1
|
Hussain Y, Khan H, Ahmad I, Efferth T, Alam W. Nanoscale delivery of phytochemicals targeting CRISPR/Cas9 for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153830. [PMID: 34775359 DOI: 10.1016/j.phymed.2021.153830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With growing global prevalence, cancer is a major cause of disease-related deaths. The understanding of the fundamental tumor pathology has contributed to the development of agents targeting oncogenic signaling pathways. Although these agents have increased survival for defined cancers, the therapeutic choices are still limited due to the development of drug resistance. CRISPR/Cas9 is a powerful new technology in cancer therapy by facilitating the identification of novel treatment targets and development of cell-based treatment strategies. PURPOSE We focused on applications of the CRISPR/Cas9 system in cancer therapy and discuss nanoscale delivery of cytotoxic phytochemical targeting the CRISPR/Cas9 system. RESULTS Genome engineering has been significantly accelerated by the advancement of the CRISPR/Cas9 technique. Phytochemicals play a key role in treating cancer by targeting various mechanisms and pathways. CONCLUSIONS The use of CRISPR/Cas9 for nanoscale delivery of phytochemicals opens new avenues in cancer therapy. One of the main obstacles in the clinical application of CRISPR/Cas9 is safe and efficient delivery. As viral delivery methods have certain drawbacks, there is an urgent need to develop non-viral delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haroon Khan
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan.
| | - Imad Ahmad
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| |
Collapse
|
2
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
3
|
Asadi S, Khabbazi A, Alipour S, Abolhasani S, Haji J, Amjadi H, Sakhinia E. Promoter methylation of Bax and Bcl2 genes and their expression in patients with Behcet's disease. Int J Immunogenet 2020; 47:309-317. [PMID: 31916399 DOI: 10.1111/iji.12473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 12/22/2022]
Abstract
BCL2 and BAX genes are a group of signalling inducer and inhibitor genes playing a key role in the process of cellular physiological death (apoptosis). These genes, through the JAK/STAT signalling pathway, affect different cytokines on cell function and subsequently lead to the pathophysiology of diseases, especially autoimmune diseases. In addition, altering the methylation of genes can affect their expression. Since the aetiology and pathology of Behcet's disease is not fully understood, the aim of this study was to determine the methylation pattern of BCL2 and BAX genes in patients with Behcet's disease and compare it with those of control group. This was a case-control study on 51 patients with Behcet and 61 control subjects. Blood samples were received from all subjects. Subsequently, the peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll method and the methylation of the sites was investigated using quantitative methylation specific PCR (qMS-PCR) technique after extraction of DNA by salting out method and its examination with Nano drop. The results of methylation and expression of Bax gene suggest that the methylation level in the patient group significantly increased compared to the healthy individuals (p-value < .05). Furthermore, the results related to Bax gene expression revealed that the mean of gene expression in the patient group has decreased compared to the healthy group, and this decrease was statistically significant (p-value < .05). The rate of expression and methylation of Bcl2 did not indicate any change in the two patient and healthy groups. Given the results of this study, it can be guessed that perhaps DNA methylation is involved in certain conditions of the disease and it may result in regulation of the expression of the involved genes such as Bax gene, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Shahin Asadi
- Science and Research Branch, Department of Molecular Biology-Genetics, Islamic Azad University, Tabriz, Iran
| | - Alireza Khabbazi
- Connective Tissue Disease, Tabriz University of Medical Science, Tabriz, Iran
| | - Shahriar Alipour
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Somayeh Abolhasani
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Haji
- Faculty of science, Urmia University, Urmia, Iran
| | | | - Ebrahim Sakhinia
- Dept. of Genetic, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Bai L, Ren Y, Cui T. Overexpression of CDCA5, KIF4A, TPX2, and FOXM1 Coregulated Cell Cycle and Promoted Hepatocellular Carcinoma Development. J Comput Biol 2019; 27:965-974. [PMID: 31593490 DOI: 10.1089/cmb.2019.0254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study aimed to identify key functional modules and genes in functional module involved in hepatocellular carcinoma (HCC) development. The microarray data set GSE54236 was obtained from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between HCC, and normal samples were identified by Limma. DAVID was used to identify the gene ontology terms these genes enriched. The co-expression network was constructed based on Pearson correlation coefficient between gene expression values, and the functional modules these DEGs obviously enriched in were recognized through GraphWeb. Then, based on the genes related to the development of HCC, the DEGs interacting with HCC-associated genes were spotted. Finally, survival analysis and real-time quantitative polymerase chain reaction were performed. Totally, 427 upregulated (e.g., cell division cycle associated 5 [CDCA5], kinesin family member 4A [KIF4A], TPX2 microtubule nucleation factor [TPX2]) and 313 downregulated (e.g., metallothionein 1E [MT1E]) DEGs were identified in HCC. Besides, CDCA5, KIF4A, and TPX2 had interacting relationship and played important roles in HCC development by interrelating with HCC-related gene, forkhead box M1 (FOXM1). Furthermore, CDCA5, KIF4A, TPX2, and FOXM1 obviously enriched in cell cycle-related functional module, whereas MT1E enriched in mineral absorption module in Kyoto Encyclopedia of Genes and Genomes. CDCA5, KIF4A, and TPX2 expression were increased in HCC cells, and their high expressions were related to poor prognosis. Overexpression of CDCA5, KIF4A, TPX2, and FOXM1 coregulated cell cycle and thereby promoted the development of HCC. The finding provided potential targets for the study and treatment of HCC.
Collapse
Affiliation(s)
- Lianmei Bai
- Gastroenterology Department, Inner Mongolia People's Hospital, Hohhot, China
| | - Yu Ren
- Clinical Medical Research Center, Inner Mongolia People's Hospital, Hohhot, China
| | - Tianqing Cui
- Gastroenterology Department, Inner Mongolia People's Hospital, Hohhot, China
| |
Collapse
|
5
|
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: current perspectives and new challenges. Ecancermedicalscience 2019; 13:961. [PMID: 31537986 PMCID: PMC6753017 DOI: 10.3332/ecancer.2019.961] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Every year, cancer is responsible for millions of deaths worldwide and, even though much progress has been achieved in medicine, there are still many issues that must be addressed in order to improve cancer therapy. For this reason, oncological research is putting a lot of effort towards finding new and efficient therapies which can alleviate critical side effects caused by conventional treatments. Different technologies are currently under evaluation in clinical trials or have been already introduced into clinical practice. While nanomedicine is contributing to the development of biocompatible materials both for diagnostic and therapeutic purposes, bioengineering of extracellular vesicles and cells derived from patients has allowed designing ad hoc systems and univocal targeting strategies. In this review, we will provide an in-depth analysis of the most innovative advances in basic and applied cancer research.
Collapse
Affiliation(s)
- Carlotta Pucci
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Chiara Martinelli
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy
| | - Gianni Ciofani
- Smart Bio-Interfaces, Istituto Italiano di Tecnologia, 56025 Pisa, Italy.,Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy
| |
Collapse
|
6
|
Asgari F, Mahinpour R, Moradi L, Haghighipour N. The chromene derivative 4-Clpgc inhibits cell proliferation and induces apoptosis in the K562 cell line. J Cell Commun Signal 2019; 14:77-91. [PMID: 31493173 DOI: 10.1007/s12079-019-00530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022] Open
Abstract
Chronic myeloid leukemia (CML) is a malignant blood disease with a particular chromosomal aberration that is known as a common form of leukemia. The chromene family exhibits strong anti-cancer effects. Therefore, the effects of six members of the dihydropyrano [2,3-g] chromene family on cell toxicity and apoptosis induction in K562 cancer cells were investigated and compared with those of normal peripheral blood mononuclear cells (PBMCs). The K562 cells were cultured in the presence of the aforementioned chromene derivatives at concentrations of 40 to 200 μM for 24 to 72 h. The effects of these compounds on the growth and viability of the K562 cell line and PBMCs were studied through MTT assay. Furthermore, apoptosis induction was investigated using flow cytometry. Real-time PCR was used for relative quantification of BCL2, Bax, TP53 and BCR- ABL genes after 48 h of exposing K562 cells and PBMCs to 4-Clpgc. Based on the results, these chromene derivatives inhibited the growth of K562 cells. According to the obtained data, 4-Clpgc was the strongest compound with IC50 values of 102 ± 1.6 μM and 143 ± 9.41 μM in K562 cells and PBMCs, while pgc was the weakest one with IC50 levels of 278 ± 2.7 μM and 366 ± 47 μM in K562 cells and PBMCs (after 72 h), respectively. The results demonstrated that the apoptotic cell percentage in the control group increased from 6.09% to 84.10% and 17.2% to 20.06% in K562 cells and PBMCs after 48 h of treatment, respectively. Moreover, 4-Clpgc treatment increased the expression of Bax and TP53 genes by 42.74 and 35.88 folds in K562 cells and 9.60 and 7.75 folds in PBMCs, respectively. On the other hand, the expression of BCL2 was reduced by 1.47 and 1.38 folds in K562 cells and PBMCs, respectively. These compounds were associated with less toxic effects on normal cells, compared to the cancer cells. In conclusion, these derivatives can be considered as appropriate candidates for leukemia treatment.
Collapse
Affiliation(s)
- Fatemeh Asgari
- Department of Cellular and Molecular Biology, Faculty of Chemistry, University of Kashan, P.O.Box 8731753153, Kashan, Iran
| | - Roya Mahinpour
- Department of Cellular and Molecular Biology, Faculty of Chemistry, University of Kashan, P.O.Box 8731753153, Kashan, Iran.
| | - Leila Moradi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, P.O.Box 8731753153, Kashan, Iran
| | | |
Collapse
|
7
|
Ligustrazine promoted hypoxia-treated cell growth by upregulation of miR-135b in human umbilical vein endothelial cells. Exp Mol Pathol 2019; 106:102-108. [DOI: 10.1016/j.yexmp.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023]
|
8
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
9
|
El Sharkawi FZ, Ewais SM, Fahmy RH, Rashed LA. PTEN and TRAIL genes loaded zein nanoparticles as potential therapy for hepatocellular carcinoma. J Drug Target 2017; 25:513-522. [PMID: 28140697 DOI: 10.1080/1061186x.2017.1289536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Gene therapy is one of the recent approaches in treatment of hepatocellular carcinoma (HCC). Development of a vector or vehicle that can selectively and efficiently deliver the gene to target cells with minimal toxicity is an urgent demand. In the present study, phosphatase and tensin homolog (PTEN) and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) genes were loaded to zein nanoparticles (ZNPs). The formulated PTEN and TRAIL-loaded ZNPs were tested for their in vitro and in vivo potential antitumor efficacy using liver tumor cells (HepG2) and HCC-induced rats as animal model. Also, mRNA expression of p53, VGEF and MMP-2 were carried out as markers of apoptosis, angiogenesis and metastasis in animal liver tissues. The results of the study showed that both PTEN and TRAIL-loaded ZNPs proved anti-proliferative activity against HepG2 cell lines with IC50 values of 0.09, 0.25 µg/ml, respectively. In vivo assay confirmed decrease in mRNA expression of both VEGF and MMP-2 with increased in P53 expression level in liver tissues of the treated animals. Therefore, authors introduced new integration between gene therapy and nanotechnology in the form of PTEN and TRAIL-loaded ZNPs that proved potential to be used in gene therapy for the treatment of HCC.
Collapse
Affiliation(s)
- Fathia Zaki El Sharkawi
- a Department of Biochemistry and Molecular Biology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Shaimaa Mohammed Ewais
- a Department of Biochemistry and Molecular Biology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Rania Hassan Fahmy
- b Department of Pharmaceutics and Industrial pharmacy, Faculty of Pharmacy , Cairo University , Cairo , Egypt.,c Department of Pharmaceutics, Faculty of Pharmacy , Ahram Canadian University , Giza , Egypt
| | - Laila Ahmed Rashed
- d Department of Biochemistry and Molecular Biology, Faculty of Medicine , Cairo University , Cairo , Egypt
| |
Collapse
|
10
|
Khoshtinat Nikkhoi S, Dorostkar R, Ranjbar S, Heydarzadeh H, Tat M, Ghalavand M, Farasat A, Hashemzadeh MS. Synergistic Effect of Expressed miR-128 and Puma Protein on Targeted Induction of Tumor Cell Apoptosis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2016; 14:185-191. [PMID: 28959335 PMCID: PMC5492246 DOI: 10.15171/ijb.1429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Puma is a highly robust pro-apoptotic protein. The protein becomes activated by p53 ensuing beyond-repair DNA damage. Downregulation of SIRT 1, by miR-128, elevates activated p53 that foment Puma indirectly. OBJECTIVES In the present study, we used two-expression Adeno-Associated Virus (AAV) system for co-expression of miR-128 and Puma in order to evaluate apoptotic response; both in the tumor and normal cells, respectively. MATERIALS AND METHODS Three recombinant AAVs constructs were generated. The First rAAV bearing Puma under the control of hTERT (p-AAV), the second construct designed such that to carry miR-128 downstream of CMV (mi-AAV), and the last construct comprises of the both CMV-miR-128 and hTERT- Puma. Real-Time PCR and western blotting were used to evaluate expression levels of the transduced genes. RESULTS MTT assay and DAPI staining shown suicidal effect of each recombinant AAV vectors. p-AAV cytotoxicity was recorded for 62% of the tumor cells, while for normal cells it was only 20% cytotoxic. The second construct, mi-AAV, was not as potent and selective as p-AAV. This construct was shown to be 27% and 16% cytotoxic for BT-474 and HEK-293 cells, respectively. Co-expression of Puma and miR-128 (p-mi-AAV) was accomplished with a selective cytotoxicity toward BT-474. This construct was 85% toxic for tumor cells, although it was only 25% toxic for the normal cell line (HEK-293). CONCLUSIONS In this study, we have shown that not only Puma is able to instigate apoptotic response but also its co-expression along with miR-128 could significantly enhance apoptosis in a synergistic manner.
Collapse
Affiliation(s)
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Saeed Ranjbar
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Heydarzadeh
- Department of Microbiology, Azad University of Shahrehe-Qods, Tehran, Iran
| | - Mahdi Tat
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Majdedin Ghalavand
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Farasat
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
11
|
Robson T, Worthington J, McKeown SR, Hirst DG. Radiogenic Therapy: Novel Approaches for Enhancing Tumor Radiosensitivity. Technol Cancer Res Treat 2016; 4:343-61. [PMID: 16029055 DOI: 10.1177/153303460500400404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy (RT) is a well established modality for treating many forms of cancer. However, despite many improvements in treatment planning and delivery, the total radiation dose is often too low for tumor cure, because of the risk of normal tissue damage. Gene therapy provides a new adjunctive strategy to enhance the effectiveness of RT, offering the potential for preferential killing of cancer cells and sparing of normal tissues. This specificity can be achieved at several levels including restricted vector delivery, transcriptional targeting and specificity of the transgene product. This review will focus on those gene therapy strategies that are currently being evaluated in combination with RT, including the use of radiation sensitive promoters to control the timing and location of gene expression specifically within tumors. Therapeutic transgenes chosen for their radiosensitizing properties will also be reviewed, these include: gene correction therapy, in which normal copies of genes responsible for radiation-induced apoptosis are transfected to compensate for the deletions or mutated variants in tumor cells (p53 is the most widely studied example). enzymes that synergize the radiation effect, by generation of a toxic species from endogenous precursors ( e.g., inducible nitric oxide synthase) or by activation of non toxic prodrugs to toxic species ( e.g., herpes simplex virus thymidine kinase/ganciclovir) within the target tissue. conditionally replicating oncolytic adenoviruses that synergize the radiation effect. membrane transport proteins ( e.g., sodium iodide symporter) to facilitate uptake of cytotoxic radionuclides. The evidence indicates that many of these approaches are successful for augmenting radiation induced tumor cell killing with clinical trials currently underway.
Collapse
Affiliation(s)
- T Robson
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | | | | | | |
Collapse
|
12
|
MA QUNFENG, JIN BANGMING, ZHANG YAO, SHI YINAN, ZHANG CHI, LUO DAN, WANG PENGKUN, DUAN CUIMI, SONG HEYU, LI XUE, DENG XUEFENG, CHEN ZHINAN, WANG ZILING, JIANG HONG, LIU YAN. Secreted recombinant human IL-24 protein inhibits the proliferation of esophageal squamous cell carcinoma Eca-109 cells in vitro and in vivo. Oncol Rep 2016; 35:2681-90. [DOI: 10.3892/or.2016.4633] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/16/2015] [Indexed: 11/05/2022] Open
|
13
|
Das SK, Menezes ME, Bhatia S, Wang XY, Emdad L, Sarkar D, Fisher PB. Gene Therapies for Cancer: Strategies, Challenges and Successes. J Cell Physiol 2015; 230:259-71. [PMID: 25196387 DOI: 10.1002/jcp.24791] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/29/2014] [Indexed: 12/13/2022]
Abstract
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
Collapse
Affiliation(s)
- Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Shilpa Bhatia
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
14
|
Liu JJ, Zhang BF, Yin XX, Pei DS, Yang ZX, Di JH, Chen FF, Li HZ, Xu W, Wu YP, Zheng JN. EXPRESSION, PURIFICATION, AND CHARACTERIZATION OF RGD-mda-7, A HIS-TAGGED mda-7/IL-24 MUTANT PROTEIN. J Immunoassay Immunochem 2012; 33:352-68. [DOI: 10.1080/15321819.2012.659782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Zhang BF, Liu JJ, Pei DS, Yang ZX, Di JH, Chen FF, Li HZ, Xu W, Wu YP, Zheng JN. Potent Antitumor Effect Elicited by RGD-mda-7, an mda-7/IL-24 Mutant, via Targeting the Integrin Receptor of Tumor Cells. Cancer Biother Radiopharm 2011; 26:647-55. [PMID: 21902545 DOI: 10.1089/cbr.2011.0984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Bao-Fu Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Jun-Jie Liu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Zhi-Xia Yang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Jie-Hui Di
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Fei-Fei Chen
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Hui-Zhong Li
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Wei Xu
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| | - Yong-Ping Wu
- Laboratory of Pathology, Xuzhou Medical College, Xuzhou, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China
| |
Collapse
|
16
|
Tanimoto R, Sakaguchi M, Abarzua F, Kataoka K, Kurose K, Murata H, Nasu Y, Kumon H, Huh NH. Down-regulation of BiP/GRP78 sensitizes resistant prostate cancer cells to gene-therapeutic overexpression of REIC/Dkk-3. Int J Cancer 2010; 126:1562-9. [PMID: 19626590 DOI: 10.1002/ijc.24764] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We have recently shown that an adenovirus carrying REIC/Dkk-3 (Ad-REIC) exhibits a potent tumor-specific cell-killing function for various human cancers. It has also become evident that some human cancers are resistant to Ad-REIC-induced apoptosis. The aim of the present study was to determine the molecular mechanisms of resistance to Ad-REIC. First, we isolated resistant clones from a human prostate cancer cell line, PC3, after repeated exposure to Ad-REIC. Infection efficiency of the adenovirus vector and expression level of REIC/Dkk-3 in the resistant clones were similar to those in the parental PC3 cells. By screening for alteration in levels and functional status of proteins involved in Ad-REIC-induced apoptosis, we found that BiP/GRP78, an ER-residing chaperone protein, was expressed at higher levels consistently among resistant cells. Expression levels of BiP and rates of apoptosis induced by Ad-REIC were inversely correlated. Down-regulation of BiP with siRNA sensitized the resistant cells to Ad-REIC in vivo as well as in culture. These results indicate that BiP is a major determinant of resistance to Ad-REIC-induced apoptosis. Thus BiP is useful for diagnosis of inherent and acquired resistance of cancers and also as a target molecule to overcome resistance to the gene therapeutic Ad-REIC.
Collapse
Affiliation(s)
- Ryuta Tanimoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
P53 and PTEN expression contribute to the inhibition of EGFR downstream signaling pathway by cetuximab. Cancer Gene Ther 2009; 16:498-507. [DOI: 10.1038/cgt.2008.100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Sahoo A, Jung YM, Kwon HK, Yi HJ, Lee S, Chang S, Park ZY, Hwang KC, Im SH. A novel splicing variant of mouse interleukin (IL)-24 antagonizes IL-24-induced apoptosis. J Biol Chem 2008; 283:28860-72. [PMID: 18708357 PMCID: PMC2662000 DOI: 10.1074/jbc.m802510200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/17/2008] [Indexed: 01/13/2023] Open
Abstract
Alternative splicing of mRNA enables functionally diverse protein isoforms to be expressed from a single gene, allowing transcriptome diversification. Interleukin (IL)-24/MDA-7 is a member of the IL-10 gene family, and FISP (IL-4-induced secreted protein), its murine homologue, is selectively expressed and secreted by T helper 2 lymphocytes. A novel splice variant of mouse IL-24/FISP, designated FISP-sp, lacks 29 nucleotides from the 5'-end of exon 4 of FISP. The level of FISP-sp expression is 10% of the level of total primary FISP transcription. Unlike FISP, FISP-sp does not induce growth inhibition and apoptosis. FISP-sp is exclusively localized in endoplasmic reticulum, and its expression is up-regulated by endoplasmic reticulum stress. Our results suggest that the novel splicing variant FISP-sp dimerizes with FISP and blocks its secretion and inhibits FISP-induced apoptosis in vivo.
Collapse
Affiliation(s)
- Anupama Sahoo
- Department of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sarkar D, Su ZZ, Park ES, Vozhilla N, Dent P, Curiel DT, Fisher PB. A cancer terminator virus eradicates both primary and distant human melanomas. Cancer Gene Ther 2008; 15:293-302. [PMID: 18323853 DOI: 10.1038/cgt.2008.14] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prognosis and response to conventional therapies of malignant melanoma inversely correlate with disease progression. With increasing thickness, melanomas acquire metastatic potential and become inherently resistant to radiotherapy and chemotherapy. These harsh realities mandate the design of improved therapeutic modalities, especially those targeting metastases. To develop an approach to effectively treat this aggressive disease, we constructed a conditionally replication-competent adenovirus in which expression of the adenoviral E1A gene, necessary for replication, is driven by the cancer-specific promoter of progression-elevated gene-3 (PEG-3) and which simultaneously expresses mda-7/IL-24 in the E3 region of the adenovirus (Ad.PEG-E1A-mda-7), a cancer terminator virus (CTV). This CTV produces large quantities of MDA-7/IL-24 protein as a function of adenovirus replication uniquely in cancer cells. Infection of Ad.PEG-E1A-mda-7 (CTV) in normal human immortal melanocytes and human melanoma cells demonstrates cancer cell-selective adenoviral replication, mda-7/IL-24 expression, growth inhibition and apoptosis induction. Injecting Ad.PEG-E1A-mda-7 CTV into xenografts derived from MeWo human metastatic melanoma cells in athymic nude mice completely eliminated not only primary treated tumors but also distant non-treated tumors (established in the opposite flank), thereby implementing a cure. These provocative findings advocate potential therapeutic applications of this novel virus for treating patients with advanced melanomas with metastases.
Collapse
Affiliation(s)
- D Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Sarkar D, Lebedeva IV, Gupta P, Emdad L, Sauane M, Dent P, Curiel DT, Fisher PB. Melanoma differentiation associated gene-7 (mda-7)/IL-24: a 'magic bullet' for cancer therapy? Expert Opin Biol Ther 2007; 7:577-86. [PMID: 17477796 DOI: 10.1517/14712598.7.5.577] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An ideal cancer gene therapy would selectively kill cancer cells without harming normal cells and induce multipronged 'bystander' antitumor effects, facilitating eradication of both primary and metastatic tumors. Melanoma differentiation associated gene-7 (mda-7)/interleukin-24 (IL-24) exhibits all of these attributes and more. It induces cancer-selective apoptosis, inhibits angiogenesis, stimulates an antitumor immune response, sensitizes cancer cells to radiation and other modalities of conventional therapies, and exhibits profound 'bystander' activity eliminating both primary and distant tumors in animal models. Moreover, a replication-incompetent adenovirus expressing mda-7/IL-24, Ad.mda-7 (INGN-241), has now undergone evaluation in a Phase I clinical trial for multiple solid tumors, including melanomas, and has demonstrated safety and significant objective clinical activity. Considering these exciting observations, mda-7/IL-24 is being hailed as a 'magic bullet' for cancer gene therapy. This review elaborates on the pleiotropic properties of mda-7/IL-24 and unravels novel aspects of the molecule mandating future studies and expanded clinical applications.
Collapse
Affiliation(s)
- Devanand Sarkar
- Columbia University Medical Center, Department of Urology, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology-Pathology , Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | | |
Collapse
|
22
|
Emdad L, Sarkar D, Su ZZ, Lee SG, Kang DC, Bruce JN, Volsky DJ, Fisher PB. Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration. Pharmacol Ther 2007; 114:155-70. [PMID: 17397930 PMCID: PMC2039930 DOI: 10.1016/j.pharmthera.2007.01.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/19/2007] [Indexed: 01/01/2023]
Abstract
Tumor progression and metastasis are complex processes involving intricate interplay among multiple gene products. Astrocyte elevated gene (AEG)-1 was cloned as an human immunodeficiency virus (HIV)-1-inducible and tumor necrosis factor-alpha (TNF-alpha)-inducible transcript in primary human fetal astrocytes (PHFA) by a rapid subtraction hybridization approach. AEG-1 down-regulates the expression of the glutamate transporter EAAT2; thus, it is implicated in glutamate-induced excitotoxic damage to neurons as evident in HIV-associated neurodegeneration. Interestingly, AEG-1 expression is elevated in subsets of breast cancer, glioblastoma multiforme and melanoma cells, and AEG-1 cooperates with Ha-ras to augment the transformed phenotype of normal immortal cells. Moreover, AEG-1 is overexpressed in >95% of human malignant glioma samples when compared with normal human brain. Overexpression of AEG-1 increases and siRNA inhibition of AEG-1 decreases migration and invasion of human glioma cells, respectively. AEG-1 contains a lung-homing domain facilitating breast tumor metastasis to lungs. These findings indicate that AEG-1 might play a pivotal role in the pathogenesis, progression and metastasis of diverse cancers. Our recent observations indicate that AEG-1 exerts its effects by activating the nuclear factor kappa B (NF-kappaB) pathway and AEG-1 is a downstream target of Ha-ras and plays an important role in Ha-ras-mediated tumorigenesis. These provocative findings are intensifying interest in AEG-1 as a crucial regulator of tumor progression and metastasis and as a potential mediator of neurodegeneration. In this review, we discuss the cloning, structure and function(s) of AEG-1 and provide recent insights into the diverse actions and intriguing properties of this molecule.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Devanand Sarkar
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Zao-Zhong Su
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Seok-Geun Lee
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - Dong-chul Kang
- Ilsong Institute of Life Science, Hallym University, Republic of Korea
| | - Jeffrey N. Bruce
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| | - David J. Volsky
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- St. Luke's Roosevelt Medical Center, New York, NY
| | - Paul B. Fisher
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Neurosurgery, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY
| |
Collapse
|
23
|
Zheng M, Priebe W, Walch ET, Roth KG, Han M, Tang CH, Lee S, Poindexter NJ, Fokt I, Grimm EA. WP760, a melanoma selective drug. Cancer Chemother Pharmacol 2006; 60:625-33. [PMID: 17195067 DOI: 10.1007/s00280-006-0404-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 12/05/2006] [Indexed: 01/10/2023]
Abstract
PURPOSE Our goal was to perform studies on the specificity and antimelanoma mechanism of a novel bis-anthracycline, WP760. WP760 initially identified in the NCI 160 screen as anti-melanoma. METHODS The methyl thiazolyl tetrazolium reduction (MTT) assay was used to test tumor cell growth inhibition; confocal microscopy to view WP760 intracellular distribution; flow cytometry for cell-cycle arrest and apoptosis; and Western blotting was employed to identify and compare quantities and kinetics of cell growth related molecule levels. RESULTS WP760 induced G(2)/M-phase cell-cycle arrest and apoptosis in melanoma cell lines and short-term melanoma explants established from clinical specimens in a time and concentration dependent manner at nM concentrations. In contrast, effects on fibroblasts and A549 lung cancer cells required higher concentrations, suggesting that WP760 possesses selectivity for melanoma. Molecular studies indicated that WP760 induced p53 stabilization, checkpoint kinase 2 and p27(Kip1) protein upregulation, and activation of caspase-3. Endogenous nitric oxide (NO) production has been implicated in the chemoresistance of melanoma; WP760 caused inhibition of the inducible nitric oxide synthase (iNOS) protein as well as inhibition of phosphorylation of ERK, known to drive the iNOS pathway. Based on WP760 localization into mitochondria, and caspase-3 inhibitor block the killing of WP760, the intrinsic pathway of apoptosis appears to have been activated. CONCLUSIONS Our results indicate that WP760 affects a critical and unique set of growth regulatory effects in melanoma, and is a promising candidate for further preclinical studies.
Collapse
Affiliation(s)
- Mingzhong Zheng
- Department of Experimental Therapeutics, Unit 362, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zerbini LF, Czibere A, Wang Y, Correa RG, Otu H, Joseph M, Takayasu Y, Silver M, Gu X, Ruchusatsawat K, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA. A novel pathway involving melanoma differentiation associated gene-7/interleukin-24 mediates nonsteroidal anti-inflammatory drug-induced apoptosis and growth arrest of cancer cells. Cancer Res 2006; 66:11922-31. [PMID: 17178890 DOI: 10.1158/0008-5472.can-06-2068] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Numerous studies show that nonsteroidal anti-inflammatory drugs (NSAIDs) are effective in chemoprevention or treatment of cancer. Nevertheless, the mechanisms underlying these antineoplastic effects remain poorly understood. Here, we report that induction of the cancer-specific proapoptotic cytokine melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24) by several NSAIDs is an essential step for induction of apoptosis and G(2)-M growth arrest in cancer cells in vitro and inhibition of tumor growth in vivo. We also show that MDA-7/IL-24-dependent up-regulation of growth arrest and DNA damage inducible 45 alpha (GADD45alpha) and GADD45gamma gene expression is sufficient for cancer cell apoptosis via c-Jun NH(2)-terminal kinase (JNK) activation and growth arrest induction through inhibition of Cdc2-cyclin B checkpoint kinase. Knockdown of GADD45alpha and GADD45gamma transcription by small interfering RNA abrogates apoptosis and growth arrest induction by the NSAID treatment, blocks JNK activation, and restores Cdc2-cyclin B kinase activity. Our results establish MDA-7/IL-24 and GADD45alpha and GADD45gamma as critical mediators of apoptosis and growth arrest in response to NSAIDs in cancer cells.
Collapse
Affiliation(s)
- Luiz F Zerbini
- BIDMC Genomics Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mumm JB, Ekmekcioglu S, Poindexter NJ, Chada S, Grimm EA. Soluble Human MDA-7/IL-24: Characterization of the Molecular Form(s) Inhibiting Tumor Growth and Stimulating Monocytes. J Interferon Cytokine Res 2006; 26:877-86. [PMID: 17238830 DOI: 10.1089/jir.2006.26.877] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Interleukin-24 (IL-24), also known as melanoma differentiation-associated gene-7 (mda-7), is a member of the IL-10 family that exhibits both tumor suppressor and proinflammatory properties. We describe the purification of this novel dual-function tumor suppressor/cytokine from the supernatant of IL-24 gene-transfected HEK 293 cells and define the biochemical and functional properties of the soluble human IL-24 protein. Size exclusion chromatography demonstrates that an IL-24 macromolecular complex fractionates in a broad peak with a median of 110 kDa and comprises several IL-24 isoforms, identified by immunoblotting with anti-IL-24 polyclonal antibody after reducing SDS-PAGE analysis. IL-24 was found to associate with two serum components, albumin and C1q. Cation exchange purification results in the isolation of at least two N-linked glycosylated IL-24 dimers covalently associated via intermolecular disulfide bonds. These molecularly defined N-glycosylated IL-24 dimers elicited dose-dependent secretion of tumor necrosis factor-alpha (TNF-alpha) and IL-6 from human monocytes, as well as cytotoxicity to human melanoma cell lines. Thus, we demonstrated that the secreted, glycosylated, dimeric, human IL-24 is immunomodulatory to monocytes and exhibits tumor cell growth inhibition.
Collapse
Affiliation(s)
- John B Mumm
- Department of Experimental Therapeutics, The University of Texas, M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
26
|
Lee SG, Su ZZ, Emdad L, Sarkar D, Fisher PB. Astrocyte elevated gene-1 (AEG-1) is a target gene of oncogenic Ha-ras requiring phosphatidylinositol 3-kinase and c-Myc. Proc Natl Acad Sci U S A 2006; 103:17390-5. [PMID: 17088530 PMCID: PMC1859939 DOI: 10.1073/pnas.0608386103] [Citation(s) in RCA: 189] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well established that Ha-ras and c-myc genes collaborate in promoting transformation, tumor progression, and metastasis. However, the precise mechanism underlying this cooperation remains unclear. In the present study, we document that astrocyte elevated gene-1 (AEG-1) is a downstream target molecule of Ha-ras and c-myc, mediating their tumor-promoting effects. AEG-1 expression is elevated in diverse neoplastic states, it cooperates with Ha-ras to promote transformation, and its overexpression augments invasion of transformed cells, demonstrating its functional involvement in Ha-ras-mediated tumorigenesis. We now document that AEG-1 expression is markedly induced by oncogenic Ha-ras, activating the phosphatidylinositol 3-kinase signaling pathway that augments binding of c-Myc to key E-box elements in the AEG-1 promoter, thereby regulating AEG-1 transcription. In addition, Ha-ras-mediated colony formation is inhibited by AEG-1 siRNA. This is a demonstration that Ha-ras activation of a tumor-promoting gene is regulated directly by c-Myc DNA binding via phosphatidylinositol 3-kinase signaling, thus revealing a previously uncharacterized mechanism of Ha-ras-mediated oncogenesis through AEG-1.
Collapse
Affiliation(s)
| | | | | | | | - Paul B. Fisher
- Departments of *Urology
- Pathology, and
- Neurosurgery
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
27
|
Gupta P, Su ZZ, Lebedeva IV, Sarkar D, Sauane M, Emdad L, Bachelor MA, Grant S, Curiel DT, Dent P, Fisher PB. mda-7/IL-24: multifunctional cancer-specific apoptosis-inducing cytokine. Pharmacol Ther 2006; 111:596-628. [PMID: 16464504 PMCID: PMC1781515 DOI: 10.1016/j.pharmthera.2005.11.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 11/28/2005] [Indexed: 02/07/2023]
Abstract
"Differentiation therapy" provides a unique and potentially effective, less toxic treatment paradigm for cancer. Moreover, combining "differentiation therapy" with molecular approaches presents an unparalleled opportunity to identify and clone genes mediating cancer growth control, differentiation, senescence, and programmed cell death (apoptosis). Subtraction hybridization applied to human melanoma cells induced to terminally differentiate by treatment with fibroblast interferon (IFN-beta) plus mezerein (MEZ) permitted cloning of melanoma differentiation associated (mda) genes. Founded on its novel properties, one particular mda gene, mda-7, now classified as a member of the interleukin (IL)-10 gene family (IL-24) because of conserved structure, chromosomal location, and cytokine-like properties has become the focus of attention of multiple laboratories. When administered by transfection or adenovirus-transduction into a spectrum of tumor cell types, melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) induces apoptosis, whereas no toxicity is apparent in normal cells. mda-7/IL-24 displays potent "bystander antitumor" activity and also has the capacity to enhance radiation lethality, to induce immune-regulatory activities, and to inhibit tumor angiogenesis. Based on these remarkable attributes and effective antitumor therapy in animal models, this cytokine has taken the important step of entering the clinic. In a Phase I clinical trial, intratumoral injections of adenovirus-administered mda-7/IL-24 (Ad.mda-7) was safe, elicited tumor-regulatory and immune-activating processes, and provided clinically significant activity. This review highlights our current understanding of the diverse activities and properties of this novel cytokine, with potential to become a prominent gene therapy for cancer.
Collapse
Affiliation(s)
- Pankaj Gupta
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Allen M, Pratscher B, Krepler C, Frei K, Schöfer C, Pehamberger H, Müller M, Lucas T. Alternative splicing of IL-24 in melanocytes by deletion of exons 3 and 5. Int J Immunogenet 2006; 32:375-8. [PMID: 16313301 DOI: 10.1111/j.1744-313x.2005.00540.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two novel interleukin-24 (IL-24) splice variants were identified in normal human melanocytes by sequencing cloned polymerase chain reaction (PCR) products that are not expressed in metastatic melanoma. These gene products have been generated by differential skipping of exons 3 (IL-24 delE3) and 5 (IL-24 delE5). IL-24 delE3 has limited sequence identity to the IL-24-interacting protein mda-7s, and IL-24 delE5 is homologous to IL-24.
Collapse
Affiliation(s)
- M Allen
- Department of Clinical Pharmacology, Section of Experimental Oncology/Molecular Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, Austria, A-1090
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
The "holy grail" of cancer therapy is to identify and exploit genetic elements and signal transduction pathways capable of selectively destroying tumor cells without eliciting harmful effects in normal cells or tissues. To achieve this objective, subtraction hybridization was combined with a "differentiation therapy" model of cancer in which human melanoma cells were induced to revert to a more "normal" state, growth arrest irreversibly, and terminally differentiate by treatment with fibroblast IFN and mezerein. This strategy permitted the cloning of a variety of genes involved in regulating important physiologic processes, including cell cycle, response to cytokines and viruses, tumorigenesis and metastasis, cancer growth control, apoptosis, and senescence. A specific gene, melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), displaying cancer-specific apoptosis-inducing properties isolated using this scheme has now come into the limelight as a new gene therapy for divergent cancers. Although the mechanism of cancer cell selectivity of mda-7/IL-24 remains to be delineated, numerous attributes enable this gene as an effective therapy for cancer, including an ability to discriminate between normal and cancer cells, induce apoptosis in diverse tumor cells, promote "bystander" antitumor effects, inhibit tumor growth and angiogenesis in animal models, synergize with radiation, and modulate immune responses. These unique features combined with successful transition into the clinic instill confidence that mda-7/IL-24, as a single or more likely as part of a combinatorial approach, may provide profound therapeutic benefit for cancer patients.
Collapse
Affiliation(s)
- Paul B Fisher
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York 10032, USA.
| |
Collapse
|
30
|
Su Z, Emdad L, Sauane M, Lebedeva IV, Sarkar D, Gupta P, James CD, Randolph A, Valerie K, Walter MR, Dent P, Fisher PB. Unique aspects of mda-7/IL-24 antitumor bystander activity: establishing a role for secretion of MDA-7/IL-24 protein by normal cells. Oncogene 2005; 24:7552-66. [PMID: 16044151 DOI: 10.1038/sj.onc.1208911] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Melanoma differentiation associated gene-7 (mda-7) was cloned using subtraction hybridization from terminally differentiated human melanoma cells. Based on structural and functional properties, mda-7 is now recognized as interleukin-24 (IL-24), a new member of the expanding IL-10 gene family. Unique properties of mda-7/IL-24 include its ability to selectively induce growth suppression, apoptosis and radiosensitization in diverse human cancer cells, without causing similar effects in normal cells. The utility of mda-7/IL-24, administered by means of a replication-incompetent adenovirus, as a gene therapy for cancer has recently received validation in patients, highlighting an important phenomenon initially observed in pancreatic tumor cells, namely a 'potent bystander apoptosis-inducing effect' in adjacent tumor cells not initially receiving this gene product. We presently investigated the contribution of mda-7/IL-24 secreted by normal cells in mediating this 'bystander effect', and document that normal cells induced to produce mda-7/IL-24 following infection with recombinant adenoviruses expressing this cytokine secrete mda-7/IL-24, which modifies the anchorage-independent growth, invasiveness, survival and sensitivity to radiation of cancer cells that contain functional IL-20/IL-22 receptors, but not in cancer cells that lack a complete set of receptors. Moreover, the combination of secreted mda-7/IL-24 and radiation engenders a 'bystander antitumor effect' not only in inherently mda-7/IL-24 or radiation-sensitive cancer cells, but also in tumor cells overexpressing the antiapoptotic proteins bcl-2 or bcl-x(L) and displaying resistance to either treatment alone. The present studies provide definitive evidence that secreted mda-7/IL-24 from normal cells can induce direct antitumor and radiation-enhancing effects that are dependent on the presence of canonical receptors for this cytokine on tumor cells. Moreover, we now describe a novel means of enhancing mda-7/IL-24's therapeutic potential by targeting normal cells to produce and release this cancer-specific apoptosis-inducing cytokine, a strategy that could be employed as an innovative way of using this unique gene product for treating metastatic disease.
Collapse
Affiliation(s)
- Zhaozhong Su
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol 2005; 23:8093-108. [PMID: 16258107 DOI: 10.1200/jco.2004.00.1537] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular cancer (HCC) is the fifth most common solid tumor worldwide, accounting for 500,000 new cases annually. Although less common in the United States, HCC is expected to increase in incidence over the next two decades largely because of the prevalence of hepatitis C virus infection. A majority of patients present with advanced disease and are not candidates for liver transplantation, surgical resection, or regional therapy. In 60% to 80% of patients with HCC, treatment is complicated by underlying liver cirrhosis and hepatic dysfunction. Systemic treatments are minimally effective, can have significant toxicity, and have not been shown to improve patient survival. New approaches targeting molecular abnormalities specific to HCC are needed to improve patient outcome. This review summarizes the state of knowledge of those key aspects of the molecular pathogenesis of HCC that may represent rational therapeutic targets in this disease. Relevant preclinical and clinical information on novel compounds directed toward abnormalities in HCC is reviewed.
Collapse
Affiliation(s)
- Melanie B Thomas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA.
| | | |
Collapse
|
32
|
Wang WD, Li R, Chen ZT, Li DZ, Duan YZ, Cao ZH. Cisplatin-controlled p53 gene therapy for human non-small cell lung cancer xenografts in athymic nude mice via the CArG elements. Cancer Sci 2005; 96:706-12. [PMID: 16232203 PMCID: PMC11158632 DOI: 10.1111/j.1349-7006.2005.00105.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cisplatin, a commonly used chemotherapeutic agent, causes tumor cell death by producing DNA damage and generating reactive oxygen intermediates, which have been reported to activate the early growth response-1 (Egr-1) promoter through specific cis-acting sequences, termed CArG elements. The aim of this study was to construct an adenoviral vector containing CArG elements cloned upstream of the cDNA for human wt-p53, and to observe the effect of this vector on human non-small cell lung cancer (NSCLC) xenografts in athymic nude mice when combined with cisplatin treatment. The adenoviral vector AdEgr-p53 was generated by inserting CArG elements upstream of human wt-p53 cDNA. Two human NSCLC cell lines of varying p53 gene status, A549 (containing wild-type p53) and H358 (containing an internal homozygous deletion of the p53 gene) were used for in vitro and in vivo experiments. Wt-p53 production in cultured tumor cells and xenografts treated with the combination of AdEgr-p53 and cisplatin were detected by enzyme-linked immunosorbent assays. The antitumor responses in nude mice with the A549 or H358 xenografts following treatment with AdEgr-p53 and cisplatin were observed. We found that p53 was produced in tumor cells and xenografts treated with a combination of AdEgr-p53 and cisplatin. Furthermore, the Egr-1 promoter is induced by cisplatin, and this induction is mediated in part through the CArG elements. There was an enhanced antitumor response without an increase in toxicity following treatment with AdEgr-p53 and cisplatin, compared with either agent alone. Cisplatin-inducible p53 gene therapy may provide a means to control transgene expression while enhancing the effectiveness of commonly used chemotherapeutic agents. This is a novel treatment for human NSCLC.
Collapse
Affiliation(s)
- Wei-dong Wang
- Department of Oncology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | | | | | | | | | | |
Collapse
|
33
|
Sakuragi N, Watari H, Ebina Y, Yamamoto R, Steiner E, Koelbl H, Yano M, Tada M, Moriuchi T. Functional analysis of p53 gene and the prognostic impact of dominant-negative p53 mutation in endometrial cancer. Int J Cancer 2005; 116:514-9. [PMID: 15825182 DOI: 10.1002/ijc.21097] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In addition to the loss of function, mutant p53 can possess a dominant-negative effect on wild-type p53 and may also exert gain-of-function activity. It is not clear whether the functional status of p53 mutation contributes to differences in outcome in endometrial cancer. We collected a total of 92 RNA samples of high quality from endometrial cancer tissues, and the samples were subjected to yeast functional assay and sequencing for p53 mutations. The detected mutant p53 genes were further investigated for their dominant-negative activity using a yeast-based transdominance assay. p53 mutation was found in 24 out of 92 (26.1%) tumors, of which 10 exhibited no dominant-negative activity (recessive mutation) and 14 showed dominant-negative activity. Dominant-negative p53 mutation was related to advanced stages (p = 0.01), nonendometrioid type tumors (p = 0.01) and grade 3 tumors (p = 0.04). The patients with dominant-negative mutation had significantly shorter survival than patients with no mutation (p < 0.0001) and those with a recessive mutation (p = 0.01) in the p53 gene. No difference in survival was found between the patients with tumors harboring a recessive p53 mutation and those with tumors harboring a wild-type p53. Multivariate analysis revealed that dominant-negative p53 mutation (p = 0.019), FIGO stage (p = 0.0037) and histologic subtype (p = 0.014) were independently related to patient survival. Dominant-negative p53 mutation was the most important prognostic factor for stage III/IV endometrial cancer (p = 0.0023). In conclusion, dominant-negative p53 mutation is often found in advanced stages and aggressive histologic subtypes of endometrial cancer and it is a strong predictor of survival of patients with advanced endometrial cancer. To elucidate further the role of p53 mutation in endometrial cancer, it is necessary to investigate gain-of-function activity involving dominant-negative p53 mutant proteins.
Collapse
Affiliation(s)
- Noriaki Sakuragi
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine and School of Medicine, Kitaku, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Gopalkrishnan RV, Sauane M, Fisher PB. Cytokine and tumor cell apoptosis inducing activity of mda-7/IL-24. Int Immunopharmacol 2005; 4:635-47. [PMID: 15120649 DOI: 10.1016/j.intimp.2004.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Melanoma Differentiation Associated gene-7 (mda-7)/IL-24 has shown potent tumor cell apoptosis inducing capacity in multiple cancers, making it a strong candidate for use as a human cancer gene therapeutic. Several independent studies have currently documented and confirmed mda-7/IL-24's cytokine nature including presence of a canonical secretory signal peptide, processing and secretion of the molecule by cells and it's binding to specific interleukin receptors on the cell surface. Receptor binding has been shown to activate the JAK/STAT signal transduction pathway with concomitant stimulation of STAT 1 and 3 transactivators. The physiological role(s) of this molecule in modulating immune responses, as a member of the IL-10 family of cytokines, is not well documented and most current information pertains to its apparently restricted expression patterns in specific cell types with immunomodulatory activity. On the other hand, several additional signal transduction pathways were modulated when cells overexpress mda-7/IL-24, not all of which are necessarily downstream of mda-7/IL-24 induced JAK/STAT activation. A summary of the current status of information is presented to provide a perspective for the cytokine-related properties of mda-7/IL-24 in correlation to its tumor cell apoptosis inducing activity. Moreover, new evidence has surfaced pointing toward apoptosis induction via mechanisms independent of cytokine activity-related JAK/STAT activation.
Collapse
Affiliation(s)
- Rahul V Gopalkrishnan
- Department of Pathology, College of Physicians and Surgeons, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
35
|
Lebedeva IV, Sauane M, Gopalkrishnan RV, Sarkar D, Su ZZ, Gupta P, Nemunaitis J, Cunningham C, Yacoub A, Dent P, Fisher PB. mda-7/IL-24: exploiting cancer's Achilles' heel. Mol Ther 2005; 11:4-18. [PMID: 15585401 DOI: 10.1016/j.ymthe.2004.08.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 12/17/2022] Open
Abstract
The mda-7/IL-24 cDNA was isolated almost a decade ago in a screen for genes differentially upregulated following growth arrest and terminal differentiation of a human melanoma cell line employed as an in vitro cell differentiation model. The underlying rationale for the screen was that oncogenesis arises from a cellular dedifferentiation process culminating in uncontrolled proliferation and acquisition of invasive and metastatic potential. Identification of genes upregulated during the process of reactivation of faulty or inoperational differentiation maintenance programs was postulated to have cancer gene therapeutic potential. In this context, it is heartening to note that mda-7/IL-24 has made a methodical and progressive journey, from an unidentified novel sequence with little homology to known genes at its time of isolation to currently having the status of a molecule belonging to the IL-10-related family of cytokines, with considerable cancer gene therapeutic potential. Extensive in vitro and in vivo human tumor xenograft studies have established its transformed cell apoptosis-inducing capacity in various model systems. It has recently taken an important step for a candidate cancer gene therapeutic molecule, in the ultimate goal of benchtop to clinic, by being currently utilized in human Phase I/II clinical trials. This review provides a current perspective of our understanding of mda-7/IL-24, including established and more recent information about the molecular properties, specificity of anti-tumor-cell apoptosis-inducing activity, and underlying mechanisms of this action relative to its cancer gene therapeutic potential.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Su ZZ, Sarkar D, Emdad L, Duigou GJ, Young CSH, Ware J, Randolph A, Valerie K, Fisher PB. Targeting gene expression selectively in cancer cells by using the progression-elevated gene-3 promoter. Proc Natl Acad Sci U S A 2005; 102:1059-64. [PMID: 15647352 PMCID: PMC545837 DOI: 10.1073/pnas.0409141102] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Indexed: 02/07/2023] Open
Abstract
One impediment to effective cancer-specific gene therapy is the rarity of regulatory sequences targeting gene expression selectively in tumor cells. Although many tissue-specific promoters are recognized, few cancer-selective gene promoters are available. Progression-elevated gene-3 (PEG-3) is a rodent gene identified by subtraction hybridization that displays elevated expression as a function of transformation by diversely acting oncogenes, DNA damage, and cancer cell progression. The promoter of PEG-3, PEG-Prom, displays robust expression in a broad spectrum of human cancer cell lines with marginal expression in normal cellular counterparts. Whereas GFP expression, when under the control of a CMV promoter, is detected in both normal and cancer cells, when GFP is expressed under the control of the PEG-Prom, cancer-selective expression is evident. Mutational analysis identifies the AP-1 and PEA-3 transcription factors as primary mediators of selective, cancer-specific expression of the PEG-Prom. Synthesis of apoptosis-inducing genes, under the control of the CMV promoter, inhibits the growth of both normal and cancer cells, whereas PEG-Prom-mediated expression of these genes kills only cancer cells and spares normal cells. The efficacy of the PEG-Prom as part of a cancer gene therapeutic regimen is further documented by in vivo experiments in which PEG-Prom-controlled expression of an apoptosis-inducing gene completely inhibited prostate cancer xenograft growth in nude mice. These compelling observations indicate that the PEG-Prom, with its cancer-specific expression, provides a means of selectively delivering genes to cancer cells, thereby providing a crucial component in developing effective cancer gene therapies.
Collapse
Affiliation(s)
- Zhao-Zhong Su
- Department of Pathology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang M, Tan Z, Thomas EK, Liang P. Conservation of the genomic structure and receptor-mediated signaling between human and rat IL-24. Genes Immun 2005; 5:363-70. [PMID: 15175645 DOI: 10.1038/sj.gene.6364101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
IL-24/MDA-7 is a new member of the IL-10 family of cytokines, which signals through two heterodimeric receptor complexes (IL-20R1/IL-20R2 and IL-22R/IL-20R2). Previously, we identified a rat gene named mob-5, which encodes a secreted protein that shares a high degree of homology with human IL-24. Expression of mob-5 and its putative cell surface receptors was shown to be upregulated by oncogenic ras. Here we show that not only do rat mob-5 and human IL-24 share a strikingly similar genomic structure but also that the rat MOB-5 protein can bind to and signal through the human IL-24 receptors. Like human IL-24, binding of the rat MOB-5 protein to the human IL-24 receptors leads to activation of the JAK/STAT pathway, which in turn supports receptor-dependent survival and proliferation of Ba/F3 cells. Furthermore, using human colon cancer cell lines with somatic knockout of either the mutant or the wild-type k-ras allele, we demonstrate that the human IL-24 receptors also are upregulated by oncogenic ras. Taken together, these results provide strong experimental evidence that MOB-5 is indeed the rat homolog of human IL-24.
Collapse
Affiliation(s)
- M Wang
- Department of Cancer Biology, Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
38
|
Dent P, Yacoub A, Grant S, Curiel DT, Fisher PB. MDA-7/IL-24 regulates proliferation, invasion and tumor cell radiosensitivity: A new cancer therapy? J Cell Biochem 2005; 95:712-9. [PMID: 15880678 DOI: 10.1002/jcb.20502] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The novel cytokine MDA-7/IL-24 was identified by subtractive hybridization in the mid-1990s as a cytokine whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Multiple studies from several laboratories have subsequently demonstrated that expression of IL-24 in tumor cells, but not in non-transformed cells, causes their growth arrest and ultimately cell death. In addition, IL-24 has been noted to be a radiosensitizing cytokine, which in part is due to the generation of reactive oxygen species (ROS) and causing endoplasmic reticulum stress. Recent publications of Phase I trial data have shown that a recombinant adenovirus to express MDA-7/IL-24 (Ad.mda-7 (INGN 241)) was safe and had tumoricidal effects in patients, which argues that IL-24 may have therapeutic value. This review describes what is known about the impact of IL-24 on tumor cell biology in addition to approaches that may enhance the toxicity of this novel cytokine.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | | | | | |
Collapse
|
39
|
Viktorsson K, Lewensohn R, Zhivotovsky B. Apoptotic Pathways and Therapy Resistance in Human Malignancies. Adv Cancer Res 2005; 94:143-96. [PMID: 16096001 DOI: 10.1016/s0065-230x(05)94004-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis and necrosis are two morphologically distinct forms of cell death that are important for maintaining of cellular homeostasis. Almost all agents can provoke either response when applied to cells; however, the duration of treatment and the dose of the used agents determine which type of death (apoptosis or necrosis) is initiated. The response of tumors to chemo-, radio-, and hormone therapy or to treatment with biologically active agents may depend at least in part on the propensity of these tumors to undergo cell death. Some tumors, e.g., leukemias, small cell lung cancer, and seminomas, respond quickly to first-line therapy; this fast response is thought to result from induction of apoptosis. Solid tumors, on the other hand, usually respond slowly and less effectively, with cell death characterized not only by apoptosis but also by necrosis, or mitotic catastrophe. It is likely that resistance of tumors to treatment might be associated with defects in, or dysregulation of, different steps of the apoptotic pathways. Several attempts were undertaken to use the knowledge of these defects to design new drugs, which might either activate or re-activate the apoptotic machinery of tumor cells. Here we discuss the apoptotic pathways and their role in therapy resistance of human malignancies. Although such studies are still in progress, they offer great promise for future cancer therapy. We hope that some of these agents will turn out to be valuable additions to the future therapeutic arsenal, which will most probably include a combination of conventional cytotoxic drugs and molecular target-based pro-apoptotic drugs.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Unit of Medical Radiobiology, Department of Oncology/Pathology, Cancer Center Karolinska, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | |
Collapse
|
40
|
Shinohara S, Rothstein JL. Interleukin 24 is induced by the RET/PTC3 oncoprotein and is an autocrine growth factor for epithelial cells. Oncogene 2004; 23:7571-9. [PMID: 15326486 DOI: 10.1038/sj.onc.1207964] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thyroid cancers, like hematological malignancies, are commonly associated with chromosomal translocations leading to the formation of fusion proteins. Through altered signaling by fusion proteins, cell death and survival pathways are disrupted and the physiological balance of cell-cell communication may be lost. A consequence of this disruption is the release of factors by stressed cells that alert the host. One type of host response is leukocytic infiltration that may develop into chronic inflammation or autoimmune disease. Although inflammation can be associated with neoplastic tissue, the mechanism driving this process is largely unknown. Therefore, to address the mechanism of cancer inflammation we investigated the effects of an oncogene in a murine model system. A comprehensive genetic analysis revealed several soluble factors that were induced by RET/papillary thyroid carcinoma (PTC)3 gene expression including several proinflammatory cytokines, chemokines and immunologically relevant costimulatory molecules. Following a large genetic screen using RP3-expressing thyroid cells, we identified a highly abundant transcript and later identified it as interleukin 24 (Il24), a cytokine with diverse tumor suppressor and inflammatory activities. We show that RET/PTC3 induces Il24 expression in rat thyrocytes and that this expression is dependent on the signaling properties of its tyrosine kinase. Likewise, RET/PTC3 induces large amounts of Il24 following expression in murine thyrocytes, but its expression is dramatically reduced in poorly differentiated carcinomas, a finding that parallels the loss of RET/PTC3 expression. Consistent with its behavior as a tumor suppressor, the loss of Il24 coincided with the loss of RET/PTC3 in poorly differentiated mouse tumors. A functional role of Il24 in the autocrine growth/survival of RET/PTC3-expressing thyroid cells was identified helping to support its role in cellular transformation. These data suggest that the induction of Il24 by oncogenes may support tumor growth at the early stages of cancer.
Collapse
Affiliation(s)
- Shogo Shinohara
- Department of Microbiology/Immunology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
41
|
Sauane M, Lebedeva IV, Su ZZ, Choo HT, Randolph A, Valerie K, Dent P, Gopalkrishnan RV, Fisher PB. Melanoma differentiation associated gene-7/interleukin-24 promotes tumor cell-specific apoptosis through both secretory and nonsecretory pathways. Cancer Res 2004; 64:2988-93. [PMID: 15126330 DOI: 10.1158/0008-5472.can-04-0200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (Mda-7/IL-24), a novel member of the IL-10 family of cytokines, uniquely displays cancer-specific apoptosis-inducing activity. Positive results in ongoing phase I/II clinical trials have strengthened the possibility of its utilization as a cancer gene therapeutic. Previous studies document that signaling events leading to Ad.mda-7-induced transformed cell apoptosis are tyrosine kinase-independent. These results suggest that mda-7/IL-24 cancer cell-specific activity could occur through mechanisms independent of binding to its currently recognized cognate receptors and might even occur independent of receptor function. An adenovirus vector expressing a nonsecreted version of MDA-7/IL-24 protein was generated via deletion of its signal peptide. This nonsecreted protein was as effective as wild-type secreted MDA-7/IL-24 in inducing apoptosis in prostate carcinoma cell lines and displayed transformed cell specificity and localization of MDA-7/IL-24 in the Golgi/endoplasmic reticulum compartments. Our results indicate that mda-7/IL-24-mediated apoptosis can be triggered through a combination of intracellular as well as secretory mechanisms and can occur efficiently in the absence of protein secretion.
Collapse
Affiliation(s)
- Moira Sauane
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hueber AO, Bösser S, Zörnig M. Transgenic overexpression of a dominant negative mutant of FADD that, although counterselected during tumor progression, cooperates in L-myc-induced tumorigenesis. Int J Cancer 2004; 112:536-40. [PMID: 15382083 DOI: 10.1002/ijc.20422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activation of the so-called death receptors, e.g., CD95/Fas/Apo-1, is a potent stimulus to trigger apoptosis. Overexpression of the C-terminal FADD deletion mutant FADD-DN blocks death receptor-induced apoptosis, but despite this antiapoptotic activity, lck FADD-DN transgenic mice do not develop lymphomas. To analyze whether functional inactivation of FADD cooperates with Myc overexpression in tumorigenesis, lck FADD-DN transgenic mice were crossed with Emicro L-myc transoncogenic animals. While no tumors were detected in single transgenic FADD-DN or L-myc mice within 15 months, 5 of 17 (29%) FADD-DN/L-myc double transgenic animals developed lymphomas with an average latency period of 47 weeks. Protein analysis of FADD-DN/L-myc tumors showed, however, undetectable levels of FADD-DN protein. FADD-DN protein expression was again lost in 16 of 17 FADD-DN/p53 k.o. T-cell lymphomas, though no significant acceleration of tumorigenesis in P53-deficient lck FADD-DN mice compared to p53 k.o. animals was observed. These data suggest a strong counterselection against the FADD-DN protein during tumor progression, which could be explained by the cell cycle inhibitory activity of FADD-DN. Such counterselection would have to be compensated for by other antiapoptotic mutations, and indeed, strong upregulation of the antiapoptotic Bcl-2 family member Bcl-xL was found in one of the tumors. This in vivo mouse model demonstrates that an antiapoptotic protein involved in the onset of tumorigenesis is selected against and consequently lost during tumor progression because of its additional antiproliferative activity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/physiology
- Animals
- Animals, Genetically Modified
- Disease Progression
- Fas-Associated Death Domain Protein
- Genes, Dominant
- Genes, myc/genetics
- Genes, myc/physiology
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mutation/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/physiology
- bcl-X Protein
- fas Receptor
Collapse
Affiliation(s)
- Anne-Odile Hueber
- Institute of Signaling, Developmental Biology and Cancer Research, Centre National de la Recherche Scientifique Unité mixte de Recherche 6543 Centre A. Lacassagne, Nice, France
| | | | | |
Collapse
|
43
|
Chada S, Sutton RB, Ekmekcioglu S, Ellerhorst J, Mumm JB, Leitner WW, Yang HY, Sahin AA, Hunt KK, Fuson KL, Poìndexter N, Roth JA, Ramesh R, Grimm EA, Mhashilkar AM. MDA-7/IL-24 is a unique cytokine–tumor suppressor in the IL-10 Family. Int Immunopharmacol 2004; 4:649-67. [PMID: 15120650 DOI: 10.1016/j.intimp.2004.01.017] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The melanoma differentiation associated gene-7 (mda-7) cDNA was isolated by virtue of being induced during melanoma differentiation. Initial gene transfer studies convincingly demonstrated potent antitumor effects of mda-7. Further studies showed that the mechanism of antitumor activity was due to induction of apoptosis. Most striking was the tumor-selective killing by mda-7 gene transfer--normal cells were unaffected by Adenoviral delivery of mda-7 (Ad-mda7). A variety of molecules implicated in apoptosis and intracellular signaling are regulated by Ad-mda7 transduction. Different apoptosis effector proteins are regulated in different tumor types, suggesting that Ad-mda7 may regulate various signaling pathways. mda-7 encodes a secreted protein, MDA-7, which has now been designated as IL-24, and is a novel member of the IL-10 cytokine family. MDA-7/IL-24 protein is actively secreted from cells after mda-7 gene transfer. In human peripheral blood mononuclear cells (PBMC), STAT3 activation by MDA-7/IL-24 is followed by elaboration of secondary Th1 cytokines, demonstrating that MDA-7/IL-24 is a pro-Th1 cytokine. Furthermore, MDA-7/IL-24 is antagonized by the prototypic Th2 cytokine IL-10. MDA-7/IL-24 protein is endogenously expressed in cultured NK and B-cells and is also expressed in dendritic cells in tissues. MDA-7/IL-24 protein is expressed in nevi and melanoma primary tumors, to varying degrees, but is rarely expressed in malignant melanoma or other human tumors evaluated. Indeed, loss of MDA-7/IL-24 protein expression correlates strongly with melanoma tumor invasion and disease progression. The "bystander" effects proposed for MDA-7/IL-24 protein include immune stimulation, antiangiogenesis and receptor-mediated cytotoxicity. Thus, mda-7 is a unique multifunctional cytokine in the IL-10 family and may have potent antitumor utility in a clinical setting.
Collapse
Affiliation(s)
- Sunil Chada
- Introgen Therapeutics, Inc., 2250 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Many chronic neurologic diseases do not respond to small molecule therapeutics, and have no effective long-term therapy. Gene therapy offers the promise of an effective cure for both genetic and acquired brain disease. However, the limiting problem in brain gene therapy is delivery to brain followed by regulation of the expression of the transgene. Present day gene vectors do not cross the blood-brain barrier (BBB). Consequently, brain gene therapy requires craniotomy and the local injection of a viral gene vector. However, there are few brain disorders that can be effectively treated with local injection. Most applications of gene therapy require global expression in the brain of the exogenous gene, and this can only be achieved with a noninvasive delivery through the BBB—the trans-vascular route to brain. An additional consideration is the potential toxicity of all viral and nonviral approaches, which may either integrate into the host genome and cause insertional mutagenesis or cause inflammation in the brain. Nonviral, noninvasive gene therapy of the brain is now possible with the development of a new approach to targeting therapeutic genes to the brain following an IV administration. This approach utilizes genetically engineered molecular Trojan horses, which ferry the gene across the BBB and into neurons. Global and reversible expression of therapeutic genes in the human brain without surgery and without viral vectors is now possible.
Collapse
|
45
|
Abstract
Current therapy such as radiation and chemotherapy controls less than 50% of lung cancers, summoning the development of novel therapeutic strategies that can directly target the underlying mechanisms of tumorigenesis. The clinical trials summarized in this article clearly demonstrate that contrary to initial predictions that gene therapy would not be suitable for cancer, gene replacement therapy is a viable potential addition to the arsenal for cancer. Gene expression has been documented and occurs even in the presence of an antiadenovirus immune response. Clinical trials have demonstrated that direct intratumor injection can cause tumor regression or prolonged stabilization of local disease, and the low toxicity associated with gene transfer indicates that tumor suppressor gene replacement can be readily combined with existing and future treatments. Initial concerns that the wide diversity of genetic lesions in cancer cells would prevent the application of gene therapy to cancer appear unfounded; on the contrary, correction of a single genetic lesion has resulted in significant tumor regression. Studies combining transfer of tumor suppressor genes with conventional DNA-damaging treatments indicate that correction of a defect in apoptosis induction can restore sensitivity to radiation and chemotherapy in some resistant tumors, and indications that sensitivity to killing might be enhanced in already sensitive tumors may eventually lead to reduced toxicity from chemotherapy and radiation therapy. The most recent data from the laboratory demonstrating damage to tumor suppressor genes in normal tissue and premalignant lesions even suggest that these genes may someday be useful in early intervention, diagnosis, and even prevention of cancer. Despite the obvious promise evident in the results of these studies, however, it is critical to recognize that there are still gaps in knowledge and technology to address. At the current rate of biotechnology development, it is only a matter of time until technical limitations that currently prevent the widespread application of gene therapy to cancer are overcome by development of more efficient vectors, discovery of novel genes, and development of combined modality approaches.
Collapse
Affiliation(s)
- Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas, M.D. Anderson Cancer Center, Box 445, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | |
Collapse
|
46
|
Abstract
Despite the combined action of surgery, radiotherapy and chemotherapy, the leading cause of death in cancer patients continues to be the acquired, or intrinsic, tumour resistance to therapy. Some of the genetic alterations that contribute to the malignant transformation are involved in maintaining cell survival under uncontrolled growth conditions. Chemotherapy agents, as well as radiotherapy, trigger a series of signalling pathways in the cells that activate not only the apoptotic machinery, but also cell-survival pathways. In this scenario, the efficacy of therapy is the result of balance between the apoptotic and the survival pathways activated in the tumour, and those elicited by the therapeutic agent. Apoptosis is one of the programmes usually altered in most cancers so as to guarantee tumour progression and, often, these alterations are responsible for therapy resistance, as well.
Collapse
Affiliation(s)
- R Perona
- Instituto de Investigaciones Biomédicas CSIC-UAM, C/Arturo Duperier, 4, Madrid 28029, Spain.
| | | |
Collapse
|
47
|
Sieger KA, Mhashilkar AM, Stewart A, Sutton RB, Strube RW, Chen SY, Pataer A, Swisher SG, Grimm EA, Ramesh R, Chada S. The Tumor Suppressor Activity of MDA-7/IL-24 Is Mediated by Intracellular Protein Expression in NSCLC Cells. Mol Ther 2004; 9:355-67. [PMID: 15006602 DOI: 10.1016/j.ymthe.2003.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022] Open
Abstract
mda-7/IL-24 (HGMW-approved symbol IL24) is a tumor suppressor gene whose expression is lost during tumor progression. Gene transfer using adenoviral mda-7/IL-24 (Ad-mda7) exhibits minimal toxicity on normal cells while inducing potent apoptosis in a variety of cancer cell lines. Ad-mda7-transduced cells express high levels of MDA-7 protein intracellularly and also secrete a soluble form of MDA-7 protein. In this study, we sought to determine whether the intracellular or secreted MDA-7 protein was responsible for anti-tumor activity in H1299 lung tumor cells. Ad-mda7 transduction of lung tumor cells increased expression of stress-related proteins, including BiP, GADD34, PP2A, caspases 7 and 12, and XBP-1, consistent with activation of the UPR pathway, a key sensor of endoplasmic reticulum (ER)-mediated stress. Blocking secretion of MDA-7 did not inhibit apoptosis, demonstrating that intracellular MDA-7 was responsible for cytotoxicity. Consistent with this result, when applied directly to lung cancer cells, soluble MDA-7 protein exhibited minimal cytotoxic effect. We then generated mda-7 expression constructs using vectors that target the expressed protein to various subcellular compartments, including cytoplasm, nucleus, and ER. Only full-length and ER-targeted MDA-7 elicited cell death in tumor cells. Thus in lung cancer cells, Ad-mda7 activates the UPR stress pathway and induces apoptosis via intracellular MDA-7 expression in the secretory pathway.
Collapse
|
48
|
Prasad ML, Patel SG, Busam KJ. Primary mucosal desmoplastic melanoma of the head and neck. Head Neck 2004; 26:373-7. [PMID: 15054741 DOI: 10.1002/hed.10384] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Desmoplastic variants of melanoma rarely affect the mucosa. METHOD The clinicopathologic features and p53 status of seven primary mucosal desmoplastic melanomas of the oral and nasal cavity were studied. RESULTS The patients included six men and one woman (median age, 61 years; range, 23-74 years). Desmoplastic melanoma involved the lip in two, alveolus in three, buccal mucosa in one, and nasal vestibule in one patient. Four tumors infiltrated up to lamina propria, and three infiltrated bone and/or cartilage. All were amelanotic spindle cell tumors, five were neurotropic, and two were vasoinvasive. Aberrant p53 expression was seen in six tumors. All tumors recurred locally, and distant metastasis developed in three. Six patients died with disease (survival, 1-41 years; median, 8 years), and one patient was free of disease (survival 20 years). CONCLUSIONS Primary mucosal desmoplastic melanomas are clinically characterized by local recurrence and may lead to distant metastasis and death even after several years. Alterations in p53 expression are frequently associated with desmoplastic melanoma.
Collapse
Affiliation(s)
- Manju L Prasad
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | |
Collapse
|
49
|
Lebedeva IV, Sarkar D, Su ZZ, Kitada S, Dent P, Stein CA, Reed JC, Fisher PB. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24. Oncogene 2003; 22:8758-73. [PMID: 14647471 DOI: 10.1038/sj.onc.1206891] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Subtraction hybridization identified melanoma differentiation associated gene-7, mda-7, in the context of terminally differentiated human melanoma cells. Based on its structure, cytokine-like properties and proposed mode of action, mda-7 has now been classified as IL-24. When expressed by means of a replication-incompetent adenovirus, Ad.mda-7 induces apoptosis in a broad range of cancer cells, without inducing harmful effects in normal fibroblast or epithelial cells. These unique properties of mda-7/IL-24 suggest that this gene will prove beneficial for cancer gene therapy. We now demonstrate that Ad.mda-7 decreases viability by induction of apoptosis in hormone-responsive (LNCaP) and hormone-independent (DU-145 and PC-3) human prostate carcinomas, without altering growth or survival in early-passage normal human prostate epithelial cells (HuPEC). Ad.mda-7 causes G(2)/M arrest and apoptosis in LNCaP (p53-wildtype), DU-145 (p53 mutant, Bax-negative) and PC-3 (p53-negative) prostate carcinomas, but not in HuPEC. Apoptosis induction correlated with changes in the ratio of pro- to antiapoptotic Bcl-2 protein family members. A potential functional role for changes in bcl-2 family gene expression in Ad.mda-7-induced apoptosis was suggested by the finding that forced overexpression of bcl-x(L) or bcl-2 differentially diminished the apoptotic effect of Ad.mda-7 in prostate carcinomas. These results confirm that induction of apoptosis by the mda-7/IL-24 gene in prostate cancer cells is Bax- and p53-independent and is mediated by mitochondrial pathways involving bcl-2 family gene members. The mda-7/IL-24 gene represents a new class of cancer-specific apoptosis-inducing genes with obvious potential for the targeted gene-based therapy of human prostate cancer.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|