CS)-polyacrylamide (PNIPAAm) nanogel was synthesized and characterized to examine the encapsulation and release properties of the [Cu(4,7-dimethyl-1,10-phenanthroline)(Indo)]NO3 compound. The results show good encapsulation performance in acidic conditions and a higher kinetic drug release in acidic media than at neutral pH. This result can be described by the Peppas-Sahlin model and indicates a release mechanism predominantly by Fick diffusion.
Collapse
Affiliation(s)
- Yokari Godínez-Loyola
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Jesús Gracia-Mora
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Iván D Rojas-Montoya
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Luis Felipe Hernández-Ayala
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Miguel Reina
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | | | - Luisa Alondra Rascón-Valenzuela
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora Boulevard Luis Encinas y Rosales S/N Hermosillo Sonora C.P. 83000 Mexico
| | - Ramón Enrique Robles-Zepeda
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora Boulevard Luis Encinas y Rosales S/N Hermosillo Sonora C.P. 83000 Mexico
| | - Virginia Gómez-Vidales
- Instituto de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - María Josefa Bernad-Bernad
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| | - Lena Ruiz-Azuara
- Facultad de Química, Universidad Nacional Autónoma de México Av. Universidad 3000, Circuito Exterior S/N, CU Ciudad de México C.P. 04510 Mexico
| |
Collapse
|
27
|
Kobayashi H, Mori Y, Iwasa R, Hirao Y, Kato S, Kawanishi S, Murata M, Oikawa S. Copper-mediated DNA damage caused by purpurin, a natural anthraquinone. Genes Environ 2022; 44:15. [PMID: 35527257 PMCID: PMC9082958 DOI: 10.1186/s41021-022-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Purpurin (1,2,4-trihydroxy-9,10-anthraquinone), a natural red anthraquinone pigment, has historically been used as a textile dye. However, purpurin induced urinary bladder tumors in rats, and displayed a mutagenic activity in assay using bacteria and mammalian cells. Many carcinogenic dyes are known to induce bladder cancers via DNA adduct formation, but carcinogenic mechanisms of purpurin remain unknown. In this study, to clarify the mechanism underlying carcinogenicity of purpurin, copper-mediated DNA damage induced by purpurin was examined using 32P-labeled DNA fragments of human genes relevant to cancer. Furthermore, we also measured 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), an indicator of oxidative DNA damage, in calf thymus DNA. Results Purpurin plus Cu(II) cleaved 32P-labeled DNA fragments only under piperidine treatment, indicating that purpurin caused base modification, but not breakage of the DNA backbone. In the absence of Cu(II), purpurin did not induce DNA cleavage even with piperidine treatment. Purpurin plus Cu(II) caused piperidine-labile sites predominantly at G and some T residues. Bathocuproine, a Cu(I) chelator, completely prevented the occurrence of piperidine-labile sites, indicating a critical role of Cu(I) in piperidine-labile sites induced by purpurin plus Cu(II). On the other hand, methional, a scavenger of a variety of reactive oxygen species (ROS) and catalase showed limited inhibitory effects on the induction of piperidine-labile sites, suggesting that ROS could not be major mediators of the purpurin-induced DNA damage. Considering reported DNA adduct formation by quinone metabolites of several carcinogenic agents, quinone form of purpurin, which is possibly generated via purpurin autoxidation accompanied by Cu(I)/Cu(II) redox cycle, might lead to DNA adducts and piperidine-labile sites. In addition, we measured contents of 8-oxodG. Purpurin moderately but significantly increased 8-oxodG in calf thymus DNA in the presence of Cu(II). The 8-oxodG formation was inhibited by catalase, methional and bathocuproine, suggesting that Cu(I)-hydroperoxide, which was generated via Cu(I) and H2O2, caused oxidative DNA base damage. Conclusions We demonstrated that purpurin induces DNA base damage possibly mediated by Cu(I)/Cu(II) redox cycle both with and without ROS generation, which are likely to play an important role in its carcinogenicity. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-022-00245-2.
Collapse
|
28
|
Su F, Fang Y, Yu J, Jiang T, Lin S, Zhang S, Lv L, Long T, Pan H, Qi J, Zhou Q, Tang W, Ding G, Wang L, Tan L, Yin J. The Single Nucleotide Polymorphisms of AP1S1 are Associated with Risk of Esophageal Squamous Cell Carcinoma in Chinese Population. Pharmgenomics Pers Med 2022; 15:235-247. [PMID: 35321090 PMCID: PMC8938157 DOI: 10.2147/pgpm.s342743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background The σ1A subunit of the adaptor protein 1 (AP1S1) participates in various intracellular transport pathways, especially the maintenance of copper homeostasis, which is pivotal in carcinogenesis. It is therefore rational to presume that AP1S1 might also be involved in carcinogenesis. In this hospital-based case-control study, we investigated the genetic susceptibility to ESCC in relation to SNPs of AP1S1 among Chinese population. Methods A database containing a total of 1303 controls and 1043 ESCC patients were retrospectively studied. The AP1S1 SNPs were analyzed based on ligation detection reaction (LDR) method. Then, the relationship between ESCC and SNPs of AP1S1 was determined with a significant crude P<0.05. Then the logistic regression analysis was used for the calculation for adjusted P in the demographic stratification comparison if a significant difference was observed in the previous step. Results AP1S1 rs77387752 C>T genotype TT was an independent risk factor for ESCC, while rs4729666 C>T genotype TC and rs35208462 C>T genotype TC were associated with a lower risk for ESCC, especially in co-dominant model and allelic test for younger, male subjects who are not alcohol-drinkers nor cigarette smokers. Conclusion AP1S1 rs77387752, rs4729666 and rs35208462 polymorphisms are associated with susceptibility to ESCC in Chinese individuals. AP1S1 SNPs may exert an important role in esophageal carcinogenesis and could serve as potential diagnostic biomarkers.
Collapse
Affiliation(s)
- Feng Su
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Yong Fang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jinjie Yu
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Tian Jiang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Siyun Lin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Shaoyuan Zhang
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Lu Lv
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Tao Long
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Huiwen Pan
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Junqing Qi
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Qiang Zhou
- Department of Thoracic Surgery, Sichuan Cancer Hospital & Institute, Sichuan, People’s Republic of China
| | - Weifeng Tang
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Jiangsu, People’s Republic of China
| | - Guowen Ding
- Department of Cardiothoracic Surgery, Affiliated People’s Hospital of Jiangsu University, Jiangsu, People’s Republic of China
| | - Liming Wang
- Department of Respiratory, Shanghai Xuhui Central Hospital, Shanghai, People’s Republic of China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
| | - Jun Yin
- Department of Thoracic Surgery, Zhongshan Hospital of Fudan University, Shanghai, People’s Republic of China
- Correspondence: Jun Yin; Lijie Tan, Zhongshan Hospital of Fudan University, 180 Fenglin road, Xuhui District, Shanghai, 200032, People’s Republic of China, Email ;
| |
Collapse
|
29
|
Asadpour Chounechenan S, Mohammadi A, Ghafouri H. A new and efficient diaminopyrimidine-based colorimetric and fluorescence chemosensor for the highly selective and sensitive detection of Cu 2+ in aqueous media and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120507. [PMID: 34695712 DOI: 10.1016/j.saa.2021.120507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/20/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
In this paper, a new and effective diaminopyrimidine-based chemosensor (DAPCS) was developed for the highly selective and ultra-sensitive detection of Cu2+ ion in aqueous media and living cell. Characterization and structure determining of DAPCS was determined by UV-Vis, FTIR and NMR analyses. It is observed that DAPCS and Cu (II) forms a ligand to metal charge transfer (LMCT) complex which produces distinguishable red color. The results also indicate that the DAPCS easily interacts with Cu2+ ion to form a 1:1 stoichiometry complex (DAPCS -Cu2+), resulting in a bathochromic shift in absorption maximum (429 nm to 449 nm) and remarkable quenching fluorescence intensity at the wavelength of 501 nm in DMSO-H2O solution. Furthermore, the detection limit of DAPCS towards Cu2+ was calculated to be 3.19 µM. Meanwhile, DAPCS was applied as fluorescent probe for detection of Cu2+ ions with the detection limit of 0.014 µM. The optimal pH range of probe DAPCS for quantitative analysis of Cu2+ ions was 9-11, which renders it suitable for detection of Cu2+ under physiological conditions. Additionally, the DAPCS could be applied to detect Cu2+ in real water samples and in HeLa cells, indicating the practical uses of DAPCS in real analyses.
Collapse
Affiliation(s)
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran; Department of Marine Sciences, Caspian Sea basin Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
30
|
Laser Ablation ICP-MS Analysis of Chemically Different Regions of Rat Prostate Gland with Implanted Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The comparison of tissues analyzed by LA-ICP-MS is challenging in many aspects, both medical and mathematical. The concept of distinguishing regions of interest (ROIs) was proposed in the literature, allowing for data reduction and targeted comparative analysis. ROIs can be drawn before any analysis, by indicating the anatomical parts of tissue, or after the first step of analysis, by using elemental distribution maps and characteristic regions of enrichment in selected elements. A simple method for identifying different regions, without the manual extraction of image fragments, is highly needed in biological experiments, where large groups of individuals (with samples taken from each of them) is very common. In the present study, two ROIs were distinguished: (1) tissue-rich in fat (and tissue-poor in water); and (2) tissue-rich in water (and tissue-poor in fat). ROIs were extracted mathematically, using an algorithm based on the relationship between 13C and 23Na signal intensities. A cut-off point was indicated in the point of the simultaneous decrease in 13C and increase in 23Na signal intensity. Separate analyses of chemically different ROIs allow for targeted comparison, which is a great advantage of laser ablation over liquid introductions to ICP-MS. In the present experiment, tissues were provided from animals with implanted prostate cancer cells as well as supplemented with mineral compounds particularly important both for prostate gland functions (Zn and Se) and neoplastic processes (Ca, Fe, and Cu). One of the goals was to try to determine whether dietary supplementation qualitatively and quantitatively affects the mineral composition of the prostate gland.
Collapse
|
31
|
Mori Y, Kobayashi H, Fujita Y, Yatagawa M, Kato S, Kawanishi S, Murata M, Oikawa S. Mechanism of reactive oxygen species generation and oxidative DNA damage induced by acrylohydroxamic acid, a putative metabolite of acrylamide. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503420. [PMID: 35094805 DOI: 10.1016/j.mrgentox.2021.503420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 10/20/2022]
Abstract
Acrylamide is formed during the heating of food and is also found in cigarette smoke. It is classified by the International Agency for Research on Cancer as a probable human carcinogen (Group 2A). Glycidamide, an epoxide metabolite of acrylamide, is implicated in the mechanism of acrylamide carcinogenicity. Acrylamide causes oxidative DNA damage in target organs. We sought to clarify the mechanism of acrylamide-induced oxidative DNA damage by investigating site-specific DNA damage and reactive oxygen species (ROS) generation by a putative metabolite of acrylamide, acrylohydroxamic acid (AA). Our results, using 32P-5'-end-labeled DNA fragments, indicated that, although AA alone did not damage DNA, AA treated with amidase induced DNA damage in the presence of Cu(II). DNA cleavage occurred preferentially at T and C, and particularly at T in 5'-TG-3' sequences, and the DNA cleavage pattern was similar to that of hydroxylamine. The DNA damage was inhibited by methional, catalase, and Cu(I)-chelator bathocuproine, suggesting that H2O2 and Cu(I) are involved in the mechanism of DNA damage induced by AA treated with amidase. In addition, amidase-treated AA increased 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in calf thymus DNA, an indicator of oxidative DNA damage, in a dose-dependent manner. In conclusion, hydroxylamine, possibly produced from AA treated with amidase, was autoxidized via the Cu(II)/Cu(I) redox cycle and H2O2 generation, suggesting that oxidative DNA damage induced by ROS plays an important role in acrylamide-related carcinogenesis.
Collapse
Affiliation(s)
- Yurie Mori
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan; Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu, 509-0293, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Yoshio Fujita
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Minami Yatagawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Shinya Kato
- Radioisotope Experimental Facility, Advanced Science Research Promotion Center, Mie University, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Science, Suzuka University of Medical Science, 3500-3, Minamitamagaki, Suzuka, Mie, 513-8670, Japan
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
32
|
Abstract
Trace elements, such as iodine and selenium (Se), are vital to human health and play an essential role in metabolism. They are also important to thyroid metabolism and function, and correlate with thyroid autoimmunity and tumors. Other minerals such as iron (Ir), lithium (Li), copper (Co), zinc (Zn), manganese (Mn), magnesium (Mg), cadmium (Cd), and molybdenum (Mo), may related to thyroid function and disease. Normal thyroid function depends on a variety of trace elements for thyroid hormone synthesis and metabolism. These trace elements interact with each other and are in a dynamic balance. However, this balance may be disturbed by the excess or deficiency of one or more elements, leading to abnormal thyroid function and the promotion of autoimmune thyroid diseases and thyroid tumors.The relationship between trace elements and thyroid disorders is still unclear, and further research is needed to clarify this issue and improve our understanding of how trace elements mediate thyroid function and metabolism. This paper systematically reviewed recently published literature on the relationship between various trace elements and thyroid function to provide a preliminary theoretical basis for future research.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
| | - Shuai Xue
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
- *Correspondence: Shuai Xue, ; Guang Chen,
| | - Li Zhang
- Department of Nephrology, The Hospital of Jilin University, Changchun, China
| | - Guang Chen
- Department of Thyroid Surgery, General Surgery Center, The Hospital of Jilin University, Changchun, China
- *Correspondence: Shuai Xue, ; Guang Chen,
| |
Collapse
|
33
|
Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects. Biomaterials 2021; 280:121301. [PMID: 34922270 DOI: 10.1016/j.biomaterials.2021.121301] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023]
Abstract
The need for the development of load-bearing, absorbable wound closure devices is driving the research for novel materials that possess both good biodegradability and superior mechanical characteristics. Biodegradable metals (BMs), namely: magnesium (Mg), zinc (Zn) and iron (Fe), which are currently being investigated for absorbable vascular stent and orthopaedic implant applications, are slowly gaining research interest for the fabrication of wound closure devices. The current review presents an overview of the traditional and novel BM-based intracutaneous and transcutaneous wound closure devices, and identifies Zn as a promising substitute for the traditional materials used in the fabrication of absorbable load-bearing sutures, internal staples, and subcuticular staples. In order to further strengthen Zn to be used in highly stressed situations, nutrient elements (NEs), including calcium (Ca), Mg, Fe, and copper (Cu), are identified as promising alloying elements for the strengthening of Zn-based wound closure device material that simultaneously provide potential therapeutic benefit to the wound healing process during implant biodegradation process. The influence of NEs on the fundamental characteristics of biodegradable Zn are reviewed and critically assessed with regard to the mechanical properties and biodegradability requirements of different wound closure devices. The opportunities and challenges in the development of Zn-based wound closure device materials are presented to inspire future research on this rapidly growing field.
Collapse
|
34
|
Kazi Tani LS, Gourlan AT, Dennouni-Medjati N, Telouk P, Dali-Sahi M, Harek Y, Sun Q, Hackler J, Belhadj M, Schomburg L, Charlet L. Copper Isotopes and Copper to Zinc Ratio as Possible Biomarkers for Thyroid Cancer. Front Med (Lausanne) 2021; 8:698167. [PMID: 34568365 PMCID: PMC8455850 DOI: 10.3389/fmed.2021.698167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Thyroid cancer is the most common endocrine cancer. There is no systematic screening for such cancer, and the current challenge is to find potential biomarkers to facilitate an early diagnosis. Copper (Cu) and zinc (Zn) are essential micronutrients involved in the proper functioning of the thyroid gland, and changes in their concentrations have been observed in the development of cancer. Previous studies have highlighted the potential 65Cu/63Cu ratio (δ65Cu) to be a cancer biomarker. This study tests its sensitivity on plasma samples (n = 46) of Algerian patients with papillary thyroid carcinoma and a set of corresponding biopsies (n = 11). The δ65Cu ratio in blood and tumor samples was determined using multi collector inductively coupled plasma-mass spectrometry (MC-ICP-MS), and their corresponding Cu and Zn plasma total concentrations using total reflection X-ray fluorescence (TXRF). Plasma concentrations of Cu were significantly higher (1346.1 ± 328.3 vs. 1060.5 ± 216.1 μg/L, p < 0.0001), and Zn significantly lower (942.1 ± 205.2 vs. 1027.9 ± 151.4 μg/L, p < 0.05) in thyroid cancer patients as compared to healthy controls (n = 50). Accordingly, the Cu/Zn ratio was significantly different between patients and controls (1.5 ± 0.4 vs. 1.0 ± 0.3, p < 0.0001). Furthermore, the δ65Cu plasma levels of patients were significantly lower than healthy controls (p < 0.0001), whereas thyroid tumor tissues presented high δ65Cu values. These results support the hypothesis that Cu isotopes and plasma trace elements may serve as suitable biomarkers of thyroid cancer diagnosis.
Collapse
Affiliation(s)
- Latifa Sarra Kazi Tani
- Analytical Chemistry and Electrochemistry Laboratory, University of Abou Bekr Belkaid, Tlemcen, Algeria.,ISTerre: Institut des Sciences de la Terre, Université Grenoble-Alpes, Université de Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| | - Alexandra T Gourlan
- ISTerre: Institut des Sciences de la Terre, Université Grenoble-Alpes, Université de Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| | - Nouria Dennouni-Medjati
- Analytical Chemistry and Electrochemistry Laboratory, University of Abou Bekr Belkaid, Tlemcen, Algeria
| | - Philippe Telouk
- Ecole Normale Superieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Lyon, France
| | - Majda Dali-Sahi
- Analytical Chemistry and Electrochemistry Laboratory, University of Abou Bekr Belkaid, Tlemcen, Algeria
| | - Yahia Harek
- Analytical Chemistry and Electrochemistry Laboratory, University of Abou Bekr Belkaid, Tlemcen, Algeria
| | - Qian Sun
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Julian Hackler
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Moussa Belhadj
- Analytical Chemistry and Electrochemistry Laboratory, University of Abou Bekr Belkaid, Tlemcen, Algeria
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Laurent Charlet
- ISTerre: Institut des Sciences de la Terre, Université Grenoble-Alpes, Université de Savoie Mont-Blanc, CNRS, IRD, IFSTTAR, Grenoble, France
| |
Collapse
|
35
|
Tanihara A, Kikuchi K, Konno H. Insight into the mechanism of heavy metal removal from water by monodisperse ZIF-8 fine particles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Zhao X, Li X, Huang X, Liang S, Cai P, Wang Y, Cui Y, Chen W, Dong X. Development of lactobionic acid conjugated-copper chelators as anticancer candidates for hepatocellular carcinoma. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
37
|
Lai HL, Fan XX, Li RZ, Wang YW, Zhang J, Liu L, Neher E, Yao XJ, Leung ELH. Roles of Ion Fluxes, Metabolism, and Redox Balance in Cancer Therapy. Antioxid Redox Signal 2021; 34:1108-1127. [PMID: 33115253 DOI: 10.1089/ars.2020.8125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent Advances: The 2019 Nobel Prize awarded to the mechanisms for oxygen sensing and adaptation according to oxygen availability, highlighting the fundamental importance of gaseous molecules. Gaseous molecules, including reactive oxygen species (ROS), can interact with different cations generated during metabolic and redox dysregulation in cancer cells. Cross talk between calcium signaling and metabolic/redox pathways leads to network-based dyregulation in cancer. Significance: Recent discovery on using small molecules targeting the ion channels, redox signaling, and protein modification on metabolic enzymes can effectively inhibit cancer growth. Several FDA-approved drugs and clinical trials are ongoing to target the calcium channels, such as TRPV6 and TRPM8. Multiple small molecules from natural products target metablic and redox enzymes to exert an anticancer effect. Critical Issues: Small molecules targeting key ion channels, metabolic enzymes that control key aspects of metabolism, and redox proteins are promising, but their action mechanisms of the target are needed to be elucidated with advanced-omic technologies, which can give network-based and highly dimensioal data. In addition, small molecules that can directly modify the protein residues have emerged as a novel anticancer strategy. Future Directions: Advanced technology accelerates the detection of ions and metabolic and redox changes in clinical samples for diagnosis and informs the decision of cancer treatment. The improvement of ROS detection, ROS target identification, and computational-aid drug discovery also improves clincal outcome.Overall, network-based or holistic regulations of cancer via ion therapy and metabolic and redox intervention are promising as new anticancer strategies. Antioxid. Redox Signal. 34, 1108-1127.
Collapse
Affiliation(s)
- Huan-Ling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Xing-Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Run-Ze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Yu-Wei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Junmin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,School of Pharmacy & State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, China
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Erwin Neher
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China.,Membrane Biophysics Emeritus Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Xiao-Jun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute For Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| |
Collapse
|
38
|
Diab T, Mohamed TM, Hamed A, Gaber M. Induction of Apoptosis by Nano-Synthesized Complexes of H2L and its Cu(II) Complex in Human Hepatocellular Carcinoma Cells. Anticancer Agents Med Chem 2021; 21:1151-1159. [PMID: 32013853 DOI: 10.2174/1871520620666200204103756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Chemotherapy is currently the most utilized treatment for cancer. Therapeutic potential of metal complexes in cancer therapy has attracted a lot of interest. The mechanisms of action of most organometallic complexes are poorly understood. OBJECTIVE This study was designed to explore the mechanisms governing the anti-proliferative effect of the free ligand N1,N6-bis((2-hydroxynaphthalin-1-yl)methinyl)) adipohydrazone (H2L) and its complexes of Mn(II), Co(II), Ni(II) and Cu(II). METHODS Cells were exposed to H2L or its metal complexes where cell viability determined by MTT assay. Cell cycle was analysed by flow cytometry. In addition, qRT-PCR was used to monitor the expression of Bax and Bcl-2. Moreover, molecular docking was carried out to find the potentiality of Cu(II) complex as an inhibitor of Adenosine Deaminase (ADA). ADA, Superoxide Dismutase (SOD) and reduced Glutathione (GSH) levels were measured in the most affected cancer cell line. RESULTS The obtained results demonstrated that H2L and its Cu(II) complex exhibited a strong cytotoxic activity compared to other complexes against HepG2 cells (IC50=4.14±0.036μM/ml and 3.2±0.02μM/ml), respectively. Both H2L and its Cu(II) complex induced G2/M phase cell cycle arrest in HepG2 cells. Additionally, they induced apoptosis in HepG2 cells via upregulation of Bax and downregulation of Bcl-2. Interestingly, the activity of ADA was decreased by 2.8 fold in HepG2 cells treated with Cu(II) complex compared to untreated cells. An increase of SOD activity and GSH level in HepG2 cells compared to control was observed. CONCLUSION The results concluded that Cu(II) complex of H2L induced apoptosis in HepG2 cells. Further studies are needed to confirm its anti-cancer effect in vivo.
Collapse
Affiliation(s)
- Thoria Diab
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Alaa Hamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Gaber
- Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
39
|
Biochemical pathways of copper complexes: progress over the past 5 years. Drug Discov Today 2021; 26:1086-1096. [PMID: 33486113 DOI: 10.1016/j.drudis.2021.01.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Copper is an essential trace element with vital roles in many metalloenzymes; it is also prominent among nonplatinum anticancer metallodrugs. Copper-based complexes are endogenously biocompatible, tenfold more potent than cisplatin, exhibit fewer adverse effects, and have a wide therapeutic window. In cancer biology, copper acts as an antitumor agent by inhibiting cancer via multiple pathways. Herein, we present an overview of advances in copper complexes as 'lead' antitumor drug candidates, and in understanding their biochemical and pharmacological pathways over the past 5 years. This review will help to develop more efficacious therapeutics to improve clinical outcomes for cancer treatments.
Collapse
|
40
|
Khalesi S, Keshani F, Aghaz A, Farhang M, Akbari N. Screening of oral squamous cell carcinoma by serum changes: A systematic review and meta-analysis. Dent Res J (Isfahan) 2021. [DOI: 10.4103/1735-3327.328756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
41
|
Shi Y, Wang S, Wu J, Jin X, You J. Pharmaceutical strategies for endoplasmic reticulum-targeting and their prospects of application. J Control Release 2021; 329:337-352. [DOI: 10.1016/j.jconrel.2020.11.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/28/2020] [Indexed: 02/07/2023]
|
42
|
Ciarrocchi C, Tumino A, Sacchi D, Orbelli Biroli A, Licchelli M. Detection of Copper(II) in Water by Methylene Blue Derivatives. Chemphyschem 2020; 21:2432-2440. [DOI: 10.1002/cphc.202000676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Carlo Ciarrocchi
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| | - Adriana Tumino
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| | - Donatella Sacchi
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| | | | - Maurizio Licchelli
- Department of Chemistry University of Pavia V. Taramelli 12 27100 Pavia Italy
| |
Collapse
|
43
|
Ghasemi Z, Mohammadi A. Sensitive and selective colorimetric detection of Cu (II) in water samples by thiazolylazopyrimidine-functionalized TiO 2 nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118554. [PMID: 32502808 DOI: 10.1016/j.saa.2020.118554] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
In this study, a new thiazolylazopyrimidine-functionalized TiO2 nanosensor (TiO2-TAP) has been developed for sensitive and selective colorimetric detection of Cu2+ in water samples. Thiazolylazopyrimidine (TAP) as an azo ligand and TiO2-TAP as highly selective nanosensor were successfully prepared through the diazo coupling reaction and surface chemical modification, respectively. Characterization of TiO2-TAP NPs using Fourier transmission infrared (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive X- ray spectroscopy (EDX), and X-ray diffraction (XRD) analysis revealed that the TiO2 NPs were effectively modified with the synthesized epoxy-activated thiazolylazopyrimidine. The synthesized azo ligand containing azo chromophore (N=N) produce color and make a stable complex formation with Cu2+ based on charge-transfer transduction in the detection system. The color change of TiO2-TAP solution from yellow to red occur directly after few seconds of addition of Cu2+ ions, as a result of surface complexation. The TiO2-TAP has revealed high affinity, sensitivity and selectivity for copper ion over other competing metal ions in aqueous media. The experimental data revealed that the Cu2+ ions was sensed and adsorbed by the TiO2-TAP at optimal pH 5.0. The results also confirmed that the TiO2-TAP has a wide linear detection range for Cu2+ (0.01 to 12.5 μM). From UV-vis titration experiment, the limit of detection (LOD) for Cu2+ ions was found to be 2.51 nM. The proposed method was successfully applied for the sensitive and selective detection of Cu2+ in tap water, sea water and well water. In addition, Cu2+ recovery improved using the TiO2-TAP containing N, S and O atoms as chelating sites. Therefore, the developed nanosensor with great features like the cost-effective, excellent sensitively and selectively, short response times and high adsorption efficiency for Cu2+ can be utilized in any physical and biological conditions.
Collapse
Affiliation(s)
- Zeinab Ghasemi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran; Department of Water Engineering and Environment, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| |
Collapse
|
44
|
Britto RS, Nascimento JP, Serode T, Santos AP, Soares AMVM, Figueira E, Furtado C, Lima-Ventura J, Monserrat JM, Freitas R. The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:30945-30956. [PMID: 31808098 DOI: 10.1007/s11356-019-06643-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.
Collapse
Affiliation(s)
- Roberta Socoowski Britto
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas(ICB), FURG, Rio Grande, Brazil
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | | | - Tiago Serode
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | - Adelina P Santos
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | | | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal
| | - Clascídia Furtado
- Centro de Desenvolvimento da Tecnologia Nuclear, CDTN, Minas Gerais, MG, Brazil
| | - Juliane Lima-Ventura
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas(ICB), FURG, Rio Grande, Brazil
| | - José M Monserrat
- Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil.
- Programa de Pós-graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas(ICB), FURG, Rio Grande, Brazil.
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
45
|
Zengin H, Marsan H, Gürkan R. Selective extraction of Cu+ and Cu2+ ions from mushroom and lichen samples prior to analysis by micro-volume UV-Vis spectrophotometry: Application of a novel poly (SMIm)-Tris-Fe3O4 nanocomposite. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
46
|
Lettieri G, D’Agostino G, Mele E, Cardito C, Esposito R, Cimmino A, Giarra A, Trifuoggi M, Raimondo S, Notari T, Febbraio F, Montano L, Piscopo M. Discovery of the Involvement in DNA Oxidative Damage of Human Sperm Nuclear Basic Proteins of Healthy Young Men Living in Polluted Areas. Int J Mol Sci 2020; 21:ijms21124198. [PMID: 32545547 PMCID: PMC7349829 DOI: 10.3390/ijms21124198] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022] Open
Abstract
DNA oxidative damage is one of the main concerns being implicated in severe cell alterations, promoting different types of human disorders and diseases. For their characteristics, male gametes are the most sensitive cells to the accumulation of damaged DNA. We have recently reported the relevance of arginine residues in the Cu(II)-induced DNA breakage of sperm H1 histones. In this work, we have extended our previous findings investigating the involvement of human sperm nuclear basic proteins on DNA oxidative damage in healthy males presenting copper and chromium excess in their semen. We found in 84% of those males an altered protamines/histones ratio and a different DNA binding mode even for those presenting a canonical protamines/histones ratio. Furthermore, all the sperm nuclear basic proteins from these samples that resulted were involved in DNA oxidative damage, supporting the idea that these proteins could promote the Fenton reaction in DNA proximity by increasing the availability of these metals near the binding surface of DNA. In conclusion, our study reveals a new and unexpected behavior of human sperm nuclear basic proteins in oxidative DNA damage, providing new insights for understanding the mechanisms related to processes in which oxidative DNA damage is implicated.
Collapse
Affiliation(s)
- Gennaro Lettieri
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Giovanni D’Agostino
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Elena Mele
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Carolina Cardito
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Rosa Esposito
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
| | - Annalinda Cimmino
- CNR, Institute of Biochemistry and Cell Biology, via Pietro Castellino, 80131 Naples, Italy;
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy; (A.G.); (M.T.)
| | | | - Tiziana Notari
- GEA—Gynecology Embryology Andrology—Reproductive Medicine Unit of Check Up Polydiagnostic Center, 84131 Salerno, Italy;
| | - Ferdinando Febbraio
- CNR, Institute of Biochemistry and Cell Biology, via Pietro Castellino, 80131 Naples, Italy;
- Correspondence: (F.F.); (L.M.); (M.P.); Tel.: +39-081-613-2611 (F.F.); +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| | - Luigi Montano
- Andrology Unit of the “S. Francesco d’Assisi” Hospital, Local Health Authority (ASL) Salerno, EcoFoodFertility Project Coordination Unit, 84020 Oliveto Citra, Italy
- Correspondence: (F.F.); (L.M.); (M.P.); Tel.: +39-081-613-2611 (F.F.); +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy; (G.L.); (G.D.); (E.M.); (C.C.); (R.E.)
- Correspondence: (F.F.); (L.M.); (M.P.); Tel.: +39-081-613-2611 (F.F.); +39-082-879-7111 (ext. 271) (L.M.); +39-081-679-081 (M.P.)
| |
Collapse
|
47
|
Elumalai S, Yoshimura M, Ogawa M. Simultaneous Delamination and Rutile Formation on the Surface of Ti
3
C
2
T
x
MXene for Copper Adsorption. Chem Asian J 2020; 15:1044-1051. [DOI: 10.1002/asia.202000090] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/12/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Satheeshkumar Elumalai
- School of Energy Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1 Payupnai Wangchan Rayong 21210 Thailand
- Present address: Biophotonics and AdvancedNational Research Council (CNR) Via Pietro Castellino n.111 Naples 80131 Italy
| | - Masahiro Yoshimura
- Hierarchical Green-Energy Materials (Hi-GEM) Research CenterDepartment of Materials Science and EngineeringNational Cheng Kung UniversityNo.1University Road Tainan City 70101 Taiwan
| | - Makoto Ogawa
- School of Energy Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC) 555 Moo 1 Payupnai Wangchan Rayong 21210 Thailand
| |
Collapse
|
48
|
Di Ciaula A, Gentilini P, Diella G, Lopuzzo M, Ridolfi R. Biomonitoring of Metals in Children Living in an Urban Area and Close to Waste Incinerators. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17061919. [PMID: 32187971 PMCID: PMC7143875 DOI: 10.3390/ijerph17061919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
The impact of waste incinerators is usually examined by measuring environmental pollutants. Biomonitoring has been limited, until now, to few metals and to adults. We explored accumulation of a comprehensive panel of metals in children free-living in an urban area hosting two waste incinerators. Children were divided by georeferentiation in exposed and control groups, and toenail concentrations of 23 metals were thereafter assessed. The percentage of children having toenail metal concentrations above the limit of detection was higher in exposed children than in controls for Al, Ba, Mn, Cu, and V. Exposed children had higher absolute concentrations of Ba, Mn, Cu, and V, as compared with those living in the reference area. The Tobit regression identified living in the exposed area as a significant predictor of Ba, Ni, Cu, Mn, and V concentrations, after adjusting for covariates. The concentrations of Ba, Mn, Ni, and Cu correlated with each other, suggesting a possible common source of emission. Exposure to emissions derived from waste incinerators in an urban setting can lead to body accumulation of specific metals in children. Toenail metal concentration should be considered a noninvasive and adequate biomonitoring tool and an early warning indicator which should integrate the environmental monitoring of pollutants.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Division of Internal Medicine, Hospital of Bisceglie (ASL BAT), 76011 Bisceglie, Italy
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence:
| | - Patrizia Gentilini
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
| | - Giusy Diella
- Department of Biomedical Science and Human Oncology, University of Study of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (M.L.)
| | - Marco Lopuzzo
- Department of Biomedical Science and Human Oncology, University of Study of Bari “Aldo Moro”, 70124 Bari, Italy; (G.D.); (M.L.)
| | - Ruggero Ridolfi
- International Society of Doctors for Environment (ISDE), 52100 Arezzo, Italy; (P.G.); (R.R.)
| |
Collapse
|
49
|
Mohammadi A, Ghasemi Z. A simple pyrimidine based colorimetric and fluorescent chemosensor for sequential detection of copper (II) and cyanide ions and its application in real samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117730. [PMID: 31718972 DOI: 10.1016/j.saa.2019.117730] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 05/25/2023]
Abstract
In this study, a new pyrimidine-based chemosensor (PyrCS) has been developed for sequential detection of copper (II) and cyanide ions. The PyrCS has revealed high sensitivity and selectivity toward copper ion over other metal ions in aqueous media. The PyrCS as an optical probe exhibited a distinct color change and a bathochromic shift in UV spectra in the presence of copper ion in a few seconds due to the formation of stable complex (PyrCS-Cu2+). The results confirmed that the PyrCS has a widely linear detection range of 0.3-30 μM toward Cu2+. The calculated limit of detection for Cu2+ ions was low as 0.116 μM. Moreover, the fluorescent intensity of PyrCS at 507 nm was significantly quenched in the presence of Cu2⁺ and Fe2⁺ ions. Additionally, complex PyrCS-Cu2+ was successfully used to detect cyanide ions via Cu2+ displacement approach. The free PyrCS was recovered after adding the CN‾ ions in a few seconds due to the formation of the stable copper cyanide complex Cu(CN)x. The calculated LOD for CN‾ ions was low as 0.320 μM. The data also clarified that the other competing anions did not create a clear color change in solutions. Since the proposed method could provide a vivid colorimetric response in the presence of detected analytes within the pH range of 3-9, we can claim that the developed chemosensor can be utilized in any physical and biological conditions.
Collapse
Affiliation(s)
- Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran; Department of Water Engineering and Environment, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Zeinab Ghasemi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
50
|
Kordestani N, Rudbari HA, Fernandes AR, Raposo LR, Baptista PV, Ferreira D, Bruno G, Bella G, Scopelliti R, Braun JD, Herbert DE, Blacque O. Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes. ACS COMBINATORIAL SCIENCE 2020; 22:89-99. [PMID: 31913012 DOI: 10.1021/acscombsci.9b00202] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 μM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.
Collapse
Affiliation(s)
- Nazanin Kordestani
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Hadi Amiri Rudbari
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Luís R. Raposo
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Pedro V. Baptista
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Daniela Ferreira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Giuseppe Bruno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Giovanni Bella
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jason D. Braun
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - David E. Herbert
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Olivier Blacque
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| |
Collapse
|