1
|
Habeshian TS, Cannavale KL, Slezak JM, Shu YH, Chien GW, Chen X, Shi F, Siegmund KD, Van Den Eeden SK, Huang J, Chao CR. DNA methylation markers for risk of metastasis in a cohort of men with localized prostate cancer. Epigenetics 2024; 19:2308920. [PMID: 38525786 DOI: 10.1080/15592294.2024.2308920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Accurately identifying life-threatening prostate cancer (PCa) at time of diagnosis remains an unsolved problem. We evaluated whether DNA methylation status of selected candidate genes can predict the risk of metastasis beyond clinical risk factors in men with untreated PCa. A nested case-control study was conducted among men diagnosed with localized PCa at Kaiser Permanente California between 01/01/1997-12/31/2006 who did not receive curative treatments. Cases were those who developed metastasis within 10 years from diagnosis. Controls were selected using density sampling. Ninety-eight candidate genes were selected from functional categories of cell cycle control, metastasis/tumour suppressors, cell signalling, cell adhesion/motility/invasion, angiogenesis, and immune function, and 41 from pluripotency genes. Cancer DNA from diagnostic biopsy blocks were extracted and analysed. Associations of methylation status were assessed using CpG site level and principal components-based analysis in conditional logistic regressions. In 215 cases and 404 controls, 27 candidate genes were found to be statistically significant in at least one of the two analytical approaches. The agreement between the methods was 25.9% (7 candidate genes, including 2 pluripotency markers). The DNA methylation status of several candidate genes was significantly associated with risk of metastasis in untreated localized PCa patients. These findings may inform future risk prediction models for PCa metastasis beyond clinical characteristics.
Collapse
Affiliation(s)
- Talar S Habeshian
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kimberly L Cannavale
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Jeff M Slezak
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
| | - Yu-Hsiang Shu
- Biostatistics and Innovations, Biostatistics and Programming, Clinical Affairs, Inari Medical, CA, USA
| | - Gary W Chien
- Department of Urology, Los Angeles Medical Center, Kaiser Permanente Southern California, Los Angeles, CA, USA
| | - XuFeng Chen
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Feng Shi
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly D Siegmund
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Chun R Chao
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, USA
- Department of Health Systems Science, Kaiser Permanente Bernard J Tyson School of Medicine, Pasadena, CA, USA
| |
Collapse
|
2
|
Ivanov KI, Yang H, Sun R, Li C, Guo D. The emerging role of SARS-CoV-2 nonstructural protein 1 (nsp1) in epigenetic regulation of host gene expression. FEMS Microbiol Rev 2024; 48:fuae023. [PMID: 39231808 PMCID: PMC11418652 DOI: 10.1093/femsre/fuae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024] Open
Abstract
Infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes widespread changes in epigenetic modifications and chromatin architecture in the host cell. Recent evidence suggests that SARS-CoV-2 nonstructural protein 1 (nsp1) plays an important role in driving these changes. Previously thought to be primarily involved in host translation shutoff and cellular mRNA degradation, nsp1 has now been shown to be a truly multifunctional protein that affects host gene expression at multiple levels. The functions of nsp1 are surprisingly diverse and include not only the downregulation of cellular mRNA translation and stability, but also the inhibition of mRNA export from the nucleus, the suppression of host immune signaling, and, most recently, the epigenetic regulation of host gene expression. In this review, we first summarize the current knowledge on SARS-CoV-2-induced changes in epigenetic modifications and chromatin structure. We then focus on the role of nsp1 in epigenetic reprogramming, with a particular emphasis on the silencing of immune-related genes. Finally, we discuss potential molecular mechanisms underlying the epigenetic functions of nsp1 based on evidence from SARS-CoV-2 interactome studies.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Guangzhou National Laboratory, Guangzhou, 510320, China
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland
| | - Haibin Yang
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Ruixue Sun
- Guangzhou National Laboratory, Guangzhou, 510320, China
| | - Chunmei Li
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Deyin Guo
- Guangzhou National Laboratory, Guangzhou, 510320, China
- MOE Key Laboratory of Tropical Disease Control, Center for Infection and Immunity Studies (CIIS), School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, 518107, China
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China
| |
Collapse
|
3
|
Belenguer Á, Naya-Català F, Calduch-Giner JÀ, Pérez-Sánchez J. Exploring Multifunctional Markers of Biological Age in Farmed Gilthead Sea Bream ( Sparus aurata): A Transcriptomic and Epigenetic Interplay for an Improved Fish Welfare Assessment Approach. Int J Mol Sci 2024; 25:9836. [PMID: 39337324 PMCID: PMC11432111 DOI: 10.3390/ijms25189836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methylation clocks provide information not only about chronological but also biological age, offering a high-resolution and precise understanding of age-related pathology and physiology. Attempts based on transcriptomic and epigenetic approaches arise as integrative biomarkers linking the quantification of stress responses with specific fitness traits and may help identify biological age markers, which are also considered welfare indicators. In gilthead sea bream, targeted gene expression and DNA methylation analyses in white skeletal muscle proved sirt1 as a reliable marker of age-mediated changes in energy metabolism. To complete the list of welfare auditing biomarkers, wide analyses of gene expression and DNA methylation in one- and three-year-old fish were combined. After discriminant analysis, 668 differentially expressed transcripts were matched with those containing differentially methylated (DM) regions (14,366), and 172 were overlapping. Through enrichment analyses and selection, two sets of genes were retained: 33 showing an opposite trend for DNA methylation and expression, and 57 down-regulated and hypo-methylated. The first set displayed an apparently more reproducible and reliable pattern and 10 multifunctional genes with DM CpG in regulatory regions (sirt1, smad1, ramp1, psmd2-up-regulated; col5a1, calcrl, bmp1, thrb, spred2, atp1a2-down-regulated) were deemed candidate biological age markers for improved welfare auditing in gilthead sea bream.
Collapse
Affiliation(s)
- Álvaro Belenguer
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Fernando Naya-Català
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
4
|
Bhargavan B, Chhunchha B, Kubo E, Singh DP. DNA methylation as an epigenetic mechanism in the regulation of LEDGF expression and biological response in aging and oxidative stress. Cell Death Discov 2024; 10:296. [PMID: 38909054 PMCID: PMC11193803 DOI: 10.1038/s41420-024-02076-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
The physiological quantum of stress-inducible transcriptional protein, Lens Epithelium-Derived Growth Factor (LEDGF), is vital for the maintenance of cellular physiology. Erratic epigenetic reprogramming in response to oxidative stress or with advancing age is found to be a major cause in the gene silencing, leading to pathobiologies. Using aging human (h) eye lens/lens epithelial cells (LECs) coupled with redox-active Peroxiredoxin 6 (Prdx6)-deficient (Prdx6-/-) mLECs as model systems, herein, we showed that in aging/oxidative stress, the human LEDGF gene was regulated by unique methylation patterns of CGs nucleotides within and around the Sp1 binding site(s) of CpG island of the LEDGF promoter (-170 to -27nts). The process caused the repression of LEDGF and its target, Hsp27, resulting in reactive oxygen species (ROS) amplification and cellular insults. This phenomenon was opposed to the unmethylated promoter in LECs. Clinically, we observed that the loss of LEDGF in the Prdx6-/- mLECs or aging lenses/LECs, correlating with increased expression of DNMT1, DNMT3a, and DNMT3b along with the methyl CpG binding protein 2 (MeCP2). Upon oxidative stress, the expression of these molecules was increased with the dramatic reduction in LEDGF expression. While demethylating agent, 5-Aza deoxycytidine (5-AzaC) transposed the aberrant methylation status, and revived LEDGF and Hsp27 expression. Mechanistically, the chloramphenicol acetyltransferase (CAT) reporter gene driven by the LEDGF promoter (-170/ + 35) and ChIP assays uncovered that 5-AzaC acted on GC/Sp1 sites to release LEDGF transcription. The data argued, for the first time, that de novo methylation of CGs around and within Sp1 sites of the CpG island directly disrupted Sp1 activity, which ensued in LEDGF repression and its biological functions. The findings should improve our understanding of cellular insults-associated with aberrant DNMTs-mediated LEDGF's activity, and can offer strategies for therapeutic intervention to halt aging/oxidative stress-induced abnormalities.
Collapse
Affiliation(s)
- Biju Bhargavan
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavana Chhunchha
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, 9200293, Japan
| | - Dhirendra P Singh
- Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
5
|
Hermans L, O’Sullivan TE. No time to die: Epigenetic regulation of natural killer cell survival. Immunol Rev 2024; 323:61-79. [PMID: 38426615 PMCID: PMC11102341 DOI: 10.1111/imr.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
NK cells are short-lived innate lymphocytes that can mediate antigen-independent responses to infection and cancer. However, studies from the past two decades have shown that NK cells can acquire transcriptional and epigenetic modifications during inflammation that result in increased survival and lifespan. These findings blur the lines between the innate and adaptive arms of the immune system, and suggest that the homeostatic mechanisms that govern the persistence of innate immune cells are malleable. Indeed, recent studies have shown that NK cells undergo continuous and strictly regulated adaptations controlling their survival during development, tissue residency, and following inflammation. In this review, we summarize our current understanding of the critical factors regulating NK cell survival throughout their lifespan, with a specific emphasis on the epigenetic modifications that regulate the survival of NK cells in various contexts. A precise understanding of the molecular mechanisms that govern NK cell survival will be important to enhance therapies for cancer and infectious diseases.
Collapse
Affiliation(s)
- Leen Hermans
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Timothy E. O’Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Watanabe LM, Pereira VAB, Noronha NY, de Souza Pinhel MA, Wolf LS, de Oliveira CC, Plaça JR, Noma IHY, da Silva Rodrigues G, de Souza VCO, Júnior FB, Nonino CB. The influence of serum selenium in differential epigenetic and transcriptional regulation of CPT1B gene in women with obesity. J Trace Elem Med Biol 2024; 83:127376. [PMID: 38183920 DOI: 10.1016/j.jtemb.2023.127376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
INTRODUCTION The increasing prevalence of obesity has become a major health problem worldwide. The causes of obesity are multifactorial and could be influenced by dietary patterns and genetic factors. Obesity has been associated with a decrease in micronutrient intake and consequently decreased blood concentrations. Selenium is an essential micronutrient for human health, and its metabolism could be affected by obesity, especially severe obesity. This study aimed to identify differential methylation genes associated with serum selenium concentration in women with and without obesity. METHODOLOGY Thirty-four patients were enrolled in the study and divided into two groups: Obese (Ob) n = 20 and Non-Obese (NOb) n = 14, according to the Body Mass Index (BMI). Anthropometry, body composition, serum selenium, selenium intake, and biochemical parameters were evaluated. DNA extraction and bisulfite conversion were performed to hybridize the samples on the 450k Methylation Chip Infinium Beadchip (Illumina). Bioinformatics analysis was performed using the R program and the Champ package. The differentially methylated regions (DMRs) were identified using the Bumphunter method. In addition, logarithmic conversion was performed for the analysis of serum selenium and methylation. RESULTS In the Ob group, the body weight, BMI, fat mass, and free fat mass were higher than in the NOb group, as expected. Interestingly, the serum selenium was lower in the Ob than in the NOb group without differences in selenium intake. One DMR corresponding to the CPT1B gene, involved in lipid oxidation, was related to selenium levels. This region was hypermethylated in the Ob group, indicating that the intersection between selenium deficiency and hypermethylation could influence the expression of the CPT1B gene. The transcriptional analysis confirmed the lower expression of the CPT1B gene in the Ob group. CONCLUSION Studies connecting epigenetics to environmental factors could offer insights into the mechanisms involving the expression of genes related to obesity and its comorbidities. Here we demonstrated that the mineral selenium might play an essential role in lipid oxidation via epigenetic and transcriptional regulation of the CPT1B gene in obesity.
Collapse
Affiliation(s)
- Lígia Moriguchi Watanabe
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil.
| | - Vanessa Aparecida Batista Pereira
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | - Natalia Yumi Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | - Marcela Augusta de Souza Pinhel
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil; Departament of Molecular Biology - São Jose do Rio Preto Medical School, Sao Jose do Rio Preto, São Paulo, Brazil
| | - Leticia Santana Wolf
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| | | | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, São Paulo, Brazil
| | - Isabella Harumi Yonehara Noma
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Vanessa Cristina Oliveira de Souza
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP/USP, Brazil
| | - Fernando Barbosa Júnior
- Department of Clinical and Toxicological Analyses and Bromatology, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, FCFRP/USP, Brazil
| | - Carla Barbosa Nonino
- Department of Health Sciences, Division of Nutrition and Metabolism, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil; Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, FMRP/USP, Brazil
| |
Collapse
|
7
|
Limonta G, Panti C, Fossi MC, Nardi F, Baini M. Exposure to virgin and marine incubated microparticles of biodegradable and conventional polymers modulates the hepatopancreas transcriptome of Mytilus galloprovincialis. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133819. [PMID: 38402680 DOI: 10.1016/j.jhazmat.2024.133819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Biodegradable polymers have been proposed as an alternative to conventional plastics to mitigate the impact of marine litter, but the research investigating their toxicity is still in its infancy. This study evaluates the potential ecotoxicological effects of both virgin and marine-incubated microparticles (MPs), at environmentally relevant concentration (0.1 mg/l), made of different biodegradable polymers (Polycaprolactone, Mater-Bi, cellulose) and conventional polymers (Polyethylene) on Mytilus galloprovincialis by using transcriptomics. This approach is increasingly being used to assess the effects of pollutants on organisms, obtaining data on numerous biological pathways simultaneously. Whole hepatopancreas de novo transcriptome sequencing was performed, individuating 972 genes differentially expressed across experimental groups compared to the control. Through the comparative transcriptomic profiling emerges that the preponderant effect is attributable to the marine incubation of MPs, especially for incubated polycaprolactone (731 DEGs). Mater-Bi and cellulose alter the smallest number of genes and biological processes in the mussel hepatopancreas. All microparticles, regardless of their polymeric composition, dysregulated innate immunity, and fatty acid metabolism biological processes. These findings highlight the necessity of considering the interactions of MPs with the environmental factors in the marine ecosystem when performing ecotoxicological evaluations. The results obtained contribute to fill current knowledge gaps regarding the potential environmental impacts of biodegradable polymers.
Collapse
Affiliation(s)
- Giacomo Limonta
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Cristina Panti
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| | - Maria Cristina Fossi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Nardi
- National Biodiversity Future Center (NBFC), Palermo, Italy; Department of Life Sciences, University of Siena, Via A. Moro, 2, Siena, Italy
| | - Matteo Baini
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli, 4, Siena, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
8
|
Ren P, Tong X, Li J, Jiang H, Liu S, Li X, Lai M, Yang W, Rong Y, Zhang Y, Jin J, Ma Y, Pan W, Fan HY, Zhang S, Zhang YL. CRL4 DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to prevent DNA hypermethylation and ensure normal transcription in growing oocytes. Cell Mol Life Sci 2024; 81:165. [PMID: 38578457 PMCID: PMC10997554 DOI: 10.1007/s00018-024-05185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024]
Abstract
The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.
Collapse
Affiliation(s)
- Peipei Ren
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiaomei Tong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Junjian Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Huifang Jiang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Siya Liu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiang Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Mengru Lai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yan Rong
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yingyi Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jiamin Jin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yerong Ma
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weiwei Pan
- Department of Cell Biology, College of Medicine, Jiaxing University, Jiaxing, 314001, China
| | - Heng-Yu Fan
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| | - Yin-Li Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
9
|
Oropeza D, Herrera PL. Glucagon-producing α-cell transcriptional identity and reprogramming towards insulin production. Trends Cell Biol 2024; 34:180-197. [PMID: 37626005 DOI: 10.1016/j.tcb.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/27/2023]
Abstract
β-Cell replacement by in situ reprogramming of non-β-cells is a promising diabetes therapy. Following the observation that near-total β-cell ablation in adult mice triggers the reprogramming of pancreatic α-, δ-, and γ-cells into insulin (INS)-producing cells, recent studies are delving deep into the mechanisms controlling adult α-cell identity. Systematic analyses of the α-cell transcriptome and epigenome have started to pinpoint features that could be crucial for maintaining α-cell identity. Using different transgenic and chemical approaches, significant advances have been made in reprogramming α-cells in vivo into INS-secreting cells in mice. The recent reprogramming of human α-cells in vitro is an important step forward that must now be complemented with a comprehensive molecular dissection of the mechanisms controlling α-cell identity.
Collapse
Affiliation(s)
- Daniel Oropeza
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Luis Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Sands M, Zhang X, Gal A, Laws M, Spinella M, Erdogan ZM, Irudayaraj J. Comparative hepatotoxicity of novel lithium bis(trifluoromethanesulfonyl)imide (LiTFSI, ie. HQ-115) and legacy Perfluorooctanoic acid (PFOA) in male mice: Insights into epigenetic mechanisms and pathway-specific responses. ENVIRONMENT INTERNATIONAL 2024; 185:108556. [PMID: 38461777 DOI: 10.1016/j.envint.2024.108556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Lithium Bis(trifluoromethanesulfonyl)imide (LiTFSI ie. HQ-115), a polymer electrolyte used in energy applications, has been detected in the environment, yet its health risks and environmental epigenetic effects remain unknown. This study aims to unravel the potential health risks associated with LiTFSI, investigate the role of DNA methylation-induced toxic mechanisms in its effects, and compare its hepatotoxic impact with the well-studied Perfluorooctanoic Acid (PFOA). Using a murine model, six-week-old male CD1 mice were exposed to 10 and 20 mg/kg/day of each chemical for 14 days as 14-day exposure and 1 and 5 mg/kg/day for 30 days as 30-day exposure. Results indicate that PFOA exposure induced significant hepatotoxicity, characterized by liver enlargement, and elevated serum biomarkers. In contrast, LiTFSI exposure showed lower hepatotoxicity, accompanied by mild liver injuries. Despite higher bioaccumulation of PFOA in serum, LiTFSI exhibited a similar range of liver concentrations compared to PFOA. Reduced Representative Bisulfite Sequencing (RRBS) analysis revealed distinct DNA methylation patterns between 14-day and 30-day exposure for the two compounds. Both LiTFSI and PFOA implicated liver inflammatory pathways and lipid metabolism. Transcriptional results showed that differentially methylated regions in both exposures are enriched with cancer/disease-related motifs. Furthermore, Peroxisome proliferator-activated receptor alpha (PPARα), a regulator of lipid metabolism, was upregulated in both exposures, with downstream genes indicating potential oxidative damages. Overall, LiTFSI exhibits distinct hepatotoxicity profiles, emphasizing the need for comprehensive assessment of emerging PFAS compounds.
Collapse
Affiliation(s)
- Mia Sands
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xing Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Arnon Gal
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Mary Laws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zeynep-Madak Erdogan
- Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carl Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the Hallmarks of Aging. Nutrients 2024; 16:496. [PMID: 38398820 PMCID: PMC10892939 DOI: 10.3390/nu16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium is an essential ion in the human body that regulates numerous physiological and pathological processes. Magnesium deficiency is very common in old age. Age-related chronic diseases and the aging process itself are frequently associated with low-grade chronic inflammation, called 'inflammaging'. Because chronic magnesium insufficiency has been linked to excessive generation of inflammatory markers and free radicals, inducing a chronic inflammatory state, we formerly hypothesized that magnesium inadequacy may be considered among the intermediaries helping us explain the link between inflammaging and aging-associated diseases. We show in this review evidence of the relationship of magnesium with all the hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled autophagy, dysbiosis, and chronic inflammation), which may positively affect the human healthspan. It is feasible to hypothesize that maintaining an optimal balance of magnesium during one's life course may turn out to be a safe and economical strategy contributing to the promotion of healthy aging. Future well-designed studies are necessary to further explore this hypothesis.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- School of Medicine, “Kore” University of Enna, 94100 Enna, Italy;
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
12
|
Wu D, Bi X, Chow KHM. Identification of female-enriched and disease-associated microglia (FDAMic) contributes to sexual dimorphism in late-onset Alzheimer's disease. J Neuroinflammation 2024; 21:1. [PMID: 38178204 PMCID: PMC10765928 DOI: 10.1186/s12974-023-02987-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is the most common form of dementia; it disproportionally affects women in terms of both incidence rates and severity of progression. The cellular and molecular mechanisms underlying this clinical phenomenon remain elusive and ill-defined. METHODS In-depth analyses were performed with multiple human LOAD single-nucleus transcriptome datasets to thoroughly characterize cell populations in the cerebral cortex. ROSMAP bulk human brain tissue transcriptome and DNA methylome datasets were also included for validation. Detailed assessments of microglial cell subpopulations and their relevance to sex-biased changes at the tissue level were performed. Clinical trait associations, cell evolutionary trajectories, and transcription regulon analyses were conducted. RESULTS The relative numbers of functionally defective microglia were aberrantly increased uniquely among affected females. Substratification of the microglia into different subtypes according to their transcriptomic signatures identified a group of female-enriched and disease-associated microglia (FDAMic), the numbers of which were positively associated with disease severity. Phenotypically, these cells exhibit transcriptomic signatures that support active proliferation, MHC class II autoantigen presentation and amyloid-β binding, but they are also likely defective in phagocytosis. FDAMic are likely evolved from female activated response microglia (ARMic) with an APOE4 background and compromised estrogen receptor (ER) signaling that is deemed to be active among most subtypes of microglia. CONCLUSION This study offered important insights at both the cellular and molecular levels into how ER signaling affects microglial heterogeneity and function. FDAMic are associated with more advanced pathologies and severe trends of cognitive decline. Their emergence could, at least in part, explain the phenomenon of greater penetrance of the APOE4 genotype found in females. The biases of FDAMic emergence toward female sex and APOE4 status may also explain why hormone replacement therapy is more effective in APOE4 carriers. The pathologic nature of FDAMic suggests that selective modulations of these cells may help to regain brain neuroimmune homeostasis, serving as a new target for future drug development.
Collapse
Affiliation(s)
- Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Kim Hei-Man Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
- Nexus of Rare Neurodegenerative Diseases, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
13
|
Lu S, Sun X, Tang H, Yu J, Wang B, Xiao R, Qu J, Sun F, Deng Z, Li C, Yang P, Yang Z, Rao B. Colorectal cancer with low SLC35A3 is associated with immune infiltrates and poor prognosis. Sci Rep 2024; 14:329. [PMID: 38172565 PMCID: PMC10764849 DOI: 10.1038/s41598-023-51028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
The expression level of SLC35A3 is associated with the prognosis of many cancers, but its role in colorectal cancer (CRC) is unclear. The purpose of our study was to elucidate the role of SLC35A3 in CRC. The expression levels of SLC35A3 in CRC were evaluated through tumor immune resource assessment (TIMER), The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC), Human Protein Atlas (HPA), qRT-PCR, and immunohistochemical evaluation. TCGA, GEO, and ICGC databases were used to analyze the diagnostic and prognostic value of SLC35A3 in CRC. A overall survival (OS) model was constructed and validated based on the expression level of SLC35A3 and multivariable analysis results. The cBioPortal tool was used to analyze SLC35A3 mutation in CRC. The UALCAN tool was used to analyze the promoter methylation level of SLC35A3 in colorectal cancer. In addition, the role of SLC35A3 in CRC was determined through GO analysis, KEGG analysis, gene set enrichment analysis (GSEA), immune infiltration analysis, and immune checkpoint correlation analysis. In vitro experiments validated the function of SLC35A3 in colorectal cancer cells. Compared with adjacent normal tissues and colonic epithelial cells, the expression of SLC35A3 was decreased in CRC tissues and CRC cell lines. Low expression of SLC35A3 was associated with N stage, pathological stage, and lymphatic infiltration, and it was unfavorable for OS, disease-specific survival (DSS), recurrence-free survival (RFS), and post-progression survival (PPS). According to the Receiver Operating Characteristic (ROC) analysis, SLC35A3 is a potential important diagnostic biomarker for CRC patients. The nomograph based on the expression level of SLC35A3 showed a better predictive model for OS than single prognostic factors and TNM staging. SLC35A3 has multiple types of mutations in CRC, and its promoter methylation level is significantly decreased. GO and KEGG analysis indicated that SLC35A3 may be involved in transmembrane transport protein activity, cell communication, and interaction with neurotransmitter receptors. GSEA revealed that SLC35A3 may be involved in energy metabolism, DNA repair, and cancer pathways. In addition, SLC35A3 was closely related to immune cell infiltration and immune checkpoint expression. Immunohistochemistry confirmed the positive correlation between SLC35A3 and helper T cell infiltration. In vitro experiments showed that overexpression of SLC35A3 inhibited the proliferation and invasion capability of colorectal cancer cells and promoted apoptosis. The results of this study indicate that decreased expression of SLC35A3 is closely associated with poor prognosis and immune cell infiltration in colorectal cancer, and it can serve as a promising independent prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Shuai Lu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Xibo Sun
- Department of Breast Surgery, The Second Affiliated Hospital of Shandong First Medical University, Shandong, 271000, China
| | - Huazhen Tang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Jinxuan Yu
- Zibo Central Hospital Affiliated to Binzhou Medical College, Zibo, 255020, China
| | - Bing Wang
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Ruixue Xiao
- Inner Mongolia Medical University, Hohhot, 010100, China
| | - Jinxiu Qu
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China
| | - Fang Sun
- The Fifth Medical Center of the General Hospital of the People's Liberation Army of China, Beijing, 100000, China
| | - Zhuoya Deng
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Cong Li
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China
| | - Penghui Yang
- The First Medical Center of Chinese, PLA General Hospital, Beijing, 100000, China.
| | - Zhenpeng Yang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Benqiang Rao
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Key Laboratory of Cancer Foods for Special Medical Purpose (FSMP) for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
14
|
Dutta S, Sivakumar KK, Erwin JW, Stanley JA, Arosh JA, Taylor RJ, Banu SK. Alteration of epigenetic methyl and acetyl marks by postnatal chromium(VI) exposure causes apoptotic changes in the ovary of the F1 offspring. Reprod Toxicol 2024; 123:108492. [PMID: 37931768 DOI: 10.1016/j.reprotox.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023]
Abstract
Hexavalent chromium, Cr(VI), is a heavy metal endocrine disruptor used widely in various industries worldwide and is considered a reproductive toxicant. Our previous studies demonstrated that lactational exposure to Cr(VI) caused follicular atresia, disrupted steroid hormone biosynthesis and signaling, and delayed puberty. However, the underlying mechanism was unknown. The current study investigated the effects of Cr(VI) exposure (25 ppm) during postnatal days 1-21 via dam's milk on epigenetic alterations in the ovary of F1 offspring. Data indicated that Cr(VI) disrupted follicle development and caused apoptosis by increasing DNMT3a /3b and histone methyl marks (H3K27me3 and H3K9me3) along with decreasing histone acetylation marks (H3K9ac and H3K27ac). Our study demonstrates that exposure to Cr(VI) causes changes in the epigenetic marks, partially contributing to the transcriptional repression of genes regulating ovarian development, cell proliferation (PCNA), cell survival (BCL-XL and BCL-2), and activation of genes regulating apoptosis (AIF and cleaved caspase-3), resulting in follicular atresia. The current study suggests a role for epigenetics in Cr(VI)-induced ovotoxicity and infertility.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Kirthiram K Sivakumar
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - John W Erwin
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Jone A Stanley
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Joe A Arosh
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA
| | - Robert J Taylor
- Trace Element Research Laboratory, VIBS, CVMBS, Texas A& M University, College Station, TX 77843, USA
| | - Sakhila K Banu
- Department of Veterinary Integrative Biosciences (VIBS), College of Veterinary Medicine & Biomedical Sciences (CVMBS), Texas A& M University, College Station, TX 77843, USA.
| |
Collapse
|
15
|
Switzer CH. Non-canonical nitric oxide signalling and DNA methylation: Inflammation induced epigenetic alterations and potential drug targets. Br J Pharmacol 2023. [PMID: 38116806 DOI: 10.1111/bph.16302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023] Open
Abstract
DNA methylation controls DNA accessibility to transcription factors and other regulatory proteins, thereby affecting gene expression and hence cellular identity and function. As epigenetic modifications control the transcriptome, epigenetic dysfunction is strongly associated with pathological conditions and ageing. The development of pharmacological agents that modulate the activity of major epigenetic proteins are in pre-clinical development and clinical use. However, recent publications have identified novel redox-based signalling pathways, and therefore novel drug targets, that may exert epigenetic effects. This review will discuss the recent developments in nitric oxide (NO) signalling on DNA methylation as well as potential epigenetic drug targets that have emerged from the intersection of inflammation/redox biology and epigenetic regulation.
Collapse
Affiliation(s)
- Christopher H Switzer
- William Harvey Research Institute, Barts & The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| |
Collapse
|
16
|
Baker MR, Lee AS, Rajadhyaksha AM. L-type calcium channels and neuropsychiatric diseases: Insights into genetic risk variant-associated genomic regulation and impact on brain development. Channels (Austin) 2023; 17:2176984. [PMID: 36803254 PMCID: PMC9980663 DOI: 10.1080/19336950.2023.2176984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/01/2023] [Indexed: 02/21/2023] Open
Abstract
Recent human genetic studies have linked a variety of genetic variants in the CACNA1C and CACNA1D genes to neuropsychiatric and neurodevelopmental disorders. This is not surprising given the work from multiple laboratories using cell and animal models that have established that Cav1.2 and Cav1.3 L-type calcium channels (LTCCs), encoded by CACNA1C and CACNA1D, respectively, play a key role in various neuronal processes that are essential for normal brain development, connectivity, and experience-dependent plasticity. Of the multiple genetic aberrations reported, genome-wide association studies (GWASs) have identified multiple single nucleotide polymorphisms (SNPs) in CACNA1C and CACNA1D that are present within introns, in accordance with the growing body of literature establishing that large numbers of SNPs associated with complex diseases, including neuropsychiatric disorders, are present within non-coding regions. How these intronic SNPs affect gene expression has remained a question. Here, we review recent studies that are beginning to shed light on how neuropsychiatric-linked non-coding genetic variants can impact gene expression via regulation at the genomic and chromatin levels. We additionally review recent studies that are uncovering how altered calcium signaling through LTCCs impact some of the neuronal developmental processes, such as neurogenesis, neuron migration, and neuron differentiation. Together, the described changes in genomic regulation and disruptions in neurodevelopment provide possible mechanisms by which genetic variants of LTCC genes contribute to neuropsychiatric and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madelyn R. Baker
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Andrew S. Lee
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, USA
| | - Anjali M. Rajadhyaksha
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, USA
- Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, USA
| |
Collapse
|
17
|
Smith ENL, Chandanathil M, Millis RM. Epigenetic Mechanisms in Obesity: Broadening Our Understanding of the Disease. Cureus 2023; 15:e47875. [PMID: 37899888 PMCID: PMC10612994 DOI: 10.7759/cureus.47875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 10/31/2023] Open
Abstract
Now recognized as more than just the result of overeating or the consumption of poor-quality foods, obesity is understood to be a multifactorial disease, strongly correlated with a variety of environment-gene interactions. In addressing the complex public health issue of obesity, medical practitioners, along with their allied healthcare counterparts, face the challenge of reducing its prevalence by utilizing and sharing with patients the current, yet incomplete, scientific knowledge concerning the disease. While continued research is required to strengthen direct cause-effect relationships, substantial evidence links post-translational modifications such as DNA methylation and histone modifications of several candidate "obesity" genes to the predilection for obesity. Additional evidence supports the influence of maternal diet during the gestational period, individual diet, and other lifestyle and genetic factors in obesity. The purpose of this review is to synthesize the current information concerning epigenetic modifications that appear to support, or result from, the development of obesity. Such mechanisms may serve as therapeutic targets for developing novel prevention and/or treatment strategies for obesity or as epigenetic biomarkers for monitoring recovery.
Collapse
Affiliation(s)
- Erin N L Smith
- Graduate Studies, American University of Antigua, St. Johns, ATG
| | | | | |
Collapse
|
18
|
Yu Y, Wang S, Luo Y, Gu C, Shi X, Shen F. Quantitative Investigation of Methylation Heterogeneity by Digital Melting Curve Analysis on a SlipChip for Atrial Fibrillation. ACS Sens 2023; 8:3595-3603. [PMID: 37590470 DOI: 10.1021/acssensors.3c01309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Methylation is an essential epigenetic modification involved in regulating gene expression and maintaining genome stability. Methylation patterns can be heterogeneous, exhibiting variations in both level and density. However, current methods of methylation analysis, including sequencing, methylation-specific PCR, and high-resolution melting curve analysis (HRM), face limitations of high cost, time-consuming workflows, and the difficulty of both accurate heterogeneity analysis and precise quantification. Here, a droplet array SlipChip-based (da-SlipChip-based) digital melting curve analysis (MCA) method was developed for the accurate quantification of both methylation level (ratio of methylated molecules to total molecules) and methylation density (ratio of methylated CpG sites to total CpG sites). The SlipChip-based digital MCA system supplements an in situ thermal cycler with a fluorescence imaging module for real-time MCA. The da-SlipChip can generate 10,656 droplets of 1 nL each, which can be separated into four lanes, enabling the simultaneous analysis of four samples. This method's clinical application was demonstrated by analyzing samples from ten healthy individuals and twenty patients with atrial fibrillation (AF), the most common arrhythmia. This method can distinguish healthy individuals from those with AF of both the paroxysmal and persistent types. It also holds potential for broader application in various research and clinical settings requiring methylation analysis.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Sheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
19
|
Martinez CA, Marteinsdottir I, Josefsson A, Sydsjö G, Theodorsson E, Rodriguez-Martinez H. Epigenetic modifications appear in the human placenta following anxiety and depression during pregnancy. Placenta 2023; 140:72-79. [PMID: 37549439 DOI: 10.1016/j.placenta.2023.07.298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
INTRODUCTION The future health of the offspring can be influenced by longstanding maternal anxiety and depression disorders during pregnancy. The present study aimed to explore the effect of psychiatric disorders during pregnancy on placental epigenetics. METHODS We measured DNA methylation patterns in term-placentas of women either suffering longstanding anxiety and depression symptoms (Index group, with overt symptoms), or a healthy population (Control, none/only mild symptoms). Whole genome DNA methylation profiling was performed using the TruSeq® Methyl Capture EPIC Library Prep Kit (Illumina, San Diego, CA, USA) for library preparation and NGS technology for genomic DNA sequencing. RESULTS The results of high-throughput DNA methylation analysis revealed that the Index group had differential DNA methylation at epigenome-wide significance (p < 0.05) in 226 genes in the placenta. Targeted enrichment analyses identified hypermethylation of genes associated with psychiatric disorders (BRINP1, PUM1), and ion homeostasis (COMMD1), among others. The ECM (extracellular matrix)-receptor interaction pathway was significantly dysregulated in the Index group compared to the Control. In addition, DNA methylation/mRNA integration analyses revealed that four genes with key roles in neurodevelopment and other important processes (EPB41L4B, BMPR2, KLHL18, and UBAP2) were dysregulated at both, DNA methylation and transcriptome levels in the Index group compared to Control. DISCUSSION The presented results increase our understanding of how maternal psychiatric disorders may affect the newborn through placental differential epigenome, suggesting DNA methylation status as a biomarker when aiming to design new preventive techniques and interventions.
Collapse
Affiliation(s)
- Cristina A Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 , Linköping, Sweden; Department of Animal Reproduction, National Institute for Agriculture and Food Research and Technology (CSIC-INIA), Ctra de la Coruña KM 5.9, 28040, Madrid, Spain.
| | - Ina Marteinsdottir
- Department of Medicine and Optometry, Faculty of Health and Life Sciences, Linnaeus University, Hus Vita, Kalmar, 43157, Sweden.
| | - Ann Josefsson
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 , Linköping, Sweden.
| | - Gunilla Sydsjö
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 , Linköping, Sweden.
| | - Elvar Theodorsson
- Department of Biomedical and Clinical Sciences, Division of Clinical Chemistry and Pharmacology, Linköping University, Sweden.
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynaecology, Faculty of Medicine and Health Sciences, Linköping University, SE-58185 , Linköping, Sweden.
| |
Collapse
|
20
|
Chao CR, Slezak J, Siegmund K, Cannavale K, Shu Y, Chien GW, Chen X, Shi F, Song N, Van Den Eeden SK, Huang J. Genome-wide methylation profiling of diagnostic tumor specimens identified DNA methylation markers associated with metastasis among men with untreated localized prostate cancer. Cancer Med 2023; 12:18837-18849. [PMID: 37694549 PMCID: PMC10557825 DOI: 10.1002/cam4.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND We used a genome-wide discovery approach to identify methylation markers associated with metastasis in men with localized prostate cancer (PCa), as better identification of those at high risk of metastasis can inform treatment decision-making. METHODS We identified men with localized PCa at Kaiser Permanente California (January 1, 1997-December 31, 2006) who did not receive curative treatment and followed them for 10 years to determine metastasis status. Cases were chart review-confirmed metastasis, and controls were matched using density sampling. We extracted DNA from the cancerous areas in the archived diagnostic tissue blocks. We used Illumina's Infinium MethylationEPIC BeadChip for methylation interrogation. We used conditional logistic regression and Bonferroni's correction to identify methylation markers associated with metastasis. In a separate validation cohort (2007), we evaluated the added predictive utility of the methylation score beyond clinical risk score. RESULTS Among 215 cases and 404 controls, 31 CpG sites were significantly associated with metastasis status. Adding the methylation score to the clinical risk score did not meaningfully improve the c-statistic (0.80-0.81) in the validation cohort, though the score itself was statistically significant (p < 0.01). In the validation cohort, both clinical risk score alone and methylation marker score alone are well calibrated for predicted 10-year metastasis risks. Adding the methylation score to the clinical risk score only marginally improved predictive risk calibration. CONCLUSION Our findings do not support the use of these markers to improve clinical risk prediction. The methylation markers identified may inform novel hypothesis in the roles of these genetic regions in metastasis development.
Collapse
Affiliation(s)
- Chun R. Chao
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
- Department of Health Systems ScienceKaiser Permanente Bernard J Tyson School of MedicinePasadenaCaliforniaUSA
| | - Jeff Slezak
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Kimberly Siegmund
- Department of Population and Public Health Sciences, USC Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimberly Cannavale
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Yu‐Hsiang Shu
- Department of Research and EvaluationKaiser Permanente Southern CaliforniaPasadenaCaliforniaUSA
| | - Gary W. Chien
- Department of Urology, Los Angeles Medical CenterKaiser Permanente Southern CaliforniaLos AngelesCaliforniaUSA
| | - Xu‐Feng Chen
- Department of Pathology, School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| | - Feng Shi
- Department of Pathology, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Nan Song
- Department of Urology Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | | | - Jiaoti Huang
- Department of Pathology, School of MedicineDuke UniversityDurhamNorth CarolinaUSA
| |
Collapse
|
21
|
Tsalenchuk M, Gentleman SM, Marzi SJ. Linking environmental risk factors with epigenetic mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:123. [PMID: 37626097 PMCID: PMC10457362 DOI: 10.1038/s41531-023-00568-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease, with a complex risk structure thought to be influenced by interactions between genetic variants and environmental exposures, although the full aetiology is unknown. Environmental factors, including pesticides, have been reported to increase the risk of developing the disease. Growing evidence suggests epigenetic changes are key mechanisms by which these environmental factors act upon gene regulation, in disease-relevant cell types. We present a systematic review critically appraising and summarising the current body of evidence of the relationship between epigenetic mechanisms and environmental risk factors in PD to inform future research in this area. Epigenetic studies of relevant environmental risk factors in animal and cell models have yielded promising results, however, research in humans is just emerging. While published studies in humans are currently relatively limited, the importance of the field for the elucidation of molecular mechanisms of pathogenesis opens clear and promising avenues for the future of PD research. Carefully designed epidemiological studies carried out in PD patients hold great potential to uncover disease-relevant gene regulatory mechanisms. Therefore, to advance this burgeoning field, we recommend broadening the scope of investigations to include more environmental exposures, increasing sample sizes, focusing on disease-relevant cell types, and recruiting more diverse cohorts.
Collapse
Affiliation(s)
- Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
22
|
Li XH, Sun MH, Jiang WJ, Zhou D, Lee SH, Heo G, Chen Z, Cui XS. ZSCAN4 Regulates Zygotic Genome Activation and Telomere Elongation in Porcine Parthenogenetic Embryos. Int J Mol Sci 2023; 24:12121. [PMID: 37569497 PMCID: PMC10418334 DOI: 10.3390/ijms241512121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc finger and SCAN domain-containing 4 (ZSCAN4), a DNA-binding protein, maintains telomere length and plays a key role in critical aspects of mouse embryonic stem cells, including maintaining genomic stability and defying cellular senescence. However, the effect of ZSCAN4 in porcine parthenogenetic embryos remains unclear. To investigate the function of ZSCAN4 and the underlying mechanism in porcine embryo development, ZSCAN4 was knocked down via dsRNA injection in the one-cell stage. ZSCAN4 was highly expressed in the four- and five- to eight-cell stages in porcine embryos. The percentage of four-cell stage embryos, five- to eight-cell stage embryos, and blastocysts was lower in the ZSCAN4 knockdown group than in the control group. Notably, depletion of ZSCAN4 induced the protein expression of DNMT1 and 5-Methylcytosine (5mC, a methylated form of the DNA base cytosine) in the four-cell stage. The H3K27ac level and ZGA genes expression decreased following ZSCAN4 knockdown. Furthermore, ZSCAN4 knockdown led to DNA damage and shortened telomere compared with the control. Additionally, DNMT1-dsRNA was injected to reduce DNA hypermethylation in ZSCAN4 knockdown embryos. DNMT1 knockdown rescued telomere shortening and developmental defects caused by ZSCAN4 knockdown. In conclusion, ZSCAN4 is involved in the regulation of transcriptional activity and is essential for maintaining telomere length by regulating DNMT1 expression in porcine ZGA.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ming-Hong Sun
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Wen-Jie Jiang
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dongjie Zhou
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Geun Heo
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
23
|
Abbas F, Zhou Y, O'Neill Rothenberg D, Alam I, Ke Y, Wang HC. Aroma Components in Horticultural Crops: Chemical Diversity and Usage of Metabolic Engineering for Industrial Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091748. [PMID: 37176806 PMCID: PMC10180852 DOI: 10.3390/plants12091748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023]
Abstract
Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering's potential for enhancing terpenoids volatile production at the industrial level.
Collapse
Affiliation(s)
- Farhat Abbas
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yiwei Zhou
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China
| | - Dylan O'Neill Rothenberg
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Intikhab Alam
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yanguo Ke
- College of Economics and Management, College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University, Kunming 650214, China
| | - Hui-Cong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
24
|
Uribe-Etxebarria V, Pineda JR, García-Gallastegi P, Agliano A, Unda F, Ibarretxe G. Notch and Wnt Signaling Modulation to Enhance DPSC Stemness and Therapeutic Potential. Int J Mol Sci 2023; 24:ijms24087389. [PMID: 37108549 PMCID: PMC10138690 DOI: 10.3390/ijms24087389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
The Dental Pulp of permanent human teeth is home to stem cells with remarkable multilineage differentiation ability: human Dental Pulp Stem Cells (DPSCs). These cells display a very notorious expression of pluripotency core factors, and the ability to give rise to mature cell lineages belonging to the three embryonic layers. For these reasons, several researchers in the field have long considered human DPSCs as pluripotent-like cells. Notably, some signaling pathways such as Notch and Wnt contribute to maintaining the stemness of these cells through a complex network involving metabolic and epigenetic regulatory mechanisms. The use of recombinant proteins and selective pharmacological modulators of Notch and Wnt pathways, together with serum-free media and appropriate scaffolds that allow the maintenance of the non-differentiated state of hDPSC cultures could be an interesting approach to optimize the potency of these stem cells, without a need for genetic modification. In this review, we describe and integrate findings that shed light on the mechanisms responsible for stemness maintenance of hDPSCs, and how these are regulated by Notch/Wnt activation, drawing some interesting parallelisms with pluripotent stem cells. We summarize previous work on the stem cell field that includes interactions between epigenetics, metabolic regulations, and pluripotency core factor expression in hDPSCs and other stem cell types.
Collapse
Affiliation(s)
| | - Jose Ramon Pineda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Achucarro Basque Center for Neuroscience Fundazioa Leioa, Sede Building, 3rd Floor, 48940 Leioa, Spain
| | - Patricia García-Gallastegi
- Physiology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Alice Agliano
- Division of Radiotherapy and Imaging, Cancer Research UK Cancer Imaging Centre, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SW7 3RP, UK
- Department of Materials and Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Fernando Unda
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Gaskon Ibarretxe
- Cell Biology and Histology Department, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| |
Collapse
|
25
|
Jesenko T, Brezar SK, Cemazar M, Biasin A, Tierno D, Scaggiante B, Grassi M, Grassi C, Dapas B, Truong NH, Abrami M, Zanconati F, Bonazza D, Rizzolio F, Parisi S, Pastorin G, Grassi G. Targeting Non-Coding RNAs for the Development of Novel Hepatocellular Carcinoma Therapeutic Approaches. Pharmaceutics 2023; 15:pharmaceutics15041249. [PMID: 37111734 PMCID: PMC10145575 DOI: 10.3390/pharmaceutics15041249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.
Collapse
Affiliation(s)
- Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, I-34149 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 70000, Vietnam
| | - Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, I-33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
| | - Salvatore Parisi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34149 Trieste, Italy
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| |
Collapse
|
26
|
Rausch T, Snajder R, Leger A, Simovic M, Giurgiu M, Villacorta L, Henssen AG, Fröhling S, Stegle O, Birney E, Bonder MJ, Ernst A, Korbel JO. Long-read sequencing of diagnosis and post-therapy medulloblastoma reveals complex rearrangement patterns and epigenetic signatures. CELL GENOMICS 2023; 3:100281. [PMID: 37082141 PMCID: PMC10112291 DOI: 10.1016/j.xgen.2023.100281] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/14/2022] [Accepted: 02/22/2023] [Indexed: 04/22/2023]
Abstract
Cancer genomes harbor a broad spectrum of structural variants (SVs) driving tumorigenesis, a relevant subset of which escape discovery using short-read sequencing. We employed Oxford Nanopore Technologies (ONT) long-read sequencing in a paired diagnostic and post-therapy medulloblastoma to unravel the haplotype-resolved somatic genetic and epigenetic landscape. We assembled complex rearrangements, including a 1.55-Mbp chromothripsis event, and we uncover a complex SV pattern termed templated insertion (TI) thread, characterized by short (mostly <1 kb) insertions showing prevalent self-concatenation into highly amplified structures of up to 50 kbp in size. TI threads occur in 3% of cancers, with a prevalence up to 74% in liposarcoma, and frequent colocalization with chromothripsis. We also perform long-read-based methylome profiling and discover allele-specific methylation (ASM) effects, complex rearrangements exhibiting differential methylation, and differential promoter methylation in cancer-driver genes. Our study shows the advantage of long-read sequencing in the discovery and characterization of complex somatic rearrangements.
Collapse
Affiliation(s)
- Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), GeneCore, Heidelberg, Germany
| | - Rene Snajder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty for Biosciences, Heidelberg University, Heidelberg, Germany
- HIDSS4Health, Helmholtz Information and Data Science School for Health, Heidelberg, Germany
| | - Adrien Leger
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Milena Simovic
- Group “Genome Instability in Tumors,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mădălina Giurgiu
- Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and Charité-Universitätsmedizin, Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Laura Villacorta
- European Molecular Biology Laboratory (EMBL), GeneCore, Heidelberg, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin, Berlin, Germany
- Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center (MDC) and Charité-Universitätsmedizin, Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan Fröhling
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Ewan Birney
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Marc Jan Bonder
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurelie Ernst
- Group “Genome Instability in Tumors,” German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan O. Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Bridging Research Division on Mechanisms of Genomic Variation and Data Science, DKFZ, Heidelberg, Germany
| |
Collapse
|
27
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
28
|
Montanaro M, Agostini M, Anemona L, Bonanno E, Servadei F, Finazzi Agrò E, Asimakopoulos AD, Ganini C, Cipriani C, Signoretti M, Bove P, Rugolo F, Imperiali B, Melino G, Mauriello A, Scimeca M. ZNF750: A Novel Prognostic Biomarker in Metastatic Prostate Cancer. Int J Mol Sci 2023; 24:ijms24076519. [PMID: 37047491 PMCID: PMC10095592 DOI: 10.3390/ijms24076519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
Prostate cancer is the most frequently diagnosed cancer and the fifth leading cause of cancer death among men in 2020. The clinical decision making for prostate cancer patients is based on the stratification of the patients according to both clinical and pathological parameters such as Gleason score and prostate-specific antigen levels. However, these tools still do not adequately predict patient outcome. The aim of this study was to investigate whether ZNF750 could have a role in better stratifying patients, identifying those with a higher risk of metastasis and with the poorest prognosis. The data reported here revealed that ZNF750 protein levels are reduced in human prostate cancer samples, and this reduction is even higher in metastatic samples. Interestingly, nuclear positivity is significantly reduced in patients with metastatic prostate cancer, regardless of both Gleason score and grade group. More importantly, the bioinformatics analysis indicates that ZNF750 expression is positively correlated with better prognosis. Overall, our findings suggest that nuclear expression of ZNF750 may be a reliable prognostic biomarker for metastatic prostate cancer, which lays the foundation for the development of new biological therapies.
Collapse
|
29
|
Xie L, Bai X, Zhang H, Qiu X, Jian H, Wang Q, Wang H, Feng D, Tang K, Yan H. Loss of Rose Fragrance under Chilling Stress Is Associated with Changes in DNA Methylation and Volatile Biosynthesis. Genes (Basel) 2023; 14:genes14030692. [PMID: 36980964 PMCID: PMC10048243 DOI: 10.3390/genes14030692] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Rose plants are widely cultivated as cut flowers worldwide and have economic value as sources of natural fragrance and flavoring. Rosa ‘Crimson Glory’, whose petals have a pleasant fragrance, is one of the most important cultivars of edible rose plants. Flower storage at low-temperature is widely applied in production to maintain quality; however, chilling results in a decrease in aromatic volatiles. To determine the molecular basis underlying the changes in aromatic volatile emissions, we investigated the changes in volatile compounds, DNA methylation patterns, and patterns of the transcriptome in response to chilling temperature. The results demonstrated that chilling roses substantially reduced aromatic volatile emissions. We found that these reductions were correlated with the changes in the methylation status of the promoters and genic regions of the genes involved in volatile biosynthesis. These changes mainly occurred for CHH (H = A, T, or C) which accounted for 51% of the total methylation. Furthermore, transcript levels of scent-related gene Germacrene D synthase (RhGDS), Nudix hydrolase 1 (RhNUDX1), and Phenylacetaldehyde reductase (RhPAR) of roses were strikingly depressed after 24 h at low-temperature and remained low-level after 24 h of recovery at 20 °C. Overall, our findings indicated that epigenetic regulation plays an important role in the chilling tolerance of roses and lays a foundation for practical significance in the production of edible roses.
Collapse
Affiliation(s)
- Limei Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Institute of Resource Plants, Yunnan University, Kunming 650000, China
| | - Xue Bai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Institute of Resource Plants, Yunnan University, Kunming 650000, China
| | - Hao Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xianqin Qiu
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qigang Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Huichun Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Dedang Feng
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- Correspondence: (K.T.); (H.Y.)
| | - Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
- National Engineering Research Center for Ornamental Horticulture, Kunming 650000, China
- Correspondence: (K.T.); (H.Y.)
| |
Collapse
|
30
|
Mortillo M, Marsit CJ. Select Early-Life Environmental Exposures and DNA Methylation in the Placenta. Curr Environ Health Rep 2023; 10:22-34. [PMID: 36469294 PMCID: PMC10152976 DOI: 10.1007/s40572-022-00385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
Abstract
PURPOSE OF REVIEW To summarize recent literature relating early-life environmental exposures on DNA methylation in the placenta, to identify how variation in placental methylation is regulated in an exposure-specific manner, and to encourage additional work in this area. RECENT FINDINGS Multiple studies have evaluated associations between prenatal environmental exposures and placental methylation in both gene-specific and epigenome-wide frameworks. Specific exposures lead to unique variability in methylation, and cross-exposure assessments have uncovered certain genes that demonstrate consistency in differential placental methylation. Exposure studies that assess methylation effects in a trimester-specific approach tend to find larger effects during the 1st trimester exposure. Earlier studies have more targeted gene-specific approaches to methylation, while later studies have shifted towards epigenome-wide, array-based approaches. Studies focusing on exposures such as air pollution, maternal smoking, environmental contaminants, and trace metals appear to be more abundant, while studies of socioeconomic adversity and circadian disruption are scarce but demonstrate remarkable effects. Understanding the impacts of early-life environmental exposures on placental methylation is critical to establishing the link between the maternal environment, epigenetic variation, and long-term health. Future studies into this field should incorporate repeated measures of exposure throughout pregnancy, in order to determine the critical windows in which placental methylation is most heavily affected. Additionally, the use of methylation-based scores and sequencing technology could provide important insights into epigenetic gestational age and uncovering more genomic regions where methylation is affected. Studies examining the impact of other exposures on methylation, including pesticides, alcohol, and other chemicals are also warranted.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA.
| |
Collapse
|
31
|
Carvalho JO, Oliveira Neto JG, Silva Filho JG, de Sousa FF, Freire PTC, Santos AO, Façanha Filho PF. Physicochemical properties calculated using DFT method and changes of 5-methyluridine hemihydrate crystals at high temperatures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121594. [PMID: 35841856 DOI: 10.1016/j.saa.2022.121594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/13/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
5-methyluridine hemihydrate (5 mU) single crystals were synthesized by the slow solvent evaporation method. The physicochemical properties, such as frontier molecular orbitals, global reactivity indices and vibrational were computationally studied through density functional theory (DFT). In addition, structural, vibrational, and thermal properties were obtained by powder X-ray diffraction (PXRD), Raman spectroscopy, thermogravimetric (TG) analysis and differential scanning calorimetry (DSC). PXRD evaluated the structural behavior of 5 mU crystal in the temperature range of 300-460 K. The high-temperature PXRD results suggested that the crystal undergoes two dehydration processes, being a first occurring from the orthorhombic structure (P21212) to triclinic (P1), in which the water losses occurred around 380 K. A second dehydration triggers the change from the triclinic structure to monoclinic (P21) within the 420-435 K temperature range. Furthermore, after this temperature, the anhydrous 5 mU suffers a melting process near 460 K, which is remarkably characterized as an irreversible process. Raman spectroscopy was carried out to identify the vibrational modes linked to the water molecule and the noticeable changes in these bands due to high-temperature effects around 380 K and 410 K. Indeed, changes on Raman bands, such as intensity inversion, the disappearance of bands associated with the hydrogen bonds formed from the water molecules and uracil group, and the ribose group were observed. Finally, this study provided details on the structural and vibrational changes caused by the dehydration of 5 mU crystals and the importance of hydrogen bonds for understanding the intermolecular interactions of the 5 mU, a methylated nucleoside with important biological functions.
Collapse
Affiliation(s)
- Jhonatam O Carvalho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto Federal do Maranhão, Campus Açailândia, MA 65930-000, Brazil
| | - João G Oliveira Neto
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - José G Silva Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Francisco F de Sousa
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil; Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA 66075-110, Brazil
| | - Paulo T C Freire
- Departamento de Física, Universidade Federal do Ceará, Campus do Pici, Fortaleza, CE 60455-760, Brazil
| | - Adenilson O Santos
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil
| | - Pedro F Façanha Filho
- Centro de Ciências Sociais, Saúde e Tecnologia, CCSST, Universidade Federal do Maranhão, Imperatriz, MA 65900-410, Brazil.
| |
Collapse
|
32
|
Wei Z, Xie Y, Wei M, Zhao H, Ren K, Feng Q, Xu Y. New insights in ferroptosis: Potential therapeutic targets for the treatment of ischemic stroke. Front Pharmacol 2022; 13:1020918. [PMID: 36425577 PMCID: PMC9679292 DOI: 10.3389/fphar.2022.1020918] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/26/2022] [Indexed: 10/22/2023] Open
Abstract
Stroke is a common disease in clinical practice, which seriously endangers people's physical and mental health. The neurovascular unit (NVU) plays a key role in the occurrence and development of ischemic stroke. Different from other classical types of cell death such as apoptosis, necrosis, autophagy, and pyroptosis, ferroptosis is an iron-dependent lipid peroxidation-driven new form of cell death. Interestingly, the function of NVU and stroke development can be regulated by activating or inhibiting ferroptosis. This review systematically describes the NVU in ischemic stroke, provides a comprehensive overview of the regulatory mechanisms and key regulators of ferroptosis, and uncovers the role of ferroptosis in the NVU and the progression of ischemic stroke. We further discuss the latest progress in the intervention of ferroptosis as a therapeutic target for ischemic stroke and summarize the research progress and regulatory mechanism of ferroptosis inhibitors on stroke. In conclusion, ferroptosis, as a new form of cell death, plays a key role in ischemic stroke and is expected to become a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, Harbin, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, Basic Medical College, Henan University of Science and Technology, Luoyang, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province Research Center for Kidney Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
DNA Methylation in Regulatory T Cell Differentiation and Function: Challenges and Opportunities. Biomolecules 2022; 12:biom12091282. [PMID: 36139121 PMCID: PMC9496199 DOI: 10.3390/biom12091282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
As a bona fide epigenetic marker, DNA methylation has been linked to the differentiation and function of regulatory T (Treg) cells, a subset of CD4 T cells that play an essential role in maintaining immune homeostasis and suppressing autoimmunity and antitumor immune response. DNA methylation undergoes dynamic regulation involving maintenance of preexisting patterns, passive and active demethylation, and de novo methylation. Scattered evidence suggests that these processes control different stages of Treg cell lifespan ranging from lineage induction to cell fate maintenance, suppression of effector T cells and innate immune cells, and transdifferentiation. Despite significant progress, it remains to be fully explored how differential DNA methylation regulates Treg cell fate and immunological function. Here, we review recent progress and discuss the questions and challenges for further understanding the immunological roles and mechanisms of dynamic DNA methylation in controlling Treg cell differentiation and function. We also explore the opportunities that these processes offer to manipulate Treg cell suppressive function for therapeutic purposes by targeting DNA methylation.
Collapse
|
34
|
Wang T, Li L, Yue Y, Liu X, Chen S, Shen T, Xu Z, Yuan Y. The interaction of P11 methylation and early-life stress impacts the antidepressant response in patients with major depressive disorder. J Affect Disord 2022; 312:128-135. [PMID: 35752218 DOI: 10.1016/j.jad.2022.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE The present research investigates the influence of P11 gene DNA methylation combined with life stress on the response to antidepressants in the first two weeks. METHODS A total of 291 Han Chinese patients with major depressive disorder and 100 healthy controls were included. The Life Events Scale and the Childhood Trauma Questionnaire were used to assess stress. The primary endpoint was the Hamilton Depression Rating Scale-17 reduction rate after two weeks of treatment. The Illumina HiSeq Platform was used to detect the methylation of 74 CpG sites of the P11 gene in peripheral blood samples. RESULTS The mean methylation of all P11 CpG sites, as well as the methylation at 4 CpG sites (P11-2-169, P11-2-192, P11-2-202, P11-2-204), were significantly higher in patients with MDD than in healthy controls (FDR-corrected P < 0.05). The response to antidepressants was associated with the following interactions: the CTQ score and P11-3-185 site methylation (OR = 0.297, FDR-corrected P = 0.023), the CTQ physical neglect score and P11-2-117 site methylation (OR = 0.005, FDR-corrected P = 0.033), and the CTQ emotional abuse score and P11-3-185 site methylation (OR = 0.001, FDR-corrected P = 0.023). CONCLUSIONS The methylation of the P11 gene was significantly higher in patients with major depressive disorder. The interaction of P11 DNA methylation and early-life stress may influence the short-term antidepressant treatment response.
Collapse
Affiliation(s)
- Tianyu Wang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Lei Li
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China; Department of Sleep Medicine, The Fourth People's Hospital of Lianyungang, Lianyungang 222000, PR China
| | - Yingying Yue
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Xiaoyun Liu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Suzhen Chen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China.
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, PR China; Jiangsu Provincial Key Laboratory of Critical Care Medicine, Southeast university, Nanjing 210009, PR China.
| |
Collapse
|
35
|
Alimohammadi M, Makaremi S, Rahimi A, Asghariazar V, Taghadosi M, Safarzadeh E. DNA methylation changes and inflammaging in aging-associated diseases. Epigenomics 2022; 14:965-986. [PMID: 36043685 DOI: 10.2217/epi-2022-0143] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aging as an inevitable phenomenon is associated with pervasive changes in physiological functions. There is a relationship between aging and the increase of several chronic diseases. Most age-related disorders are accompanied by an underlying chronic inflammatory state, as demonstrated by local infiltration of inflammatory cells and greater levels of proinflammatory cytokines in the bloodstream. Within inflammaging, many epigenetic events, especially DNA methylation, change. During the aging process, due to aberrations of DNA methylation, biological processes are disrupted, leading to the emergence or progression of a variety of human diseases, including cancer, neurodegenerative disorders, cardiovascular disease and diabetes. The focus of this review is on DNA methylation, which is involved in inflammaging-related activities, and how its dysregulation leads to human disorders.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Shima Makaremi
- School of Medicine & Allied Medical Sciences, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, 5618985991, Iran
| | - Vahid Asghariazar
- Deputy of Research & Technology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Mahdi Taghadosi
- Department of Immunology, Kermanshah University of Medical Sciences, Kermanshah, 6714869914, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, & Immunology, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| |
Collapse
|
36
|
Alpoim-Moreira J, Fernandes C, Pimenta J, Bliebernicht M, Rebordão MR, Castelo-Branco P, Szóstek-Mioduchowska A, Skarzynski DJ, Ferreira-Dias G. Metallopeptidades 2 and 9 genes epigenetically modulate equine endometrial fibrosis. Front Vet Sci 2022; 9:970003. [PMID: 36032279 PMCID: PMC9412240 DOI: 10.3389/fvets.2022.970003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
Endometrium type I (COL1) and III (COL3) collagen accumulation, periglandular fibrosis and mare infertility characterize endometrosis. Metalloproteinase-2 (MMP-2), MMP-9 and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) are involved in collagen turnover. Since epigenetic changes may control fibroproliferative diseases, we hypothesized that epigenetic mechanisms could modulate equine endometrosis. Epigenetic changes can be reversed and therefore extremely promising for therapeutic use. Methylation pattern analysis of a particular gene zone is used to detect epigenetic changes. DNA methylation commonly mediates gene repression. Thus, this study aimed to evaluate if the transcription of some genes involved in equine endometrosis was altered with endometrial fibrosis, and if the observed changes were epigenetically modulated, through DNA methylation analysis. Endometrial biopsies collected from cyclic mares were histologically classified (Kenney and Doig category I, n = 6; category IIA, n = 6; category IIB, n = 6 and category III, n = 6). Transcription of COL1A1, COL1A2, COL3A1, MMP2, MMP9, TIMP1, and TIMP2 genes and DNA methylation pattern by pyrosequencing of COL1A1, MMP2, MMP9, TIMP1 genes were evaluated. Both MMP2 and MMP9 transcripts decreased with fibrosis, when compared with healthy endometrium (category I) (P < 0.05). TIMP1 transcripts were higher in category III, when compared to category I endometrium (P < 0.05). No differences were found for COL1A1, COL1A2, COL3A1 and TIMP2 transcripts between endometrial categories. There were higher methylation levels of (i) COL1A1 in category IIB (P < 0.05) and III (P < 0.01), when compared to category I; (ii) MMP2 in category III, when compared to category I (P < 0.001) and IIA (P < 0.05); and (iii) MMP9 in category III, when compared to category I and IIA (P < 0.05). No differences in TIMP1 methylation levels were observed between endometrial categories. The hypermethylation of MMP2 and MMP9, but not of COL1A1 genes, occurred simultaneously with a decrease in their mRNA levels, with endometrial fibrosis, suggesting that this hypermethylation is responsible for repressing their transcription. Our results show that endometrosis is epigenetically modulated by anti-fibrotic genes (MMP2 and MMP9) inhibition, rather than fibrotic genes activation and therefore, might be promising targets for therapeutic use.
Collapse
Affiliation(s)
- Joana Alpoim-Moreira
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Carina Fernandes
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
| | - Jorge Pimenta
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Unidade Estratégica de Investigação e Serviços de Biotecnologia e Recursos Genéticos (UEISBR), Instituto Nacional de Investigação Agrária e Veterinária, I. P. (INIAV), Vairão, Portugal
| | | | - Maria Rosa Rebordão
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- Polytechnic of Coimbra, Coimbra Agriculture School, Coimbra, Portugal
| | - Pedro Castelo-Branco
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Faro, Portugal
- Algarve Biomedical Center Research Institute (ABC-RI), Faro, Portugal
| | | | | | - Graça Ferreira-Dias
- CIISA - Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Lisbon, Portugal
- *Correspondence: Graça Ferreira-Dias
| |
Collapse
|
37
|
Ma Q, Oksenberg JR, Didonna A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann Clin Transl Neurol 2022; 9:1186-1194. [PMID: 35903875 PMCID: PMC9380165 DOI: 10.1002/acn3.51618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE ATXN1 encodes the polyglutamine protein ataxin-1, which we have demonstrated exerting an immunomodulatory function in the context of central nervous system (CNS) autoimmunity, in addition to its classical role in the neurodegenerative disorder spinocerebellar ataxia type 1 (SCA1). In this study, we dissected the contribution of DNA methylation to the regulation of ATXN1 in multiple sclerosis (MS). METHODS We interrogated a DNA methylation dataset previously generated via bisulfate DNA sequencing (BS-seq) in sorted peripheral immune cytotypes (CD4+ and CD8+ T cells, CD19+ B cells, and CD14+ monocytes) isolated from untreated MS patients at symptoms onset. RESULTS Here, we report that ATXN1 undergoes hypo-methylation at four distinct regions upon MS, exclusively in B cells. We also highlight how these differentially methylated sites overlap with other regulatory epigenetic marks and MS risk variants. Lastly, we employ luciferase assays to assess the functionality of these regions, showing that the loss of methylation leads to an increase in ATXN1 expression. INTERPRETATION Altogether, these findings provide biological insights into ataxin-1 regulation in the immune system as well as into the molecular mechanisms underlying MS risk.
Collapse
Affiliation(s)
- Qin Ma
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
| | - Alessandro Didonna
- Weill Institute for Neurosciences, Department of NeurologyUniversity of CaliforniaSan FranciscoCalifornia94158USA
- Department of Anatomy and Cell BiologyEast Carolina UniversityGreenvilleNorth Carolina27834USA
| |
Collapse
|
38
|
Hersh AM, Gaitsch H, Alomari S, Lubelski D, Tyler BM. Molecular Pathways and Genomic Landscape of Glioblastoma Stem Cells: Opportunities for Targeted Therapy. Cancers (Basel) 2022; 14:3743. [PMID: 35954407 PMCID: PMC9367289 DOI: 10.3390/cancers14153743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor of the central nervous system categorized by the World Health Organization as a Grade 4 astrocytoma. Despite treatment with surgical resection, adjuvant chemotherapy, and radiation therapy, outcomes remain poor, with a median survival of only 14-16 months. Although tumor regression is often observed initially after treatment, long-term recurrence or progression invariably occurs. Tumor growth, invasion, and recurrence is mediated by a unique population of glioblastoma stem cells (GSCs). Their high mutation rate and dysregulated transcriptional landscape augment their resistance to conventional chemotherapy and radiation therapy, explaining the poor outcomes observed in patients. Consequently, GSCs have emerged as targets of interest in new treatment paradigms. Here, we review the unique properties of GSCs, including their interactions with the hypoxic microenvironment that drives their proliferation. We discuss vital signaling pathways in GSCs that mediate stemness, self-renewal, proliferation, and invasion, including the Notch, epidermal growth factor receptor, phosphatidylinositol 3-kinase/Akt, sonic hedgehog, transforming growth factor beta, Wnt, signal transducer and activator of transcription 3, and inhibitors of differentiation pathways. We also review epigenomic changes in GSCs that influence their transcriptional state, including DNA methylation, histone methylation and acetylation, and miRNA expression. The constituent molecular components of the signaling pathways and epigenomic regulators represent potential sites for targeted therapy, and representative examples of inhibitory molecules and pharmaceuticals are discussed. Continued investigation into the molecular pathways of GSCs and candidate therapeutics is needed to discover new effective treatments for GBM and improve survival.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Hallie Gaitsch
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
- NIH Oxford-Cambridge Scholars Program, Wellcome—MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Daniel Lubelski
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (A.M.H.); (H.G.); (S.A.); (D.L.)
| |
Collapse
|
39
|
Singh K, Rustagi Y, Abouhashem AS, Tabasum S, Verma P, Hernandez E, Pal D, Khona DK, Mohanty SK, Kumar M, Srivastava R, Guda PR, Verma SS, Mahajan S, Killian JA, Walker LA, Ghatak S, Mathew-Steiner SS, Wanczyk K, Liu S, Wan J, Yan P, Bundschuh R, Khanna S, Gordillo GM, Murphy MP, Roy S, Sen CK. Genome-wide DNA hypermethylation opposes healing in chronic wound patients by impairing epithelial-to-mesenchymal transition. J Clin Invest 2022; 132:157279. [PMID: 35819852 PMCID: PMC9433101 DOI: 10.1172/jci157279] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
An extreme chronic wound tissue microenvironment causes epigenetic gene silencing. An unbiased whole-genome methylome was studied in the wound-edge tissue of patients with chronic wounds. A total of 4,689 differentially methylated regions (DMRs) were identified in chronic wound-edge skin compared with unwounded human skin. Hypermethylation was more frequently observed (3,661 DMRs) in the chronic wound-edge tissue compared with hypomethylation (1,028 DMRs). Twenty-six hypermethylated DMRs were involved in epithelial-mesenchymal transition (EMT). Bisulfite sequencing validated hypermethylation of a predicted specific upstream regulator TP53. RNA-Seq analysis was performed to qualify findings from methylome analysis. Analysis of the downregulated genes identified the TP53 signaling pathway as being significantly silenced. Direct comparison of hypermethylation and downregulated genes identified 4 genes, ADAM17, NOTCH, TWIST1, and SMURF1, that functionally represent the EMT pathway. Single-cell RNA-Seq studies revealed that these effects on gene expression were limited to the keratinocyte cell compartment. Experimental murine studies established that tissue ischemia potently induces wound-edge gene methylation and that 5′-azacytidine, inhibitor of methylation, improved wound closure. To specifically address the significance of TP53 methylation, keratinocyte-specific editing of TP53 methylation at the wound edge was achieved by a tissue nanotransfection-based CRISPR/dCas9 approach. This work identified that reversal of methylation-dependent keratinocyte gene silencing represents a productive therapeutic strategy to improve wound closure.
Collapse
Affiliation(s)
- Kanhaiya Singh
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Yashika Rustagi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Ahmed S Abouhashem
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Saba Tabasum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Priyanka Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Edward Hernandez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Durba Pal
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, India
| | - Dolly K Khona
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sujit K Mohanty
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Manishekhar Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Rajneesh Srivastava
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Poornachander R Guda
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sumit S Verma
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sanskruti Mahajan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jackson A Killian
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Logan A Walker
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Subhadip Ghatak
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Shomita S Mathew-Steiner
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Jun Wan
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, United States of America
| | - Pearlly Yan
- Comprehensive Cancer Center, Ohio State University, Columbus, United States of America
| | - Ralf Bundschuh
- Department of Physics, Ohio State University, Columbus, United States of America
| | - Savita Khanna
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Gayle M Gordillo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Michael P Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Sashwati Roy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| | - Chandan K Sen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, United States of America
| |
Collapse
|
40
|
Dobosz P, Stempor PA, Ramírez Moreno M, Bulgakova NA. Transcriptional and post-transcriptional regulation of checkpoint genes on the tumour side of the immunological synapse. Heredity (Edinb) 2022; 129:64-74. [PMID: 35459932 PMCID: PMC9273643 DOI: 10.1038/s41437-022-00533-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is a disease of the genome, therefore, its development has a clear Mendelian component, demonstrated by well-studied genes such as BRCA1 and BRCA2 in breast cancer risk. However, it is known that a single genetic variant is not enough for cancer to develop leading to the theory of multistage carcinogenesis. In many cases, it is a sequence of events, acquired somatic mutations, or simply polygenic components with strong epigenetic effects, such as in the case of brain tumours. The expression of many genes is the product of the complex interplay between several factors, including the organism's genotype (in most cases Mendelian-inherited), genetic instability, epigenetic factors (non-Mendelian-inherited) as well as the immune response of the host, to name just a few. In recent years the importance of the immune system has been elevated, especially in the light of the immune checkpoint genes discovery and the subsequent development of their inhibitors. As the expression of these genes normally suppresses self-immunoreactivity, their expression by tumour cells prevents the elimination of the tumour by the immune system. These discoveries led to the rapid growth of the field of immuno-oncology that offers new possibilities of long-lasting and effective treatment options. Here we discuss the recent advances in the understanding of the key mechanisms controlling the expression of immune checkpoint genes in tumour cells.
Collapse
Affiliation(s)
- Paula Dobosz
- Central Clinical Hospital of the Ministry of Interior Affairs and Administration in Warsaw, Warsaw, Poland
| | | | - Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield, UK.
| |
Collapse
|
41
|
Poursafa P, Kamali Z, Fraszczyk E, Boezen HM, Vaez A, Snieder H. DNA methylation: a potential mediator between air pollution and metabolic syndrome. Clin Epigenetics 2022; 14:82. [PMID: 35773726 PMCID: PMC9245491 DOI: 10.1186/s13148-022-01301-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 06/01/2022] [Indexed: 01/19/2023] Open
Abstract
Given the global increase in air pollution and its crucial role in human health, as well as the steep rise in prevalence of metabolic syndrome (MetS), a better understanding of the underlying mechanisms by which environmental pollution may influence MetS is imperative. Exposure to air pollution is known to impact DNA methylation, which in turn may affect human health. This paper comprehensively reviews the evidence for the hypothesis that the effect of air pollution on the MetS is mediated by DNA methylation in blood. First, we present a summary of the impact of air pollution on metabolic dysregulation, including the components of MetS, i.e., disorders in blood glucose, lipid profile, blood pressure, and obesity. Then, we provide evidence on the relation between air pollution and endothelial dysfunction as one possible mechanism underlying the relation between air pollution and MetS. Subsequently, we review the evidence that air pollution (PM, ozone, NO2 and PAHs) influences DNA methylation. Finally, we summarize association studies between DNA methylation and MetS. Integration of current evidence supports our hypothesis that methylation may partly mediate the effect of air pollution on MetS.
Collapse
Affiliation(s)
- Parinaz Poursafa
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Eliza Fraszczyk
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - H Marike Boezen
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ahmad Vaez
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
- Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
42
|
Grant OA, Wang Y, Kumari M, Zabet NR, Schalkwyk L. Characterising sex differences of autosomal DNA methylation in whole blood using the Illumina EPIC array. Clin Epigenetics 2022; 14:62. [PMID: 35568878 PMCID: PMC9107695 DOI: 10.1186/s13148-022-01279-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis. RESULTS We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1. CONCLUSION Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.
Collapse
Affiliation(s)
- Olivia A Grant
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK
| | - Yucheng Wang
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK
| | - Meena Kumari
- Institute of Social and Economic Research, University of Essex, Colchester, CO4 3SQ, UK
| | - Nicolae Radu Zabet
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
| | - Leonard Schalkwyk
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK.
| |
Collapse
|
43
|
Unlocking the potential of forensic traces: Analytical approaches to generate investigative leads. Sci Justice 2022; 62:310-326. [PMID: 35598924 DOI: 10.1016/j.scijus.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Forensic investigation involves gathering the information necessary to understand the criminal events as well as linking objects or individuals to an item, location or other individual(s) for investigative purposes. For years techniques such as presumptive chemical tests, DNA profiling or fingermark analysis have been of great value to this process. However, these techniques have their limitations, whether it is a lack of confidence in the results obtained due to cross-reactivity, subjectivity and low sensitivity; or because they are dependent on holding reference samples in a pre-existing database. There is currently a need to devise new ways to gather as much information as possible from a single trace, particularly from biological traces commonly encountered in forensic casework. This review outlines the most recent advancements in the forensic analysis of biological fluids, fingermarks and hair. Special emphasis is placed on analytical methods that can expand the information obtained from the trace beyond what is achieved in the usual practices. Special attention is paid to those methods that accurately determine the nature of the sample, as well as how long it has been at the crime scene, along with individualising information regarding the donor source of the trace.
Collapse
|
44
|
Wei T, Lin R, Fu X, Lu Y, Zhang W, Li Z, Zhang J, Wang H. Epigenetic regulation of the DNMT1/MT1G/KLF4/CA9 axis synergizes the anticancer effects of sorafenib in hepatocellular carcinoma. Pharmacol Res 2022; 180:106244. [DOI: 10.1016/j.phrs.2022.106244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 02/07/2023]
|
45
|
5-Azacytidine Downregulates the Proliferation and Migration of Hepatocellular Carcinoma Cells In Vitro and In Vivo by Targeting miR-139-5p/ROCK2 Pathway. Cancers (Basel) 2022; 14:cancers14071630. [PMID: 35406401 PMCID: PMC8996928 DOI: 10.3390/cancers14071630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/14/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary For hepatocellular carcinoma (HCC), the second most common cause of cancer-related death, effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to the development of HCC, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. However, despite the potential efficacy of 5-Aza in HCC, most of its mechanisms of action are still unknown. Here, we investigate the phenotypic/molecular effects of 5-Aza with a focus on miR-139-5p. Using multiple in vitro and in vivo models of HCC, we show for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn downregulates the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. These observations elucidate the mechanisms of action of 5-Aza in HCC, strengthen its therapeutic potential, and provide novel information about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/MMP-2 in HCC. Abstract Background: For hepatocellular carcinoma (HCC), effective therapeutic approaches are lacking. As aberrant gene methylation is a major contributor to HCC development, demethylating drugs such as 5-azacytidine (5-Aza) have been proposed. As most 5-Aza mechanisms of action are unknown, we investigated its phenotypic/molecular effects. Methods: 5-Aza effects were examined in the human HCC cell lines JHH-6/HuH-7 and in the rat cell-line N1-S1. We also employed a xenograft mouse model (HuH-7), a zebrafish model (JHH-6), and an orthotopic syngeneic rat model (N1-S1) of HCC. Results: 5-Aza downregulated cell viability/growth/migration/adhesion by upregulating miR-139-5p, which in turn downregulated ROCK2/cyclin D1/E2F1 and increased p27kip1, resulting in G1/G0 cell accumulation. Moreover, a decrease in cyclin B1 and an increase in p27kip1 led to G2/M accumulation. Finally, we observed a decrease in MMP-2 levels, a stimulator of HCC cell migration. Aza effects were confirmed in the mouse model; in the zebrafish model, we also demonstrated the downregulation of tumor neo-angiogenesis, and in the orthotopic rat model, we observed impaired N1-S1 grafting in a healthy liver. Conclusion: We demonstrate for the first time that 5-Aza can impair HCC development via upregulation of miR-139-5p, which in turn impairs the ROCK2/cyclin D1/E2F1/cyclin B1 pro-proliferative pathway and the ROCK2/MMP-2 pro-migratory pathway. Thus, we provide novel information about 5-Aza mechanisms of action and deepen the knowledge about the crosstalk among ROCK2/cyclin D1/E2F1/cyclin B1/p27kip1/MMP-2 in HCC.
Collapse
|
46
|
Menuhin-Gruman I, Arbel M, Amitay N, Sionov K, Naki D, Katzir I, Edgar O, Bergman S, Tuller T. Evolutionary Stability Optimizer (ESO): A Novel Approach to Identify and Avoid Mutational Hotspots in DNA Sequences While Maintaining High Expression Levels. ACS Synth Biol 2022; 11:1142-1151. [PMID: 34928133 PMCID: PMC8938948 DOI: 10.1021/acssynbio.1c00426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Modern
synthetic biology procedures rely on the ability to generate
stable genetic constructs that keep their functionality over long
periods of time. However, maintenance of these constructs requires
energy from the cell and thus reduces the host’s fitness. Natural
selection results in loss-of-functionality mutations that negate the
expression of the construct in the population. Current approaches
for the prevention of this phenomenon focus on either small-scale,
manual design of evolutionary stable constructs or the detection of
mutational sites with unstable tendencies. We designed the Evolutionary
Stability Optimizer (ESO), a software tool that enables the large-scale
automatic design of evolutionarily stable constructs with respect
to both mutational and epigenetic hotspots and allows users to define
custom hotspots to avoid. Furthermore, our tool takes the expression
of the input constructs into account by considering the guanine-cytosine
(GC) content and codon usage of the host organism, balancing the trade-off
between stability and gene expression, allowing to increase evolutionary
stability while maintaining the high expression. In this study, we
present the many features of the ESO and show that it accurately predicts
the evolutionary stability of endogenous genes. The ESO was created
as an easy-to-use, flexible platform based on the notion that directed
genetic stability research will continue to evolve and revolutionize
current applications of synthetic biology. The ESO is available at
the following link: https://www.cs.tau.ac.il/~tamirtul/ESO/.
Collapse
Affiliation(s)
- Itamar Menuhin-Gruman
- School of Mathematical Sciences, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Matan Arbel
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Niv Amitay
- School of Electrical Engineering, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Karin Sionov
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Doron Naki
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Itai Katzir
- Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Omer Edgar
- School of Medicine, The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Shaked Bergman
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
| | - Tamir Tuller
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel 6997801
- The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel 6997801
| |
Collapse
|
47
|
Singh Rawat B, Venkataraman R, Budhwar R, Tailor P. Methionine- and Choline-Deficient Diet Identifies an Essential Role for DNA Methylation in Plasmacytoid Dendritic Cell Biology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:881-897. [PMID: 35101891 DOI: 10.4049/jimmunol.2100763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Diet plays an important role in lifestyle disorders associated with the disturbed immune system. During the study of methionine- and choline-deficient diet-induced nonalcoholic fatty liver disease, we observed a specific decrease in the plasmacytoid dendritic cell (pDC) fraction from murine spleens. While delineating the role for individual components, we identified that l-methionine supplementation correlates with representation of the pDC fraction. S-adenosylmethionine (SAM) is a key methyl donor, and we demonstrate that supplementation of methionine-deficient medium with SAM but not homocysteine reverses the defect in pDC development. l-Methionine has been implicated in maintenance of methylation status in the cell. Based on our observed effect of SAM and zebularine on DC subset development, we sought to clarify the role of DNA methylation in pDC biology. Whole-genome bisulfite sequencing analysis from the splenic DC subsets identified that pDCs display differentially hypermethylated regions in comparison with classical DC (cDC) subsets, whereas cDC1 and cDC2 exhibited comparable methylated regions, serving as a control in our study. We validated differentially methylated regions in the sorted pDC, CD8α+ cDC1, and CD4+ cDC2 subsets from spleens as well as FL-BMDC cultures. Upon analysis of genes linked with differentially methylated regions, we identified that differential DNA methylation is associated with the MAPK pathway such that its inhibition guides DC development toward the pDC subtype. Overall, our study identifies an important role for methionine in pDC biology.
Collapse
Affiliation(s)
| | - Ramya Venkataraman
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India
| | - Roli Budhwar
- Bionivid Technology Private Ltd., Bengaluru, Karnataka, India; and
| | - Prafullakumar Tailor
- Laboratory of Innate Immunity, National Institute of Immunology, New Delhi, India;
- Special Centre for Systems Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
48
|
Vafeiadou V, Hany D, Picard D. Hyperactivation of MAPK Induces Tamoxifen Resistance in SPRED2-Deficient ERα-Positive Breast Cancer. Cancers (Basel) 2022; 14:954. [PMID: 35205702 PMCID: PMC8870665 DOI: 10.3390/cancers14040954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the number one cause of cancer-related mortality in women worldwide. Most breast tumors depend on the expression of the estrogen receptor α (ERα) for their growth. For this reason, targeting ERα with antagonists such as tamoxifen is the therapy of choice for most patients. Although initially responsive to tamoxifen, about 40% of the patients will develop resistance and ultimately a recurrence of the disease. Thus, finding new biomarkers and therapeutic approaches to treatment-resistant tumors is of high significance. SPRED2, an inhibitor of the MAPK signal transduction pathway, has been found to be downregulated in various cancers. In the present study, we found that SPRED2 is downregulated in a large proportion of breast-cancer patients. Moreover, the knockdown of SPRED2 significantly increases cell proliferation and leads to tamoxifen resistance of breast-cancer cells that are initially tamoxifen-sensitive. We found that resistance occurs through increased activation of the MAPKs ERK1/ERK2, which enhances the transcriptional activity of ERα. Treatment of SPRED2-deficient breast cancer cells with a combination of the ERK 1/2 inhibitor ulixertinib and 4-hydroxytamoxifen (4-OHT) can inhibit cell growth and proliferation and overcome the induced tamoxifen resistance. Taken together, these results indicate that SPRED2 may also be a tumor suppressor for breast cancer and that it is a key regulator of cellular sensitivity to 4-OHT.
Collapse
Affiliation(s)
- Vasiliki Vafeiadou
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| | - Dina Hany
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
- On leave from: Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria 21311, Egypt
| | - Didier Picard
- Département de Biologie Moléculaire et Cellulaire, Université de Genève, Sciences III, 1211 Genève 4, Switzerland; (V.V.); (D.H.)
| |
Collapse
|
49
|
Heppt MV, Wessely A, Hornig E, Kammerbauer C, Graf SA, Besch R, French LE, Matthies A, Kuphal S, Kappelmann-Fenzl M, Bosserhoff AK, Berking C. HDAC2 Is Involved in the Regulation of BRN3A in Melanocytes and Melanoma. Int J Mol Sci 2022; 23:ijms23020849. [PMID: 35055045 PMCID: PMC8778714 DOI: 10.3390/ijms23020849] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
The neural crest transcription factor BRN3A is essential for the proliferation and survival of melanoma cells. It is frequently expressed in melanoma but not in normal melanocytes or benign nevi. The mechanisms underlying the aberrant expression of BRN3A are unknown. Here, we investigated the epigenetic regulation of BRN3A in melanocytes and melanoma cell lines treated with DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) inhibitors. DNMT and HAT inhibition did not significantly alter BRN3A expression levels, whereas panHDAC inhibition by trichostatin A led to increased expression. Treatment with the isoform-specific HDAC inhibitor mocetinostat, but not with PCI-34051, also increased BRN3A expression levels, suggesting that class I HDACs HDAC1, HDAC2, and HDAC3, and class IV HDAC11, were involved in the regulation of BRN3A expression. Transient silencing of HDACs 1, 2, 3, and 11 by siRNAs revealed that, specifically, HDAC2 inhibition was able to increase BRN3A expression. ChIP-Seq analysis uncovered that HDAC2 inhibition specifically increased H3K27ac levels at a distal enhancer region of the BRN3A gene. Altogether, our data suggest that HDAC2 is a key epigenetic regulator of BRN3A in melanocytes and melanoma cells. These results highlight the importance of epigenetic mechanisms in regulating melanoma oncogenes.
Collapse
Affiliation(s)
- Markus V. Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-35747
| | - Anja Wessely
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| | - Eva Hornig
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Claudia Kammerbauer
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Saskia A. Graf
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Robert Besch
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Lars E. French
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (E.H.); (C.K.); (S.A.G.); (R.B.); (L.E.F.)
| | - Alexander Matthies
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | | | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.M.); (S.K.); (A.K.B.)
| | - Carola Berking
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (A.W.); (C.B.)
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
| |
Collapse
|
50
|
Ali MM, Naquiallah D, Qureshi M, Mirza MI, Hassan C, Masrur M, Bianco FM, Frederick P, Cristoforo GP, Gangemi A, Phillips SA, Mahmoud AM. DNA methylation profile of genes involved in inflammation and autoimmunity correlates with vascular function in morbidly obese adults. Epigenetics 2022; 17:93-109. [PMID: 33487124 PMCID: PMC8812729 DOI: 10.1080/15592294.2021.1876285] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity is a major risk factor for cardiovascular disease. Blood-detected epigenetic profiles may serve as non-invasive clinically relevant biomarkers. Therefore, we investigated DNA methylation of genes involved in inflammation in peripheral blood of obese subjects and lean controls and their correlation with cardiometabolic measurements. We obtained blood and adipose tissue (AT) samples from bariatric patients (n = 24) and control adults (n = 24). AT-isolated arterioles were tested for flow-induced dilation (FID) and production of nitric oxide (NO) and reactive oxygen species (ROS). Brachial artery flow-mediated dilation (FMD) was measured via doppler ultrasound. Promoter methylation of 94 genes involved in inflammation and autoimmunity were analysed in whole-blood DNA in relation to vascular function and cardiometabolic risk factors. 77 genes had ahigher methylated fraction in the controls compare obese subjects and 28 proinflammatory genes were significantly hypomethylated in the obese individuals; on top of these genes are CXCL1, CXCL12, CXCL6, IGF2BP2, HDAC4, IL12A, and IL17RA. Fifteen of these genes had significantly higher mRNA in obese subjects compared to controls; on top of these genes are CXCL6, TLR5, IL6ST, EGR1, IL15RA, and HDAC4. Methylation % inversely correlated with BMI, total fat %, visceral fat%, blood pressure, fasting plasma insulin, serum IL6 and C-reactive protein, arteriolar ROS, and alcohol consumption and positive correlations with lean %, HDL, plasma folate and vitamin B12, arteriolar FID and NO production, and brachial FMD. Our results suggest that vascular dysfunction in obese adults may be attributed to asystemic hypomethylation and over expression of the immune-related genes.
Collapse
Affiliation(s)
- Mohamed M. Ali
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Dina Naquiallah
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Maryam Qureshi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mohammed Imaduddin Mirza
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chandra Hassan
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mario Masrur
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco M. Bianco
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Patrice Frederick
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Antonio Gangemi
- Departments of Surgery, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shane A. Phillips
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Integrative Physiology Laboratory, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Abeer M. Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|