1
|
Pandur E, Pap R, Sipos K. Activated THP-1 Macrophage-Derived Factors Increase the Cytokine, Fractalkine, and EGF Secretions, the Invasion-Related MMP Production, and Antioxidant Activity of HEC-1A Endometrium Cells. Int J Mol Sci 2024; 25:9624. [PMID: 39273575 PMCID: PMC11395051 DOI: 10.3390/ijms25179624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Endometrium receptivity is a multifactor-regulated process involving progesterone receptor-regulated signaling, cytokines and chemokines, and additional growth regulatory factors. In the female reproductive system, macrophages have distinct roles in the regulation of receptivity, embryo implantation, immune tolerance, and angiogenesis or oxidative stress. In the present study, we investigated the effects of PMA-activated THP-1 macrophages on the receptivity-related genes, cytokines and chemokines, growth regulators, and oxidative stress-related molecules of HEC-1A endometrium cells. We established a non-contact co-culture in which the culture medium of the PMA-activated macrophages exhibiting the pro-inflammatory phenotype was used for the treatment of the endometrial cells. In the endometrium cells, the expression of the growth-related factors activin and bone morphogenetic protein 2, the growth hormone EGF, and the activation of the downstream signaling molecules pERK1/2 and pAkt were analyzed by ELISA and Western blot. The secretions of cytokines and chemokines, which are involved in the establishment of endometrial receptivity, and the expression of matrix metalloproteinases implicated in invasion were also determined. Based on the results, the PMA-activated THP-1 macrophages exhibiting a pro-inflammatory phenotype may play a role in the regulation of HEC-1A endometrium cells. They alter the secretion of cytokines and chemokines, as well as the protein level of MMPs of HEC-1A cells. Moreover, activated THP-1 macrophages may elevate oxidative stress protection of HEC-1A endometrium cells. All these suggest that pro-inflammatory macrophages have a special role in the regulation of receptivity-related and implantation-related factors of HEC-1A cells.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Ramóna Pap
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
- National Laboratory of Human Reproduction, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
2
|
Wei D, Su Y, Leung PCK, Li Y, Chen ZJ. Roles of bone morphogenetic proteins in endometrial remodeling during the human menstrual cycle and pregnancy. Hum Reprod Update 2024; 30:215-237. [PMID: 38037193 DOI: 10.1093/humupd/dmad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND During the human menstrual cycle and pregnancy, the endometrium undergoes a series of dynamic remodeling processes to adapt to physiological changes. Insufficient endometrial remodeling, characterized by inadequate endometrial proliferation, decidualization and spiral artery remodeling, is associated with infertility, endometriosis, dysfunctional uterine bleeding, and pregnancy-related complications such as preeclampsia and miscarriage. Bone morphogenetic proteins (BMPs), a subset of the transforming growth factor-β (TGF-β) superfamily, are multifunctional cytokines that regulate diverse cellular activities, such as differentiation, proliferation, apoptosis, and extracellular matrix synthesis, are now understood as integral to multiple reproductive processes in women. Investigations using human biological samples have shown that BMPs are essential for regulating human endometrial remodeling processes, including endometrial proliferation and decidualization. OBJECTIVE AND RATIONALE This review summarizes our current knowledge on the known pathophysiological roles of BMPs and their underlying molecular mechanisms in regulating human endometrial proliferation and decidualization, with the goal of promoting the development of innovative strategies for diagnosing, treating and preventing infertility and adverse pregnancy complications associated with dysregulated human endometrial remodeling. SEARCH METHODS A literature search for original articles published up to June 2023 was conducted in the PubMed, MEDLINE, and Google Scholar databases, identifying studies on the roles of BMPs in endometrial remodeling during the human menstrual cycle and pregnancy. Articles identified were restricted to English language full-text papers. OUTCOMES BMP ligands and receptors and their transduction molecules are expressed in the endometrium and at the maternal-fetal interface. Along with emerging technologies such as tissue microarrays, 3D organoid cultures and advanced single-cell transcriptomics, and given the clinical availability of recombinant human proteins and ongoing pharmaceutical development, it is now clear that BMPs exert multiple roles in regulating human endometrial remodeling and that these biomolecules (and their receptors) can be targeted for diagnostic and therapeutic purposes. Moreover, dysregulation of these ligands, their receptors, or signaling determinants can impact endometrial remodeling, contributing to infertility or pregnancy-related complications (e.g. preeclampsia and miscarriage). WIDER IMPLICATIONS Although further clinical trials are needed, recent advancements in the development of recombinant BMP ligands, synthetic BMP inhibitors, receptor antagonists, BMP ligand sequestration tools, and gene therapies have underscored the BMPs as candidate diagnostic biomarkers and positioned the BMP signaling pathway as a promising therapeutic target for addressing infertility and pregnancy complications related to dysregulated human endometrial remodeling.
Collapse
Affiliation(s)
- Daimin Wei
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Yaxin Su
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, Shandong, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, China
| |
Collapse
|
3
|
Zhang H, Wang Z, Zhou Q, Cao Z, Jiang Y, Xu M, Liu J, Zhou J, Yan G, Sun H. Downregulated INHBB in endometrial tissue of recurrent implantation failure patients impeded decidualization through the ADCY1/cAMP signalling pathway. J Assist Reprod Genet 2023; 40:1135-1146. [PMID: 36913138 PMCID: PMC10239411 DOI: 10.1007/s10815-023-02762-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/22/2023] [Indexed: 03/14/2023] Open
Abstract
PURPOSE This study aims to identify the mechanism of Inhibin Subunit Beta B (INHBB), a member of the transforming growth factor-β (TGF-β) family involved in the regulation of human endometrial stromal cells (HESCs) decidualization in recurrent implantation failure (RIF). METHODS RNA-seq was conducted to identify the differentially expressed genes in the endometria from control and RIF patients. RT-qPCR, WB, and immunohistochemistry were performed to analyse the expression levels of INHBB in endometrium and decidualised HESCs. RT-qPCR and immunofluorescence were used to detect changes in the decidual marker genes and cytoskeleton after knockdown INHBB. Then, RNA-seq was used to dig out the mechanism of INHBB regulating decidualization. The cAMP analogue (forskolin) and si-INHBB were used to investigate the involvement of INHBB in the cAMP signalling pathway. The correlation of INHBB and ADCY expression was analysed by Pearson's correlation analysis. RESULTS Our results showed significantly reduced expression of INHBB in endometrial stromal cells of women with RIF. In addition, INHBB was increased in the endometrium of the secretory phase and significantly induced in in-vitro decidualization of HESCs. Notably, with RNA-seq and siRNA-mediated knockdown approaches, we demonstrated that the INHBB-ADCY1-mediated cAMP signalling pathway regulates the reduction of decidualization. We found a positive association between the expression of INHBB and ADCY1 in endometria with RIF (R2 = 0.3785, P = 0.0005). CONCLUSIONS The decline of INHBB in HESCs suppressed ADCY1-induced cAMP production and cAMP-mediated signalling, which attenuated decidualization in RIF patients, indicating that INHBB is an essential component in the decidualization process.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhilong Wang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Quan Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Zhiwen Cao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Manlin Xu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jingyu Liu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, China.
| | - Haixiang Sun
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China.
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Pant S, Bhati T, Dimri A, Arora R, Siraj F, Raisuddin S, Rastogi S. Chlamydia trachomatis infection regulates the expression of tetraspanins, activin-A, and inhibin-A in tubal ectopic pregnancy. Pathog Dis 2023; 81:ftad018. [PMID: 37480234 DOI: 10.1093/femspd/ftad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
Mechanism of Chlamydia trachomatis causing tubal ectopic pregnancy (EP) is not well understood. Tetraspanins (tspans), activin-A, and inhibin-A might play a role in the development of pathological conditions leading to EP. The study aimed to elucidate the expression of tspans, activin-A, and inhibin-A with a role of associated cytokines in C. trachomatis-associated EP and analyze interacting partners of DEGs, with an expression of a few important interacting genes. Fallopian tissue and serum were collected from 100 EP (Group I) and 100 controls (Group II) from SJH, New Delhi, India. Detection of C. trachomatis was done by polymerase chain reaction (PCR) and IgG antibodies were detected by enzyme-linked immunosorbent assay. Expression of tspans, activin-A, inhibin-A, and cytokines was analyzed by real time (RT)-PCR and their interacting genes were assessed by STRING. Expression of few disease-associated interacting genes was studied by RT-PCR. A total of 29% (Group I) were C. trachomatis positive. Tspans and activin-A were significantly upregulated, while inhibin-A was significantly downregulated in Group Ia. ITGA1, TLR-2, ITGB2, and Smad-3 were a few interacting genes. Expression of ITGA1, TLR-2, and Smad-3 was significantly upregulated in C. trachomatis-positive EP. Results suggested dysregulated tspans, activin-A, and inhibin-A might play a role in C. trachomatis-infected tubal EP.
Collapse
Affiliation(s)
- Shipra Pant
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box 4909, New Delhi 110029, India
| | - Tanu Bhati
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box 4909, New Delhi 110029, India
| | - Astha Dimri
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box 4909, New Delhi 110029, India
| | - Renu Arora
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College (VMMC) and Safdarjung Hospital, New Delhi 110029, India
| | - Fouzia Siraj
- Pathology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box 4909, New Delhi 110029, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 10062, India
| | - Sangita Rastogi
- Molecular Microbiology Laboratory, ICMR-National Institute of Pathology, Sriramachari Bhawan, Safdarjung Hospital Campus, Post Box 4909, New Delhi 110029, India
| |
Collapse
|
5
|
Mesenchymal Stem Cells in Embryo-Maternal Communication under Healthy Conditions or Viral Infections: Lessons from a Bovine Model. Cells 2022; 11:cells11121858. [PMID: 35740987 PMCID: PMC9221285 DOI: 10.3390/cells11121858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine mesenchymal stem cells are a relevant cell population found in the maternal reproductive tract that exhibits the immunomodulation capacity required to prevent embryo rejection. The phenotypic plasticity showed by both endometrial mesenchymal stem cells (eMSC) and embryonic trophoblast through mesenchymal to epithelial transition and epithelial to mesenchymal transition, respectively, is essential for embryo implantation. Embryonic trophoblast maintains active crosstalk via EVs and soluble proteins with eMSC and peripheral blood MSC (pbMSC) to ensure the retention of eMSC in case of pregnancy and induce the chemotaxis of pbMSC, critical for successful implantation. Early pregnancy-related proteins and angiogenic markers are detected as cargo in EVs and the soluble fraction of the embryonic trophectoderm secretome. The pattern of protein secretion in trophectoderm-EVs changes depending on their epithelial or mesenchymal phenotype and due to the uptake of MSC EVs. However, the changes in this EV-mediated communication between maternal and embryonic MSC populations infected by viruses that cause abortions in cattle are poorly understood. They are critical in the investigation of reproductive viral pathologies.
Collapse
|
6
|
Embryonic Trophectoderm Secretomics Reveals Chemotactic Migration and Intercellular Communication of Endometrial and Circulating MSCs in Embryonic Implantation. Int J Mol Sci 2021; 22:ijms22115638. [PMID: 34073234 PMCID: PMC8199457 DOI: 10.3390/ijms22115638] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Embryonic implantation is a key step in the establishment of pregnancy. In the present work, we have carried out an in-depth proteomic analysis of the secretome (extracellular vesicles and soluble proteins) of two bovine blastocysts embryonic trophectoderm primary cultures (BBT), confirming different epithelial–mesenchymal transition stages in these cells. BBT-secretomes contain early pregnancy-related proteins and angiogenic proteins both as cargo in EVs and the soluble fraction. We have demonstrated the functional transfer of protein-containing secretome between embryonic trophectoderm and maternal MSC in vitro using two BBT primary cultures eight endometrial MSC (eMSC) and five peripheral blood MSC (pbMSC) lines. We observed that eMSC and pbMSC chemotax to both the soluble fraction and EVs of the BBT secretome. In addition, in a complementary direction, we found that the pattern of expression of implantation proteins in BBT-EVs changes depending on: (i) their epithelial–mesenchymal phenotype; (ii) as a result of the uptake of eMSC- or pbMSC-EV previously stimulated or not with embryonic signals (IFN-τ); (iii) because of the stimulation with the endometrial cytokines present in the uterine fluid in the peri-implantation period.
Collapse
|
7
|
Griffith OW. Novel tissue interactions support the evolution of placentation. J Morphol 2021; 282:1047-1053. [PMID: 33433907 DOI: 10.1002/jmor.21322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 01/02/2023]
Abstract
Organ development occurs through the coordinated interaction of distinct tissue types. So, a question at the core of understanding the evolution of new organs is, how do new tissue-tissue signalling networks arise? The placenta is a great model for understanding the evolution of new organs, because placentas have evolved repeatedly, evolved relatively recently in some lineages, and exhibit intermediate forms in extant clades. Placentas, like other organs, form from the interaction of two distinct tissues, one maternal and one fetal. If each of these tissues produces signals that can be received by the other, then the apposition of these tissues is likely to result in new signalling dynamics that can be used as a scaffold to support placenta development. Using published data and examples, in this review I demonstrate that placentas are derived from hormonally active organs, that considerable signalling potential exists between maternal and fetal tissues in egg-laying vertebrates, that this signalling potential is conserved through the oviparity-viviparity transition, and that consequences of these interactions form the basis of derived aspects of placentation including embryo implantation. I argue that the interaction of placental tissues, is not merely a consequence of placenta formation, but that novel interactions form the basis of new placental regulatory networks, functions, and patterning mechanisms.
Collapse
Affiliation(s)
- Oliver W Griffith
- Department of Biological Science, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Zhu S, Li Z, Cui L, Ban Y, Leung PCK, Li Y, Ma J. Activin A increases human trophoblast invasion by upregulating integrin β1 through ALK4. FASEB J 2020; 35:e21220. [PMID: 33230889 DOI: 10.1096/fj.202001604r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Activin A promotes human trophoblast invasion during the first trimester of pregnancy and is associated with preeclampsia and pregnancy-induced hypertension (PE/PIH) in naturally conceived pregnancies. However, whether integrin β1 mediates activin A-increased trophoblast invasion remains unknown and the evidence is limited regarding the predictive value of activin A for PE/PIH in women receiving in vitro fertilization (IVF) treatment. Here, we studied the role and underlying molecular mechanisms of integrin β1 in activin A-promoted invasion in immortalized (HTR8/SVneo) and primary human extravillous trophoblast (EVT) cells. A nest case-control study was designed to investigate the predictive/diagnostic value of activin A in IVF pregnancies. Results showed that integrin β1 expression increased after activin A treatment and knockdown of integrin β1 significantly decreased both basal and activin A-increased HTR8/SVneo cell invasion. SB431542 (TGF-β type I receptors inhibitor) abolished activin A-induced SMAD2/SMAD3 phosphorylation and integrin β1 overexpression. Activin A-upregulated integrin β1 expression was attenuated after the depletion of ALK4 or SMAD4 in both HTR8/SVneo and primary EVT cells. Furthermore, we found similar first-trimester activin A levels in IVF patients with or without subsequent PE/PIH. These results reveal that integrin β1 mediates activin A-promoted trophoblast invasion through ALK4-activated SMAD2/3-SMAD4 pathway, and the predictive/diagnostic value of first-trimester maternal serum activin A for hypertensive disorders of pregnancy might be different in IVF population.
Collapse
Affiliation(s)
- Shiqin Zhu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| | - Zeyan Li
- School of Medicine, Shandong University, Jinan, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yanli Ban
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Yan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China.,School of Medicine, Shandong University, Jinan, China.,Suzhou Institute of Shandong University, Jiangsu, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
9
|
Zhang Y, Zhu H, Chang HM, Leung PCK. ALK3-SMAD1/5 Signaling Mediates the BMP2-Induced Decrease in PGE2 Production in Human Endometrial Stromal Cells and Decidual Stromal Cells. Front Cell Dev Biol 2020; 8:573028. [PMID: 33043005 PMCID: PMC7523465 DOI: 10.3389/fcell.2020.573028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022] Open
Abstract
BMP2 is a critical factor that is involved in the processes of embryo implantation and uterine decidualization. The expression of cyclooxygenase (COX) and subsequent prostaglandin E2 (PGE2) production are critical for successful pregnancy. However, it is not clear whether BMP2 can regulate the production of PG during endometrial decidualization. The aim of this study was to investigate the effects of BMP2 on COX-1 expression and PGE2 production as well as the underlying molecular mechanisms in the human endometrium. Immortalized human endometrial stromal cells (HESCs) and human decidual stromal cells (HDSCs) were used as the study model to investigate the effects of BMP2-induced cellular activities. Our results showed that BMP2 treatment significantly decreased PGE2 production by downregulating COX-1 expression in both human endometrial stromal and decidual stromal cells. Additionally, BMP2 induced an increase in the levels of phosphorylated SMAD1/5/8, and this effect was completely abolished by the addition of the inhibitors DMH-1 and dorsomorphin, but not by SB431542. Knocking down ALK3 completely reversed the BMP2-induced downregulation of COX-1. Moreover, concomitantly knocking down SMAD1 and SMAD5 completely reversed the BMP2-induced downregulation of COX-1. Our results indicated that BMP2 decreased PGE2 production by downregulating COX-1 expression, most likely through the ALK3/SMAD1-SMAD5 signaling pathway in human endometrial stromal and human decidual stromal cells. These findings deepen our understanding of the functional role of BMP2 in the regulation of endometrial decidualization in humans.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.,Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Peter C K Leung
- Department of Obstetrics and Gynaecology, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, Czika A, Kumar Sah S, Lamptey J, Ding YB, Wang YX. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine 2020; 133:155105. [PMID: 32438278 DOI: 10.1016/j.cyto.2020.155105] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/14/2020] [Indexed: 12/17/2022]
Abstract
Activins and inhibins - comprising activin A, B, AB, C and E, and inhibin A and B isoforms - belong to the transforming growth factor beta (TGFβ) superfamily. They regulate several biological processes, including cellular proliferation, differentiation and invasiveness, to enhance the formation and functioning of many human tissues and organs. In this review, we have discussed the role of activin and inhibin signaling in the physiological and female-specific pathological events that occur in the female reproductive system. The up-to-date evidence indicates that these cytokines regulate germ cell development, follicular development, ovulation, uterine receptivity, decidualization and placentation through the activation of several signaling pathways; and that their dysregulated expression is involved in the pathogenesis and pathophysiology of the numerous diseases, including pregnancy complications, that disturb reproduction. Hence, some of the isoforms have been suggested as potential biomarkers and therapeutic targets for the management of some of these diseases. Tackling the research directions highlighted in this review will enhance a detailed comprehension and the clinical utility of these cytokines.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Francis Tanam Djankpa
- Department of Physiology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - William Nelson
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania.
| | - Armin Czika
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Sanjay Kumar Sah
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, Ghana.
| | - Yu-Bin Ding
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Reproductive Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
11
|
Fractalkine Regulates HEC-1A/JEG-3 Interaction by Influencing the Expression of Implantation-Related Genes in an In Vitro Co-Culture Model. Int J Mol Sci 2020; 21:ijms21093175. [PMID: 32365902 PMCID: PMC7246682 DOI: 10.3390/ijms21093175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Embryo implantation is a complex process regulated by a network of biological molecules. Recently, it has been described that fractalkine (CX3CL1, FKN) might have an important role in the feto-maternal interaction during gestation since the trophoblast cells express fractalkine receptor (CX3CR1) and the endometrium cells secrete fractalkine. CX3CR1 controls three major signalling pathways, PLC-PKC pathway, PI3K/AKT/NFκB pathway and Ras-mitogen-activated protein kinases (MAPK) pathways regulating proliferation, growth, migration and apoptosis. In this study, we focused on the molecular mechanisms of FKN treatment influencing the expression of implantation-related genes in trophoblast cells (JEG-3) both in mono-and in co-culture models. Our results reveal that FKN acted in a concentration and time dependent manner on JEG-3 cells. FKN seemed to operate as a positive regulator of implantation via changing the action of progesterone receptor (PR), activin receptor and bone morphogenetic protein receptor (BMPR). FKN modified also the expression of matrix metalloproteinase 2 and 9 controlling invasion. The presence of HEC-1A endometrial cells in the co-culture contributed to the effect of fractalkine on JEG-3 cells regulating implantation. The results suggest that FKN may contribute to the successful attachment and implantation of embryo.
Collapse
|
12
|
Phillips P, Brown MB, Progulske-Fox A, Wu XJ, Reyes L. Porphyromonas gingivalis strain-dependent inhibition of uterine spiral artery remodeling in the pregnant rat. Biol Reprod 2018; 99:1045-1056. [PMID: 29788108 PMCID: PMC6297315 DOI: 10.1093/biolre/ioy119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis (Pg) is an important periodontal pathogen that is also implicated in pregnancy complications involving defective deep placentation (DDP). We hypothesized that Pg invasion of the placental bed promotes DDP. Pregnant rats were intravenously inoculated with sterile vehicle, Pg strain W83, or A7436 at gestation day (GD) 14 (acute cohort). Nonpregnant rats received repeated oral inoculations for 3 months before breeding (chronic cohort). Tissues and/or sera were collected at GD18 for analysis. Pg infection status was determined by seroconversion (chronic cohort) and by presence of Pg antigen in utero-placental tissues processed for histology and morphometric assessment of spiral artery remodeling. Mesometrial tissues from seropositive dams were analyzed for expression of interleukin 1β, 6, and 10, TNF, TGF-β, follistatin-related protein 3, and inhibin beta A chain since these genes regulate extravillous trophoblast invasion. The in situ distribution of W83 and A7436 antigen in utero-placental tissues was similar in both cohorts. In the acute cohort, mesometrial stromal necrosis was more common with W83, but arteritis was more common with A7436 infection (P < 0.05). Increased vascular necrosis was seen in mesometrium of chronically infected groups (P < 0.05). Only A7436-infected animals had increased fetal deaths, reduced spiral artery remodeling, reduced inhibin beta A expression, and an increased proportion of FSLT3 positive extravillous trophoblasts within spiral arteries. While infection with both Pg strains produced varying pathology of the deep placental bed, only infection with strain A7436 resulted in impaired spiral artery remodeling.
Collapse
Affiliation(s)
- Priscilla Phillips
- Department of Microbiology & Immunology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, Missouri, USA
| | - Mary B Brown
- Department of Infectious Disease and Immunology, College of Veterinary Medicine and D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, Florida, USA
| | - Ann Progulske-Fox
- Center for Molecular Microbiology and Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Xiao-Jun Wu
- Department of Pathobiological Sciences, University of Wisconsin–Madison, School of Veterinary Medicine, Madison, Wisconson, USA
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin–Madison, School of Veterinary Medicine, Madison, Wisconson, USA
| |
Collapse
|
13
|
Imakawa K, Bai R, Kusama K. Integration of molecules to construct the processes of conceptus implantation to the maternal endometrium. J Anim Sci 2018; 96:3009-3021. [PMID: 29554266 DOI: 10.1093/jas/sky103] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
During the peri-implantation period, ruminant conceptuses go through rapid elongation, followed by their attachment to the uterine endometrial epithelial cells, during which interferon-tau (IFNT), a trophectodermal cytokine required for the process of maternal recognition of pregnancy, is expressed in a temporal and spatial manner. On day 22 (day 0 = day of estrus), 2 to 3 d after the initiation of bovine conceptus attachment to the uterine epithelium, when IFNT production begins to subside, the expression of molecules related to epithelial-mesenchymal transition, zinc finger E-box binding homeobox 1, snail family transcriptional repressor 2, N-cadherin, and vimentin was found in the trophectoderm. Through the use of in vitro coculture system with bovine trophoblast CT-1 and endometrial epithelial cells, a series of experiments have been conducted to elucidate mechanisms associated with the regulation of IFNT gene transcription and conceptus implantation, including epithelial-mesenchymal transition processes. Expression of IFNT, both up- and downregulation, during the peri-implantation period is tightly controlled. Cytokines and cell adhesion molecules such as epidermal growth factor, basic fibroblast growth factor, transforming growth factor beta, activin A, L-selectin-podocalyxin, and vascular cell adhesion molecule 1-integrin α4 expressed in utero all contribute to the initiation of epithelial-mesenchymal transition in the trophectoderm. These results indicate that conceptus implantation to the uterine endometrium proceeds while elongated conceptuses and endometria express cell adhesion molecules and their receptors, and the trophectoderm experiences epithelial-mesenchymal transition. Data accumulated suggest that while the conceptus and the endometrial epithelium adhere, trophectodermal cells must gain more flexibility for binucleate and possibly trinucleate cell formation during the peri-implantation period, and that understanding and constructing the conditions throughout implantation processes is key to improving ruminants' fertility.
Collapse
Affiliation(s)
- K Imakawa
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| | - R Bai
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| | - K Kusama
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ago, Kasama, Ibaraki, Japan
| |
Collapse
|
14
|
Kusama K, Bai R, Ideta A, Aoyagi Y, Okuda K, Imakawa K. Regulation of epithelial to mesenchymal transition in bovine conceptuses through the interaction between follistatin and activin A. Mol Cell Endocrinol 2016; 434:81-92. [PMID: 27321969 DOI: 10.1016/j.mce.2016.06.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/25/2022]
Abstract
Dynamic changes in bovine conceptus and endometrium occur during early gestation, in which the conceptus undergoes epithelial to mesenchymal transition (EMT) after the conceptus attachment to endometrium. To characterize EMT inducing factors, we initially undertook iTRAQ analysis with bovine uterine flushing (UF) obtained from pregnant animals on days 17 (P17: pre-attachment) and 20 (P20: post-attachment). The iTRAQ analysis demonstrated that follistatin (FST), an inhibitor of activin A, increased in P20 UF. We then found that FST decreased in P22 conceptuses, whereas elevated activin A found in P20 UF and endometria was further increased on P22. In addition, phosphorylated SMAD2 increased in P22 conceptuses. In bovine trophoblast cells, the treatment with P22 UF or activin An up-regulated EMT marker expressions, which were inhibited by FST. These results suggest that the initiation of bovine conceptus EMT could be regulated through the spatiotemporal expression of FST or activin A during the peri-attachment period.
Collapse
Affiliation(s)
- Kazuya Kusama
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Rulan Bai
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Atsushi Ideta
- Zennoh Embryo Transfer Center, Hokkaido, 080-1407, Japan
| | - Yoshito Aoyagi
- Zennoh Embryo Transfer Center, Hokkaido, 080-1407, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive Endocrinology, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazuhiko Imakawa
- Laboratory of Theriogenology and Animal Breeding, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657, Japan; Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Ibaraki, 319-0206, Japan.
| |
Collapse
|
15
|
Reis FM, Nascimento LL, Tsigkou A, Ferreira MC, Luisi S, Petraglia F. Activin A and Follistatin in Menstrual Blood: Low Concentrations in Women With Dysfunctional Uterine Bleeding. Reprod Sci 2016; 14:383-9. [PMID: 17644811 DOI: 10.1177/1933719107303985] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activin A and follistatin are growth factors produced by several organs, comprising the endometrium, where they modulate cell and tissue differentiation. In this study, the authors tested whether activin A and follistatin are measurable in menstrual blood and whether their concentrations change in women with dysfunctional uterine bleeding (DUB). The authors evaluated healthy women with regular menstrual cycles (n = 15) and women with DUB (n = 12). Activin A and follistatin were measured in both menstrual and peripheral blood samples using highly sensitive enzyme immunoassays, whereas their respective mRNAs were quantified by real-time polymerase chain reaction in endometrial samples collected during the perimenstrual period. Activin A concentrations were 4-fold higher in menstrual than in peripheral serum of healthy women (mean +/- SE, 4.24 +/- 0.18 vs 1.00 +/- 0.15 ng/mL, P < .001) and were significantly lower in women with DUB compared to healthy subjects (P < .001). Follistatin concentration was 8-fold higher in menstrual than in peripheral serum of healthy women (3.94 +/- 0.49 vs 0.49 +/- 0.04 ng/mL, P < .001) and was significantly lower in the menstrual serum of women with DUB compared to controls (P < .001). There was no correlation between menstrual and peripheral serum concentrations of both proteins. The endometrial expression of activin A and follistatin mRNA was lower in women with DUB compared to controls (P < .05). Both activin A and follistatin are measurable in high concentrations in human menstrual blood and are relatively lower in women with DUB. The quantitative assessment of activin A and follistatin in menstrual serum might be a putative clinical marker of endometrial function.
Collapse
Affiliation(s)
- Fernando M Reis
- Department of Obstetrics and Gynecology, University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
16
|
Endometrial Expression and Secretion of Activin A, But Not Follistatin, Increase in the Secretory Phase of the Menstrual Cycle. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/s1071-55760300045-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Human Decidual Stromal Cells as a Component of the Implantation Niche and a Modulator of Maternal Immunity. J Pregnancy 2016; 2016:8689436. [PMID: 27239344 PMCID: PMC4864559 DOI: 10.1155/2016/8689436] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/26/2016] [Accepted: 03/27/2016] [Indexed: 12/27/2022] Open
Abstract
The human decidua is a specialized tissue characterized by embryo-receptive properties. It is formed during the secretory phase of menstrual cycle from uterine mucosa termed endometrium. The decidua is composed of glands, immune cells, blood and lymph vessels, and decidual stromal cells (DSCs). In the process of decidualization, which is controlled by oestrogen and progesterone, DSCs acquire specific functions related to recognition, selection, and acceptance of the allogeneic embryo, as well as to development of maternal immune tolerance. In this review we discuss the relationship between the decidualization of DSCs and pathological obstetrical and gynaecological conditions. Moreover, the critical influence of DSCs on local immune cells populations as well as their relationship to the onset and maintenance of immune tolerance is described.
Collapse
|
18
|
Coutinho LM, Vieira EL, Dela Cruz C, Casalechi M, Teixeira AL, Del Puerto HL, Reis FM. Apoptosis modulation by activin A and follistatin in human endometrial stromal cells. Gynecol Endocrinol 2016; 32:161-5. [PMID: 26494397 DOI: 10.3109/09513590.2015.1103222] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activin A is a growth factor that stimulates decidualization and is abundantly expressed in endometrial proliferative disorders. Nevertheless, whether it directly affects endometrial cell survival is still unknown. This study investigated the effects of activin A on total death and apoptosis rates and on tumor necrosis factor (TNF) release by human endometrial stromal cells (HESC). We performed a controlled prospective in vitro study using primary HESC cultures obtained from healthy reproductive age women (n = 11). Cells were treated with medium alone (control) or activin A (25 ng/mL) or activin A (25 ng/mL) and its antagonist follistatin (250 ng/mL). Apoptosis and total cell death were measured by flow cytometry, while TNF concentrations in culture media were quantified by ELISA. Activin A decreased the percentage of apoptotic/dead cells from 31% to 22% (p < 0.05, paired t-test) and reduced TNF levels in culture medium by 14%, but there was no linear correlation between TNF release and apoptotic rates. Both effects of activin A were reversed by follistatin. These findings indicate that activin A promotes HESC survival, possibly by a TNF-independent pathway. This mechanism may be critical to the actions of activin A upon stromal cell growth and differentiation in physiology and disease.
Collapse
Affiliation(s)
- Larissa M Coutinho
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Erica L Vieira
- b Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Cynthia Dela Cruz
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Maíra Casalechi
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Antonio L Teixeira
- b Neuroscience Branch, Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil
| | - Helen L Del Puerto
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| | - Fernando M Reis
- a Division of Human Reproduction , Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais , Belo Horizonte , Brazil and
| |
Collapse
|
19
|
Sharkey DJ, Schjenken JE, Mottershead DG, Robertson SA. Seminal fluid factors regulate activin A and follistatin synthesis in female cervical epithelial cells. Mol Cell Endocrinol 2015; 417:178-90. [PMID: 26415587 DOI: 10.1016/j.mce.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Seminal fluid induces pro-inflammatory cytokines and elicits an inflammation-like response in the cervix. Here, Affymetrix microarray and qPCR was utilised to identify activin A (INHBA) and its inhibitor follistatin (FST) amongst the cytokines induced by seminal plasma in Ect1 ectocervical epithelial cells, and a similar response was confirmed in primary ectocervical epithelial cells. TGFB is abundant in seminal plasma and all three TGFB isoforms induced INHBA in Ect1 and primary cells, and neutralisation of TGFB in seminal plasma suppressed the INHBA response. Bacterial lipopolysaccharide in seminal plasma also elicited INHBA, but potently suppressed FST production. There was moderate reciprocal inhibition between FST and INHBA, and cross-attenuating effects were seen. These data identify TGFB and potentially LPS as factors mediating seminal plasma-induced INHBA synthesis in cervical cells. INHBA and FST induced by seminal fluid in cervical tissues may thus contribute to regulation of the post-coital response in women.
Collapse
Affiliation(s)
- David J Sharkey
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - David G Mottershead
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
20
|
Thouas GA, Dominguez F, Green MP, Vilella F, Simon C, Gardner DK. Soluble ligands and their receptors in human embryo development and implantation. Endocr Rev 2015; 36:92-130. [PMID: 25548832 DOI: 10.1210/er.2014-1046] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extensive evidence suggests that soluble ligands and their receptors mediate human preimplantation embryo development and implantation. Progress in this complex area has been ongoing since the 1980s, with an ever-increasing list of candidates. This article specifically reviews evidence of soluble ligands and their receptors in the human preimplantation stage embryo and female reproductive tract. The focus will be on candidates produced by the human preimplantation embryo and those eliciting developmental responses in vitro, as well as endometrial factors related to implantation and receptivity. Pathways to clinical translation, including innovative diagnostics and other technologies, are also highlighted, drawing from this collective evidence toward facilitating joint improvements in embryo quality and endometrial receptivity. This strategy could not only benefit clinical outcomes in reproductive medicine but also provide broader insights into the peri-implantation period of human development to improve fetal and neonatal health.
Collapse
Affiliation(s)
- George A Thouas
- Reproductive Biology and Assisted Conception Laboratory (G.A.T., M.P.G., D.K.G.), School of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia 3010; Fundación Instituto Valenciano de Infertilidad (F.D., F.V., C.S.), Department of Obstetrics and Gynecology, University of Valencia, 46010, Valencia, Spain; La Fundación para la Investigación del Hospital Clínico de la Comunidad Valenciana Health Research Institute (F.D., F.V., C.S.), 46010 Valencia, Spain; and Department of Obstetrics and Gynecology (C.S.), Stanford University, Stanford, California 90095
| | | | | | | | | | | |
Collapse
|
21
|
Gellersen B, Brosens JJ. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev 2014; 35:851-905. [PMID: 25141152 DOI: 10.1210/er.2014-1045] [Citation(s) in RCA: 652] [Impact Index Per Article: 65.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Decidualization denotes the transformation of endometrial stromal fibroblasts into specialized secretory decidual cells that provide a nutritive and immunoprivileged matrix essential for embryo implantation and placental development. In contrast to most mammals, decidualization of the human endometrium does not require embryo implantation. Instead, this process is driven by the postovulatory rise in progesterone levels and increasing local cAMP production. In response to falling progesterone levels, spontaneous decidualization causes menstrual shedding and cyclic regeneration of the endometrium. A growing body of evidence indicates that the shift from embryonic to maternal control of the decidual process represents a pivotal evolutionary adaptation to the challenge posed by invasive and chromosomally diverse human embryos. This concept is predicated on the ability of decidualizing stromal cells to respond to individual embryos in a manner that either promotes implantation and further development or facilitates early rejection. Furthermore, menstruation and cyclic regeneration involves stem cell recruitment and renders the endometrium intrinsically capable of adapting its decidual response to maximize reproductive success. Here we review the endocrine, paracrine, and autocrine cues that tightly govern this differentiation process. In response to activation of various signaling pathways and genome-wide chromatin remodeling, evolutionarily conserved transcriptional factors gain access to the decidua-specific regulatory circuitry. Once initiated, the decidual process is poised to transit through distinct phenotypic phases that underpin endometrial receptivity, embryo selection, and, ultimately, resolution of pregnancy. We discuss how disorders that subvert the programming, initiation, or progression of decidualization compromise reproductive health and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Birgit Gellersen
- Endokrinologikum Hamburg (B.G.), 20251 Hamburg, Germany; and Division of Reproductive Health (J.J.B.), Warwick Medical School, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | |
Collapse
|
22
|
Combined Treatment of Activin A and Heparin Binding-EGF (HB-EGF) Enhances In VitroProduction of Bovine Embryos. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.2.127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
23
|
Hannan NJ, Evans J, Salamonsen LA. Alternate roles for immune regulators: establishing endometrial receptivity for implantation. Expert Rev Clin Immunol 2014; 7:789-802. [DOI: 10.1586/eci.11.65] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Ji Y, Lu X, Zhong Q, Liu P, An Y, Zhang Y, Zhang S, Jia R, Tesfamariam IG, Kahsay AG, Zhang L, Zhu W, Zheng Y. Transcriptional profiling of mouse uterus at pre-implantation stage under VEGF repression. PLoS One 2013; 8:e57287. [PMID: 23468957 PMCID: PMC3585347 DOI: 10.1371/journal.pone.0057287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF), as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5) by Solexa/Illumina's digital gene expression (DGE) system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO) analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts regulated by VEGF in the pre-implantation stage. Results will contribute to further study the candidate genes and pathways in regulating implantation process and related diseases.
Collapse
Affiliation(s)
- Yan Ji
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Xiaodan Lu
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Qingping Zhong
- KLAS and School of Mathematics and Statistics, Northeast Normal University, Changchun, China
| | - Peng Liu
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yao An
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Yuntao Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Shujie Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Ruirui Jia
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Isaias G. Tesfamariam
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Abraha G. Kahsay
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
| | - Luqing Zhang
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (WSZ); (YWZ)
| | - Wensheng Zhu
- KLAS and School of Mathematics and Statistics, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (WSZ); (YWZ)
| | - Yaowu Zheng
- Transgenic Research Center, School of Life Sciences, Northeast Normal University, Changchun, China
- * E-mail: (LQZ); (WSZ); (YWZ)
| |
Collapse
|
25
|
Bozorgmehr M, Zarnani AH, Nikoo S, Moazzeni SM. Suppressive effect of pregnant serum on murine dendritic cell function. J Obstet Gynaecol Res 2012; 38:797-803. [PMID: 22435462 DOI: 10.1111/j.1447-0756.2011.01803.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM Tolerance to the semi-allogenic fetal graft by the maternal immune system is a medical enigma. Many aspects of immunoregulation at the feto-maternal interface have been clarified, but systemic effects of pregnancy on the immune system are still elusive. The present study was undertaken to determine whether mid-pregnancy mouse serum has an inhibitory effect on dendritic cells (DC) function. MATERIAL AND METHODS Mid-gestational sera were obtained from allogenic pregnant Balb/c mice (Balb/c × C57BL/6) on days 9-11 of gestation. Splenic DC were purified from Balb/c mice, and treated with mid-pregnancy mouse serum. Antigen pulsed DC were injected into mice palms. After 5 days, draining lymph nodes were removed, cultured in the presence of cognate antigen, and proliferation of responding cells was measured by (3)H-thymidin incorporation. Interleukin (IL)-10 and interferon-gamma (IFN-γ) production by stimulated lymph node antigen-specific cells was also measured in culture supernatants using sandwich ELISA. RESULTS Treatment of DC with pregnant mouse serum markedly blocked their ability to induce antigen-specific lymphocyte proliferation and IFN-γ and IL-10 production by primed lymph node cells in comparison with non-pregnant serum-treated DC. CONCLUSION Pregnant mouse serum has an inhibitory effect on DC capacity to induce antigen-specific proliferation and cytokine secretion by lymph node cells. The suppressive effects of pregnant serum on DC could be considered as one of the mechanisms responsible for the systemic immunomodulation observed during pregnancy.
Collapse
Affiliation(s)
- Mahmood Bozorgmehr
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | | | | |
Collapse
|
26
|
Moore BC, Forouhar S, Kohno S, Botteri NL, Hamlin HJ, Guillette LJ. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator. Gen Comp Endocrinol 2012; 175:251-8. [PMID: 22154572 PMCID: PMC3328093 DOI: 10.1016/j.ygcen.2011.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 11/01/2011] [Accepted: 11/11/2011] [Indexed: 01/18/2023]
Abstract
Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.
Collapse
Affiliation(s)
- Brandon C Moore
- Department of Biology, 220 Bartram Hall, P.O. Box 118525, University of Florida, Gainesville, FL 32611-8525, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Craythorn RG, Winnall WR, Lederman F, Gold EJ, O'Connor AE, de Kretser DM, Hedger MP, Rogers PAW, Girling JE. Progesterone stimulates expression of follistatin splice variants Fst288 and Fst315 in the mouse uterus. Reprod Biomed Online 2011; 24:364-74. [PMID: 22285243 DOI: 10.1016/j.rbmo.2011.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 12/20/2022]
Abstract
Follistatin, an inhibitor of activin A, has key regulatory roles in the female reproductive tract. Follistatin has two splice variants: FST288, largely associated with cell surfaces, and FST315, the predominant circulating form. The mechanism regulating uterine expression of these variants is unknown. Quantitative RT-PCR was used to measure expression of follistatin splice variants (Fst288, Fst315), the activin bA subunit (Inhba) and the inhibin a subunit (Inha) in uterine tissues during early pregnancy (days 1–4, preimplantation) and in response to exogenous 17b-oestradiol (single s.c. injection) and progesterone (three daily s.c. injections) in ovariectomized mice. Uterine Fst288, Fst315 and Inhba expression increased during early pregnancy, with greater increases in Fst315 relative to Fst288 suggesting differential regulation of these variants. Fst288, Fst315, Inhba and Inha all increased in response to progesterone treatment. Fst288, but not Fst315, mRNA decreased in response to 17b-oestradiol treatment, whereas Inhba increased. A comparison of the absolute concentrations of uterine follistatin mRNA using crossing thresholds indicated that both variants were more highly expressed in early pregnancy in contrast to the hormone treatment models. It is concluded that progesterone regulates uterine expression of both follistatin variants, as well as activin A, during early pregnancy in the mouse uterus
Collapse
Affiliation(s)
- R G Craythorn
- Centre for Women's Health Research, Monash University Department of Obstetrics and Gynaecology, Monash Institute of Medical Research, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Florio P, Reis FM, Battista R, Luisi S, Moncini I, Bocchi C, Severi FM, Petraglia F. Serum activin A levels are lower in tubal than intrauterine spontaneously conceived pregnancies. Gynecol Endocrinol 2011; 27:391-5. [PMID: 21204609 DOI: 10.3109/09513590.2010.495430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To measure serum activin A levels together with progesterone and hCG, in women with overt clinical signs and symptoms of ectopic pregnancy (EP) and, in gestational age-matched intrauterine pregnancy (IUP). DESIGN Retrospective case-control study. SETTING Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Siena, Italy. POPULATION The study group was composed by 30 women with an EP; the control group was composed by 30 women with a sonographic evidence of a single spontaneous IUP. METHODS Clinical examination; transvaginal ultrasound scan; hCG, progesterone and activin-A measurements; laparoscopy; uterine curettage; histological examination. MAIN OUTCOME MEASURE Pregnancy outcome; sensitivity and specificity of hCG, progesterone, and activin A for EP. RESULTS Serum hCG levels did not differ significantly between tubal EP and IUP, while P concentrations were significantly (P < 0.001) lower in tubal EP than IUP. Serum levels of activin A were significantly (P < 0.0001) lower in tubal EP than in IUP and, at the cutoff 0.43 ng/mL achieved a sensitivity of 96.7% and a specificity of 100% for EP. CONCLUSION Activin A secretion in EP is reduced and measurement of its serum levels may have the potential clinical advantage to signal the presence of EP.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, University of Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM. Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 2011; 141:511-27. [PMID: 21300692 PMCID: PMC3076716 DOI: 10.1530/rep-10-0358] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During pregnancy in several species including humans and rodents, the endometrium undergoes decidualization. This process of differentiation from endometrial to decidual tissue occurs only after the onset of implantation in mice. It can also be artificially induced causing the formation of deciduomal tissue. The purpose of this study was to compare the gene expression profile of the developing decidua in pregnant mice with the deciduoma formed after artificial induction in an effort to identify conceptus-influenced changes in uterine gene expression during decidualization. We induced decidualization artificially by transferring blastocyst-sized ConA-coated agarose beads into the uterus on day 2.5 of pseudopregnancy. Recently published work has found this model to be more 'physiological' than other methods. Total RNA was isolated from blastocyst and bead-induced 'implantation' sites of the uteri of day 7.5 pregnant (decidua) and pseudopregnant (deciduoma) mice respectively. This RNA was then used for microarray analysis using Mouse Illumina BeadArray chips. This analysis revealed potential differential mRNA levels of only 45 genes between the decidua and bead-induced deciduoma tissues. We confirmed the differential mRNA levels of 31 of these genes using quantitative RT-PCR. Finally, the level and localization of some of the mRNAs for select genes (Aldh3a1, Bcmo1, Guca2b, and Inhbb) identified by our microarray analysis were examined in more detail. This study provides the identity of a small set of genes whose expression in the uterus during decidualization may be influenced by molecular signals from the conceptus.
Collapse
Affiliation(s)
- ME McConaha
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - K Eckstrum
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - J An
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - JJ Steinle
- Department of Ophthalmology, University of Tennessee School of Medicine, Memphis, TN, USA
| | - BM Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
30
|
Della Bella S, Giannelli S, Cozzi V, Signorelli V, Cappelletti M, Cetin I, Villa ML. Incomplete activation of peripheral blood dendritic cells during healthy human pregnancy. Clin Exp Immunol 2011; 164:180-92. [PMID: 21352205 DOI: 10.1111/j.1365-2249.2011.04330.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Successful pregnancy relies on the adaptation of immune responses that allow the fetus to grow and develop in the uterus despite being recognized by maternal immune cells. Dendritic cells (DCs) are central to the control of immune tolerance, and their state of activation at the maternal-decidual interface is critical to the feto-maternal immunological equilibrium. So far, the involvement of circulating DCs has been investigated poorly. Therefore, in this study we investigated whether, during healthy human pregnancy, peripheral blood DCs (PBDCs) undergo changes that may be relevant to the adaptation of maternal immune responses that allow fetal tolerance. In a cross-sectional study, we analysed PBDCs by six-colour flow cytometry on whole blood samples from 47 women during healthy pregnancy progression and 24 non-pregnant controls. We demonstrated that both myeloid and plasmacytoid PBDCs undergo a state of incomplete activation, more evident in the third trimester, characterized by increased expression of co-stimulatory molecules and cytokine production but lacking human leucocyte antigen (HLA)-DR up-regulation. To investigate the contribution of soluble circulating factors to this phenomenon, we also performed culture experiments showing that sera from pregnant women added to control DCs conditioned a similar incomplete activation that was associated with reduced DC allostimulatory capacity, supporting the in vivo relevance of our findings. We also obtained evidence that the glycoprotein hormone activin-A may contribute to DC incomplete activation. We suggest that the changes of PBDCs occurring during late pregnancy may aid the comprehension of the immune mechanisms operated by the maternal immune system to maintain fetal tolerance.
Collapse
Affiliation(s)
- S Della Bella
- Department of Biomedical Sciences and Technologies, Lab of Immunology, Hospital 'L. Sacco', University of Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Inhibin A and B, dimeric glycoproteins comprising an α- and β((A/B))-subunit, negatively regulate follicle stimulating hormone (FSH) synthesis by the pituitary. The expression of α- and β-subunits within Sertoli cells of the testis and granulosa cells of the ovary is controlled by a range of transcription factors, including CREB, SP-1, Smads, and GATA factors. The inhibin α- and β-subunits are synthesized as precursor molecules consisting of an N-terminal propeptide and a C-terminal mature domain. Recently, we showed that hydrophobic residues within the propeptides of the α- and β-subunits interact noncovalently with their mature domains, maintaining the molecules in a conformation competent for dimerization. Dimeric precursors are cleaved by proprotein convertases and mature inhibins are secreted from the cell noncovalently associated with their propeptides. Propeptides may increase the half-life of inhibin A and B in circulation, but they are readily displaced in the presence of the high-affinity receptors, betaglycan, and ActRII.
Collapse
|
32
|
Mylonas I, Brüning A, Shabani N, Kunze S, Kupka MS. Evidence of inhibin/activin subunit betaC and betaE synthesis in normal human endometrial tissue. Reprod Biol Endocrinol 2010; 8:143. [PMID: 21092084 PMCID: PMC3002354 DOI: 10.1186/1477-7827-8-143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Inhibins are important regulators of the female reproductive system. Recently, two new inhibin subunits betaC and betaE have been described, although it is unclear if they are synthesized in normal human endometrium. METHODS Samples of human endometrium were obtained from 82 premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Endometrium samples were classified according to anamnestic and histological dating into proliferative (day 1-14, n = 46), early secretory (day 15-22, n = 18) and late secretory phase (day 23-28, n = 18). Immunohistochemical analyses were performed with specific antibodies against inhibin alpha (n = 81) as well as inhibin betaA (n = 82), betaB (n = 82), betaC (n = 74) and betaE (n = 76) subunits. RT-PCR was performed for all inhibin subunits. Correlation was assessed with the Spearman factor to assess the relationship of inhibin-subunits expression within the different endometrial samples. RESULTS The novel inhibin betaC and betaE subunits were found in normal human endometrium by immunohistochemical and molecular techniques. Inhibin alpha, betaA, betaB and betaE subunits showed a circadian expression pattern, being more abundant during the late secretory phase than during the proliferative phase. Additionally, a significant correlation between inhibin alpha and all inhibin beta subunits was observed. CONCLUSIONS The differential expression pattern of the betaC- and betaE-subunits in normal human endometrial tissue suggests that they function in endometrial maturation and blastocyst implantation. However, the precise role of these novel inhibin/activin subunits in human endometrium is unclear and warrants further investigation.
Collapse
Affiliation(s)
- Ioannis Mylonas
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Ansgar Brüning
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Naim Shabani
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
- Department of Obstetrics and Gynecology, Klinikum Neuperlach, Munich, Germany
| | - Susanne Kunze
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| | - Markus S Kupka
- Ludwig-Maximilians-University Munich, 1st Department of Obstetrics and Gynecology, Maistrasse 11, 80337 Munich, Germany
| |
Collapse
|
33
|
Florio P, Gabbanini M, Borges LE, Bonaccorsi L, Pinzauti S, Reis FM, Boy Torres P, Rago G, Litta P, Petraglia F. Activins and related proteins in the establishment of pregnancy. Reprod Sci 2010; 17:320-30. [PMID: 20228378 DOI: 10.1177/1933719109353205] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Activin A and related proteins (inhibins, follistatin [FS], follistatin-related gene [FLRG], endometrial bleeding associated factors [ebaf]) are involved in the complex mechanisms allowing the establishment and the maintenance of pregnancy. As a consequence of ovarian progesterone stimuli, activin A is expressed and secreted by the stromal endometrial cells, which locally induces the decidualization process, a prerequisite for implantation. Moreover, activin A does influence the implantation phase, also enhancing cytotrophoblast differentiation, indirectly, by increasing the expression of other molecules involved in embryo implantation, such as matrix metalloproteinases (MMPs) and leukemia inhibitory factor (LIF). The local derangement of activin A pathway in some pregnancy disorders (incomplete and complete miscarriages, recurrent abortion, and ectopic pregnancy [EP]) further sustains the hypothesis that activin A and its related proteins play a relevant role in the establishment of pregnancy.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics and Reproductive Medicine, Section of Obstetrics and Gynecology, University of Siena, Policlinico Le Scotte, Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Inhibin/activin-betaE subunit is expressed in normal and pathological human placental tissue including chorionic carcinoma cell lines. Arch Gynecol Obstet 2010; 283:223-30. [DOI: 10.1007/s00404-009-1340-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 12/15/2009] [Indexed: 01/22/2023]
|
35
|
Vallejo G, Maschi D, Mestre-Citrinovitz AC, Aiba K, Maronna R, Yohai V, Ko MSH, Beato M, Saragüeta P. Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells. J Cell Physiol 2009; 222:127-37. [PMID: 19780023 DOI: 10.1002/jcp.21929] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3-fold, fold discovery rate (FDR) >0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression, and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells.
Collapse
Affiliation(s)
- Griselda Vallejo
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gaide Chevronnay HP, Galant C, Lemoine P, Courtoy PJ, Marbaix E, Henriet P. Spatiotemporal coupling of focal extracellular matrix degradation and reconstruction in the menstrual human endometrium. Endocrinology 2009; 150:5094-105. [PMID: 19819954 DOI: 10.1210/en.2009-0750] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Coupling of focal degradation and renewal of the functional layer of menstrual endometrium is a key event of the female reproductive biology. The precise mechanisms by which the various endometrial cell populations control extracellular matrix (ECM) degradation in the functionalis while preserving the basalis and the respective contribution of basalis and functionalis in endometrium regeneration are still unclear. We therefore compared the transcriptome of stromal and glandular cells isolated by laser capture microdissection from the basalis as well as degraded and preserved areas of the functionalis in menstrual endometria. Data were validated by in situ hybridization. Expression profile of selected genes was further analyzed throughout the menstrual cycle, and their response to ovarian steroids withdrawal was studied in a mouse xenograft model. Immunohistochemistry confirmed the results at the protein level. Algorithms for sample clustering segregated biological samples according to cell type and tissue depth, indicating distinct gene expression profiles. Pairwise comparisons identified the greatest numbers of differentially expressed genes in the lysed functionalis when compared with the basalis. Strikingly, in addition to genes products associated with tissue degradation (matrix metalloproteinase and plasmin systems) and apoptosis, superficial lysed stroma was enriched in gene products associated with ECM biosynthesis (collagens and their processing enzymes). These results support the hypothesis that fragments of the functionalis participate in endometrial regeneration during late menstruation. Moreover, menstrual reflux of lysed fragments overexpressing ECM components and adhesion molecules could easily facilitate implantation of endometriotic lesions.
Collapse
|
37
|
Wang J, Dicken C, Lustbader JW, Tortoriello DV. Evidence for a Müllerian-inhibiting substance autocrine/paracrine system in adult human endometrium. Fertil Steril 2009; 91:1195-203. [DOI: 10.1016/j.fertnstert.2008.01.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Revised: 01/07/2008] [Accepted: 01/07/2008] [Indexed: 11/15/2022]
|
38
|
Mylonas I, Makovitzky J, Shabani N, Gingelmaier A, Dian D, Kuhn C, Schulze S, Kunze S, Jeschke U, Friese K. Development and characterisation of an antibody for the immunohistochemical detection of inhibin/activin betaE (betaE) in normal human ovarian and placental tissue. Acta Histochem 2009; 111:366-71. [PMID: 19195688 DOI: 10.1016/j.acthis.2008.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inhibin/activin subunits are homologues to each other and belong to the transforming growth factor-beta (TGF-beta) family of proteins. These proteins have been demonstrated to be disulphide-linked dimers, which have a common alpha-subunit but just one of two beta-subunits, differentiated in inhibin A (alpha-betaA) and in inhibin B (alpha-betaB). Recently, an additional beta-subunit has been identified, determined as betaE and being primarily synthesized in liver tissue. However, since no antibody against the betaE subunit is commercially available, limited data on histological immunodistribution of this inhibin subunit in gynaecological organs exist. Therefore, the aims of the present study were the synthesis and evaluation of a specific antibody against the inhibin-betaE subunit. In this study, we describe the characterisation of a polyclonal antibody against the inhibin-betaE subunit. This antibody demonstrated a specific reaction in both western blot analysis and immunohistochemistry. Moreover, we demonstrated positive immunolabelling in normal human ovary and placenta. The role of this novel subunit is intriguing, especially within the view that the other inhibin/activin subunits might have substantial functions in human reproduction and carcinogenesis. However, the function of this subunit in humans remains still unclear and warrants further research.
Collapse
Affiliation(s)
- Ioannis Mylonas
- 1st Department of Obstetrics and Gynaecology, Ludwig-Maximilians-University Munich, Maistrasse 11, 80337 Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Park JE, Oh HJ, Hong SG, Jang G, Kim MK, Lee BC. Effects of activin A on the in vitro development and mRNA expression of bovine embryos cultured in chemically-defined two-step culture medium. Reprod Domest Anim 2008; 45:585-93. [PMID: 19090825 DOI: 10.1111/j.1439-0531.2008.01306.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purpose of the present study was to evaluate the effects of activin A on the developmental competence of in vitro fertilized (IVF) bovine embryos derived from a two-step defined culture system (C1/C2 medium) during the early or later stages of embryo development. To evaluate the effects of activin A on transcriptional levels, we analysed genes related to blastocyst hatching and implantation and to activin signalling pathway in IVF embryos. Cumulus-oocyte complexes were matured for 22 h and fertilized in vitro. Presumptive zygotes were cultured in the presence or absence of activin A during early (0-120 h, C1) or later (120-192 h, C2) stages. Although the developmental competence of embryos cultured with activin A in C1 medium was not significantly different from their corresponding controls, development to blastocysts (22.4% vs 34.7%; p < 0.05) and the blastocyst hatching rate (9.3% vs 22.4%; p < 0.05) in C2 medium supplemented with 100 ng/ml activin A were significantly higher than in the control group. To evaluate the effect of activin A on transcription, the relative expression levels of genes related to blastocyst hatching and implantation (Na/K-ATPase, E-cad and Glut-1) as well as activin signalling pathway (ActRII, ActRIIB and Smad2) were analysed. Compared to control medium, gene expression of Na/K-ATPase, E-cad, Glut-1, ActRII and ActRIIB was increased in medium supplemented with activin A. In conclusion, this study suggests that activin A, during the later stage of in vitro bovine embryo development, can enhance in vitro development of embryos by increasing hatching rates and affecting expression levels of genes related to hatching and implantation in defined culture medium.
Collapse
Affiliation(s)
- J E Park
- Department of Theriogenology and Biotechnology, SeoulNational University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Ott1 (Rbm15) is essential for placental vascular branching morphogenesis and embryonic development of the heart and spleen. Mol Cell Biol 2008; 29:333-41. [PMID: 18981216 DOI: 10.1128/mcb.00370-08] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The infant leukemia-associated gene Ott1 (Rbm15) has broad regulatory effects within murine hematopoiesis. However, germ line Ott1 deletion results in fetal demise prior to embryonic day 10.5, indicating additional developmental requirements for Ott1. The spen gene family, to which Ott1 belongs, has a transcriptional activation/repression domain and RNA recognition motifs and has a significant role in the development of the head and thorax in Drosophila melanogaster. Early Ott1-deficient embryos show growth retardation and incomplete closure of the notochord. Further analysis demonstrated placental defects in the spongiotrophoblast and syncytiotrophoblast layers, resulting in an arrest of vascular branching morphogenesis. The rescue of the placental defect using a conditional allele with a trophoblast-sparing cre transgene allowed embryos to form a normal placenta and survive gestation. This outcome showed that the process of vascular branching morphogenesis in Ott1-deficient animals was regulated by the trophoblast compartment rather than the fetal vasculature. Mice surviving to term manifested hyposplenia and abnormal cardiac development. Analysis of global gene expression of Ott1-deficient embryonic hearts showed an enrichment of hypoxia-related genes and a significant alteration of several candidate genes critical for cardiac development. Thus, Ott1-dependent pathways, in addition to being implicated in leukemogenesis, may also be important for the pathogenesis of placental insufficiency and cardiac malformations.
Collapse
|
41
|
Hayashi K, O'Connell AR, Juengel JL, McNatty KP, Davis GH, Bazer FW, Spencer TE. Postnatal uterine development in Inverdale ewe lambs. Reproduction 2008; 135:357-65. [PMID: 18299429 DOI: 10.1530/rep-07-0323] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Postnatal development of the uterus involves, particularly, development of uterine glands. Studies with ovariectomized ewe lambs demonstrated a role for ovaries in uterine growth and endometrial gland development between postnatal days (PNDs) 14 and 56. The uterotrophic ovarian factor(s) is presumably derived from the large numbers of growing follicles in the neonatal ovary present after PND 14. The Inverdale gene mutation (FecXI) results in an increased ovulation rate in heterozygous ewes; however, homozygous ewes (II) are infertile and have 'streak' ovaries that lack normal developing of preantral and antral follicles. Uteri were obtained on PND 56 to determine whether postnatal uterine development differs between wild-type (++) and II Inverdale ewes. When compared with wild-type ewes, uterine weight of II ewes was 52% lower, and uterine horn length tended to be shorter, resulting in a 68% reduction in uterine weight:length ratio in II ewes. Histomorphometrical analyses determined that endometria and myometria of II ewes were thinner and intercaruncular endometrium contained 38% fewer endometrial glands. Concentrations of estradiol in the neonatal ewes were low and not different between ++ and II ewes, but II ewes had lower concentrations of testosterone and inhibin-alpha between PNDs 14 and 56. Receptors for androgen and activin were detected in the neonatal uteri of both ++ and II ewes. These results support the concept that developing preantral and/or antral follicles of the ovary secrete uterotrophic factors, perhaps testosterone or inhibin-alpha, that acts in an endocrine manner to stimulate uterine growth and endometrial gland development in the neonatal ewes.
Collapse
Affiliation(s)
- Kanako Hayashi
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A and M University, 442 Kleberg Center, 2471 TAMU, College Station, Texas 77843-2471, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Segerer SE, Müller N, Brandt JVD, Kapp M, Dietl J, Reichardt HM, Rieger L, Kämmerer U. The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation. Reprod Biol Endocrinol 2008; 6:17. [PMID: 18460206 PMCID: PMC2412882 DOI: 10.1186/1477-7827-6-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 05/06/2008] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC) in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta) family including activin A (ActA) and inhibin A (InA) are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype. METHODS To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex) as controls. RESULTS Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected. CONCLUSION These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.
Collapse
Affiliation(s)
- Sabine E Segerer
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 4, 97080 Würzburg, Germany
| | - Nora Müller
- University of Würzburg, Institute for Virology and Immunobiology, Versbacherstraße 7, 97078 Würzburg, Germany
| | - Jens van den Brandt
- University of Göttingen, Medical School, Department of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Michaela Kapp
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 4, 97080 Würzburg, Germany
| | - Johannes Dietl
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 4, 97080 Würzburg, Germany
| | - Holger M Reichardt
- University of Würzburg, Institute for Virology and Immunobiology, Versbacherstraße 7, 97078 Würzburg, Germany
- University of Göttingen, Medical School, Department of Cellular and Molecular Immunology, Humboldtallee 34, 37073 Göttingen, Germany
| | - Lorenz Rieger
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 4, 97080 Würzburg, Germany
| | - Ulrike Kämmerer
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 4, 97080 Würzburg, Germany
| |
Collapse
|
43
|
Florio P, Rossi M, Viganò P, Luisi S, Torricelli M, Torres PB, Di Blasio AM, Petraglia F. Interleukin 1beta and progesterone stimulate activin a expression and secretion from cultured human endometrial stromal cells. Reprod Sci 2007; 14:29-36. [PMID: 17636213 DOI: 10.1177/1933719106298191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Steroid hormones, cytokines, and growth factors have a major role in evoking local endometrial changes needed for trophoblast implantation. In the present study, the effect of interleukin-1beta (IL-1beta), 17-beta estradiol (E2), and progesterone (Pr) on activin A and follistatin (FS) secretion from cultured human endometrial stromal cells (HESCs) is evaluated. HESCs were obtained from healthy human endometrial samples (n = 8) collected from healthy women. The cells were cultured and stimulated with E2 (10(-7) M, 10(-6)M), Pr (10(-7)M, 10(-6)M), IL-1beta (500 pg/mL), IL-1beta (500 pg/mL) + E2 (10(-6)M), and IL-1beta (500 pg/mL) + Pr (10(-6)M). Activin A and FS secretion and mRNA expression were assayed by enzyme-linked immunosorbent assay and semiquantitative reverse transcriptase-polymerase chain reaction, respectively. Pr (10(-7) M, 10(-6) M) significantly increased activin A secretion and mRNA expression from HESCs, but E2 did not show remarkable effects. The addition of IL-1beta (P< .001), IL- 1beta + E2 (P < .01), and IL-1beta + Pr (P< .001). significantly stimulated activin A secretion and mRNA expression, compared to untreated cells. Activin A expression and secretion after the coincubation of IL-1beta+ Pr were significantly higher than after IL-1betaand IL-1beta+ E2 stimuli ( P< .01 and P< .001, respectively). Neither Pr nor E2 and IL-1beta had a significant effect on FS secretion and expression. IL-1betaand Pr stimulated activin A but not FS secretion from cultured HESCs, and the effect of IL-1betawas augmented by Pr. These findings, together with the evidence that activin A is involved in trophoblast implantation, suggest the existence of a complex cross-talk by which the ovary, through Pr secretion, and the embryo, through IL-1beta production, may trigger the endometrial induction of activin A and consequently timing implantation.
Collapse
Affiliation(s)
- Pasquale Florio
- Department of Pediatrics, Obstetrics & Reproductive Medicine, University of Siena, Policlinico Le Scotte, Siena, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Torres PB, Florio P, Ferreira MC, Torricelli M, Reis FM, Petraglia F. Deranged expression of follistatin and follistatin-like protein in women with ovarian endometriosis. Fertil Steril 2007; 88:200-5. [PMID: 17296189 DOI: 10.1016/j.fertnstert.2006.11.105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 10/31/2006] [Accepted: 11/16/2006] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate the messenger RNA (mRNA) expression and peptide localization of follistatin and follistatin-like protein (FLRG) in ovarian endometriosis, compared to healthy human endometrium. DESIGN Samples of ovarian endometriotic and healthy endometrial tissues were processed by semiquantitative reverse transcriptase-polymerase chain reaction and immunohistochemistry. SETTING Academic health centers in Siena, Italy, and Belo Horizonte, Brazil. PATIENT(S) Women with endometrioma who underwent laparoscopic excision of ovarian endometriotic cysts (n = 16), and healthy, nonpregnant women (n = 18, control group). MAIN OUTCOME MEASURE(S) Immunostaining and relative quantification of follistatin and FLRG mRNA in ovarian endometriosis and eutopic endometrium. RESULT(S) Both ovarian endometriosis and healthy endometrium expressed and localized follistatin and FLRG. In endometriotic glands, follistatin immunostaining was homogeneously distributed throughout the cytoplasm of the epithelial cells, contrasting with normal eutopic endometrium, where follistatin expression was focal, irregular, and confined to the basal side of the glands. Follistatin-like protein was immunolocalized in the nuclei of both glandular epithelial cells and stromal cells, with less intense staining in endometriotic samples. The relative intensity of follistatin and FLRG immunostaining was significantly higher and lower, respectively, in endometriosis than in controls. The expression of follistatin mRNA was higher, while that of FLRG mRNA was lower, in ovarian endometriosis than in healthy eutopic endometrium. CONCLUSION(S) Ovarian endometriotic lesions show a deranged expression of FLRG and follistatin, which are activin A-binding proteins. This may result in an altered effect of activin A on angiogenesis and/or endometrial differentiation.
Collapse
Affiliation(s)
- Paulo B Torres
- Section of Obstetrics and Gynecology, Department of Pediatrics, Obstetrics, and Reproductive Medicine, University of Siena, Siena, Italy
| | | | | | | | | | | |
Collapse
|
45
|
Jones RL, Kaitu'u-Lino TJ, Nie G, Sanchez-Partida LG, Findlay JK, Salamonsen LA. Complex expression patterns support potential roles for maternally derived activins in the establishment of pregnancy in mouse. Reproduction 2007; 132:799-810. [PMID: 17071781 DOI: 10.1530/rep-06-0034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Maternal-fetal communications are critical for the establishment of pregnancy. Embryonic growth and differentiation factors produced by the oviduct and uterus play essential roles during the pre- and early post-implantation phases. Although several studies indicate roles for activin in embryonic development, gene-knockout studies have failed to identify a critical role in mammalian embryogenesis. We hypothesized that activin is produced by maternal tissues during the establishment of pregnancy, and thus maternally derived activin could compensate for the absence of embryonic activin in null homozygotes during critical developmental stages. We investigated the expression of inhibin alpha, activin betaA, and betaB subunits in the mouse oviduct and uterus during the estrous cycle and early pregnancy, and in the early conceptus. Inhibin alpha subunit was weakly expressed, while activin betaA and betaB subunits were strongly expressed in oviduct and uterus at estrous, and dramatically upregulated in the uterus on each day of pregnancy between days 3.5 and 8.5 post coitum. Prior to implantation, activin betaA and betaB subunits were immunolocalized to oviductal and uterine epithelial cells; following implantation they were expressed in the stroma, in a wave preceding decidualization. Later in pregnancy, activin betaA and betaB subunits were present in decidua basalis, trophoblast giant cells, and labyrinth zone of the developing placenta. Expression of activin betaA subunit was also detected in blastocysts and early post-implantation embryos. These data are consistent with a role for maternally derived activins in the support of the pre-implantation embryo, and during gastrulation and embryogenesis.
Collapse
Affiliation(s)
- Rebecca L Jones
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Tawadros N, Salamonsen LA, Dimitriadis E, Chen C. Facilitation of decidualization by locally produced ghrelin in the human endometrium. ACTA ACUST UNITED AC 2007; 13:483-9. [PMID: 17494105 DOI: 10.1093/molehr/gam029] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ghrelin acting via the growth hormone secretagogue receptor (GHS-R) stimulates GH secretion from pituitary glands. Both ligand and receptor are present in the pituitary, hypothalamus and many peripheral tissues including the uterus. This study demonstrates the cyclical expression of GHS-R and ghrelin in human endometrium. mRNA and protein for ghrelin and GHS-R were examined using RT-PCR and immunohistochemistry. Both ghrelin and GHS-R mRNA levels were highest in the secretory phase, with lower levels in the mid-proliferative phase and even lower expression in the menstrual phase. Immunoreactive ghrelin and GHS-R were confined predominantly to glandular epithelial and stromal cells with the greatest intensity of staining in secretory phase samples, consistent with the RT-PCR data. Additionally, we examined ghrelins effect on the decidualization of human endometrial stromal cells (HESCs) combined with sex steroid and cAMP treatments using prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1) production as markers of decidualization. Ghrelin administered in combination with sex steroids to HESC, resulted in an increase in PRL and IGFBP-1 production above that obtained with cAMP, or sex steroids alone (P<0.001) whereas ghrelin in combination with cAMP inhibits the action of cAMP. These findings have potential clinical applications for the regulation of fertility.
Collapse
Affiliation(s)
- N Tawadros
- Prince Henry's Institute of Medical Research, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | | | | | | |
Collapse
|
47
|
Prakash A, Li TC, Tuckerman E, Laird S, Wells M, Ledger WL. A study of luteal phase expression of inhibin, activin, and follistatin subunits in the endometrium of women with recurrent miscarriage. Fertil Steril 2006; 86:1723-30. [DOI: 10.1016/j.fertnstert.2006.05.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2006] [Revised: 05/07/2006] [Accepted: 05/07/2006] [Indexed: 11/16/2022]
|
48
|
Jones RL, Findlay JK, Salamonsen LA. The role of activins during decidualisation of human endometrium. Aust N Z J Obstet Gynaecol 2006; 46:245-9. [PMID: 16704482 DOI: 10.1111/j.1479-828x.2006.00581.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Decidualisation of the endometrial stroma is critical to create a specialised environment for embryo implantation and trophoblast invasion; however, the mechanisms involved are poorly understood. We have established that activin A is an important regulator of decidualisation of endometrial stromal cells in vitro. Here we describe studies that verify the physiological significance of these findings. We demonstrate that high concentrations of activin A are produced by decidualising cells in excess of the antagonists, inhibin and follistatin, thus confirming its bioavailability within the decidual environment. Furthermore, we demonstrate that all components of the activin signalling pathway (activin receptors and Smads) are expressed in decidualised cells, and identify a downstream mechanism for activin in the endometrium, through the regulation of matrix metalloproteinases (MMPs). This new knowledge is important for understanding the roles for activins and inhibins in regulating fertility.
Collapse
Affiliation(s)
- Rebecca L Jones
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia.
| | | | | |
Collapse
|
49
|
Ochsenkühn R, O'Connor AE, Hirst JJ, Gordon Baker HW, de Kretser DM, Hedger MP. The relationship between immunosuppressive activity and immunoregulatory cytokines in seminal plasma: influence of sperm autoimmunity and seminal leukocytes. J Reprod Immunol 2006; 71:57-74. [PMID: 16712948 DOI: 10.1016/j.jri.2006.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 01/04/2006] [Accepted: 01/04/2006] [Indexed: 11/23/2022]
Abstract
While the contributions of prostasomes, polyamines and prostaglandins to the immunosuppressive activity (ISA) of human seminal plasma have been well-characterised, the contribution of immunoregulatory cytokines found in seminal plasma has received relatively little attention. Semen samples were collected from adult men displaying normospermic parameters, sperm antibodies or substantially elevated seminal leukocytes. Samples were processed through ultracentrifugation and dialysis (<3500Da) to remove prostasomes, polyamines and prostaglandins, and then assayed for ISA by an in vitro T lymphocyte inhibition assay, as well as by specific immunoassays for transforming growth factor beta(1) (TGFbeta(1)), interleukin-10 (IL-10), activin A and the activin-binding protein, follistatin. Seminal plasma from all groups retained substantial ISA following processing. Compared with normospermic men, this 'large' molecular weight ISA fraction was significantly increased in a subset of men with sperm antibodies, but was not altered in the group with elevated leukocytes. There was no relationship between ISA and any cytokine examined, and only TGFbeta(1) was present at levels sufficient to contribute to ISA. Inhibition with a TGFbeta-specific antibody reduced ISA in seminal plasma by approximately 50%. Across all patients, TGFbeta(1) levels were positively correlated with sperm numbers in the ejaculate and with activin A, but not with follistatin or IL-10. Activin A and IL-10 also displayed a positive relationship, and elevated leukocytes was associated with a significant elevation of IL-10 and activin A, but not TGFbeta(1). It is concluded that 'large' molecular weight molecules, the most important of which appears to be TGFbeta(1), make a significant contribution to immunosuppression by human seminal plasma.
Collapse
Affiliation(s)
- Robert Ochsenkühn
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Vic. 3168, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Rombauts L, Donoghue J, Cann L, Jones RL, Healy DL. Activin-A secretion is increased in the eutopic endometrium from women with essndometriosis. Aust N Z J Obstet Gynaecol 2006; 46:148-53. [PMID: 16638039 DOI: 10.1111/j.1479-828x.2006.00546.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Activin is a well-characterised growth and differentiation factor and an important inflammatory mediator. Activin is secreted by normal endometrial glands and stroma and is expressed by endometrial leucocytes. It is also known that the eutopic endometrium from women with endometriosis is functionally different to that from women without endometriosis. In this study, we hypothesise that the endometrial secretion of activin is altered in women with endometriosis. AIMS To determine whether the expression of inhibin/activin subunits and the secretion of activin-A is different in eutopic endometrium from women with and without endometriosis. METHODS Endometrial biopsies were obtained from premenopausal, regularly menstruating women with and without endometriosis. Staining intensity for the different inhibin/activin subunits was compared in endometrial and endometriotic biopsies. Activin-A secretion was studied using endometrial explants and endometrial glandular and stromal monolayer cell cultures. RESULTS The alpha- and betaA-subunits of inhibin/activin were more abundant in eutopic glandular cells from patients with minimal to mild endometriosis compared to women without endometriosis. In patients with endometriosis, the betaB-subunit was more abundant in eutopic stromal cells and endometrial leucocytes. Comparison of paired endometrial and endometriotic biopsies from the same patient did not reveal significant differences for any of the inhibin/activin subunits or activin receptors. Activin-A secretion by glandular and stromal endometrial cells was sevenfold and threefold higher, respectively, in women with endometriosis compared to women without endometriosis. CONCLUSIONS The expression of inhibin/activin subunits in eutopic endometrium is altered in women with endometriosis, leading to higher levels of activin-A secretion by both glandular cells and stromal cells.
Collapse
Affiliation(s)
- Luk Rombauts
- Centre for Women's Health Research, Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| | | | | | | | | |
Collapse
|