1
|
Ghaderi Nik M, Mahdavi R, Ghazi S, Gholami K. Efficacy of dietary supplementation with 1α-hydroxycholecalciferol on performance, eggshell quality, serum metabolites, jejunal morphology and bone characteristics of laying hens at the late stage of production. Poult Sci 2024; 104:104618. [PMID: 39637655 DOI: 10.1016/j.psj.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024] Open
Abstract
The present study evaluated the effects of 1α-hydroxycholecalciferol (1αOHD3) supplementation on performance, egg quality, gut morphology, serum metabolites, and bone characteristics of Lohman LSL-Lite laying hens. A total of 180 birds (110 weeks of age) were allocated according to a completely randomized design with five treatments. Each treatment had six replicates containing six hens each. The treatments consisted of basal diet with 2000 IU/kg vitamin D3, basal diet supplemented with 1.5, 3, 4.5, and 6 μg/kg of 1αOHD3. Results showed that dietary supplementation with 1αOHD3 increased the egg production (linear P = 0.002 and quadratic P = 0.009) and gross revenue (linear P = 0.042) whilst it decreased the abnormal eggs (linear P = 0.004 and quadratic P = 0.009) in aged laying hens. Similarly, it linearly and quadratically increased the shell thickness and eggshell strength (P < 0.001). Egg mass (linear P = 0.075) showed a tendency to increase with increasing dietary 1αOHD3 supplementation levels. The egg quality parameters, including Haugh unit, relative weight of albumen, yolk and eggshell were not affected by the treatments (P > 0.05). Furthermore, 1αOHD3 supplementation increased the serum levels of calcium (linear P = 0.003 and quadratic P = 0.011), albumin (linear P = 0.016 and quadratic P = 0.033), vitamin D (linear and quadratic P < 0.001), alanine aminotransferase activity (linear P = 0.02) whilst the addition of 1αOHD3 decreased alkaline phosphatase activity (linear P = 0.003 and quadratic P = 0.011), without affecting the serum levels of phosphorus and aspartate aminotransferase activity (P > 0.05) in laying hens. In addition, the linear tendency to increase was observed (linear P = 0.062) in total protein. Dietary supplementation of 1αOHD3 increased the tibia diameter (linear P = 0.053), tibia calcium (linear P = 0.004 and quadratic P = 0.014) and tibia strength (linear and quadratic P < 0.001). The addition of 1αOHD3 did not affect the phosphorus and ash of the tibia (P > 0.05). Linear and quadratic responses were found for crypt depth (linear and quadratic P = 0.001) and villus height to crypt depth ratio (linear P = 0.004 and quadratic P = 0.010). The experimental treatments did not affect the jejunal villus height, villus width and villus surface area in aged laying hens (P > 0.05). Our findings suggest that the inclusion of 1αOHD3 is beneficial, as it enhances egg production, profitability, eggshell thickness, and tibia quality while reducing the incidence of abnormal eggs during the later phase of egg production.
Collapse
Affiliation(s)
- Maryam Ghaderi Nik
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Reza Mahdavi
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Shahab Ghazi
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Kourosh Gholami
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Toral López J, Candia Tenopala C, Reyes Mosqueda AD, Fonseca Sánchez MÁ, González Huerta LM. A Novel Compound Nonsense Variant in CYP27B1 Causes an Atypical Form of Vitamin D-Dependent Rickets Type 1A: A Case Report of Two Siblings in a Mexican Family. Diseases 2024; 12:248. [PMID: 39452491 PMCID: PMC11506771 DOI: 10.3390/diseases12100248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Vitamin D-dependent rickets type 1A (VDDR1A) is a rare autosomal recessive disorder caused by pathogenic variants in the CYP27B1 gene, typically characterized by growth failure, rickets, leg bowing, fracture, seizures, hyperparathyroidism, hypocalcemia, high-alkaline phosphatase, high or normal 25(OH)D3, and low 1,25(OH)2D3. Methods: We studied two siblings in a Mexican family with an atypical form of VDDR1A. In addition to the typical features of VDDR1A, the proband showed cafe au lait spots, small teeth, and grayish sclera, with hypophosphatemia, normocalcemia, and normal 25(OH)D3; the proband's brother showed grayish sclera. The proband underwent next generation sequencing. Sanger sequencing was performed in the proband, his brother, the parents, and 100 healthy controls validate the detected variant. Results: Both brothers presented with a recurrent variant NM_000785.3; c.1319_1325dupCCCACCC and a novel nonsense variant NM_000785.3; c.227G>A in the CYP27B1 gene. Conclusions: Calcitriol treatment had a better response in proband´s younger brother. We describe the first Mexican family with an atypical form of VDDR1A associated with a novel nonsense variant, the results contribute to the phenotypic spectrum and increase the pool of pathogenic variants in CYP27B1. Data suggest that nonsense-truncating variants play a significant role in the severity of VDDR1A.
Collapse
Affiliation(s)
- Jaime Toral López
- Department of Medical Genetics, Centro Medico ISSEMYM Ecatepec, Ecatepec 55000, México State, Mexico;
| | - Cesar Candia Tenopala
- Department of Pediatric Endocrinology, Centro Medico ISSEMYM Ecatepec, Ecatepec 55000, México State, Mexico;
| | - Alix Daniela Reyes Mosqueda
- Department of Diagnostic and Therapeutic Imaging, Centro Medico ISSEMYM Ecatepec, Ecatepec 55000, México State, Mexico;
| | | | - Luz María González Huerta
- Laboratory of Molecular Biology, Section of Investigation, Department of Genetic, Hospital General de México “Dr. Eduardo Liceaga”, México City 06720, Mexico
| |
Collapse
|
3
|
Ramanarayanan P, Heine G, Worm M. Vitamin A and vitamin D induced nuclear hormone receptor activation and its impact on B cell differentiation and immunoglobulin production. Immunol Lett 2023; 263:80-86. [PMID: 37774987 DOI: 10.1016/j.imlet.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 10/01/2023]
Abstract
Vitamin A and vitamin D metabolites are ligands to nuclear receptors - namely RAR, RXR and VDR. The activation of these receptors in human B cells impacts B cell maturation and function. In this review, we discuss how 9-cis retinoic acid (9cRA) and 1,25-dihydroxyvitamin D3 (calcitriol) individually or in conjunction, signal through their nuclear receptors and thereby impact B cell differentiation, immunoglobulin class switching to IgA at the expense of IgE, and also B cell migration and homing. Impact of the vitamin metabolites individually on B cell survival factors are well elucidated, be it the regulation of BAFF and APRIL, the induction of TGF-β or suppression of NF-κB. Very little is known about the impact of 9cRA and calcitriol together on B cells. Recently our group revealed that 9cRA and calcitriol together in the context of the B cell differentiation, induces naïve B cell differentiation into IgA+ plasmablasts, the functional and underlying molecular regulations however require further investigation. In conclusion, the conjunctional impact of these nuclear receptor ligands on B cell functionality is important to better understand B cell dependent clinical outcomes in allergy and autoimmunity. Within this review, we hypothesize that a balance between both vitamins is of utmost importance to provide a robust humoral immune response and a better treatment of disorders characterised by dysregulated immune responses such as IgE-dependent allergy or autoimmunity such as lupus erythematosus.
Collapse
Affiliation(s)
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Kiel 24105, Germany
| | - Margitta Worm
- Deutsches Rheuma-Forschung Zentrum (DRFZ), Charitéplatz 1, Berlin 10117, Germany; Department of Dermatology, Venereology and Allergology, Charité University of Medicine, Charitéplatz 1, Berlin 10117, Germany.
| |
Collapse
|
4
|
Ozden A, Doneray H. The genetics and clinical manifestations of patients with vitamin D dependent rickets type 1A. J Pediatr Endocrinol Metab 2021; 34:781-789. [PMID: 33823104 DOI: 10.1515/jpem-2020-0691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Vitamin D dependent rickets type 1A (VDDR-1A) is a very rare autosomal recessive disorder caused by mutations in the CYP27B1, which encodes vitamin D 1α-hydroxylase. We report the genetics and clinical manifestations of nine patients with VDDR-1A and compare our patients to other cases with the same mutations in the literature. METHODS The clinical presentations, clinical and laboratory findings and treatment modalities of the patients were evaluated retrospectively. RESULTS The mean age of the patients at the time of diagnosis was 39.9 months (range: 4.5-111). At the time of diagnosis, six patients had received stoss vitamin D therapy. Clinical findings related to rickets were obvious in seven patients and unclear in two patients. Except for one case, all patients had laboratory findings of rickets. A novel variant and four previously reported mutations in CYP27B1 were identified. The mean calcitriol and elemental calcium dose were 45.5 ng/kg/day (range: 20-70) and 75.6 mg/kg/day (range: 45-125), respectively. CONCLUSIONS We found a novel compound heterozygous mutation consisting of a reported duplication [(p.F443Pfs*24 (c.1319_1325 dup CCCACCC)] in exon 8 and a novel deletion [p.D507Efs*34 (c.1521 delC)] in exon 9. Our study suggests that the clinical manifestations and laboratory findings of the patients with VDDR1A are variable even among the patients with the same mutation.
Collapse
Affiliation(s)
- Ayse Ozden
- Department of Pediatric Endocrinology, Erzurum Regional Training & Research Hospital, Erzurum, Turkey
| | - Hakan Doneray
- Department of Pediatric Endocrinology, Ataturk University Faculty of Medicine, Erzurum, Turkey
- Clinical Research Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| |
Collapse
|
5
|
Galuška D, Pácal L, Kaňková K. Pathophysiological Implication of Vitamin D in Diabetic Kidney Disease. Kidney Blood Press Res 2021; 46:152-161. [PMID: 33756482 DOI: 10.1159/000514286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/24/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Vitamin D is a hormone regulating not only calcium and phosphate homeostasis but also, at the same time, exerting many other extraskeletal functions via genomic effects (gene transcription) and probably by non-genomic effects as well. Availability is ensured by dietary intake of its precursors and by de novo production via sunlight. Yet, vitamin D deficiency and insufficiency are very common across the globe and are connected to many pathophysiological states, for example, diabetes mellitus, allergies, autoimmune diseases, pregnancy complications, and recently have also been associated with worse COVID-19 clinical outcomes. SUMMARY In this review, we summarize current knowledge about vitamin D metabolism in general, its role in diabetes mellitus (mainly type 2) and diabetic complications (mainly diabetic kidney disease), and potential therapeutic perspectives including vitamin D signalling as a druggable target. Key Messages: Vitamin D is not only a vitamin but also a hormone involved in many physiological processes. Its insufficiency or deficiency can lead to many pathological states.
Collapse
Affiliation(s)
- David Galuška
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia,
| | - Lukáš Pácal
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Kateřina Kaňková
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
6
|
Zou M, Guven A, BinEssa HA, Al-Rijjal RA, Meyer BF, Alzahrani AS, Shi Y. Molecular Analysis of CYP27B1 Mutations in Vitamin D-Dependent Rickets Type 1A: c.590G > A (p.G197D) Missense Mutation Causes a RNA Splicing Error. Front Genet 2020; 11:607517. [PMID: 33329754 PMCID: PMC7729158 DOI: 10.3389/fgene.2020.607517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/10/2020] [Indexed: 11/22/2022] Open
Abstract
Context Vitamin D-dependent rickets type 1A (VDDR1A) is a rare autosomal recessively inherited disorder due to loss-of-function mutations in the CYP27B1 gene. CYP27B1 encodes an enzyme of 25-hydroxyvitamin D-1α-hydroxylase for converting inactive 25-OHD to biologically active 1,25-(OH)2D. Objective To identify underlying genetic defects in patients with VDDR1A. Methods Twelve patients from 7 Turkish and 2 Saudi families were investigated. The coding exons and intron-exon boundaries of the CYP27B1 gene were amplified by Polymerase Chain Reaction (PCR) from peripheral lymphocyte DNA. PCR products were directly sequenced. The consequences of c.590G > A mutation were analyzed by in silico and functional analysis. Results CYP27B1 mutations were identified in all the patients. Two novel mutations were identified in two separate families: c.171delG (family 7) and c.398_400dupAAT (family 8). The intra-exon deletion of c.171delG resulted in a frameshift and premature stop codon 20 amino acids downstream from the mutation (p.L58Cfs∗20). The intra-exon duplication of c.398_400dupAAT generated a premature stop codon at the mutation site (p.W134∗). A missense c.590G > A (p.G197D) mutation was found in a patient from family 4 and caused a defect in pre-mRNA splicing. As a result, two populations of transcripts were detected: the majority of them with intron 3 retention (83%), and the minority (17%) being properly spliced transcripts with about 16% of wild-type enzymatic activity. The remaining nine patients from six families carried a previously reported c.1319_1325dupCCCACCC (F443Pfs∗24) mutation. Clinically, all the patients need continued calcitriol treatment, which was consistent with inactivation of 25-hydroxy vitamin D1α-hydroxylase activity. Conclusion Two novel frameshift CYP27B1 mutations were identified and predicted to inactivate 25-hydroxyvitamin D-1α-hydroxylase. The loss of enzymatic activity by c.590G > A missense mutation was mainly caused by aberrant pre-mRNA splicing.
Collapse
Affiliation(s)
- Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Ayla Guven
- Pediatric Endocrinology Clinic, Zeynep Kamil Women and Children Hospital, University of Health Science, Istanbul, Turkey
| | - Huda A BinEssa
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Roua A Al-Rijjal
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Brian F Meyer
- Pediatric Endocrinology Clinic, Zeynep Kamil Women and Children Hospital, University of Health Science, Istanbul, Turkey
| | - Ali S Alzahrani
- Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Saleh WMM, Ibrahim AA, Alkadhum ALhamed TA, Habib HN, Naeem RM, Alabada HKM, Abdulrasool AM. Efficacy of Oral Administration of a Reliable AD3E Treatment on Vitamin D3 Deficiency in Najdi Sheep. IOP CONFERENCE SERIES: MATERIALS SCIENCE AND ENGINEERING 2020; 928:062028. [DOI: 10.1088/1757-899x/928/6/062028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
This study was aimed to assess the efficacy of oral treatment of commercial product of vitamin D3 (VITOL-80 C ORAL®, Interchemie, Holland) in growing Najdi sheep suffering from musculoskeletal illness due to vitamin D3 deficiency in Basra province, Iraq. Using a Najdi sheep model bred in Iraq, here we focused on measuring the serum levels of total vitamin D3, calcium, phosphorus, parathyroid hormone (PTH), alkaline phosphatase (ALP) and alanine aminotransferase (ALT) as well as complete blood count (CBC) and clinical examinations pre and post-treatment with VITOL-80 C ORAL®. No significant changes (P > 0.05) of the vitamin D status were recorded in Najdi sheep with vitamin D3 deficiency post treatment with (VITOL-80 C ORAL®). However, a sharp (P < 0.0001) decline of the total serum vitamin D3 concentration were observed in those Najdi sheep per-administration (21.95 ± 1.82 ng/ml) and postadministration (22.29 ± 1.34 ng/ml) of vitamins therapy contrast to control healthy Najdi sheep (89.75 ± 6.84 ng/ml). An interaction between vitamin D3 status and the serum concentrations of calcium/phosphorus, PTH, ALP and ALT was observed. With vitamin D3-deficient Najdi sheep; values of CBC, and calcium/phosphorus concentrations were lower while PTH, ALP and ALT were higher than the healthy control Najdi sheep; thus, no significant changes (P > 0.05) of these values were recorded post treatment of (VITOL-80 C ORAL®). In conclusion, vitamin D3 deficiency threats the health of local Najdi sheep and has a potential role through suppressing their immunity. Oral administration of the commercial product as a source of vitamin D3 is not effective suggesting involvement of vitamin D receptors (VDR) and/or dysfunction of liver and kidneys.
Collapse
|
8
|
Yeh WZ, Gresle M, Jokubaitis V, Stankovich J, van der Walt A, Butzkueven H. Immunoregulatory effects and therapeutic potential of vitamin D in multiple sclerosis. Br J Pharmacol 2020; 177:4113-4133. [PMID: 32668009 DOI: 10.1111/bph.15201] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022] Open
Abstract
Initially recognised as an important factor for bone health, vitamin D is now known to have a range of effects on the immune system. Vitamin D deficiency is associated with an increased risk of multiple sclerosis (MS), a chronic immune-mediated demyelinating disease of the CNS. In this review, we explore the links between vitamin D deficiency, MS risk, and disease activity. We also discuss the known immune effects of vitamin D supplementation and the relevance of these observations to the immunopathology of MS. Finally, we review the existing evidence for vitamin D supplementation as an MS therapy, highlighting several recent clinical studies and trials.
Collapse
Affiliation(s)
- Wei Zhen Yeh
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Melissa Gresle
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Vilija Jokubaitis
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Jim Stankovich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Anneke van der Walt
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Neurology, Alfred Health, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Warren MF, Vu TC, Toomer OT, Fernandez JD, Livingston KA. Efficacy of 1-α-Hydroxycholecalciferol Supplementation in Young Broiler Feed Suggests Reducing Calcium Levels at Grower Phase. Front Vet Sci 2020; 7:245. [PMID: 32587863 PMCID: PMC7299047 DOI: 10.3389/fvets.2020.00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022] Open
Abstract
Increasing biopotency of cholecalciferol (D3) from vitamin sources is essential in the poultry industry to meet nutritional demands and counter stressors. D3 exhibits hormonal traits and is responsible for calcium (Ca) absorption. 1-α-Hydroxycholecalciferol (1α) is a synthetic form of D3 that has equal efficacy and is cheaper to synthesize than 1,25-dihydroxycholecalciferol (active form of D3), on broilers. However, 1α bypasses a critical regulatory point, the kidney, and may consequently lead to toxicity levels of Ca via Ca absorption. This study examined 1α supplementation in broiler diets with different Ca inclusion levels to determine if 1α at higher Ca levels caused Ca toxicity at starter and grower phases with Ross 708 male broiler chicks. In Experiment 1 (1–15 days of age), chicks were assigned to one of 10 treatment starter diets with five levels of Ca inclusion (0.80, 0.95, 1.10, 1.25, and 1.40%) with or without 1α supplementation (5 μg 1α/kg in feed) and eight replicate cages per treatment. In Experiment 2, chicks were fed common starter diet until 16 days of age, and then they were assigned to one of eight treatment diets with four levels of Ca inclusion (0.54, 0.76, 0.98, or 1.20%) with or without 1α supplementation (5 μg 1α/kg in feed). At the end of both experiments, blood was collected from broilers to determine blood chemistry, including concentrations of vitamin D metabolites. Intestinal tissues were also collected to examine gene expression. In Experiment 1, broilers not fed 1α exhibited a quadratic effect in ionized blood Ca (iCa) as dietary Ca inclusion levels increased; 1α-fed broilers displayed an increase in iCa as Ca inclusion levels increased (p = 0.0002). For Experiment 2, 1α-fed broilers displayed a decrease in 25-hydroxycholecalciferol plasma concentration as dietary Ca inclusion levels increased (p = 0.035); also, increasing Ca inclusion in diets increased expression of duodenal sodium phosphate cotransporter type II b (NPTIIb, p = 0.03). Our findings imply that inclusion of 1α was beneficial because 1α enhanced Ca absorption during the starter phase; however, to avoid potential Ca toxicity or antagonism while using 1α during the grower phase, there should be consideration with reducing dietary Ca levels.
Collapse
Affiliation(s)
- Matthew F Warren
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States
| | - Thien C Vu
- United States Department of Agriculture, Agricultural Research Service, Raleigh, NC, United States
| | - Ondulla T Toomer
- United States Department of Agriculture, Agricultural Research Service, Raleigh, NC, United States
| | | | - Kimberly A Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, United States.,Elanco Animal Health, Greenfield, IN, United States
| |
Collapse
|
10
|
Williams EAJ, Douard V, Sugimoto K, Inui H, Devime F, Zhang X, Kishida K, Ferraris RP, Fritton JC. Bone Growth is Influenced by Fructose in Adolescent Male Mice Lacking Ketohexokinase (KHK). Calcif Tissue Int 2020; 106:541-552. [PMID: 31996963 PMCID: PMC9466006 DOI: 10.1007/s00223-020-00663-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 01/20/2020] [Indexed: 01/01/2023]
Abstract
Fructose is metabolized in the cytoplasm by the enzyme ketohexokinase (KHK), and excessive consumption may affect bone health. Previous work in calcium-restricted, growing mice demonstrated that fructose disrupted intestinal calcium transport. Thus, we hypothesized that the observed effects on bone were dependent on fructose metabolism and took advantage of a KHK knockout (KO) model to assess direct effects of high plasma fructose on the long bones of growing mice. Four groups (n = 12) of 4-week-old, male, C57Bl/6 background, congenic mice with intact KHK (wild-type, WT) or global knockout of both isoforms of KHK-A/C (KHK-KO), were fed 20% glucose (control diet) or fructose for 8 weeks. Dietary fructose increased by 40-fold plasma fructose in KHK-KO compared to the other three groups (p < 0.05). Obesity (no differences in epididymal fat or body weight) or altered insulin was not observed in either genotype. The femurs of KHK-KO mice with the highest levels of plasma fructose were shorter (2%). Surprisingly, despite the long-term blockade of KHK, fructose feeding resulted in greater bone mineral density, percent volume, and number of trabeculae as measured by µCT in the distal femur of KHK-KO. Moreover, higher plasma fructose concentrations correlated with greater trabecular bone volume, greater work-to-fracture in three-point bending of the femur mid-shaft, and greater plasma sclerostin. Since the metabolism of fructose is severely inhibited in the KHK-KO condition, our data suggest mechanism(s) that alter bone growth may be related to the plasma concentration of fructose.
Collapse
Affiliation(s)
- Edek A J Williams
- Department of Biomedical Engineering, Graduate School, Rutgers University, New Brunswick, NJ, USA
| | - Veronique Douard
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | - Hiroshi Inui
- Center for Research and Development of Bioresources & Department of Clinical Nutrition, College of Health and Human Sciences, Osaka Prefecture University, Habikino, Osaka, Japan
| | - Fabienne Devime
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Xufei Zhang
- MICALIS Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Kunihiro Kishida
- Department of Science and Technology On Food Safety, Kindai University, Wakayama, Japan
| | - Ronaldo P Ferraris
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | - J Christopher Fritton
- Department of Biomedical Engineering, Graduate School, Rutgers University, New Brunswick, NJ, USA.
- Departments of Mechanical and Biomedical Engineering, Grove School of Engineering, The City College of New York, 160 Convent Avenue, Steinman Hall T401, New York, NY, 10031, USA.
| |
Collapse
|
11
|
Rahman A, Al-Taiar A, Shaban L, Al-Sabah R, Al-Harbi A, Mojiminiyi O. Plasma 25-Hydroxy Vitamin D Is Not Associated with Either Cognitive Function or Academic Performance in Adolescents. Nutrients 2018; 10:nu10091197. [PMID: 30200421 PMCID: PMC6165454 DOI: 10.3390/nu10091197] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 12/21/2022] Open
Abstract
Several observational studies have reported an association between low levels of vitamin D (VD) and poor cognition in adults, but there is a paucity of data on such an association in adolescents. We investigated the association between VD and cognitive function or academic achievement among 1370 adolescents, who were selected from public middle schools in Kuwait, using stratified multistage cluster random sampling with probability proportional to size. Plasma 25-hydroxy VD (25-OH-D) was measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). An age-adjusted standard score (ASC), calculated from Raven’s Standard Progressive Matrices test, was used to evaluate cognitive function; academic achievements were extracted from the schools’ records. Data on various covariates were collected from the parents through a self-administered questionnaire and from the adolescents using face-to-face interviews. 25-OH-D was weakly correlated positively with ASC (ρ = 0.06; p = 0.04). Univariable linear regression analysis showed an association between 25-OH-D categories and ASC after adjusting for gender, but adjusting for parental education was sufficient to explain this association. Multivariable analysis showed no association between 25-OH-D and ASC after adjusting for potential confounders whether 25-OH-D was fitted as a continuous variable (p = 0.73), a variable that is categorized by acceptable cutoff points (p = 0.48), or categorized into quartiles (p = 0.88). Similarly, 25-OH-D was not associated with academic performance. We conclude that 25-OH-D is associated with neither cognitive function nor academic performance in adolescents.
Collapse
Affiliation(s)
- Abdur Rahman
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Abdullah Al-Taiar
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Box 24923, Safat 13110, Kuwait.
| | - Lemia Shaban
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Reem Al-Sabah
- Department of Community Medicine and Behavioural Sciences, Faculty of Medicine, Kuwait University, Box 24923, Safat 13110, Kuwait.
| | - Anwar Al-Harbi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Box 5969, Safat 13060, Kuwait.
| | - Olusegun Mojiminiyi
- Department of Pathology, Faculty of Medicine, Kuwait University, Box 24923, Safat 13110, Kuwait.
| |
Collapse
|
12
|
Jones G, Kottler ML, Schlingmann KP. Genetic Diseases of Vitamin D Metabolizing Enzymes. Endocrinol Metab Clin North Am 2017; 46:1095-1117. [PMID: 29080636 DOI: 10.1016/j.ecl.2017.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin D metabolism involves 3 highly specific cytochrome P450 (CYP) enzymes (25-hydroxylase, 1α-hydroxylase, and 24-hydroxylase) involved in the activation of vitamin D3 to the hormonal form, 1,25-(OH)2D3, and the inactivation of 1,25-(OH)2D3 to biliary excretory products. Mutations of the activating enzymes CYP2R1 and CYP27B1 cause lack of normal 1,25-(OH)2D3 synthesis and result in rickets whereas mutations of the inactivating enzyme CYP24A1 cause build-up of excess 1,25-(OH)2D3 and result in hypercalcemia, nephrolithiasis, and nephrocalcinosis. This article reviews the literature for 3 clinical conditions. Symptoms, diagnosis, treatment, and management of vitamin D-dependent rickets and idiopathic infantile hypercalcemia are discussed.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Room 650, Botterell Hall, Kingston, ON K7L 3N6, Canada.
| | - Marie Laure Kottler
- Department of Genetics, University de Basse-Normandie, National Reference Center for Rare Diseases of Calcium and Phosphorus Metabolism, Caen University Hospital, Avenue de la Côte de Nacre, 14033 Caen, France; Team 7450 BIOTARGEN, Caen-Normandy University, Esplanade de la Paix, 14032 Caen, France
| | - Karl Peter Schlingmann
- Department of General Pediatrics, University Children's Hospital, Waldeyerstr. 22, D-48149 Muenster, Germany
| |
Collapse
|
13
|
Miller WL. Genetic disorders of Vitamin D biosynthesis and degradation. J Steroid Biochem Mol Biol 2017; 165:101-108. [PMID: 27060335 DOI: 10.1016/j.jsbmb.2016.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 01/10/2023]
Abstract
Vitamin D, an inactive secosteroid pro-hormone, is produced by the action of ultraviolet light on 7-dehydrocholesterol in the skin. The active hormone, 1,25(OH)2D is produced by sequential 25-hydroxylation in the liver, principally by CYP2R1, and 1α-hydroxylation in the kidney by CYP27B1. Mutations in CYP27B1 cause 1α-hydroxylase deficiency, also known as vitamin D dependent rickets type I or hereditary pseudo-vitamin D deficient rickets; very rare mutations in CYP2R1 can cause 25-hydroxylase deficiency. Both deficiencies cause hypocalcemia, secondary hyperparathyroidism, severe rickets in infancy, and low serum concentrations of 1,25(OH)2D; both disorders respond to hormonal replacement therapy with calcitriol. The inactivation of vitamin D is principally initiated by its 23- and 24-hydroxylation by CYP24A1. Mutations in CYP24A1 can cause both severe neonatal hypercalcemia and a less severe adult hypercalcemic syndrome. Other pathways of vitamin D metabolism are under investigation, notably its 20-hydroxylation by the cholesterol side-chain cleavage enzyme, CYP11A1.
Collapse
Affiliation(s)
- Walter L Miller
- Center for Reproductive Sciences and Department of Pediatrics, HSE 1634, University of California San Francisco, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
14
|
Özcabı B, Tahmiscioğlu Bucak F, Jaferova S, Oruç Ç, Adrovic A, Ceylaner S, Ercan O, Evliyaoğlu O. A Case of Vitamin D-Dependent Rickets Type 1A with a Novel Mutation in the Uzbek Population. J Clin Res Pediatr Endocrinol 2016; 8:484-489. [PMID: 27353739 PMCID: PMC5198011 DOI: 10.4274/jcrpe.3128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Vitamin D-dependent rickets type 1A (VDDR-1A) (Online Mendelian Inheritance in Man #264700) is a rare, autosomal recessively inherited disorder due to inactivating mutations in CYP27B1. It is characterized by early onset of rickets with hypocalcemia. We aimed to describe the clinical and laboratory findings in a VDDR-1A case and to report a novel homozygote truncating mutation NM_000785.3 c.403C>T (p.Q135*) in CYP27B1 which to our knowledge is the first described mutation in the Uzbek population. The patient was admitted with tetany at the age of 12 months. He was a healthy Uzbek boy until 9 months of age when he had a seizure due to hypocalcemia. Vitamin D treatment was given orally in Turkmenistan (no data available for dose and duration). The patient was the product of a consanguineous marriage. His brother had died with hypocalcemia and pneumonia. At physical examination, anthropometric measurements were within normal limits; he had caput quadratum, enlarged wrists, and carpopedal spasm. Blood calcium, phosphorus, alkaline phosphatase, and parathormone (PTH) levels were 5.9 mg/dL, 3.5 mg/dL, 987 IU/L, and 182.8 pg/mL (12-72), respectively. Radiological findings included cupping and fraying of the radial and ulnar metaphyses. Renal ultrasound revealed nephrocalcinosis (grade 1). Despite high serum PTH and 25-hydroxyvitamin D3 levels, 1,25-dihydroxyvitamin D3 level was low, suggesting a diagnosis of VDDR-1A. The patient was treated with calcium carbonate and calcitriol. DNA sequencing revealed a novel homozygous mutation of NM_000785.3 c.403C>T (p.Q135*) in CYP27B1. VDDR-1A is a rare disorder which needs to be considered even in countries where nutritional vitamin D deficiency is still common.
Collapse
Affiliation(s)
- Bahar Özcabı
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Feride Tahmiscioğlu Bucak
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Sevinç Jaferova
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Çiğdem Oruç
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Amra Adrovic
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Serdar Ceylaner
- Intergen Genetic Center and Yüksek İhtisas University Faculty of Medicine, Department of Medical Genetics, Ankara, Turkey
| | - Oya Ercan
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey
| | - Olcay Evliyaoğlu
- İstanbul University Cerrahpaşa Faculty of Medicine, Department of Pediatric Endocrinology, İstanbul, Turkey, E-mail:
| |
Collapse
|
15
|
Cho JH, Kang E, Kim GH, Lee BH, Choi JH, Yoo HW. Long-term clinical outcome and the identification of homozygous CYP27B1 gene mutations in a patient with vitamin D hydroxylation-deficient rickets type 1A. Ann Pediatr Endocrinol Metab 2016; 21:169-173. [PMID: 27777911 PMCID: PMC5073165 DOI: 10.6065/apem.2016.21.3.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/03/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
Vitamin D hydroxylation-deficient rickets type 1A (VDDR1A) is an autosomal recessively-inherited disorder caused by mutations in CYP27B1 encoding the 1α-hydroxylase enzyme. We report on a female patient with VDDR1A who presented with hypocalcemic seizure at the age of 13 months. The typical clinical and biochemical features of VDDR1A were found, such as hypocalcemia, increased alkaline phosphatase, secondary hyperparathyroidism and normal 25-hydroxyvitamin D3 (25(OH)D3). Radiographic images of the wrist showed metaphyseal widening with cupping and fraying of the ulna and distal radius, suggesting rickets. A mutation analysis of the CYP27B1 gene identified a homozygous mutation of c.589+1G>A in the splice donor site in intron 3, which was known to be pathogenic. Since that time, the patient has been under calcitriol and calcium treatment, with normal growth and development. During the follow-up period, she did not develop genu valgum, scoliosis, or nephrocalcinosis.
Collapse
Affiliation(s)
- Ja Hyang Cho
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Eungu Kang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Gu-Hwan Kim
- Medical Genetics Center, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Beom Hee Lee
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| | - Han-Wook Yoo
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
16
|
Demir K, Kattan WE, Zou M, Durmaz E, BinEssa H, Nalbantoğlu Ö, Al-Rijjal RA, Meyer B, Özkan B, Shi Y. Novel CYP27B1 Gene Mutations in Patients with Vitamin D-Dependent Rickets Type 1A. PLoS One 2015; 10:e0131376. [PMID: 26132292 PMCID: PMC4489500 DOI: 10.1371/journal.pone.0131376] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/31/2015] [Indexed: 12/30/2022] Open
Abstract
The CYP27B1 gene encodes 25-hydroxyvitamin D-1α-hydroxylase. Mutations of this gene cause vitamin D-dependent rickets type 1A (VDDR-IA, OMIM 264700), which is a rare autosomal recessive disorder. To investigate CYP27B1 mutations, we studied 8 patients from 7 unrelated families. All coding exons and intron-exon boundaries of CYP27B1 gene were amplified by PCR from peripheral leukocyte DNA and subsequently sequenced. Homozygous mutations in the CYP27B1 gene were found in all the patients and heterozygous mutations were present in their normal parents. One novel single nucleotide variation (SNV, c.1215 T>C, p.R379R in the last nucleotide of exon 7) and three novel mutations were identified:, a splice donor site mutation (c.1215+2T>A) in intron 7, a 16-bp deletion in exon 6 (c.1022-1037del16), and a 2-bp deletion in exon 5 (c.934_935delAC). Both c.1215 T>C and c.1215+2T>A were present together in homozygous form in two unrelated patients, and caused exon 7 skipping. However, c.1215 T>C alone has no effect on pre-mRNA splicing. The skipping of exon 7 resulted in a shift of downstream reading frame and a premature stop codon 57 amino acids from L380 (p.L380Afs*57). The intra-exon deletions of c.1022-1037del16 and c.934_935delAC also resulted in a frameshift and the creation of premature stop codons at p.T341Rfs*5, and p.T312Rfs*19, respectively, leading to the functional inactivation of the CYP27B1 gene. Clinically, all the patients required continued calcitriol treatment and the clinical presentations were consistent with the complete loss of vitamin D1α-hydroxylase activity. In conclusion, three novel mutations have been identified. All of them caused frameshift and truncated proteins. The silent c.1215 T>C SNV has no effect on pre-mRNA splicing and it is likely a novel SNP. The current study further expands the CYP27B1 mutation spectrum.
Collapse
Affiliation(s)
- Korcan Demir
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey
| | - Walaa E Kattan
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Erdem Durmaz
- Department of Pediatric Endocrinology, Sifa University, Bornova Health Application and Research Center, İzmir, Turkey
| | - Huda BinEssa
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Özlem Nalbantoğlu
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey
| | - Roua A Al-Rijjal
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Brian Meyer
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Behzat Özkan
- Division of Pediatric Endocrinology, Dr. Behçet Uz Children's Hospital, İzmir, Turkey
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Lyu Y, Feng X, Zhao P, Wu Z, Xu H, Fang Y, Hou Y, Denney L, Xu Y, Feng H. Fructus Ligustri Lucidi (FLL) ethanol extract increases bone mineral density and improves bone properties in growing female rats. J Bone Miner Metab 2014; 32:616-26. [PMID: 24362453 DOI: 10.1007/s00774-013-0536-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/26/2013] [Indexed: 12/11/2022]
Abstract
Osteoporosis is a chronic disease affecting millions of people worldwide. It is generally accepted that acquisition of a high peak bone mass (PBM) early in life can reduce the risk of osteoporosis later in life. The aims of this study were to investigate the effects of Fructus Ligustri Lucidi (FLL) ethanol extract on bone mineral density and its mechanical properties in growing female rats and to explore the underlying mechanisms. The rats were given different doses of FLL extract mixed with AIN-93G formula (0.40, 0.65 and 0.90 %), and a group given AIN-93G diet treatment only was used as control. The intervention lasted for 16 weeks until the animals were about 5 months old, the time when the animals almost reach their PBM. Our results showed that FLL treatment increased bone mineral density and improved bone mechanical properties in the growing female rats in a dose-dependent manner. In addition, FLL treatment significantly decreased the serum bone-resorbing marker, CTX-I, while significantly increasing serum 25(OH)D3 and thereby increasing Ca absorption and Ca retention. Intriguingly, both in vivo and in vitro results demonstrated that FLL treatment could reduce the RANKL/OPG ratio. In conclusion, FLL ethanol extract exerted beneficial effects on peak bone mass acquisition and the improvement of bone mechanical properties by favoring Ca metabolism and decreasing the RANKL/OPG ratio.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Feng X, Lyu Y, Wu Z, Fang Y, Xu H, Zhao P, Xu Y, Feng H. Fructus ligustri lucidi ethanol extract improves bone mineral density and properties through modulating calcium absorption-related gene expression in kidney and duodenum of growing rats. Calcif Tissue Int 2014; 94:433-41. [PMID: 24343527 DOI: 10.1007/s00223-013-9825-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/30/2013] [Indexed: 01/11/2023]
Abstract
Optimizing peak bone mass in early life is one of key preventive strategies against osteoporosis. Fructus ligustri lucidi (FLL), the fruit of Ligustrum lucidum Ait., is a commonly prescribed herb in many kidney-tonifying traditional Chinese medicinal formulas to alleviate osteoporosis. Previously, FLL extracts have been shown to have osteoprotective effect in aged or ovariectomized rats. In the present study, we investigated the effects of FLL ethanol extract on bone mineral density (BMD) and mechanical properties in growing male rats and explored the underlying mechanisms. Male weaning Sprague-Dawley rats were randomized into four groups and orally administrated for 4 months an AIN-93G formula-based diet supplementing with different doses of FLL ethanol extract (0.40, 0.65, and 0.90 %) or vehicle control, respectively. Then calcium balance, serum level of Ca, P, 25(OH)2D3, 1,25(OH)2D3, osteocalcin (OCN), C-terminal telopeptide of type I collagen (CTX-I), and parathyroid hormone, bone microarchitecture, and calcium absorption-related genes expression in duodenum and kidney were analyzed. The results demonstrated that FLL ethanol extract increased BMD of growing rats and improved their bone microarchitecture and mechanical properties. FLL ethanol extract altered bone turnover, as evidenced by increasing a bone formation maker, OCN, and decreasing a bone resorption maker, CTX-I. Intriguingly, both Ca absorption and Ca retention rate were elevated by FLL ethanol extract treatment, possibly through the mechanisms of up-regulating the transcriptions of calcitropic genes in kidney (1α-hydroxylase) and duodenum (vitamin D receptor, calcium transporter calbindin-D9k, and transient receptor potential vanilloid 6). In conclusion, FLL ethanol extract increased bone mass gain and improved bone properties via modulating bone turnover and up-regulating calcium absorption-related gene expression in kidney and duodenum, which could then activate 1,25(OH)2D3-dependent calcium transport in male growing rats.
Collapse
Affiliation(s)
- Xin Feng
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Abstract
The vitamin D signal transduction system involves a series of cytochrome P450-containing sterol hydroxylases to generate and degrade the active hormone, 1α,25-dihydroxyvitamin D3, which serves as a ligand for the vitamin D receptor-mediated transcriptional gene expression described in companion articles in this review series. This review updates our current knowledge of the specific anabolic cytochrome P450s involved in 25- and 1α-hydroxylation, as well as the catabolic cytochrome P450 involved in 24- and 23-hydroxylation steps, which are believed to initiate inactivation of the vitamin D molecule. We focus on the biochemical properties of these enzymes; key residues in their active sites derived from crystal structures and mutagenesis studies; the physiological roles of these enzymes as determined by animal knockout studies and human genetic diseases; and the regulation of these different cytochrome P450s by extracellular ions and peptide modulators. We highlight the importance of these cytochrome P450s in the pathogenesis of kidney disease, metabolic bone disease, and hyperproliferative diseases, such as psoriasis and cancer; as well as explore potential future developments in the field.
Collapse
Affiliation(s)
- Glenville Jones
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
21
|
Durmaz E, Zou M, Al-Rijjal RA, Bircan I, Akçurin S, Meyer B, Shi Y. Clinical and genetic analysis of patients with vitamin D-dependent rickets type 1A. Clin Endocrinol (Oxf) 2012; 77:363-9. [PMID: 22443290 DOI: 10.1111/j.1365-2265.2012.04394.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CONTEXT Vitamin D-dependent rickets type 1A (VDDR-IA, OMIM 264700) is a rare autosomal recessive disorder and is caused by mutations in the CYP27B1 gene. OBJECTIVES We aim to investigate CYP27B1 mutation in seven patients from four separate families and characterize the genotype-phenotype correlation. METHODS The entire coding region of the CYP27B1 gene was sequenced, and genotype-phenotype correlation among patients was assessed. RESULTS Sequencing analysis identified biallelic CYP27B1 mutations in all patients and monoallelic mutations in their parents. One patient from the first family was compound heterozygous for c.1166G>A (p.Arg389His) and a novel nonsense mutation c.1079 C>A (p.Ser360*). Two patients from the second family were homozygous for a novel splice donor site mutation in intron 1 (c.195 + 2 T>G), causing partial retention of the intron and a shift in the reading frame. Both novel mutations lead to the complete loss of vitamin D1α-hydroxylase activity. Four patients from families 3 and 4 were homozygous for a previously reported duplication mutation in exon 8 (1319-1325dupCCCACCC, Phe443Profs*24). Interestingly, one patient who was presented with severe hypocalcaemia and seizures at 4 months of age as a result of Phe443Profs*24 has improved spontaneously since 11 years of age and does not need regular treatment. Her laboratory tests showed normal serum calcium and 1,25(OH)(2) D after refusing to take medication for 12 months. CONCLUSIONS There is a good genotype-phenotype correlation in VDDR-IA. However, some patients may recover from the loss of CYP27B1 function, probably due to 1α-hydroxylase activity exerted by a non-CYP27B1 enzyme.
Collapse
Affiliation(s)
- Erdem Durmaz
- Department of Pediatric Endocrinology, Akdeniz University School of Medicine, Antalya, Turkey
| | | | | | | | | | | | | |
Collapse
|
22
|
CAO LIHUA, LIU FANG, WANG YU, MA JIAN, WANG SHUSEN, WANG LIBO, ZHANG YANG, CHEN CHEN, LUO YANG, MA HONGWEI. Novel vitamin D 1α-hydroxylase gene mutations in a Chinese vitamin-D-dependent rickets type I patient. J Genet 2011; 90:339-42. [DOI: 10.1007/s12041-011-0070-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
23
|
Alzahrani AS, Zou M, Baitei EY, Alshaikh OM, Al-Rijjal RA, Meyer BF, Shi Y. A novel G102E mutation of CYP27B1 in a large family with vitamin D-dependent rickets type 1. J Clin Endocrinol Metab 2010; 95:4176-83. [PMID: 20534770 DOI: 10.1210/jc.2009-2278] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CONTEXT Mutations in the CYP27B1 gene, which encodes vitamin D 1alpha-hydroxylase, are the genetic basis for vitamin D-dependent rickets type 1 (VDDR-I). OBJECTIVE The aim of this study was to investigate the CYP27B1 mutation in a large family with VDDR-I and characterize the genotype-phenotype correlation. PATIENTS AND METHODS The index patient was a 23-yr-old female who had a progressive form of rickets and growth retardation since the age of 9 months. Laboratory data showed hypocalcemia, low urine calcium, hypophosphatemia, high serum alkaline phosphatase, elevated PTH, and low serum 1,25-dihydroxyvitamin D(3). Her parents were healthy first-degree cousins, and two of her 12 siblings were affected with similar but milder rickets. Three other siblings were asymptomatic but had biochemical evidence of the disease. The entire coding region of the CYP27B1 gene was sequenced, and the mutation was characterized by functional studies. RESULTS We found a novel biallelic c.305G>A sequence variation at codon 102, changing amino acid from glycine to glutamic acid (G102E) in the patient and five affected siblings, whereas a monoallelic c.305G>A variation was present in the mother and five nonaffected siblings. This variation was not present in 100 population controls. Expression of this mutant in CHO cells revealed an 80% reduction in the 1alpha-hydroxylase activity as compared to wild-type activity. CONCLUSIONS A novel mutation in the CYP27B1 gene was found in patients with VDDR-I. This mutation resulted in a significant reduction in 1alpha-hydroxylase activity. The residual enzymatic activity may account for the mild phenotype presentation in some affected members.
Collapse
Affiliation(s)
- Ali S Alzahrani
- Departments of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
24
|
Reining SC, Liesegang A, Betz H, Biber J, Murer H, Hernando N. Expression of renal and intestinal Na/Pi cotransporters in the absence of GABARAP. Pflugers Arch 2010; 460:207-17. [PMID: 20354864 DOI: 10.1007/s00424-010-0832-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 03/12/2010] [Accepted: 03/17/2010] [Indexed: 12/20/2022]
Abstract
We have recently shown that the abundance of the renal sodium (Na)/inorganic phosphate (Pi) cotransporter NaPi-IIa is increased in the absence of the GABA(A) receptor-associated protein (GABARAP). Accordingly, GABARAP-deficient mice have a reduced urinary excretion of Pi. However, their circulating levels of Pi do not differ from wild-type animals, suggesting the presence of a compensatory mechanism responsible for keeping serum Pi values constant. Here, we aimed first to identify the molecular basis of this compensation by analyzing the expression of Na/Pi cotransporters known to be expressed in the kidney and intestine. We found that, in the kidney, the upregulation of NaPi-IIa is not accompanied by changes on the expression of either NaPi-IIc or PiT2, the other cotransporters known to participate in renal Pi reabsorption. In contrast, the intestinal expression of NaPi-IIb is downregulated in mutant animals, suggesting that a reduced intestinal absorption of Pi could contribute to maintain a normophosphatemic status despite the increased renal retention. The second goal of this work was to study whether the alterations on the expression of NaPi-IIa induced by chronic dietary Pi are impaired in the absence of GABARAP. Our data indicate that, in response to high Pi diets, GABARAP-deficient mice downregulate the expression of NaPi-IIa to levels comparable to those seen in wild-type animals. However, in response to low Pi diets, the upregulation of NaPi-IIa is greater in the mutant mice. Thus, both the basal expression and the dietary-induced upregulation of NaPi-IIa are increased in the absence of GABARAP.
Collapse
Affiliation(s)
- Sonja C Reining
- Institute of Physiology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
25
|
Maver A, Medica I, Salobir B, Tercelj M, Peterlin B. Lack of association of immune-response-gene polymorphisms with susceptibility to sarcoidosis in Slovenian patients. GENETICS AND MOLECULAR RESEARCH 2010; 9:58-68. [DOI: 10.4238/vol9-1gmr682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Naja RP, Dardenne O, Arabian A, St Arnaud R. Chondrocyte-specific modulation of Cyp27b1 expression supports a role for local synthesis of 1,25-dihydroxyvitamin D3 in growth plate development. Endocrinology 2009; 150:4024-32. [PMID: 19477943 DOI: 10.1210/en.2008-1410] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Cyp27b1 enzyme (25-hydroxyvitamin D-1alpha-hydroxylase) that converts 25-hydroxyvitamin D into the active metabolite, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is expressed in kidney but also in other cell types such as chondrocytes. This suggests that local production of 1,25(OH)(2)D(3) could play an important role in the differentiation of these cells. To test this hypothesis, we engineered mutant mice that do not express the Cyp27b1 gene in chondrocytes. Inactivation of both alleles of the Cyp27b1 gene led to decreased RANKL expression and reduced osteoclastogenesis, increased width of the hypertrophic zone of the growth plate at embryonic d 15.5, increased bone volume in neonatal long bones, and increased expression of the chondrocytic differentiation markers Indian Hedgehog and PTH/PTHrP receptor. The expression of the angiogenic marker VEGF was decreased, accompanied by decreased platelet/endothelial cell adhesion molecule-1 staining in the neonatal growth plate, suggesting a delay in vascularization. In parallel, we engineered strains of mice overexpressing a Cyp27b1 transgene in chondrocytes by coupling the Cyp27b1 cDNA to the collagen alpha(1)(II) promoter. The transgenic mice showed a mirror image phenotype when compared with the tissue-specific inactivation, i.e. a reduction in the width of the hypertrophic zone of the embryonic growth plate, decreased bone volume in neonatal long bones, and inverse expression patterns of chondrocytic differentiation markers. These results support an intracrine role of 1,25(OH)(2)D(3) in endochondral ossification and chondrocyte development in vivo.
Collapse
Affiliation(s)
- Roy Pascal Naja
- Genetics Unit, Shriners Hospital for Children, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
27
|
van Etten E, Stoffels K, Gysemans C, Mathieu C, Overbergh L. Regulation of vitamin D homeostasis: implications for the immune system. Nutr Rev 2009; 66:S125-34. [PMID: 18844839 DOI: 10.1111/j.1753-4887.2008.00096.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Vitamin D homeostasis in the immune system is the focus of this review. The production of both the activating (25- and 1alpha-hydroxylase) and the metabolizing (24-hydroxylase) enzymes by cells of the immune system itself, indicates that 1,25(OH)(2)D(3) can be produced locally in immune reaction sites. Moreover, the strict regulation of these enzymes by immune signals is highly suggestive for an autocrine/paracrine role in the immune system, and opens new treatment possibilities.
Collapse
Affiliation(s)
- Evelyne van Etten
- The Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven , Leuven, Belgium
| | | | | | | | | |
Collapse
|
28
|
Abstract
Vitamin D deficiency has been widely reported in all age groups in recent years. Rickets has never been eradicated in developed countries, and it most commonly affects children from recent immigrant groups. There is much evidence that current vitamin D guidelines for the neonatal period, 5-10 microg (200-400 IU)/day, prevent rickets at the typical calcium intakes in developed countries. The annual incidence of vitamin D-deficiency rickets in developed countries ranges between 2.9 and 7.5 cases per 100,000 children. The prevalence of vitamin D deficiency in mothers and their neonates is remarkable, and the results of one study suggest that third-trimester 25-hydroxyvitamin D (25(OH)D) is associated with fetal bone mineral accrual that may affect prepubertal bone mass accumulation. Beyond infancy, the evidence indicates that 5 microg (200 IU)/day of vitamin D has little effect on vitamin D status as measured by the serum 25(OH)D concentration. Two randomized clinical trials show that higher vitamin D intake improves one-year gain in bone density in adolescent girls. The functions of vitamin D extend beyond bone to include immune system regulation and anti-proliferative effects on cells. Early life vitamin D inadequacy is implicated in the risk of bone disease, autoimmune disease, and certain cancers later in life; however, long-term interventional studies do not exist to validate the widespread implementation of greater vitamin D consumption. Here we review the available data concerning vitamin D status and health effects of vitamin D in pregnancy through to and including adolescence.
Collapse
Affiliation(s)
- Samantha Kimball
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
29
|
Rejnmark L, Vestergaard P, Heickendorff L, Mosekilde L. Plasma 1,25(OH)2D levels decrease in postmenopausal women with hypovitaminosis D. Eur J Endocrinol 2008; 158:571-6. [PMID: 18362305 DOI: 10.1530/eje-07-0844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Although calcitriol (1,25(OH)2D) is considered the biologically active vitamin D metabolite, several studies have shown that calcidiol (25OHD) is the vitamin D metabolite that is most closely linked to parathyroid function and indices of calcium homeostasis. Moreover, low levels of 25OHD have been associated with increased risk of different diseases including cancer, diabetes, and myopathy. DESIGN Cross-sectional study. METHODS We studied relations between plasma concentrations of 25OHD, 1,25(OH)2D, and parathyroid hormone (PTH) in fasting plasma samples from 315 healthy postmenopausal women randomly selected from the local background population. RESULTS P-1,25(OH)2D levels varied in a concentration-dependent manner with P-25OHD levels (P<0.001). Thus, P-1,25(OH)2D levels were the lowest in women with vitamin D insufficiency, i.e., P-1,25(OH)2D levels were reduced by approximately one-third in subjects with P-25OHD levels below 25 nmol/l compared with levels above 80 nmol/l (P<0.01). The association was most pronounced at P-25OHD concentrations below 80 nmol/l, whereas no major increase in P-1,25(OH)2D was observed at P-25OHD concentrations above 80 nmol/l. In multiple regression analysis, PTH was a minor although significant predictor of P-1,25(OH)2D levels. CONCLUSIONS In normal postmenopausal women, the conversion of 25OHD to active vitamin D depends on the substrate concentration. Our data support that vitamin D insufficiency should be considered at P-25OHD levels below 80 nmol/l.
Collapse
Affiliation(s)
- Lars Rejnmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus Sygehus, Tage-Hansens Gade 2, DK-8000 Aarhus, Denmark.
| | | | | | | |
Collapse
|
30
|
Shankar K, Liu X, Singhal R, Chen JR, Nagarajan S, Badger TM, Ronis MJJ. Chronic ethanol consumption leads to disruption of vitamin D3 homeostasis associated with induction of renal 1,25 dihydroxyvitamin D3-24-hydroxylase (CYP24A1). Endocrinology 2008; 149:1748-56. [PMID: 18162528 PMCID: PMC2276718 DOI: 10.1210/en.2007-0903] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bone loss resulting from chronic ethanol (EtOH) abuse is frequently accompanied by altered vitamin D3 homeostasis. In the current study, we examined EtOH effects in a female rat model in which control or EtOH-containing diets were infused intragastrically. EtOH treatment reduced plasma 1,25-dihydroxycholecalciferol (1,25 (OH)2 D3) coincident with a decrease in renal CYP27B1 (25(OH)D3 1alpha-hydroxylase) mRNA and an increase in expression of renal CYP24A1 (1,25 (OH)2 D3- 24-hydroxylase). EtOH induction of CYP24A1 occurred as a result of increased transcription and was also observed in vitro in primary cultures of rat renal proximal tubule cells (RPTCs) and in NRK-52E cells. Synergistic induction of CYP24A1 by EtOH in combination with 1,25 (OH)2 D3 was observed. The major EtOH metabolizing enzymes, alcohol dehydrogenase-1 and CYP2E1, were induced by EtOH in RPTCs. Inhibition of EtOH metabolism by 4-methylpyrazole inhibited the induction of CYP24A1 mRNA. CYP24A1 mRNA induction in RPTCs was also inhibited by the protein synthesis inhibitor cycloheximide. CYP24A1 was also induced after hydrogen peroxide treatment, and EtOH treatment of RPTCs resulted in production of reactive oxygen species as measured by flow cytometry using the fluorescent probe dichlorofluorescin acetate. In addition, inhibition of MAPK signaling pathways with the MAPK kinase inhibitor U0126 or the p38 inhibitor SB203580 inhibited EtOH induction of CYP24A1. Our data suggest that EtOH reduces circulating 1,25 (OH)2 D3 concentrations as the result of CYP24A1 induction that is mediated via MAPK activation resulting from renal oxidative stress produced by local metabolism of EtOH via CYP2E1 and antidiuretic hormone-1.
Collapse
Affiliation(s)
- Kartik Shankar
- Departments of Pharmacology and Toxicology, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, 1120 Marshall Street, Little Rock, AR 72202, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
McCann JC, Ames BN. Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB J 2007; 22:982-1001. [PMID: 18056830 DOI: 10.1096/fj.07-9326rev] [Citation(s) in RCA: 289] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Vitamin D insufficiency is common in the United States; the elderly and African-Americans are at particularly high risk of deficiency. This review, written for a broad scientific readership, presents a critical overview of scientific evidence relevant to a possible causal relationship between vitamin D deficiency and adverse cognitive or behavioral effects. Topics discussed are 1) biological functions of vitamin D relevant to cognition and behavior; 2) studies in humans and rodents that directly examine effects of vitamin D inadequacy on cognition or behavior; and 3) immunomodulatory activity of vitamin D relative to the proinflammatory cytokine theory of cognitive/behavioral dysfunction. We conclude there is ample biological evidence to suggest an important role for vitamin D in brain development and function. However, direct effects of vitamin D inadequacy on cognition/behavior in human or rodent systems appear to be subtle, and in our opinion, the current experimental evidence base does not yet fully satisfy causal criteria. Possible explanations for the apparent inconsistency between results of biological and cognitive/behavioral experiments, as well as suggested areas for further research are discussed. Despite residual uncertainty, recommendations for vitamin D supplementation of at-risk groups, including nursing infants, the elderly, and African-Americans appear warranted to ensure adequacy.
Collapse
Affiliation(s)
- Joyce C McCann
- Nutrition and Metabolism Center, Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr. Way, Oakland, CA 94609, USA.
| | | |
Collapse
|
32
|
Kim CJ, Kaplan LE, Perwad F, Huang N, Sharma A, Choi Y, Miller WL, Portale AA. Vitamin D 1alpha-hydroxylase gene mutations in patients with 1alpha-hydroxylase deficiency. J Clin Endocrinol Metab 2007; 92:3177-82. [PMID: 17488797 DOI: 10.1210/jc.2006-2664] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Vitamin D 1alpha-hydroxylase deficiency, also known as vitamin D-dependent rickets type 1, is an autosomal recessive disorder characterized by the early onset of rickets with hypocalcemia and is caused by mutations of the 25-hydroxyvitamin D 1alpha-hydroxylase (1alpha-hydroxylase, CYP27B1) gene. The human gene encoding the 1alpha-hydroxylase is 5 kb in length, located on chromosome 12, and comprises nine exons and eight introns. We previously isolated the human 1alpha-hydroxylase cDNA and gene and identified 19 different mutations in 25 patients with 1alpha-hydroxylase deficiency. OBJECTIVES, PATIENTS, AND METHODS: We analyzed the 1alpha-hydroxylase gene of 10 patients, five from Korea, two from the United States, and one each from Argentina, Denmark, and Morocco, all from nonconsanguineous families. Each had clinical and radiographic features of rickets, hypocalcemia, and low serum concentrations of 1,25-dihydroxyvitamin D(3). RESULTS Direct sequencing identified the responsible 1alpha-hydroxylase gene mutations in 19 of 20 alleles. Four novel and four known mutations were identified. The new mutations included a nonsense mutation in exon 6, substitution of adenine for guanine (2561G-->A) creating a stop signal at codon 328; deletion of adenine in exon 9 (3922delA) causing a frameshift; substitution of thymine for cytosine in exon 2 (1031C-->T) causing the amino acid change P112L; and a splice site mutation, substitution of adenine for guanine in the first nucleotide of intron 7 (IVS7+1 G-->A) causing a frameshift. CONCLUSIONS Mutations in the 1alpha-hydroxylase gene previously were identified in 44 patients, to which we add 10 more. The studies show a strong correlation between 1alpha-hydroxylase mutations and the clinical findings of 1alpha-hydroxylase deficiency.
Collapse
Affiliation(s)
- Chan Jong Kim
- Department of Pediatrics, University of California, San Francisco, 533 Parnassus Avenue, Box 0748, Room U-585, San Francisco, California 94143-0748, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Ellison TI, Eckert RL, MacDonald PN. Evidence for 1,25-Dihydroxyvitamin D3-independent Transactivation by the Vitamin D Receptor. J Biol Chem 2007; 282:10953-62. [PMID: 17310066 DOI: 10.1074/jbc.m609717200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The vitamin D endocrine system plays critical although poorly understood roles in skin. Vitamin D receptor (VDR) knock-out (VDRKO) mice have defects in hair follicle cycling and keratinocyte proliferation leading to epidermal thickening, dermal cyst formation, and alopecia. Surprisingly, skin defects are not apparent in mice lacking 25-hydroxyvitamin D 1alpha-hydroxylase, the enzyme required for 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) hormone biosynthesis. These disparate phenotypes indicate that VDR effects in skin are independent of the 1,25(OH)2D3 ligand. However, cellular or molecular data supporting this hypothesis are lacking. Here, we show transcriptional activation of the vitamin D-responsive 24-hydroxylase promoter by VDR in primary keratinocytes that is independent of the 1,25(OH)2D3 ligand. This activity required functional vitamin D-responsive promoter elements as well as an intact VDR DNA binding domain and thus could not be distinguished from 1,25(OH)2D3-dependent VDR transactivation. The 1,25(OH)2D3-independent activation of VDR was also observed in keratinocytes from 1alpha-hydroxylase knock-out mice, indicating that it is not due to endogenous 1,25(OH)2D3 production. Mammalian two-hybrid studies showed strong, 1,25(OH)2D3-independent interaction between VDR and retinoid X receptors in primary keratinocytes, indicating that enhanced heterodimerization of these receptors was involved. Indeed, this 1,25(OH)2D3-independent VDR-RXR heterodimerization was sufficient to drive transactivation by VDR(L233S), an inactive ligand binding mutant of VDR that was previously shown to rescue the skin phenotype of VDR null mice. Cumulatively, these studies support the concept that transactivation by VDR in keratinocytes may be uncoupled from the 1,25(OH)2D3 ligand.
Collapse
Affiliation(s)
- Tara I Ellison
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
34
|
Tissandié E, Guéguen Y, Lobaccaro JMA, Aigueperse J, Souidi M. Vitamine D : Métabolisme, régulation et maladies associées. Med Sci (Paris) 2006; 22:1095-100. [PMID: 17156732 DOI: 10.1051/medsci/200622121095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vitamin D is well known as a hormone involved in mineral metabolism and bone growth. Conversion into the active metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) from the precursor is effected by cytochrome P450 enzymes in the liver (CYP27A1 and CYP2R1) and the kidney (CYP27B1). CYP27A1 has been shown to be transcriptionally regulated by nuclear receptors (PPARalpha, gamma, HNF-4alpha and SHP) which are ligand-dependent transcription factors. CYP27B1 is tightly regulated by the plasma levels of calcium, phosphate, parathyroid hormone (PTH) and 1,25(OH)2D3 itself. In vitamin D target organs, inactivation of vitamin D is attributed to CYP24A1 which is transcriptionally induced by 1,25(OH)2D3 whose action is mediated by binding to its cognate nuclear receptor, the vitamin D receptor (VDR). Diseases associated to Vitamin D deficiency (rickets in children, and osteomalacia or osteoporosis in adults) and autosomal recessive forms of inherited rickets illustrate the key role of vitamin D in calcium homeostasis and bone metabolism. Recently, discovery of 1,25(OH)2D3 new biological actions that include antiproliferative, prodifferentiating effect on many cell types and immunoregulatory properties creates a growing interest for this vitamin. In this way, a best understanding of various actors implicated in vitamin D metabolism and its regulation is of a major importance to optimise the use of vitamin D in disease prevention.
Collapse
Affiliation(s)
- Emilie Tissandié
- Institut de radioprotection et de sûreté nucléaire (IRSN), Département de radioprotection de l'Homme, Service de radiobiologie et d'épidémiologie, Laboratoire de radiotoxicologie expérimentale, BP 17, 92262 Fontenay-aux-Roses Cedex, France
| | | | | | | | | |
Collapse
|
35
|
Tamagaki K, Yuan Q, Ohkawa H, Imazeki I, Moriguchi Y, Imai N, Sasaki S, Takeda K, Fukagawa M. Severe hyperparathyroidism with bone abnormalities and metastatic calcification in rats with adenine-induced uraemia. Nephrol Dial Transplant 2005; 21:651-9. [PMID: 16311258 DOI: 10.1093/ndt/gfi273] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Marked parathyroid hyperplasia with bone diseases and vascular calcification are unsolved issues in dialysis patients. In this study, we made azotemic model rats by adenine feeding and analyzed the development and progression of the abnormalities. METHODS Renal failure was induced in 8-week-old male Wistar rats by feeding 0.75% adenine-containing diet for 6 weeks. Serum parameters, parathyroid hyperplasia, bone changes and metastatic calcification were examined at 2, 4 and 6 weeks. RESULTS Progressive increase of serum creatinine and inorganic phosphate, and decreased levels of serum calcium and 1,25(OH)2D3 were confirmed. Markedly enlarged parathyroid glands and extremely high PTH levels were observed in all adenine-fed rats compared with the control (PTH: 199.3+/-58.0 vs 10.5+/-3.0 pmol/l, P<0.01, respectively, at 6 weeks). In cortical bone of the femur, the morphometric parameters showed increased bone resorption with increased fibrosis, whereas in the trabecular bone, bone resorption decreased and bone volume increased with a larger amount of osteoid compared with the control. Metastatic calcification in aorta, coronary artery and other soft tissues were also found in adenine-fed rats. CONCLUSIONS Uraemic rats made by adenine diet developed severe abnormalities of calcium metabolism in a relatively short period and therefore they may serve as a useful model for the analysis of parathyroid hyperplasia and vascular calcification in chronic renal failure.
Collapse
Affiliation(s)
- Keiichi Tamagaki
- Division of Hypertension and Nephrology, Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Luong KVQ, Nguyen LTH, Nguyen DNP. The role of vitamin D in protecting type 1 diabetes mellitus. Diabetes Metab Res Rev 2005; 21:338-46. [PMID: 15852446 DOI: 10.1002/dmrr.557] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The relationship between autoimmune diabetes or type 1 diabetes mellitus and vitamin D has been reported in the literature. Many factors, environmental and genetic, have been known, as risk factors, to cause both type 1 diabetes and vitamin D deficiency. Vitamin D treatment has improved or prevented type 1 diabetes mellitus in animals and humans. Vitamin D also has been known to protect from autoimmune diseases in animal models. Therefore, it would be interesting to review the role of vitamin D in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Khanh vinh quoc Luong
- Vietnamese American Medical Research Foundation, Westminster, California 92683, USA.
| | | | | |
Collapse
|
37
|
Abstract
Cytochrome P450 enzymes catalyze the degradation of drugs and xenobiotics, but also catalyze a wide variety of biosynthetic processes, including most steps in steroidogenesis. The catalytic rate of a P450 enzyme is determined in large part by the rate of electron transfer from its redox partners. Type I P450 enzymes, found in mitochondria, receive electrons from reduced nicotinamide adenine dinucleotide (NADPH) via the intermediacy of two proteins-ferredoxin reductase (a flavoprotein) and ferredoxin (an iron/sulfur protein). Type I P450 enzymes include the cholesterol side-chain cleavage enzyme (P450scc), the two isozymes of 11-hydroxylase (P450c11beta and P450c11AS), and several vitamin D-metabolizing enzymes. Disorders of these enzymes, but not of the two redox partners, have been described. Type II P450 enzymes, found in the endoplasmic reticulum, receive electrons from NADPH via P450 oxidoreductase (POR), which contains two flavin moieties. Steroidogenic Type II P450 enzymes include 17alpha-hydroxylase/17,20 lyase (P450c17), 21-hydroxylase (P450c21), and aromatase (P450aro). All P450 enzymes catalyze multiple reactions, but P450c17 appears to be unique in that the ratio of its activities is regulated at a posttranslational level. Three factors can increase the degree of 17,20 lyase activity relative to the 17alpha-hydroxylase activity by increasing electron flow from POR: a high molar ratio of POR to P450c17, serine phosphorylation of P450c17, and the presence of cytochrome b(5), acting as an allosteric factor to promote the interaction of POR with P450c17. POR is required for the activity of all 50 human Type II P450 enzymes, and ablation of the Por gene in mice causes embryonic lethality. Nevertheless, mutation of the human POR gene is compatible with life, causing multiple steroidogenic defects and a skeletal dysplasia called Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Building MR-4, Room 209, University of California, San Francisco, San Francisco, California 94143-0978, USA
| |
Collapse
|
38
|
Ren S, Nguyen L, Wu S, Encinas C, Adams JS, Hewison M. Alternative Splicing of Vitamin D-24-Hydroxylase. J Biol Chem 2005; 280:20604-11. [PMID: 15788398 DOI: 10.1074/jbc.m414522200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synthesis of the active form of vitamin D, 1,25-dihydroxyvitamin D (1,25-(OH)(2)D), by renal epithelial cells is tightly controlled during normal calcium homeostasis. By contrast, macrophage production of 1,25-(OH)(2)D is often dysregulated with potential hypercalcemic complications. We have postulated that this is due to abnormal catabolism of 1,25-(OH)(2)D by the feedback control enzyme, vitamin D-24-hydroxylase (CYP24). Using chick HD-11 and human THP-1 myelomonocytic cell lines, we have shown that macrophage-like cells express a splice variant of the CYP24 gene (CYP24-SV), which encodes a truncated protein. Compared with the holo-CYP24 gene product in chick and human cells (508 and 513 amino acids, respectively), the truncated CYP24-SV versions consisted of 351 and 372 amino acids. These CYP24-SV proteins retained intact substrate-binding domains but lacked mitochondrial targeting sequences and were therefore catalytically inactive. In common with CYP24, expression of the CYP24 variants was induced by 1,25-(OH)(2)D but without a concomitant rise in 24-hydroxylase activity. However, overexpression of CYP24-SV in HD-11 and THP-1 cells reduced synthesis of 1,25-(OH)(2) D (40-50%), whereas antisense CYP24-SV expression increased 1,25-(OH)(2)D production by 2-7-fold. These data suggest that alternative splicing of CYP24 leads to the generation of a dominant negative-acting protein that is catalytically dysfunctional. We theorize that expression of the CYP24-SV may contribute to the extracellular accumulation of 1,25(OH)(2)D in human health and disease.
Collapse
Affiliation(s)
- Songyang Ren
- Department of Medicine, Division of Endocrinology, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gennero I, Moulin P, Edouard T, Conte-Auriol F, Tauber MT, Salles JP. Métabolisme minéral osseux: données récentes et perspectives relatives à l’ostéogenèse. Arch Pediatr 2004; 11:1473-83. [PMID: 15596338 DOI: 10.1016/j.arcped.2004.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Important data have recently been added to our knowledge of bone mineral metabolism in children. Molecular pathophysiology of several pediatric syndromes has been clarified. Specially, the components of endocrine and metabolic regulations are tightly related with regard to the trophicity of bone. On another hand, the impact of several therapeutics of bone diseases like biphosphonates, parathormone (PTH) or growth hormone on bone anabolism is now strongly emphasized. All these points are important for the becoming of bone pediatric diseases in the adult life. Here we analyze the essential components of mineral metabolism and of its regulation in view of the recent biological data, like PTH/PTHrP (PTH-related peptide)-evoked cell signaling, the role of FGF 23 (Fibroblast growth factor 23) in hypophosphatemia and the regulation of vitamin D metabolism by 1alpha-hydroxylase. Inter-relation of these regulating elements is present in several genetic diseases and in the Mc Cune Albright syndrome. Relationships between metabolic and endocrine factors are analyzed considering their impact on PTH secretion and osteogenesis.
Collapse
Affiliation(s)
- I Gennero
- Laboratoire de biochimie, hôpital La Grave, TSA 60033, 31059 Toulouse 9, France
| | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Ebert R, Jovanovic M, Ulmer M, Schneider D, Meissner-Weigl J, Adamski J, Jakob F. Down-regulation by nuclear factor kappaB of human 25-hydroxyvitamin D3 1alpha-hydroxylase promoter. Mol Endocrinol 2004; 18:2440-50. [PMID: 15243130 DOI: 10.1210/me.2002-0441] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
1,25-(OH)(2) vitamin D(3) is important for calcium homeostasis and cell differentiation. The key enzyme for the activation of liver-derived 25(OH) vitamin D(3) is 25-hydroxyvitamin D(3) 1alpha-hydroxylase. It is expressed mainly in the kidney but also in peripheral tissues. A 1413-bp fragment of the 1alpha-hydroxylase promoter was cloned into luciferase vectors pGL2basic and pGL3basic. Sequence analyses revealed four base exchanges and three base deletions compared with the published sequence which were identically found in five control persons. In silico promoter analyses revealed 17 putative nuclear factor (NF)kappaB sites, 10 of which were found to bind NFkappaB in EMSA experiments. Cotransfection of NFkappaB p50 and p65 subunits resulted in dramatic reduction of the promoter activity of the full-length construct as well as a series of 5'-deletion constructs. Deletion of the farmost 3'-situated NFkappaB-responsive element almost abolished NFkappaB responsiveness. Treatment of human embryonic kidney 293 cells with sulfasalazine, a NFkappaB inhibitor, resulted in enhanced 1alpha-hydroxylase mRNA production. Down-regulation of 1alpha-hydroxylase promoter through NFkappaB signaling may contribute to the pathogenesis of inflammation-associated osteopenia/osteoporosis.
Collapse
Affiliation(s)
- Regina Ebert
- Orthopedic Department, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Lopez ER, Regulla K, Pani MA, Krause M, Usadel KH, Badenhoop K. CYP27B1 polymorphisms variants are associated with type 1 diabetes mellitus in Germans. J Steroid Biochem Mol Biol 2004; 89-90:155-7. [PMID: 15225764 DOI: 10.1016/j.jsbmb.2004.03.095] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CYP27B1 (25-hydroxyvitamin D(3)-1alpha-hydroxylase) catalyzes the metabolization of 25-hydroxyvitamin D(3) to 1,25(OH)(2)D(3) the most active natural Vitamin D metabolite. 1,25(OH)(2)D(3) plays a role in the regulation of autoimmunity and cell proliferation and prevents the development of autoimmune diabetes mellitus in animal models besides other autoimmune disorders. One hundred and eighty-seven families with one offspring affected with type1diabetes mellitus were genotyped for the polymorphisms in the promoter region (-1260 C/A) and intron 6 (2338 T/C) of the CYP27B1 gene on chromosome 12 q13.1-13.3 and extended transmission disequilibrium tests (ETDT) were performed. The haplotype CT (-1260 A/2338 T) was significantly more often transmitted to affected offspring (96 transmitted (T) versus 63 not transmitted (NT), P = 0.0089). While the AT (-1260 C/2838 T) was significantly less often transmitted (37 T versus 60 NT, P = 0.0195). This study suggests that CYP27B1 haplotypes may confer susceptibility to type 1 diabetes mellitus in Germans.
Collapse
Affiliation(s)
- Elizabeth Ramos Lopez
- Department of Internal Medicine I, Division of Endocrinology, University Hospital Frankfurt, Theodor Stern Kai 7, Frankfurt am Main 60596, Germany
| | | | | | | | | | | |
Collapse
|
43
|
McGrath JJ, Féron FP, Burne THJ, Mackay-Sim A, Eyles DW. Vitamin D3-implications for brain development. J Steroid Biochem Mol Biol 2004; 89-90:557-60. [PMID: 15225838 DOI: 10.1016/j.jsbmb.2004.03.070] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
There is growing evidence that 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, our group has explored the role of 1,25(OH)(2)D(3) in brain development using whole animal models and in vitro culture studies. The expression of the vitamin D receptor (VDR) in the embryonic rat brain rises steadily between embryonic day 15-23, and 1,25(OH)(2)D(3) induces the expression of nerve growth factor and stimulates neurite outgrowth in embryonic hippocampal explant cultures. In the neonatal rat, low prenatal vitamin D(3) in utero leads to increased brain size, altered brain shape, enlarged ventricles, reduced expression of nerve growth factors, reduced expression of the low affinity p75 receptor and increased cellular proliferation. In summary, there is growing evidence that low prenatal levels of 1,25(OH)(2)D(3) can influence critical components of orderly brain development. It remains to be seen if these processes are of clinical relevance in humans, but in light of the high rates of hypovitaminosis D in pregnant women and neonates, this area warrants further scrutiny.
Collapse
Affiliation(s)
- John J McGrath
- Queensland Centre for Schizophrenia Research, The Park Centre for Mental Health, Wacol, Australia.
| | | | | | | | | |
Collapse
|
44
|
Hewison M, Zehnder D, Chakraverty R, Adams JS. Vitamin D and barrier function: a novel role for extra-renal 1 alpha-hydroxylase. Mol Cell Endocrinol 2004; 215:31-8. [PMID: 15026172 DOI: 10.1016/j.mce.2003.11.017] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Much recent attention has focused on the positive health benefits of vitamin D beyond its established role in calcium homeostasis. Epidemiology has highlighted the link between vitamin D deficiency and prevalent diseases such as common cancers and autoimmune disease. Furthermore, studies in vitro have shown that the active form of vitamin D, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is a potent antiproliferative and immunosuppressive agent. The net effect of this has been the generation and analysis of synthetic analogues of vitamin D for potential use in the treatment of cancers and other disorders including psoriasis. However, there is increasing interest in the impact that vitamin D may have on normal physiology above and beyond its classical effects on calcium homeostasis and bone metabolism. We have postulated that these 'non-calcemic' effects of vitamin D are dependent on extra-renal synthesis of 1,25(OH)(2)D(3) via the enzyme 1 alpha-hydroxylase at barrier sites throughout the body. Here we present a review of the mechanisms associated with extra-renal 1 alpha-hydroxylase, and we also speculate on how this 'new' physiological role for vitamin D may actually reflect an ancient function for this pluripotent secosteroid.
Collapse
Affiliation(s)
- Martin Hewison
- Division of Medical Sciences, Institute of Clinical Research, The University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TH, UK.
| | | | | | | |
Collapse
|
45
|
Wang L, Whitlatch LW, Flanagan JN, Holick MF, Chen TC. Vitamin D autocrine system and prostate cancer. Recent Results Cancer Res 2003; 164:223-37. [PMID: 12899525 DOI: 10.1007/978-3-642-55580-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
25-Hydroxyvitamin D-1alpha-hydroxylase (lalpha-OHase) is expressed in prostate cells. The expression suggests that local production of 1,25-dihydroxyvitamin D could provide an important cell growth regulatory mechanism. However, there is differential expression of 1alpha-OHase activity among the primary cultures of prostate cells derived from cancerous, benign prostatic hypertrophy and normal tissue, and among noncancerous (PZHPV-7) and various cancer cell lines (PC-3, DU145). No activity was found in cancer cell line LNCaP. The observed marked decrease in 1alpha-OHase activity in prostate cancer cells suggests some defect of the 1alpha-OHase in these cells. Using luciferase reporter gene assay, we observed a step-wise decrease in the basal promoter activity in two truncated promoter fragments, AN2 (-1,100 bp) and AN5 (-394 bp), with the highest basal activities found in PZHPV-7 and with loss of promoter activity in LNCaP. In order to understand the mechanism underlying the differential promoter activities among different prostate cells, we investigated the possible role of phosphorylation of cyclic AMP response element binding protein (CREB) on the regulation of 1alpha-OHase promoter activity in the four prostate cell lines. First we compared the levels of CREB phosphorylation among PZHPV-7, DU145, PC-3 and LNCaP cells by Western blot analysis using antibody against phosphorylated CREB. We observed that CREB was phosphorylated to a greater extent in PZHPV-7 than in DU145 cells. No significant phosphorylation of CREB was found in PC-3 and LNCaP cells. Next, we utilized activators and inhibitors of protein kinase A (PKA), protein kinase C (PKC), mitogen-activated protein kinase kinase (MAPKK) and calcium/calmodulin-dependent protein kinase II (CaMKII) to determine which kinases might be involved in phosphorylating the CREB in PZHPV-7 cells. We demonstrated that forskolin (an activator of PKA) increased the AN2 basal promoter activity 50%, whereas H-89 (an inhibitor of PKA) inhibited the basal and forskolin-stimulated AN2 promoter activity 40% and 70%, respectively. We also showed that PD98059 (an inhibitor of MAPKK) decreased the AN2 promoter activity 70%. Phorbol 12-myristate 13-acetate (an activator of PKC), GF109203 (an inhibitor of PKC) and KN-93 (an inhibitor of CaMKII) had no effect on AN2 promoter activity in PZHPV-7 cells. Thus, our results suggest that differential phosphorylation of CREB through PKA and MAPK pathways may be involved in the regulation of 1alpha-OHase promoter activity.
Collapse
Affiliation(s)
- Lilin Wang
- Department of Medicine, Endocrine Section, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
46
|
Lin CJ, Dardis A, Wijesuriya SD, Abdullah MA, Casella SJ, Miller WL. Lack of mutations in CYP2D6 and CYP27 in patients with apparent deficiency of vitamin D 25-hydroxylase. Mol Genet Metab 2003; 80:469-72. [PMID: 14654361 DOI: 10.1016/j.ymgme.2003.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Activation of vitamin D requires hepatic 25-hydroxylation and renal 1alpha-hydroxylation. Defects in renal P450c1alpha are well-described, but few patients with defective vitamin D 25-hydroxylation are reported. The cytochrome P450 enzymes CYP2D6 and CYP27 are potential 25-hydroxylases. We sequenced both genes in two reported families with hepatic 25-hydroxylase deficiency and found no mutations. 25-Hydroxylation occurs in both mitochondria and microsomes. The existence genes encoding distinct enzymes would provide genetic redundancy, explaining the rarity of apparent vitamin D 25-hydroxylase deficiency.
Collapse
Affiliation(s)
- Chin Jia Lin
- Department of Pediatrics, University of California, San Francisco, CA 94143-0978, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Evidence for the presence of the vitamin D receptor in brain implies this vitamin may have some function in this organ. This study investigates whether vitamin D(3) acts during brain development. We demonstrate that rats born to vitamin D(3)-deficient mothers had profound alterations in the brain at birth. The cortex was longer but not wider, the lateral ventricles were enlarged, the cortex was proportionally thinner and there was more cell proliferation throughout the brain. There were reductions in brain content of nerve growth factor and glial cell line-derived neurotrophic factor and reduced expression of p75(NTR), the low-affinity neurotrophin receptor. Our findings would suggest that low maternal vitamin D(3) has important ramifications for the developing brain.
Collapse
Affiliation(s)
- D Eyles
- Queensland Centre for Schizophrenia Research, Wolston Park Hospital, Brisbane, Queensland 4076, Australia.
| | | | | | | | | |
Collapse
|
48
|
Welsh J, Wietzke JA, Zinser GM, Byrne B, Smith K, Narvaez CJ. Vitamin D-3 receptor as a target for breast cancer prevention. J Nutr 2003; 133:2425S-2433S. [PMID: 12840219 DOI: 10.1093/jn/133.7.2425s] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The vitamin D-3 receptor (VDR) is a nuclear receptor that modulates gene expression when complexed with its ligand 1-alpha,25-dihydroxycholecalciferol [1,25(OH)(2)-D(3)], which is the biologically active form of vitamin D-3. The cellular effects of VDR signaling include growth arrest, differentiation and/or induction of apoptosis, which indicate that the vitamin D pathway participates in negative-growth regulation. Although much attention has been directed in recent years toward the development of synthetic vitamin D analogs as therapeutic agents for a variety of human cancers including those derived from the mammary gland, studies on vitamin D as a chemopreventive agent for breast cancer have been quite limited. The VDR is expressed in normal mammary gland, where it functions to oppose estrogen-driven proliferation and maintain differentiation; this suggests that 1,25(OH)(2)-D(3) participates in negative-growth regulation of mammary epithelial cells. Furthermore, preclinical studies show that vitamin D compounds can reduce breast cancer development in animals, and human data indicate that both vitamin D status and genetic variations in the VDR may affect breast cancer risk. Collectively, findings from cellular, molecular and population studies suggest that the VDR is a nutritionally modulated growth-regulatory gene that may represent a molecular target for chemoprevention of breast cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Dardenne O, Prud'homme J, Hacking SA, Glorieux FH, St-Arnaud R. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). Bone 2003; 32:332-40. [PMID: 12689675 DOI: 10.1016/s8756-3282(03)00023-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mutations in the 25-hydroxyvitamin D-1alpha-hydroxylase gene (CYP27B1; 1alpha-OHase) cause pseudo vitamin D deficiency rickets (PDDR), while mutations in the vitamin D receptor (VDR) cause hereditary vitamin D resistance rickets. Animal models of both diseases have been engineered. The bone phenotype of VDR-ablated mice can be completely rescued by feeding the animals with a high-calcium, high-phosphorus, high-lactose diet. We have attempted to rescue the PDDR phenotype of mice deficient for the 1alpha-OHase gene by feeding them with the high-calcium diet. The rescue regimen consisted of feeding a diet containing 2% calcium, 1.25% phosphorus, 20% lactose (rescue diet) from 3 weeks of age until sacrifice at 8.5 weeks of age. Blood biochemistry analysis revealed that the rescue diet corrected the hypocalcemia and secondary hyperparathyroidism. Despite the restoration of normocalcemia, 1alpha-OHase(-/-) (and 1alpha-OHase(+/-)) animals fed the rescue diet initially gained weight less rapidly than control mice fed normal mouse chow. Although 1alpha-OHase(-/-) mice fed the rescue diet eventually reached the same weight as control animals, the treatment did not entirely correct bone growth, as femur size remained significantly smaller than that of control. Bone histology and histomorphometry confirmed that the rickets and osteomalacia were cured. The rescue diet also restored the biomechanical properties of the bone tissue within normal parameters. These results demonstrate that correction of the abnormal mineral ion homeostasis by feeding with a high-calcium rescue diet is effective to rescue the PDDR phenotype of 1alpha-OHase mutant mice. This treatment, however, does not appear as effective as 1,25(OH)(2)D(3) replacement therapy since bone growth remained impaired.
Collapse
Affiliation(s)
- O Dardenne
- Genetics Unit, Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | | | | | |
Collapse
|
50
|
St-Arnaud R, Dardenne O, Prud'homme J, Hacking SA, Glorieux FH. Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1alpha-hydroxylase (CYP27B1). J Cell Biochem 2003; 88:245-51. [PMID: 12520522 DOI: 10.1002/jcb.10348] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mutations in the human 25-hydroxyvitamin-D(3)-1alpha-hydroxylase (CYP27B1) gene cause pseudo vitamin D deficiency rickets (PDDR). The kidney is the main site of expression of the CYP27B1 gene, but expression has been documented in other cell types, including chondrocytes. We engineered a tissue-specific and a conventional knockout of CYP27B1 in mice. The conventional knockout strain reproduced the PDDR phenotype. Homozygote mutant animals were treated with 1,25(OH)(2)D(3) or fed a high-calcium diet (2% calcium, 1.25% phosphate, 20% lactose) for 5 weeks post-weaning. Blood biochemistry revealed that both rescue treatments corrected the hypocalcemia and secondary hyperparathyroidism. Bone histomorphometry confirmed that rickets were cured. The rescue regimen restored the biomechanical properties of the bone tissue. Mice carrying the loxP-bearing allele were bred to transgenic animals expressing the Cre recombinase in chondrocytes under the control of the collagen type II promoter. Genotyping confirmed excision of exon 8 in chondrocytes. Serum biochemistry revealed that mineral ion homeostasis is normal in mutant animals. Preliminary observation of bone tissue from mutant mice did not reveal major changes to the growth plate. Precise histomorphometric analysis will be required to assess the impact of chondrocyte-specific inactivation of CYP27B1 on the maturation and function of growth plate cells in vivo.
Collapse
Affiliation(s)
- René St-Arnaud
- Genetics Unit, Shriners Hospital for Children, Montreal (Quebec), Canada H3G 1A6.
| | | | | | | | | |
Collapse
|